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Abstract

The success of over-parameterized neural networks trained to near-zero training
error has caused great interest in the phenomenon of benign overfitting, where
estimators are statistically consistent even though they interpolate noisy training
data. While benign overfitting in fixed dimension has been established for some
learning methods, current literature suggests that for regression with typical kernel
methods and wide neural networks, benign overfitting requires a high-dimensional
setting where the dimension grows with the sample size. In this paper, we show
that the smoothness of the estimators, and not the dimension, is the key: benign
overfitting is possible if and only if the estimator’s derivatives are large enough.
We generalize existing inconsistency results to non-interpolating models and more
kernels to show that benign overfitting with moderate derivatives is impossible
in fixed dimension. Conversely, we show that benign overfitting is possible for
regression with a sequence of spiky-smooth kernels with large derivatives. Using
neural tangent kernels, we translate our results to wide neural networks. We prove
that while infinite-width networks do not overfit benignly with the ReLU activation,
this can be fixed by adding small high-frequency fluctuations to the activation
function. Our experiments verify that such neural networks, while overfitting, can
indeed generalize well even on low-dimensional data sets.

1 Introduction

While neural networks have shown great practical success, our theoretical understanding of their
generalization properties is still limited. A promising line of work considers the phenomenon of
benign overfitting, where researchers try to understand when and how models that interpolate noisy
training data can generalize (Zhang et al., 2021} [Belkin et al., [2018},2019). In the high-dimensional
regime, where the dimension grows with the number of sample points, consistency of minimum-norm
interpolants has been established for linear models and kernel regression (Hastie et al., [2022] Bartlett
et al.| 2020 |Liang and Rakhlin| 2020} [Bartlett et al., 2021). In fixed dimension, minimum-norm
interpolation with standard kernels is inconsistent (Rakhlin and Zhail 2019, |Buchholz, [2022).

In this paper, we shed a differentiated light on benign overfitting with kernels and neural networks. We
argue that the dimension-dependent perspective does not capture the full picture of benign overfitting.
In particular, we show that harmless interpolation with kernel methods and neural networks is possible,
even in small fixed dimension, with adequately designed kernels and activation functions. The key is
to properly design estimators of the form ’signal+spike’. While minimum-norm criteria have widely
been considered a useful inductive bias, we demonstrate that designing unusual norms can resolve the
shortcomings of standard norms. For wide neural networks, harmless interpolation can be realized by
adding tiny fluctuations to the activation function. Such networks do not require regularization and
can simply be trained to overfit (Figure ).
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Figure 1: Spiky-smooth overfitting in 2 dimensions. a. We plot the predicted function for ridgeless
kernel regression with the Laplace kernel (blue) versus our spiky-smooth kernel (4) with Laplace
components (orange) on S'. The dashed black line shows the true regression function, black ’x’
denote noisy training points. Further details can be found in b. The predicted function of
a trained 2-layer neural network with ReLU activation (blue) versus ReLU plus shifted high-frequency
sin-function (B (orange). Using the weights learned with the spiky-smooth activation function in a
ReLU network (green) disentangles the spike component from the signal component. ¢. Training
error (solid lines) and test error (dashed lines) over the course of training for b. evaluated on 10* test
points. The dotted black line shows the optimal test error. The spiky-smooth activation function does
not require regularization and can simply be trained to overfit.

On a technical level, we additionally prove that overfitting in kernel regression can only be consistent
if the estimators have large derivatives. Using neural tangent kernels or neural network Gaussian
process kernels, we can translate our results from kernel regression to the world of neural networks
(Neall, (1996, Jacot et al., 2018). In particular, our results enable the design of activation functions that
induce benign overfitting in fixed dimension: the spikes in kernels can be translated into infinitesimal
fluctuations that can be added to an activation function to achieve harmless interpolation with neural
networks. Such small high frequency oscillations can fit noisy observations without affecting the
smooth component too much. Training finite neural networks with gradient descent shows that
spiky-smooth activation functions can indeed achieve good generalization even when interpolating

small, low-dimensional data sets (Figure T|b,c).

Thanks to new technical contributions, our inconsistency results significantly extend existing ones.
We use a novel noise concentration argument to generalize existing inconsistency
results on minimum-norm interpolants to the much more realistic regime of overfitting estimators with
comparable Sobolev norm scaling, which includes training via gradient flow and gradient descent with
“late stopping” as well as low levels of ridge regression. Moreover, a novel connection to eigenvalue
concentration results for kernel matrices (Proposition 4} allows us to relax the smoothness assumption
and to treat heteroscedastic noise in [Theorem 5| Lastly, our [Lemma E.I|translates inconsistency
results from bounded open subsets of R? to the sphere S?, which leads to results for the neural tangent
kernel and neural network Gaussian processes.

2 Setup and prerequisites

General approach. We consider a general regression problem on R¢ with an arbitrary, fixed dimen-
sion d and analyze kernel-based approaches to solve this problem: kernel ridge regression, kernel
gradient flow and gradient descent, minimum-norm interpolation, and more generally, overfitting
norm-bounded estimators. We then translate our results to neural networks via the neural network
Gaussian process and the neural tangent kernel. Let us now introduce the formal framework.

Notation. We denote scalars by lowercase letters x, vectors by bold lowercase letters « and matrices
by bold uppercase letters X. We denote the eigenvalues of A as A;(A) > ... > A,(A) and the
Moore-Penrose pseudo-inverse by A™*. We say that a probability distribution P has lower and upper
bounded density if its density p satisfies 0 < ¢ < p(x) < C for suitable constants ¢, C and all  on a
given domain.

Regression setup. We consider a data set D = ((z1,91),- .., (Zn,yn)) € (R x R)™ with i.i.d.
samples (x;,7;) ~ P, written as D ~ P", where P is a probability distribution on R% x R. We
define X := (x1,...,x,) and y == (y1,...,y,) € R™ Random variables (x,y) ~ P denote
test points independent of D, and Py denotes the probability distribution of . The (least squares)
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empirical risk Rp and population risk Rp of a function f : R? — R are defined as

n

1
Rp(f)= - (i f@))’,  Rp(f) = Eaylly— ()]
i=1
We assume Var(y|x) < oo for all . Then, Rp is minimized by the target function f5(z) = E[y|x],
and the excess risk of a function f is given by

Rp(f) = Rp(fp) = Ex(fp(z) — f())* .

We call a data-dependent estimator fp consistent for P if its excess risk converges to 0 in probability,
that is, for all & > 0, lim, 0 P" (D € (R x R)" | Rp(fp) — Rp(fp) =¢) = 0. We call fp
consistent in expectation for P if lim, ..o EpRp(fp) — Rp(fp) = 0. We call fp universally
consistent if is it consistent for all Borel probability measures P on R? x R.

Solutions by kernel regression. Recall that a kernel k£ induces a reproducing kernel Hilbert space
‘H};, abbreviated RKHS (more details in[Appendix B). For f € #;, we consider the objective
1 n
Co(F) == (i = F@i)? + ol F 3,
i=1
with regularization parameter p > 0. Denote by f; , the solution to this problem that is obtained by
optimizing on £, in H;, with gradient flow until time ¢ € [0, oo, using fixed a regularization constant

p > 0, and initializing at f = 0 € Hj. We show in[Appendix C.1|that it is given as
fep@) = k@, X) (I, — e HOEX 1m0 ) (X, X) + prl,) "y (1)

where k(x, X') denotes the row vector (k(x, ;) )ic[n) and k(X, X) = (k(x4, T;))i,je[n) the kernel
matrix. f; , elegantly subsumes several popular kernel regression estimators as special cases: (i)
classical kernel ridge regression for t — oo, (ii) gradient flow on the unregularized objective for
p . 0, and (iii) kernel “ridgeless” regression foo o(z) = k(x, X)k(X, X )"y in the joint limit of
p — 0and t — oo. If (X, X)) is invertible, f o is the interpolating function f € Hj, with the
smallest H;-norm.

From kernels to neural networks: the neural tangent kernel (NTK) and the neural network
Gaussian process (NNGP) . Denote the output of a NN with parameters € on input x by fg ().
It is known that for suitable random initializations @, in the infinite-width limit the random initial
function fg, converges in distribution to a Gaussian Process with the so-called Neural Network
Gaussian Process (NNGP) kernel (Neall [1996, [Lee et al.| 2018, [Matthews et al.,|2018)). In Bayesian
inference, the posterior mean function is then of the form f., ,. With minor modifications (Arora
et al., 2019, [Zhang et al.} 2020), training infinitely wide NNs with gradient flow corresponds to
learning the function f; o with the neural tangent kernel (NTK) (Jacot et al.|[2018| [Lee et al.l|2019).
If only the last layer is trained, the NNGP kernel should be used instead (Daniely et al.,[2016). For
ReLU activation functions, the RKHS of the infinite-width NNGP and NTK on the sphere S% is
typically a Sobolev space (Bietti and Bach|, 2021} [Chen and Xul, 2021)), see[Appendix B.4]

3 Related work

We here provide a short summary of related work. A more detailed account is provided in[Appendix A]

Kernel regression. With appropriate regularization, kernel ridge regularization with typical universal
kernels like the Gauss, Matérn, and Laplace kernels is universally consistent (Steinwart and Christ-
mann, |2008} Chapter 9). Optimal rates in Sobolev RKHS can also be achieved using cross-validation
of the regularization p (Steinwart et al., 2009) or early stopping rules (Yao et al., 2007, Raskutti et al.|
2014, |Wei et al.| [2017). In the high-dimensional regime, the class of functions that is learnable with
rotation-invariant kernels is quite limited (Donhauser et al., [2021} |Ghorbani et al.} 2021} |Liang et al.,
2020).

Inconsistency results. Besides Rakhlin and Zhai| (2019) and [Buchholz (2022), Beaglehole et al.
(2022) derive inconsistency results for ridgeless kernel regression given assumptions on the spectral
tail in the Fourier basis, and [Li et al. (2023 show that polynomial convergence is impossible
for common kernels including ReLU NTKs. Mallinar et al.| (2022) conjecture inconsistency for
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interpolation with ReLU NTKSs based on their semi-rigorous result , which essentially assumes that
the eigenfunctions can be replaced by structureless Gaussian random variables. [Lai et al.|(2023)) show
an inconsistency-type result for overfitting two-layer ReLU NNs with d = 1, but for fixed inputs
X. They also note that an earlier inconsistency result by [Hu et al.| (2021)) relies on an unproven
result. Miicke and Steinwart| (2019) show that global minima of NN can overfit both benignly and
harmfully, but their result does not apply to gradient descent training. Overfitting with typical linear
models around the interpolation peak is inconsistent (Ghosh and Belkinl 2022, |Holzmiiller, [2021}).

Classification. For binary classification, benign overfitting is a more generic phenomenon than for
regression (Muthukumar et al., 2021 |Shamir, [2022), and consistency has been shown under linear
separability assumptions (Montanari et al., 2019, |Chatterji and Long} 2021}, [Frei et al.|[2022), through
complexity bounds for reference classes (Cao and Gul 2019, |Chen et al.,2019) or as long as the total
variation distance of the class conditionals is sufficiently large and f*(x) = E[y|«] lies in the RKHS
with bounded norm (Liang and Recht} [2023)). Chapter 8 of |Steinwart and Christmann|(2008) discusses
how the overlap of the two classes may influence learning rates under positive regularization.

4 Inconsistency of overfitting with common kernel estimators

We consider a regression problem on R? in arbitrary, fixed dimension d that is solved by kernel
regression. In this section, we derive several new results, stating that overfitting estimators with
moderate Sobolev norm are inconsistent, in a variety of settings. In the next section, we establish the
other direction: overfitting estimators can be consistent when we adapt the norm that is minimized.

4.1 Beyond minimum-norm interpolants: general overfitting estimators with bounded norm

Existing generalization bounds often consider the perfect minimum norm interpolant. This is a rather
theoretical construction; estimators obtained by training with gradient descent algorithms merely
overfit and, in the best case, approximate interpolants with small norm. In this section, we extend
existing bounds to arbitrary overfitting estimators whose norm does not grow faster than the minimum
norm that would be required to interpolate the training data. Before we can state the theorem, we
need to establish some technical assumptions.

Assumptions on the data generating process. The following assumptions (as in|/Buchholz (2022))
allow for quite general domains and distributions. They are standard in nonparametric statistics.

(D1) Let Py be a distribution on a bounded open Lipschitz domain Q C R? with lower and
upper bounded Lebesgue density. Consider data sets D = {(x1,41),. .., (Zn, yn)}, where
x; ~ Px iid. andy; = f*(x;)+¢;, where ¢; is i.i.d. Gaussian noise with positive variance
o2 > 0and f* € C(Q)\{0} denotes a smooth function with compact support.

Assumptions on the kernel. Our assumption on the kernel is that its RKHS is equivalent to a
Sobolev space. For integers s € N, the norm of a Sobolev space H*(2) can be defined as

Hf”%is(sz) = Z HDafH%Q(sz)»
0<]a|<s
where D® denotes partial derivatives in multi-index notation for «. It measures the magnitude
of derivatives up to some order s. For general s > 0, H*(2) is (equivalent to) an RKHS if and
only if s > d/2. For example, Laplace and Matérn kernels (Kanagawa et al., 2018}, Example 2.6)
have Sobolev RKHSs. The RKHS of the Gaussian kernel H“?"S is contained in every Sobolev
space, H Gauss C H? for all s > 0 (Steinwart and Christmann) 2008, Corollary 4.36). Due to its
smoothness, the Gaussian kernel is potentially even more prone to harmful overfitting than Sobolev

kernels (Mallinar et al.,|2022). We make the following assumption on the kernel:
(K) Let k be a positive definite kernel function whose RKHS H, is equivalent to the Sobolev
space H* for s € (£, 34].
Now we are ready to state the main result of this section:

Theorem 1 (Overfitting estimators with small norms are inconsistent). Let assumptions (DI) and
(K) hold. Let cgt € (0,1] and Cyorm > 0. Then, there exist ¢ > 0 and ng € N such that the following
holds for all n > ng with probability 1 — O(1/n) over the draw of the data set D with n samples:
Every function f € Hy, that satisfies the follwing two conditions
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(0) L3570 [(f(%;) — yi)? < (1 — cqe) - 02 (training error of f is below Bayes risk)
(N) 1fll1e < Chormll foo,0ll3, (rorm comparable to minimum-norm interpolant (1)),

has an excess risk that satisfies

Rp(f) — Rp(f*) 2 ¢>0. 2)

In words: In fixed dimension d, every differentiable function f that overfits the training data and is
not much “spikier” than the minimum RKHS-norm interpolant is inconsistent!

Proof idea. Our proof follows a similar approach as|Rakhlin and Zhail (2019)), Buchholz| (2022), and
also holds for kernels with adaptive bandwidths. For small bandwidths, || fo 0|z, (Py) is too small,
because fo o decays to 0 between the training points, which shows that purely ’spiky’ estimators are
inconsistent. For all other bandwidths, interpolating ©(n) many noisy labels y; incurs ©(1) error
in an area of volume §2(1/n) around ©(n) data points with high probability, which accumulates
to a total error 2(1). Our observation is that the same logic holds when overfitting by a constant
fraction. Formally, we show that f* and f must then be separated by a constant on a constant fraction
of training points, with high probability, by using the fact that a constant fraction of the total noise
cannot concentrate on less than ©(n) noise variables, with high probability . The full

O

proof can be found in

Assumption (O) is necessary in because optimally regularized kernel ridge regression
fulfills all other assumptions of while achieving consistency with minimax optimal

convergence rates (see[Section 3). The necessity of Assumption (N) is demonstrated by

The following proposition establishes that covers the entire overfitting regime of the
popular (regularized) gradient flow estimators f; , for all times ¢ € [0, co] and any regularization

p > 0. The proof in[Appendix C.2]also covers gradient descent.

Proposition 2 (Popular estimators fulfill the norm bound (N)). Let t € [0,00] and let p > 0
arbitrary. Then f , as defined in (1)) fulfills Assumption (N) with Cyorm = 1.

4.2 Inconsistency of overfitting with neural kernels

We would now like to apply the above results to neural kernels, which would allow us to translate
our inconsistency results from the kernel domain to neural networks. However, to achieve this, we
need to take one more technical hurdle: the equivalence results for NTKs and NNGPs only hold for
probability distributions on the sphere S? (detailed summary in|Appendix B.4). [Lemma E.1|provides
the missing technical link: It establishes a smooth correspondence between the respective kernels,
Sobolev spaces, and probability distributions. The inconsistency of overfitting with (deep) ReLU
NTKs and NNGP kernels then immediately follows from adapting [Theorem 1| via[Lemma E.I]

Theorem 3 (Overfitting with neural network kernels in fixed dimension is inconsistent). Let
c € (0,1), and let P be a probability distribution with lower and upper bounded Lebesgue density on
an arbitrary spherical cap T = {x € S? | mg41 < v} CS% v € (—1,1). Let k either be

(i) the fully-connected ReLU NTK with 0-initialized biases of any fixed depth L > 2, and d > 2, or
(ii) the fully-connected ReLU NNGP kernel without biases of any fixed depth L > 3, and d > 6.

Then, if f , fulfills Assumption (O) with probability at least c over the draw of the data set D, f; , is
inconsistent for P.

Theorem 3]also holds for more general estimators as in[Theorem 1} cf. the proof in[Appendix E}

Mallinar et al.| (2022)) already observed empirically that overfitting common network architectures
yields suboptimal generalization performance on large data sets in fixed dimension. now
provides a rigorous proof for this phenomenon since sufficiently wide trained neural networks and the
corresponding NTKSs have a similar generalization behavior (e.g. (Arora et al., 2019 Theorem 3.2)).

4.3 Relaxing smoothness and noise assumptions via spectral concentration bounds

In this section, we consider a different approach to derive lower bounds for the generalization error
of overfitting kernel regression: through concentration results for the eigenvalues of kernel matrices.
On a high level, we obtain similar results as in the last section. The novelty of this section is on the
technical side, and we suggest that non-technical readers skip this section in their first reading.
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We define the convolution kernel of a given kernel k as k. (z, z') = [ k(z,z")k(z”,z') dPx (z"),
which is possible whenever k(x, -) € La(Px ) for all z. The latter condition is satisfied for bounded
kernels. Our starting point is the following new lower bound:

Proposition 4 (Spectral lower bound). Assume that the kernel matrix k(X , X) is almost surely
positive definite, and that Var(y|x) > o2 for Px-almost all x. Then, the expected excess risk satisfies

Ai(ka(X, X)/m) (1 — =26 (kX X) /) +9))2
(Ai(k(X, X)/n) + p)?

2 n
% g
EpRp(fip) = Rp > — > Ex

i=1

3)

Using concentration inequalities for kernel matrices and the relation between the integral operators of
k and k., it can be seen that for £ = co and p = 0, every term in the sum in Eq. (3) should converge
to 1 as n — co. However, since the number of terms in the sum increases with n and the convergence
may not be uniform, this is not sufficient to show inconsistency in expectation. Instead, relative
concentration bounds that are even stronger than the ones by |Valdivia (2018) would be required to
show inconsistency in expectation. However, by combining multiple weaker bounds and further
arguments on kernel equivalences, we can still show inconsistency in expectation for a class of
dot-product kernels on the sphere, including certain NTK and NNGP kernels (Appendix B.4):

Theorem 5 (Inconsistency for Sobolev dot-product kernels on the sphere). Let k be a dot-product
kernel on S¢, i.e., a kernel of the form k(x,x') = k({x, '), such that its RKHS Hy, is equivalent
to a Sobolev space H*(S%), s > d/2. Moreover, let P be a distribution on S* x R such that
Px has a lower and upper bounded density w.r.t. the uniform distribution U(S?), and such that
Var(y|x) > o > 0 for Px-almostall x € S°. Then, for every C > 0, there exists ¢ > 0 independent
of 02 such that for alln > 1, t € (C~'n?%/? 0|, and p € [0, Cn=2/9), the expected excess risk
satisfies

]EDRP(ft,p) — R}S > co?>0.

The assumptions of [Theorem 5|and[Theorem 3|differ in several ways. [Theorem 5|applies to arbitrarily
high smoothness s and therefore to ReLU NTKs and NNGPs in arbitrary dimension d. Moreover, it
applies to distributions on the whole sphere and allows more general noise distributions. On the flip
side, it only shows inconsistency in expectation, which we believe could be extended to inconsistency
for Gaussian noise. Moreover, it only applies to functions of the form f; , but provides an explicit
bound on ¢ and p to get inconsistency. For ¢ = oo, the bound p = O(n~2*/¢) appears to be tight, as
larger p yield consistency for comparable Sobolev kernels on R? (Steinwart et al., 2009, Corollary 3).
The spectral lower bounds in[Theorem F2]show that our approach can directly benefit from developing

better kernel matrix concentration inequalities. Conversely, the investigation of consistent kernel
interpolation might provide information about where such concentration inequalities do not hold.

5 Consistency via spiky-smooth estimators — even in fixed dimension

In Section 4, we have seen that when common kernel estimators overfit, they are inconsistent for
many kernels and a wide variety of distributions. We now design consistent interpolating kernel
estimators. The key is to violate Assumption (N) and allow for quickly exploding derivatives.

5.1 Almost universal consistency of spiky-smooth ridgeless kernel regression

In high dimensional regimes (where the dimension d is supposed to grow with the number of data
points), benign overfitting of linear and kernel regression has been understood by an additive decom-
position of the minimum-norm interpolant into a smooth regularized component that is responsible
for good generalization, and a spiky component that interpolates the noisy data points while not
harming generalization (Bartlett et al.| 2021). This inspires us to enforce such a decomposition in
arbitrary fixed dimension by adding a sharp kernel spike plvf% to a common kernel k. In this way, we

can still generate any Sobolev RKHS (see|Appendix G.2).
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Definition 6 (Spiky-smooth kernel). Let k denote any universal

kernel function on R%. We call it the smooth component. Consider ] A= Eaﬁlafmomh
a second, translation invariant kernel k., of the form k., (x,y) = P /\ P
q(mv;y), for some function ¢ : R — R. We call it the spiky 107 ZA\
component. Then we define the p-regularized spiky-smooth kernel
with spike bandwidth ~y as 0.9 v

ko, y) =k(z,y) + p- ky(x, ), z,y eR. (4 —01 0.0 0.1

We now show that the minimum-norm interpolant of the spiky- Figure 2: The spiky-smooth ker-
smooth kernel sequence with properly chosen p;,,y, — 0 1S nel with Laplace components (or-
consistent for a large class of distributions, on a space with fixed ange) consists of a Laplace ker-
(possibly small) dimension d. We establish our result under the pe] (blue) plus a Laplace kernel of
following assumption (as in Miicke and Steinwart| (2019)), which height p and small bandwidth ~.
is weaker than our previous Assumption (D1).

(D2) There exists a constant Sx > 0 and a continuous function ¢ : [0, 00) — [0, 1] with ¢(0) =0
such that the data generating probability distribution satisfies Py (B:(z)) < ¢(t) = O(t#x)
forall x € Q and all t > 0 (here B;(x) denotes the Euclidean ball of radius ¢ around ).

Theorem 7 (Consistency of spiky-smooth ridgeless kernel regression). Assume that the training
set D consists of n i.i.d. pairs (z,%y) ~ P such that the marginal Px fulfills (D2) and Ey? < co. Let
the kernel components satisfy:

. ]jf is a universal kernel, and p,, — 0 and np? — oc.
* k., denotes the Laplace kernel with a sequence of positive bandwidths (v,) fulfilling
Yo = O (n=3+)/Bx [1og(n)), where o > 0 arbitrary.

Then the minimum-norm interpolant of the p,,-regularized spiky-smooth kernel sequence k,, =k, -,
is consistent for P.

Proof idea. With sharp spikes v — 0, it holds that /;J—y (X,X) =~ I,, with high probability.
Hence, ridgeless kernel regression with the spiky-smooth kernel interpolates the training set while
approximating kernel ridge regression with the smooth component k and regularization p. O

The theorem even holds under much weaker assumptions on the decay behavior of the spike compo-
nent k., , including Gaussian and Matérn kernels. The full version of the theorem and its proof can
be found in It also applies to kernels and distributions on the sphere S¢.

5.2 From spiky-smooth kernels to spiky-smooth activation functions

So far, our discussion revolved around the properties of kernels and whether they lead to estimators
that are consistent. We now turn our attention to the neural network side. The big question is
whether it is possible to specifically design activation functions that enable benign overfitting in fixed,
possibly small dimension. We will see that the answer is yes: similarly to adding sharp spikes to a
kernel, we add tiny fluctuations to the activation function. Concretely, we exploit (Simon et al., {2022
Theorem 3.1). It states that any dot-product kernel on the sphere that is a dot-product kernel in every
dimension d can be written as an NNGP kernel or an NTK of two-layer fully-connected networks
with a specifically chosen activation function. Further details can be found in[Appendix H|
Theorem 8 (Connecting kernels and activation functions (Simon et al|[2022)). Ler x : [-1,1] —
R be a function such that kq : S* x S* — R, kq(x,x') = k({x,2)) is a kernel for every d > 1.
Then, there exist b; > 0 with Y .o b; < oo such that k(t) = Y- b;t", and for any choice of
signs (s;)ien C {—1,41}, the kernel kq can be realized as the NNGP or NTK of a two-layer
fully-connected network with activation function

. > . > b \'/?
Sinap(@) =Y si(bi)hi(x), Nri(T) =) s (Z " > hi(). (5)
1=0 1=0

Here, h; denotes the i-th Probabilist’s Hermite polynomial normalized such that ||h;|| 1, (ar(0,1)) = 1.

The following proposition justifies the approach of adding spikes p'/ 2¢k7 to an activation function to
enable harmless interpolation with wide neural networks. Here we state the result for the case of the
NTK; an analogous result holds for induced NNGP activation functions.
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Figure 3: a., b. Gaussian NTK activation components ¢I]€\7T - defined via (5) induced by the Gaussian
kernel with varying bandwidth v € [0.2,0.1,0.05] (the darker, the smaller ) for a. bi-alternating
signs s; = +1iff |i/2] even, and b. randomly iid chosen signs s; ~ U({—1,+1}). c. Coefficients
of the Hermite series of a Gaussian NTK activation component with varying bandwidth . Observe
peaks at 2/~. For reliable approximations of activation functions use a truncation > 4/~. The sum of
squares of the coefficients follows Eq. (6). visualizes NNGP activation components.

Proposition 9 (Additive decomposition of spiky-smooth activation functions). Fix ¥,p > 0
arbitrary. Let k = k + pk denote the spiky-smooth kernel where k and k are Gaussian kernels
of bandwidth 7 and v, respectively. Assume that we choose signs {s;}ien and then the activation

functions ¢, 1y, ¢§“VT K, and (Z)I;V’T K asin Then, for v > 0 small enough, it holds that

7 i 1 4 (14 5)y
loNrr — (BRerx + /P ¢J\7TK)||%2(N(O,1)) < 2'2py* % exp (—7) + 5

Proof idea. When the spikes are sharp enough (y small enough), the smooth and the spiky component
of the activation function are approximately orthogonal in Lo (A(0, 1)) (Figure 3k), so that the spiky-
smooth activation function can be approximately additively decomposed into the smooth activation

component qﬁ’; and the spike component ¢* responsible for interpolation. O

To motivate why the added spike functions pt/ 2¢k7 should have small amplitudes, observe that
Gaussian activation components ¢+ satisfy

? 7 2
||¢1\?NGPH%2(N(0,U) == 17 ||¢NTK||L2(N(0 1)) <1 —eXp < ’y)) ' (6)

Hence, the average amplitude of NNGP spike activation components p'/2¢*~ does not depend on ,
while the average amplitude of NTK spike components decays to 0 with v — 0. Since consistency
requires the quasi-regularization p — 0, the spiky component of induced NTK as well as NNGP
activation functions should vanish for large data sets n — oo to achieve consistency.

6 Experiments

Now we explore how appropriate spiky-smooth activation functions might look like and whether they
indeed enable harmless interpolation for trained networks of finite width on finite data sets. Further

experimental results are reported in

6.1 What do common activation functions lack in order to achieve harmless interpolation?

To understand which properties we have to 1ntroduce into activation functions to enable harmless
interpolation, we plot NTK spike components ¢ ks 1nduced by the Gaussian kernel (F 3p,b)
as well as their Hermite series coefficients l 3c). Remarkably, the spike components ¢k

approximately correspond to a shifted, high- frequency sin-curve, when choosing the signs s; in (3))
to alternate every second i, that is s; = +1 iff [i/2] even m) We empirically determine
[Appendix L.6) that the NNGP activation functions are well approximated by the fluctuation function

wnnap(2;7) = V2 - sin (\/2/7'7 cx 4 7r/4) = sin (\/2/77 J:) + cos (\/2/77 . :C) , (D

where the last equation follows from the trigonometric addition theorem. For small bandwidths ~, the
NTK activation functions are increasingly well approximated by

wnTK (2;7) = /7 - sin (m~x+w/4> =/7/2 (sin <\/2/7'yx) + cos (\/Q/T:U)) . (8)
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With decreasing bandwidth v — 0 the frequency increases, while the amplitude decreases for the

NTK and remains constant for the NNGP (see Eq. (6)). Plotting equivalent spike components ¢*~
with different choices of the signs s; (Figure 3p and[Appendix I.5)) suggests that harmless interpolation
requires activation functions that contain small high-frequency oscillations or that explode at large
||, which only affects few neurons. The Hermite series expansion of suitable activation functions
should contain non-negligible weight spread across high-order coefficients (Figure 3¢). While
Simon et al.|(2022) already truncate the Hermite series of induced activation functions at order 5,
shows that an accurate approximation of spiky-smooth activation functions requires the
truncation index to be larger than 2/+. Only a careful implementation allows us to capture the
high-order fluctuations in the Hermite series of the spiky activation functions. Our implementation
can be found in the supplementary material.

6.2 Training neural networks to achieve harmless interpolation in low dimension

In we plot the results of (a) ridgeless kernel regression and (b) trained 2-layer neural
networks with standard choices of kernels and activation functions (blue) as well as our spiky-smooth
alternatives (orange). We trained on 15 points sampled i.i.d. from x = (z1,22) ~ U(S') and
y = 1 + € with € ~ AN(0,0.25). The figure shows that both the Laplace kernel and standard
ReLU networks interpolate the training data too smoothly in low dimension, and do not generalize
well. However, our spiky-smooth kernel and neural networks with spiky-smooth activation functions
achieve close to optimal generalization while interpolating the training data with sharp spikes.
We achieve this by using the adjusted activation function with high-frequency oscillations x
ReLU(z) 4 wntk (7; 5555) as defined in Eq. (8). With this choice, we avoid activation functions
with exploding behavior, which would induce exploding gradients. Other choices of amplitude and
frequency in Eq. (8) perform worse. Over the course of training (Figure Ik), the standard ReLU
network exhibits harmful overfitting, whereas the NN with a spiky-smooth activation function quickly
interpolates the training set with nearly optimal generalization. Training details and hyperparameter
choices can be found in[Appendix I.T] Although the high-frequency oscillations perturb the gradients,
the NN with spiky smooth activation has a stable training trajectory using gradient descent with a large
learning rate of 0.4 or stochastic gradient descent with a learning rate of 0.04. Since our activation
function is the sum of two terms, we can additively decompose the network into its ReL.U-component
and its wnTk-component. [Figure 1b and [Appendix I.2| demonstrate that our interpretation of the
wNTK-component as ’spiky’ is accurate: The oscillations in the hidden neurons induced by wnTk
interfere constructively to interpolate the noise in the training points and regress to 0 between training
points. This entails immediate access to the signal component of the trained neural network in form
of its ReLU-component.

7 Conclusion

Conceptually, our work shows that inconsistency of overfitting is quite a generic phenomenon for
regression in fixed dimension. However, particular spiky-smooth estimators enable benign overfitting,
even in fixed dimension. We translate the spikes that lead to benign overfitting in kernel regression
into infinitesimal fluctuations that can be added to activation functions to consistently interpolate with
wide neural networks. Our experiments verify that neural networks with spiky-smooth activation
functions can exhibit benign overfitting even on small, low-dimensional data sets.

Technically, our inconsistency results cover many distributions, Sobolev spaces of arbitrary order, and
arbitrary RKHS-norm-bounded overfitting estimators. [Lemma E.1|serves as a generic tool to extend
generalization bounds to the sphere S¢, allowing us to cover (deep) ReLU NTKs and ReLU NNGPs.

Future work. While our experiments serve as a promising proof of concept, it remains unclear how
to design activation functions that enable harmless interpolation of more complex neural network
architectures and data sets. As another interesting insight, our consistent kernel sequence shows that
although kernels may have equivalent RKHS (see[Appendix G.2)), their generalization error can differ
arbitrarily much; the constants of the equivalence matter and the narrative that depth does not matter
in the NTK regime as in[Bietti and Bach|(2021) is too simplified. More promisingly, analyses that
extend our analysis in the infinite-width limit to a joint scaling of width and depth could help us to
understand the influence of depth (Fort et al., 2020} [Li et al.} 2021} |Seleznova and Kutyniok, 2022).
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A Detailed related work

Motivated by [Zhang et al.|(2021)) and Belkin et al.| (2018)), an abundance of papers have tried to
grasp when and how benign overfitting occurs in different settings. Rigorous understanding is mainly
restricted to linear (Bartlett et al.| [2020), feature (Hastie et al.|[2022)) and kernel regression (Liang and
Rakhlin| [2020) under restrictive distributional assumptions. In the well-specified linear setting under
additional assumptions, the minimum-norm interpolant is consistent if and only if £k < n < d, the
top-k eigendirections of the covariate covariance matrix align with the signal, followed by sufficiently
many ’quasi-isotropic’ directions with eigenvalues of similar magnitude (Bartlett et al.| 2020).

Kernel methods. The analysis of kernel methods is more nuanced and depends on the interplay
between the chosen kernel, the choice of regularization and the data distribution. Ls-generalization
error bounds can be derived in the eigenbasis of the kernel’s integral operator (Mcrae et al.| [2022]),
where upper bounds of the form \/yTk(X, X)~Ly/n promise good generalization when the regres-
sion function f* is aligned with the dominant eigendirections of the kernel, or in other words, when
I £*]l7¢ is small. Most recent work focuses on high-dimensional limits, where the data dimensionality
d — oo. For d — oo, the Hilbert space and its norm change, so that consistency results that demand
bounded Hilbert norm of rotation-invariant kernels do not even include simple functions like sparse
products (Donhauser et al.,[2021, Lemma 2.1). In the regime d'*° < n < d'*!79, rotation-invariant
(neural) kernel methods (Ghorbani et al., 2021} |Donhauser et al.,|2021) can in fact only learn the
polynomial parts up to order [ of the regression function f*, and fully-connected NTKs do so. [Liang
et al.| (2020) uncover a related multiple descent phenomenon in kernel regression, where the risk
vanishes for most n — oo, but peaks at n = d* for all i € N. The slower d grows, the slower the

optimal rate n™ 55T between the peaks. Note, however, that these bounds are only upper bounds, and
whether they are optimal remains an open question to the best of our knowledge. Another recent line
of work analyzes how different inductive biases, measured in || - ||,-norm minimization, p € [1, 2],
(Donhauser et al.,[2022)) or in the filter size of convolutional kernels (Aerni et al., 2023)), affects the
generalization properties of minimum-norm interpolants. While the risk on noiseless training samples
(bias) decreases with decreasing p or small filter size, the sensitivity to noise in the training data
(variance) increases. Hence only ‘weak inductive biases’, that is large p or large filter sizes, enable
harmless interpolation. Our results suggest that to achieve harmless interpolation in fixed dimension
one has to construct and minimize more unusual norms than || - ||,-norms.

Regularised kernel regression achieves optimal rates. With appropriate regularization, kernel
ridge regularization with typical universal kernels like the Gauss, Matérn, and Laplace kernels is
universally consistent (Steinwart and Christmann, 2008, Chapter 9). |Steinwart et al.[ (2009} Corollary
6) even implies minimax optimal nonparametric rates for clipped kernel ridge regression with Sobolev
kernels and f* € H? where d/2 < 8 < s for the choice p,, = n~2%/(26+4)  Although f* is not
necessarily in the RKHS, KRR is adaptive and can still achieve optimal learning rates. Lower
smoothness 3 of f* as well as higher smoothness of the kernel should be met with faster decay of
pn- Optimal rates in Sobolev RKHS can also be achieved using cross-validation of the regularization
p (Steinwart et al., 2009)), early stopping rules based on empirical localized Rademacher (Raskutti
et al., 2014) or Gaussian complexity (Wei et al.l 2017) or smoothing of the empirical risk via kernel
matrix eigenvalues (Averyanov and Celissel 2020).

Lower bounds for kernel regression. Besides Rakhlin and Zhai| (2019) and Buchholz| (2022),
Beaglehole et al.|(2022) derive inconsistency results for kernel ridgeless regression given assumptions
on the spectral tail in the Fourier basis. [Mallinar et al.[|(2022) provide a characterization of kernel
ridge regression into benign, tempered and catastrophic overfitting using a heuristic approximation of
the risk via the kernel’s eigenspectrum, essentially assuming that the eigenfunctions can be replaced
by structureless Gaussian random variables. A general lower bound for ridgeless linear regression
Holzmiiller| (2021)) predicts bad generalization near the “interpolation threshold”, where the dimension
of the feature space is close to n, also known as the double descent phenomenon. In this regime,
Ghosh and Belkin|(2022) also consider overfitting by a fraction beyond the noise level and derive a
lower bound for linear models.

Benign overfitting in fixed dimension. Only few works have established consistency results for
interpolating models in fixed dimension. The first statistical guarantees for Nadaraya-Watson kernel
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smoothing with singular kernels were given by [Devroye et al.| (1998). Optimal non-asymptotic results
have only been established more recently. Belkin et al.|(2019) show that Nadaraya-Watson kernel
smoothing achieves minimax optimal convergence rates for a € (0, d/2) under smoothness assump-
tions on f*, when using singular kernels such as truncated Hilbert kernels K (u) = [[u[|§1 <1,
which do not induce RKHS that only contain weakly differentiable functions (as our results do). By
thresholding the kernel they can adjust the amount of overfitting without affecting the generalization
bound. To the best of our knowledge, rigorously proving or disproving analogous bounds for kernel
ridge regression remains an open question. |Arnould et al.[(2023)) show that median random forests are
able to interpolate consistently in fixed dimension because of an averaging effect introduced through
feature randomization. They conjecture consistent interpolation for Breiman random forests based on
numerical experiments.

Classification. For binary classification tasks, benign overfitting is a more generic phenomenon
than for regression tasks (Muthukumar et al.,[2021} Shamir, [2022)). Consistency has been shown under
linear separability assumptions (Montanari et al., 2019, (Chatterji and Long| 2021} [Frei et al., 2022)
and through complexity bounds with respect to reference classes like the "Neural Tangent Random
Feature’ model (Cao and Gu, 2019} |Chen et al.,[2019). Most recently, [Liang and Recht (2023) have
shown that the 0-1-generalization error of minimum RKHS-norm interpolants fo is upper bounded
y (WX, X)+pD) "'y

n

, Where

by L Zl‘lz and analogously that kernel ridge regression fp generalizes as

the numerator upper bounds || f, ||3,. Their bounds imply consistency as long as the total variation
distance between the class conditionals is sufficiently large and the regression function has bounded
RKHS-norm, and their Lemma 7 shows that the upper bound is rate optimal. Under a noise condition
on the regression function f*(x) = E[y|x] for binary classification and bounded || f*||3;, our results
together with [Liang and Recht| (2023) reiterate the distinction between benign overfitting for binary
classification and inconsistent overfitting for least squares regression for a large class of distributions
in kernel regression over Sobolev RKHS. Chapter 8 of |Steinwart and Christmann|(2008]) discusses
how the overlap of the two classes may influence learning rates under positive regularization. Using
Nadaraya-Watson kernel smoothing, Wang and Scott| (2022) offer the first consistency result for a
simple interpolating ensemble method with data-independent base classifiers.

Connection to neural networks. It is known that neural networks can behave like kernel methods
in certain infinite-width limits. For example, the function represented by a randomly initialized NN
behaves like a Gaussian process with the NN Gaussian process (NNGP) kernel, which depends on
details such as the activation function and depth of the NN (Neal, |1996| Lee et al.,|2018| Matthews
et al., 2018)). Hence, Bayesian inference in infinitely wide NNs is GP regression, whose posterior
predictive mean function is of the form f ,, where p depends on the assumed noise variance.
Moreover, gradient flow training of certain infinitely wide NNs is similar to gradient flow training
with the so-called neural tangent kernel (NTK) (Jacot et al., 2018| [Lee et al., 2019} |Arora et al.,
2019), and the correspondence can be made exact using small modifications to the NN to remove
the stochastic effect of the random initial function (Arora et al., 2019} Zhang et al.| 2020). In other
words, certain infinitely wide NN trained with gradient flow learn functions of the form f; o.

When considering the sphere Q = S¢, the NTK and NNGP kernels of fully-connected NNs are
dot-product kernels, i.e., k(x, x’) = x({x, 2’)) for some function x : [—1, 1] — R. Moreover, from
Bietti and Bach!(2021) and|Chen and Xu|(2021)) it follows that the RKHSs of typical NTK and NNGP

kernels for the ReLU activation function are equivalent to the Sobolev spaces H(4+1/2(S%) and
H(@+3)/2(S%) respectively, cf|Appendix B.4

Regarding consistency, Ji et al.| (2021)) use the NTK correspondence to show that early-stopped
wide NNs for classification are universally consistent under some assumptions. On the other hand,
Holzmiiller and Steinwart| (2022)) show that zero-initialized biases can prevent certain two-layer
ReLU NNs from being universally consistent. [Lai et al.[|(2023)) show an inconsistency-type result
for overfitting two-layer ReLU NNs with d = 1, but for fixed inputs X. They also note that an
earlier inconsistency result by |[Hu et al.|(2021) relies on an unproven result. |Li et al.| (2023)) show
that consistency with polynomial convergence rates is impossible for minimum-norm interpolants of
common kernels including ReLU NTKs. Mallinar et al.| (2022) conjecture tempered overfitting and
therefore inconsistency for interpolation with ReLU NTKs based on their semi-rigorous result and the
results of Bietti and Bach|(2021)) and |(Chen and Xu| (2021)). Xu and Gu](2023)) establish consistency
of overfitting wide 2-layer neural networks beyond the NTK regime for binary classification in very
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high dimension d = 2(n?) and for a quite restricted class of distributions (the mean difference p of
the class conditionals needs to fulfill = Q((d/n)Y/*log"*(md/n)) and p = O((d/n)'/2)).

B Kernels and Sobolev spaces on the sphere

B.1 Background on Sobolev spaces

We say that two Hilbert spaces 1, Ha are equivalent, written as H; = Ho, if they are equal as sets
and the corresponding norms || - ||3;, and || - ||, are equivalent.

Let 2 be an open set with C'*° boundary. In this paper, we will mainly consider ¢»-balls for 2.
There are multiple equivalent ways to define a (fractional) Sobolev space H*(£2), s € R, these are
equivalent in the sense that the resulting Hilbert spaces will be equivalent. For example, H*(€2) can
be defined through restrictions of functions from H*(R?), through interpolation spaces, or through
Sobolev-Slobodetski norms (see e.g. Chapter 5 and 14 in |Agranovich) [2015|and Chapters 7-10
in|Lions and Magenes|, [2012). Some requirements on §2 can be relaxed, for example to Lipschitz
domains, by using more general extension operators (e.g. [DeVore and Sharpleyl [1993). Since
our results are based on equivalent norms and not specific norms, we do not care which of these
definitions is used. Further background on Sobolev spaces can be found in |Adams and Fournier
(2003), [Wendland| (2005) and D1 Nezza et al.|(2012)).

B.2 General kernel theory and notation

There is a one-to-one correspondence between kernel functions k and the corresponding reproducing
kernel Hilbert spaces (RKHS) H;.. Mercer’s theorem (Steinwart and Christmann 2008, Theorem
4.49) states that for compact €2, continuous k£ and a Borel probability measure Px on ) whose
support is €, the integral operator T}, p, : Lo(Px) — Lo(Px) given by

Thpo f(@) = /Q F(@)k(x, 2 )dPx (2),

can be decomposed into an orthonormal basis (e;);cr of Lo(Pyx) and corresponding eigenvalues
(Ai)ier =0, A N\ 0, such that

Typx f =Y Nilf.e)ei,  f € La(Px).
iel

We write \i(Tk,py) = A;. Moreover, k(xz,x’) = >, ; Aie;(z)e;(x) converges absolutely and
uniformly, and the RKHS is given by

Hi = {Z ai\/)\iei

i€l

D al< oo}. (B.1)

iel
The corresponding inner product between f =, ; aiv/Aie; € Handg =3, crbi Vie; € H can

then be written as
(f.9)m =) aib;. (B.2)
iel
We use asymptotic notation O, €2, © for integers n in the following way: We write
f(n) = O(g(n)) & 3C > 0¥n : f(n) < Cy(n)
f(n) =Q(g(n)) & g(n) = O(f(n))
f(n) =0O(g(n)) & f(n) = O(g(n)) and g(n) = O(f(n)) .

Above, we require that the inequality f(n) < Cg(n) holds for all n and not only for n > ng. This
implies that if f(n) = Q(g(n)), then f must be nonzero whenever g is nonzero. This is an important
detail when arguing about equivalence of RKHSs, since it allows the following statement: If we have
two kernels k, k with Mercer representations

k(xz,z') = Z iei(x)e;(x)

iel

18



706
707

708

709
710
71
712
713
714

715

716
7
718

719
720

721
722
723

724
725
726

727

k(z,z') = Z Aiei(x)e; ()

i€l

with identical eigenfunctions e; and eigenvalues satisfying \; = G)(:\i), then the associated RKHSs

are equivalent by and (B.2).

B.3 Dot-product kernels on the sphere

A kernel of the form k(x, x’) = ({x, x’)) for some function « is called dot-product kernel. Dot-
product kernels are rotationally invariant. Especially, NTKs and NNGPs of fully-connected NNs
restricted to the sphere S are dot-product kernels. Moreover, kernels like the Laplace, Matérn, and
Gaussian kernels that only depend on the distance between their inputs are also dot-product kernels
when restricted to the sphere S?. Therefore, in this section, we will assume that & : S x S — Ris a
dot-product kernel.

We can then leverage some convenient results from the theory of dot-product kernels on the sphere,
which are summarized in more detail by Hubbert et al.|(2022). For example, a Mercer representation
of k is given by

Nia

k()= w Y  Yi(@)Yi(e),
=0 =1

where {Y1,...,Y) n, ,} is a real orthonormal basis for the space of spherical harmonics of degree
[ within Ly(S?%). Especially, the integral operator T}, 14(s for the uniform distribution U (S%) has
eigenvalues y; with multiplicity NV; 4 and unnormalized eigenfunctions Y; ;. The RKHS of k is then
given by

Nia oo Nia

(o]
Hy = Z \//TZZ ar ;Y Z Zaii < 00
1=0 i=1

=0 =1

Since the index [ starts from zero, we will denote decay asymptotics for [ in the form ©((I + 1)~9)
and not ©(1~7), cf. our definition of © notation in
Lemma B.1 (Sobolev dot-product kernels on the sphere). For a dot-product kernel k on S* as above,
the RKHS H,y, is equivalent to the Sobolev space H*(S?), s > d/2, if and only if j1; = ©((1 +1)72%).
In this case, we have

Ai(Thusty) = e~/

Proof. Step 0: Equivalence. If 11, = ©((I + 1)~2%), it is stated in Section 3 inHubbert et al. (2022)
that Hj, = H*(S?). On the other hand, if y1; # ©((I+1)72%), itis easy to see that Hy, is not equivalent
to the RKHS of a kernel with y; = ©(( + 1)~2%). It remains to show A (T}, y(sa)) = O(i~2/9).

Step 1: Ordering the eigenvalues. Consider a permutation 7 : Ny — Ny such that
Hr(0) = Hr(1) = ---
We can then define the partial sums

l
Sl = ZNﬂ(i)7d .
i=0

For S;—1 < i < .5;, we then have \; (T}, 14s4)) = fr()-

Step 2: Show 7(i) = O(i). Let ¢,C > O such that ¢(l + 1)72¢ < y; < C(I + 1)~2* forall | € Ny.
For indices ¢, j € Ny, we have the implications

i>j=c(m(@) +1)7% < prgy < pn(yy < Clr(f) +1)7%
. e\l/@2s)
=ni)+12(5) @G+
Therefore, fori > 1 and j > 0,

max(r() +1) > (5) G-+ = Qi+ 1),

e\ 1/(29)
) i'<i C

(i) +1> (5
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m(j)+1< (c> min(7(j’) +1) < (f) (G+D)+1) <0@G+1).

J'>J

72s We can thus conclude that (i) + 1 = O(i + 1).
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Step 3: Individual Eigenvalue decay. As explained in Section 2.1 in Hubbert et al.|(2022), we have
Ni.a = O((I +1)?71). Therefore,

l l
Si=>Y 0@+ = 0+ 1)) =e(l+1)%).
1=0 =0

Now, leti > 1 and let I € Ny such that S;_; < i < S;. We have i > Q(19), and i < O((I + 1)%),
which implies i = ©((I + 1)¢) since i > 1. Therefore,

Xi = pay =O((x()+1)">) =0((1+1)"*) =6 (z‘—QS/d) . O

B.4 Neural kernels

Several NTK and NNGP kernels have RKHSs that are equivalent to Sobolev spaces on S?. In the
following cases, we can deduct this from known results:

* Consider fully-connected NNs with L > 3 layers without biases and the activation function
o(x) = max{0,z}™, m € Ny. Especially, the case m = 1 corresponds to the ReLU
activation. |Vakili et al.| (202 1)) generalize the result by [Bietti and Bach| (2021) from m = 1
to m > 1, showing that the NTK-RKHS is equivalent to H*(S%) for s = (d + 2m — 1)/2
and the NNGP-RKHS is equivalent to H*(S?) for s = (d + 2m + 1)/2. For m = 0,
Bietti and Bach|(2021)) essentially show that the NNGP-RKHS is equivalent to H*(S?) for
s = (d + 2°7")/2. However, all of the aforementioned result have the problem that the
main theorem by Bietti and Bach|(2021)) allows for the possibility that finitely many y; are
zero, which can change the RKHS. Using our[Lemma B.2]below, it follows that all z; are in
fact nonzero for NNGPs and NTKs since they are kernels in every dimension d using the
same function x independent of the dimension. Hence, the equivalences to Sobolev spaces
stated before are correct.

¢ |Chen and Xul(2021) prove that the RKHS of the NTK corresponding to fully-connected
ReLU NNs with zero-initialized biases and L > 2 (as opposed to no biases and L > 3
above) layers is equivalent to the RKHS of the Laplace kernel on the sphere. Since the
Laplace kernel is a Matérn kernel of order v = 1/2 (see e.g. Section 4.2 inRasmussen and
Williams| (2005)), we can use Proposition 5.2 of Hubbert et al.|(2022) to obtain equivalence
to H*(S%) with s = (d+1)/2. Alternatively, we can obtain the RKHS of the Laplace kernel

from Bietti and Bach| (2021) combined with

Bietti and Bach| (2021) also show that under an integrability condition on the derivatives, C'*°
activations induce NTK and NNGP kernels whose RKHSs are smaller than every Sobolev space.

Lemma B.2 (Guaranteeing non-zero eigenvalues). Let k : [—1,1] = R, let d > 1, and let
kq:S% xS ky(x, ) = k({(z, ')
kava : ST x 8T kapo(@,2') = r((z, ') .

Suppose that kq o is a kernel. Then, kq is a kernel. Moreover, if the corresponding eigenvalues (i
satisfy p; > 0 for infinitely many 1, then they satisfy p; > 0 for all | € Ny.

Proof. The fact that kg is a kernel follows directly from the inclusion ®44.2 C ®,; mentioned in
Gneiting| (2013). For D € {d, d + 2}, let u; 4 be the sequence of eigenvalues p; associated with kp.
Then, as mentioned for example by Hubbert et al.|(2022)), the Schoenberg coefficients b; g satisfy

r (ﬁ) Nmatii,d

biq = -
’ o (d+1)/2
Especially, the Schoenberg coefficients b; 4 have the same sign as the eigenvalues 11; 4. We use
bia — sbiv2.d J=0andd=1
0<brara=1< 5(l+1)(bra—bisz.a) Jd>1landd =1

(I+d—1)(1+d) (1+1)(142)
d(2l+d—1) bl7d ~ d(2l1+d+3) bl+27d

7d227
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where the inequality follows from the fact that k45 is a kernel and the equality is the statement of
Corollary 3 by |Gneiting| (2013). In any of the three cases, b2 4 > 0 implies b; 4 > 0. Hence, if
bi,q > 0 for infinitely many [, then b; 4 > 0 for all [, which implies 1; ¢ > 0 for all [. O

C Gradient flow and gradient descent with kernels

C.1 Derivation of gradient flow and gradient descent

Here, we derive expressions for gradient flow and gradient descent in the RKHS for the regularized
loss
1O I
L{f) =~ D (i = f@))® + ol fll, = - Y i — k@i, ), Fla)® + ol N,

i=1 i=1

Note that we will take derivatives in the RKHS with respect to f, which is different from taking
derivatives w.r.t. the coefficients c in a model f(x) = c¢Tk(X, x).

In the RKHS-Norm, the Fréchet derivative of L is

8Lf(f) B %Z(ﬂmi) —yi) k@i, )s Y + 200, ) s

which is represented in Hj, by

S

L'(f) = Z(f(mz) —yi)k(xi, ) +2pf .

Now assume that f = 37" | a;k(z;,-) = a"k(X,-). Then,

% Z(aTk(X, x;) — yi)k(zi,-) + 2pa k(X ")
= % (aTk(X, X)k(X,-) — ka(X, O+ pnaTk(X, ))
2

=~ (KX, X) + pnl)a—y) " k(X,").

L'(f)

Especially, under gradient flow of f, the coefficients a follow the dynamics
) 2
alt) = = (y — (KX, X) + pnL,)alt)) |

which is solved for a(0) = 0 by

a(t) = (I, — e HOXX0mI0 ) (1(X, X) + pnl,) 'y,

which is the closed form expression (I)) of f; ,.

For gradient descent, assuming that f%° = ¢/ k(X ), we have
2 T
FER =15 = mL([5) = ¢ k(X ) == (R(X, X) + pndn)er, —y) k(X )
5 T
= (cun b2 (0= (X X) 4 puT)en,) ) KX
If f&? = 0, the coefficients evolve as ¢y = 0 and

2
Ct+1,p = Ctp + ntg (y - (k(X>X) + pnI’ﬂ)ct;P) :

For an analysis of gradient descent for kernel regression with p = 0, we refer to, e.g., Yao et al.
(2007).
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769 C.2 Gradient flow and gradient descent initialized at 0 have monotonically growing 7/-norm

770 In the following proposition we show that under gradient flow and gradient descent with suffi-
771 ciently small learning rates initialized at 0, the RKHS norm grows monotonically with time ¢. This
772 immediately implies that Assumption (N) with Cy,orm = 1 holds for all estimators f; , from (.

773 Proposition C.1.
774 (i) Foranyt € [0,00] and any p > 0, fi , from (1)) fulfills Assumption (N) with Crorm = 1.

775 (ii) Foranyt 6 N U {0} and any p > 0, with sufficiently small fixed learning rate 0 < n <
776 e s D fulfills Assumption (N) with Cyporm = 1.

2(p+)\maX(k(X X))/n

777 Proof. Proof of (i):

We write f; ,(x) = k(x, X)cy ,, where ¢; , == A; ,(X)y. We now show that the RKHS-norm
of f;, grows monotonically in ¢, by using the eigendecomposition k(X , X) = UAU ', where
A = diag(\q, ..., \y) € R™*™ is diagonal and U € R™*" is orthonormal, and writing § := U'y.
Then it holds that

- _ 2t
el = Cer) TR Xy =57 (0 pnd) ™ (T = o (<204 puT,) ) )

(In — exp <it(A + pnIn)>) (A +pnI,) 'y
- > i oy (1o (5 Getom) )

k=1, k+pn>0

<1/Ak <1

o 1
< Z 2 *||foo,0||g+
k=1,A,>0
778 Proof of (ii):

779 Expanding the iteration in the definition of ¢; , yields
t t—i—1

ey =3 T1 (1= 222030 + n) ) 22y,

=0 75=0

We again use the eigendecomposition k(X , X) = UAU ", where A = diag(\y, ..., \,) € R?*"
is diagonal and U € R"*"™ is orthonormal, and write y := U"y. Then, using sufficiently small
learning rates 0 < 1y < SIPE (;(X X)) 77) in all time steps ¢ € N, it holds that

122113,
= (cr,p) k(X X)er,,

t t—i—1 t t—i—1
277 20— -
Z T (@ =2m )1 = =224 Z [ (@ =2p )T - =220) | g
i=0 j=0 i=0 j=0
2
n t t—i—1
ﬁAk Z T o —2ms(p+ Xe/m) | (C.1)
k= >0 =0 7=0 €[0,1]

The last dlsplay shows that || f;- D||H grows monotonically in ¢, strictly monotonically if 7, €
(0, GIrESw— (X X))/n)) holds for all £. It also shows that if p’ > pthen Hft D||7.[ <|fe "2 for
any t € NU {oo}. To see that || fZ13, < [|fe,0ll3 for allt € NU {oo} and all p > 0, observe
that with fixed learning rates 7, = 7] € (0 ) C (0 ), for all
t € NU {co} it holds that

’ 2<p+xmx<k<x X))/n) ’ m

t—i—1 t
2n —i
[[ (1= 2mjA/n) = ;; 1— 2\ /n)"
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2n _2l-—(1- 20\, /n)tHt 1
E (1 —2nA < —.
pat g k/n 2nAg/n DV

Since it suffices to consider the case p — 0, using the above derivation in (C.I) yields || fSE 13, <
|| foo,0l|3, for all ¢ € N, which concludes the proof. O

D Proof of Theorem 1|
Our goal in this section is to prove which can be seen as a generalization of

to varying bandwidths. To be able to speak of bandwidths, we need to consider translation-invariant
kernels. Although[Theorem 1]is formulated for general kernels with Sobolev RKHS, it follows from
Theorem D.1|since we can always find, for a fixed bandwidth, a translation-invariant kernel with
equivalent RKHS, such that only the constant C,,,,, changes in the theorem statement.

To generate the RKHS H?, Buchholz (2022) uses the translation-invariant kernel k:B(w,y) =
uB(z — y) defined via its Fourier transform 42 (¢) = (1 + |£|?)*. Adapting the bandwidth, the
kernel is then normalized in the usual L-sense,

KD (@,y) =7~ ((@ - y) /7). (D.1)

Theorem D.1 (Inconsistency of overfitting estimators). Let assumptions (D1) and (K) hold. Let
cait € (0,1] and Crorm > 0. Then, there exist ¢ > 0 and ng € N such that the following holds for
all n > ng with probability 1 — O(1/n) over the draw of the data set D with n samples: For every
Sfunction f € Hy, with

(0) L3 ((f(w:) — yi)? < (1 — cqe) - 02 (training error below Bayes risk) and
(N) ||f||7.[k < Coorm|| fo0.0ll, (norm comparable to minimum-norm interpolant (T))),

the excess risk satisfies

Rp(f) = Rp(f*) 2 ¢>0. (D.2)

If k- denotes a Li-normalized translation-invariant kernel with bandwidth v > 0, i.e. there exists a
q: R — R such that k- (x,y) = v~ q( ), then inequality (D.2)) holds with c independent of the

sequence of bandwidths (Y )nen C (0, 1) as long as fp fulfills (N) for the sequence (H.,, )nen with
constant Crorm > 0.

Proof. By assumption, the RKHS norm || - ||, induced by the kernel & (or k- if we allow bandwidth
adaptation) is equivalent to the RKHS norm || - ||, induced by a kernel of the form (D.T) with an
arbitrary but fixed choice of bandwidth v € (0, 1), which means that there exists a constant Cy>0
such that —||f||q.[7 <1z < C5ll flla, forall f € Hy. Hence the minimum-norm 1nterpolant
gD,y in H, satisfies

HfDH’Hn, S C’nyDHHk S C"ycvnormHgD”’H;c S C’ycnorm”gD/yH’Hk S CicnormHgD,’yH’Hﬂ,a

where ||gp |7, < |l9D,~ |7, because, gp is the minimum-norm interpolant in Hy.

Now consider the RKHS norm || - ng of a translation-invariant kernel k.. Then the functions

{hp(z) = e“"z}peRd are eigenfunctions of the kernel’s integral operator, so that the RKHS norm
can be written as (Rakhlin and Zhai, [2019)

2 _ 1 ‘J?(W)P
||fH7:['y - (27T)d /]Rd cj(w) dwa

where f denotes the Fourier transform of f.

By assumption we know that there exists a Cy, > 0 such that 5— I fll3e,, < ”fHﬁw < Coo 1l
Y0 0
holds for some fixed bandwidth v > 0, then substituting by & = ;’—Ow yields

o1 FwP?, 1 FEOP (o)
17l = Gy /R i) ™ T @y /R 01(70%) (7) e =/l
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S C, [ Ee)P <70)d S G [ WP,
< Cullfllee = oy /Rd s 5 ) =G /Rd a0y = Crollf

In the same way we get C%o [fll7, < IIfll5, for arbitrary y € (0, 1). This shows that the constant

Cl,, that quantifies the equivalence between || - [|3, and || - [|;; does not depend on the bandwidth ~.

Finally [Proposition D.4] [Proposition D.2]and [Remark D.3|together yield the result. O

The following proposition generalizes the inconsistency result for large bandwidths, Proposition 4
in [Buchholz (2022), beyond interpolating estimators to estimators that overfit at least an arbitrary
constant fraction beyond the Bayes risk and whose RKHS norm is at most a constant factor larger than
the RKHS norm of the minimum-norm interpolant. Compared to |Rakhlin and Zhai| (2019), Buchholz
gets a statement in probability over the draw of a training set D and less restrictive assumptions on
the domain €2 and dimension d.

Proposition D.2 (Inconsistency for large bandwidths). Let cq; € (0,1] and Cyorm > 0. Let the
data set D = {(x1,y1),...,(Tn,yn)} be drawn i.i.d. from a distribution P that fulfills Assumption
(D1), let gp ~ be the minimum-norm interpolant in H = H., with respect to the kernel fora
bandwidth v > 0. Then, for every A > 0, there exist ¢ > 0 and ng € N such that the following holds
Sor all n > ng with probability 1 — O(1/n) over the draw of the data set D with n samples:

For every function f € H that fulfills Assumption (O) with cgy and Assumption (N) with Cyorm, the
excess risk satisfies

Eo(f(®) = f*(x))* = ¢ > 0,

where ¢ depends neither on n noronl >~ > An=1/4 > 0.

Remark D.3. holds for any kernel that fulfills Assumption (K). The reason is that
any kernel k that fulfills assumption (K) and the kernel defined in (D.I)) have the same RKHS and
equivalent norms. Therefore every function f € H; = H (equality as sets) that fulfills Assumptions
(O) and (N) for the kernel k also fulfills Assumptions (O) and (N) with an adapted constant Cy,o1,
for the kernel (D.T). <

Proof. Step 1: Generalizing the procedure in Buchholz| (2022).

We write [n] = {1,...,n} and follow the proof of Proposition 4 in Buchholz (2022). Define
u(x) = f(x) — f*(x). We need to show that with probability at least 1 — O(n~") over the draw of
D it holds that ||u|| z2(py) > ¢ > 0, where c depends neither on n nor on 7.

For this purpose we show that with probability at least 1 — 3n~! over the draw of D there exist a
constants ¢/, k" > 0 depending only on cg and a subset P” C [n] with |P”| > | k" - n] such that

|f(x;) — f*(x;)| > " > 0holds for all i € P”. (D.3)

Then via Lemma 7 in|[Buchholz (2022) as well as we can choose a large subset P’ C [n]

of the training point indices with |P"'| > n — |P”]/2, such that the &, for i € P’ are well-separated
in the sense that ming; jepr 25y [|Zi — 25| > dinin With dpin = ¢"n~14 where ¢’ depends on
cst, d, the upper bound on the Lebesgue density C',, and on the smoothness of the RKHS s. Then the
intersection P NP" contains at least @ points. Now we can replace P’ in the proof of Proposition
4 for s € N inBuchholz|(2022) by the intersection P” N P’’. The rest of the proof applies without
modification, where (42) holds by our assumption || f|3 < Cx||gp||%. Our modifications do not

affect Buchholz’ arguments for the extension to s ¢ N.
Step 2: The existence of P".
Given a choice of k”, ¢ > 0, consider the event (over the draw of D)
E = {3P" C[n]with |P"| > |£" - n]| that fulfills (D-3)}
= {3 P C [n] with |P| > [(1 — &”)n] such that |f*(x;) — f(x;)| <’ Vie P}

With the proper choices of ¢’ and " independent of n and f, we will show P(E) < 3n~1. We
will find a small ¢” > 0 such that if f* and f are closer than ¢’ on too many training points P
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and f overfits by at least the fraction cg, the noise variables €; on the complement P¢ would have
to be unreasonably large, contradicting the event Eg; defined below, and implying (D.3)) with high
probability. We will use the notation || f||% := >, .5 f(x;)? and [|y[|% = >, cp y7.

Step 2b: Noise bounds.

Lemma D.6| (%) states that there exists a ” > 0 small enough such that the event (over the draw of

. . 1 s 1 Chit
Egi = {VP1 C [n] with [P1] < [+" - n] itholds that || f* — ylp, = - gp ej < 702}9
T 1

fulfills, for n large enough, P(Eg;) > 1 —n~1.

Lemma D.6|(¢7) implies that there exists a cjower > 0 such that the event (over the draw of D)

1
Egi; == {¥P2 with [Ps| > (1 — £”)n] it holds that —|| f* — y||%, > Clower - 0>},
n

fulfills, for n large enough, P(Fg;;) > 1 —n~1L.

states that the total amount of noise [||?,; concentrates around its mean no?. More

precisely, we will use that for any c. € (0, 1) the event (over the draw of D)
I
By = {nIf 2, >c5-o2},

fulfills P(E5) > 1 — exp (_n _ (1_2%)2).
Step 2¢: Lower bounding ||€||35C.

Given some function f € 7, assume in steps 2c and 2d that event E holds and that P C [n] denotes
a subset of the training set that fulfills |P| > [(1 — &”)n] and |f*(x;) — f(2;)| < " Vie P.

In step 2c, assume we choose &g, > 0 such that g || £* — y||% < ||f — y||35 Then by the overfitting
Assumption (O) it holds that

1

n

- X 1

@l f* —ols + 1 —ulz) <~ (IF —yl5 +1F —yl5) < A —ca)o™ (D4
If we restrict ourselves to event Ej, dropping the term || f — y||%, in (D.4), then dividing by g and
subtracting the result from the inequality in the definition of event E5 yields

1

1
ellz, = 1"~ i3, > eeo® -

1—Cﬁt
= — ~70'2.
n

Cfit

(D.5)

Step 2d: Choosing the constants.

If we choose ¢, =1 — %4 and &gy = %28 € (0, 1), then becomes
1 2 Cfit 2
E||"‘3||75c > 77

Now it is left to show that the condition ége|| f* — y[|% < || f — yl|%, that is required for Step 2c,
holds with high probability with our choice of cgy.

With some arbitrary but fixed €jower € (0, /Clower )» choose ¢ i= (1 — /Cq¢) (4 / {2t — %)a.

Then on event Fjg;;, for n large enough, it holds that

1 /!
(1- véﬁt)ﬁllf* —yllp > (1 = V&) VClowerd > VI — K" - " + % (D.6)

By definition of P, it holds that
IF = £711% = S"(f(@i) — f7(@:)” < [(1 = &")n] ("),

ieP
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so that
/!

1 c
—f = F s < VI—# -+ =
\/ﬁ H f f HP K ¢+ \/ﬁ
Now, using the triangle inequality, and (D.6) yields the condition required for Step 2c,

1
vn

(D.7)

If —ullp

3

1 1
>7 * _ R _ * -
>—=f" —yllp - VI-r"-" -

B

— 1 .
>V =I5~ vl

Step 2e: Upper bounding the probability of E.

To conclude, we have seen in steps 2¢ and 2d that on ' N Ejg;; N Es, it holds that
1 2 Cfit 2
On Fjg;, it holds that

1 2 Cfit 2
—Ell5. < —/O0".
Lleliz. <

Hence Eg; N E N Eg;; N Es = . This implies E C (E5 N Eg; N Eg;;)¢, where the right hand side
is independent of f € H and just depends on the training data D. Since P(FEg;) > 1 —n~! and

P(Egii NE5) >1—n"1 —exp (—n . (I_ch)z), it must hold that, for n large enough,

2
1 —
P(E) < P((Es N Eg; N Egi3)°) < 2n~ ' + exp (—n- ( 2CE> ) <3n L. O

The following proposition generalizes the inconsistency result for small bandwidths, Proposition 5
in Buchholz| (2022), beyond interpolating estimators to estimators whose RKHS norm is at most a
constant factor larger than the RKHS norm of the minimum-norm interpolant. The intuition is that
if the bandwidth is too small, then the minimum-norm interpolant gp ., returns to 0 between the
training points. Then ||gp ||, (,) is smaller and bounded away from || f*(|1,(,). We can replace
gD,~ by any other function f € # that fulfills Assumption (N).

Proposition D.4 (Inconsistency for small bandwidths). Under the assumptions of|
there exist constants B,c > 0 such that, with probability 1 — O(n~1) over the draw of D: For
any function f € H that fulfills Assumption (N) but not necessarily Assumption (0), the excess risk
satisfies

Eo(f(z) — f*(x))* > ¢ >0,

where ¢ depends neither on n nor on v < Bn=1/4,

Proof. Denote the upper bound on the Lebesgue density of Px by C,,. The triangle inequality implies

1" = flloacr) = 1 N napy) = 1fllzacre) = 1 o) — V Cull fll2
> apx) = VOullfll 2 1 | 22px) — Cuv/ Cullgp A I3,

where || f||2 < || f|| follows from the fact that the Fourier transform % of the kernel satisfies k(¢) < 1.
Now in the proof of Lemma 17 inBuchholz|(2022) a > 0 can be chosen smaller to generalize the

statement to 1
lopallde < gz 17 IEairy) + eo(rPn® 4+ 92n2/4),
HY U

where ¢g depends on ¢,,, f*,d, s and Cpop,. Finally we can choose B small enough such that Eq.
(32) in Buchholz (2022) can be replaced by Cyv/Cullgp |12 < 211f* || o(py) sO that we get

* 1 *
1f* = flleapy) = 511 L) > 0. O
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g7t D.1 Auxiliary results for the proof of

872 Lemma D.5 (Concentration of x?2 variables). Let U be a chi-squared distributed random variable
873 with n degrees of freedom. Then, for any ¢ € (0,1) it holds that

P(ch) SeXp<_n_ (1;C>2>.

874 Proof. Lemma 1 in|Laurent and Massart (2000) implies for any = > 0,

P(Z < 1—2\@) <exp(—z).

. . 2

g75  Solving ¢ = 1 —2,/Z for z yields z = n - (15¢)". O
e76 LemmaD.6. Letcy, ..., e, beiid N(0,0%) random variables, o* > 0. Let (¢2)() denote the i-th
877 largest of €%, ..., ¢2.
878 (i) A constant fraction of noise cannot concentrate on less than ©(n) points: For all constants
879 a, ¢ > 0 there exists a constant C' € (0, 1) such that with probability at least 1 — n™, for
880 n large enough,

1 [Cn]

— Z ()® < co?.

n -

i=1

881 (ii) ©(n) points amount to a constant fraction of noise: For all constants o > 0 and r € (0, 1)
882 there exists a constant ¢ > 0 such that with probability at least 1 —n™%, for n large enough,

| La=r)n] |
- Z (62)(n71+1) > 60'2 ]
n 1=1

883 Proof. Without loss of generality, we can assume 02 = 1.

884 (i) For a constant C' € (0, 1) yet to be chosen, consider the sum
1 ke _
Sc7n = ﬁ Z; (82)(1) .

885 For T > 0 yet to be chosen, we consider the random set Zy = {i € [n] | 2 > T}
886 and denote its size by K = |Zr|. To bound K, we note that K = & + ... + &,, where
887 & = 1.2-p. We first want to bound pr == E&; = P(e? > T).

The random variables 2 follow a x?-distribution, whose CDF we denote by F'(¢) and whose

PDF is

F(t) = 1(g,00) (t)C1t ™/ exp(—t/2) (D.8)

888 for some absolute constant C. Moreover, we use ¢ and ¢ to denote the CDF and PDF of
889 N (0, 1), respectively.

Step 1: Tail bounds. Following Duembgen|(2010), we have for x > 0:

20(0)  _ _20(x) _ $()
Vi+z24+2  24+z+z 14z
o 2@ _20(x)
V2t 4z 14w

1—®(z) >

1—®(x)

Hence, for t > 0, we have

ol 20(ve) _ [2exp(=t/2)
1—F(t)=2(1 <I>(\/¥))>1+\/i—\/; -

16V8)  [Sexp(—t/2)

1+vi Vo

1—-F(t)=2(1-®(V1) < T v
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By choosing T := —21log(C'y/7/32) > 0, we obtain

pr=1—F(T) < \/Eexp(—T/Z) =C/2.

Step 2: Bounding K. The random variables &; from above satisfy &; € [0, 1]. By Hoeffd-
ing’s inequality (Steinwart and Christmann) 2008, Theorem 6.10), we have for 7 > 0

P (711 > (&-E&) > (1- 0)\/2) < exp(—T) .

i=1

We choose 7 := C?n/2, such that with probability > 1 — exp(—C?n/2), we have

K/”_pT:iZ(fi—Eﬁi)S@:C/2.

i=1
Suppose that this holds. Then, K < npp + Cn/2 < Cn and, since K is an integer,
K < |Cn]. This implies

1 (& . 1E :
Som < <Z(52)<” +(|Cn] — K)T) <CT+— ;(52)@ _ (D.9)

=1

We now want to bound Zf{zl (¢2)(). To this end, we note that conditioned on K = k for
some k € [n], the k random variables (¢;);cz, are i.i.d. drawn from the distribution of 2
givene? > T, fore ~ /\/'g()7 1). By X, X1, X5, ..., we denote i.i.d. random variables drawn
from the distribution of &% — T | ¢2 > T. This means that conditioned on K = k,

k k
S (D =Y"e} isdistributedas kT + > X;. (D.10)

i=1 i€Zr i=1

Step 3: Conditional expectation. The density of X is given by

f(T+t) © L Ci (T +t) 2 exp(—(t+T)/2)

L-F(T) = 7" afrexp(-T/2)/(1 + VT)
< 1y>0Cexp(—t/2) ,

where we have used that for ¢ > 0,

1
+ﬁgl+ﬁ:1+i§2
VT +1 VT VT

since T = —2log(C/7/32) > —2log(+/m/32) ~ 1.008. We can now bound

E[X] = /O Y tox () dt

px(t) = 1iso

g/ Cotexp(—t/2) dt = 4C, . (D.11)
0
Step 4: Conditional subgaussian norm. For ¢ > 0,
1-F(T+t 1 T —(T+1t)/2
P(X|>6) = P(X > ) = (T+1) oy 14VT exp(—(T +1)/2)

1-F(T) ~"1+VT+t exp(-T/2)
< 2exp(—t/2) .

Since the denominator 2 in 2 exp(—t/2) is constant, by Proposition 2.7.1 and Definition
2.7.5 in |Vershynin| (2018), the subexponential norm || X ||, is therefore bounded by an
absolute constant C'5. Moreover, by Excercise 2.7.10 in|Vershynin|(2018)), we have || X —
EX|y, < C4|| X[y, < Cs for absolute constants Cly, Cs.

Step 5: Conditional Concentration. Now, Bernstein’s inequality for subexponential
random variables (Vershynin, 2018, Corollary 2.8.1) yields for ¢ > 0 and some absolute

constant 06 > 0:
- = 6 k_cgﬂ C . .

P(
28

k
Z X, —EX;
i=1




We choose t = C5Cn and obtain for £ < Cn

k
P (Z(&)W > kT + 4Cok + C5Cn

=1

)

k
& p (Z X; > 4Cok + C5Cn

(o)

k
2exp (—CsChn) .

Z X, —EX;

i=1
Step 6: Final bound. From Step 2, we know that K < |Cn] with probability > 1 —
exp(—C?n/2). Moreover, in this case, Step 5 yields

I/\@

<

K
> ()W < KT +4CK + C5Cn < Cn(T + 4C5 + Cs)
i=1

with probability > 1 — exp(—CsCn). By Eq. (D.9), we therefore have

Seim < CT + C(T + 4Cy + Cs) = —4C log(C'/7/32) + C;C

895 Since limen g —C'log(C') = 0, we can choose C' € (0, 1) such that —4C'log(C\/7/32) +
896 C7C < c for the given constant ¢ > 0 from the theorem statement, and obtain the desired
897 bound with high probability in n.

(ii) Since the £? are non-negative and their distribution has a density, there must exist 7' > 0
with P(e? < T) < (1 — k) /4. Similar to the proof of (i), we then want to bound K :=
{ien]|ef <T} =& +...+&with§; = T 2q. The & € [0, 1] are independent with
E¢ = P(e2 < T) < (1 — k)/4. As in Step 2 of (i), Hoeffding’s inequality then yields for

T>0
F (711 Z(& -E&) > (1- 0)\/2) <exp(—T) .

=1

We set 7 := (1 — k)?n/2, such that with probability > 1 — exp((1 — x)?n/2), we have

(1-kK)2%n/2
L3 < [T

3\?—‘

K/n—(1—-k)/4< K/n—P(?<T)

11—k
5 -

In this case, we have

i nl—&-lz

(L= m)n] = K)T > (1~ )n — 1) — K)T

11—k 1
—— | T
(-

898 where the right-hand side is lower bounded by ¢ := (1 — k)T'/8 for n large enough. O

S

Y

899 The next lemma is a generalization of Lemma 9 in|Buchholz (2022) to arbitrary fractions « of the
900 training points. Therefore, for any x € (0, 1) define

1/d
Smin (K) = n-1/d K /
prd ’

90t Lemma D.7 (Generalization of Lemma 9 in Buchholz| (2022). Let x,v € (0,1), and let cq > 0
o2 be a constant that satisfies Px (dist(z,08) < cq) < k. Let P = {x1,...,x,} be i.id. points
903 distributed according to the measure Px, which has lower and upper bounded density on its entire
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904 bounded open Lipschitz domain 2 C R, C) < px(x) < C,y. Then there exists a constant © > 0
905 depending on d, Cy,, v such that with probability at least 1 — exp ( 3“") there exists a good subset
s P C | > (1 — 7k)n, with the following properties: For x € P’ we have dist(x,dQ) > cq,
907 | — Y| > dmin(k) for x £y € P’, and for all x € P’ we have

Z o — y|7d72” < 2@5min(n)72”n.

2
yeP \{z}

Proof. First by the definition of §,,;y, it holds that
Plz;e U B (i, 0min) | < Cuwadlin <k
i<j

Also forall y €
Ex (£ —y) 21 (| — y| > druin)) = / i |z —y|™ " px (x)dx
Y,0min)°

<C, |z —y|~ " 2dy < 062

min
B(w76min)

for some © > 0 depending only on C,,, d and v. We conclude that for each j

d 06 2v
Z|ﬂ?i*$g‘\7 "1 (Jo; — 25| > Gin) > 7’:“ < k.
i<j
Also P (dist (zj,09) < cq) < k. The union bound implies that
05 n
Plx;¢ U B (xi, Omin) Z lx; — ;| 4= 2”1‘m7_m1|>5mm < %, dist (z;,082) > cq
i<j 1<j
—d-2 _ Qi n
=P T ¢ U B wzv mln 5 Z ‘xz - CBJ| 7[{ s dist (:nj,é)Q) >co | >1-—3k.
i<j 1<j

908 We use a martingale construction similar to the one in Lemma 7 of Buchholz| (2022} by defining

e @5—2V
Ej =S a; € |JB @i 0mn), or > |z T > — s or dist(z;,09) < cq
i<j i<j
o0 Now define S,, :== > | 1. Using the filtration F; = o(21, ..., ®;), S, can be decomposed into

st0 S, = Mn’ + A,,, where M, is a martingale and A,, is predictable with respect to F,,. We then get
ot A, <Y P(E;|Fi—1) < 3kn as well as Var(M;|F;,_1) < 3k. Hence Freedman’s inequality
orz [Theorem DH]yields

P(Sp = 6kn) < P(An > 3kn) + P(M,, > 3kn) < exp <3’;”>

3Kn

This implies that with probability at least 1 — exp (—25) we can find a subset Ps = {z1,..., 2}
with |Ps| > (1 — 6k)n on which it holds that min;x; |z; — 2;| > dmin, dist (z;,0Q2) > cq and

e 2062’
S fas i < 200
K
i#]
Using Markov’s inequality we see that there are at most xn points in P such that

2v
e 200

= 2
K
2/ €Ps,z#2'
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Removing those points we find a subset P’ C P such that |P’| > (1 — 7x)n and for each z € P’

Cde2w 200672
Z |z — 2| =2 §7“2”“n. O
K
z2'€Ps,z#z’
Theorem D.8 (Freedman’s inequality, Theorem 6.1 in (Chung and Lu| (2006)). Let M; be a discrete
martingale adapted to the filtration F; with My = 0 that satisfies for all i > 0
|Mip1 — M;| < K
Var (Mi ‘ .7:%‘71) < 0’?.
Then

A2

P (M, —E(M,) > \) <e *Tiicitk:/3,

E Translating between R? and S?

Since the RKHS of the ReLU NTK and NNGP kernels mentioned in[Theorem 3|are equivalent to
the Sobolev spaces H (“+1)/2(S?) and H(4+3)/2(S%), respectively (Chen and Xu, 2021, Bietti and
Bach| 2021) (detailed summary in[Appendix B.4). Inconsistency of functions in these RKHS that
fulfill Assumptions (O) and (N), as in[Theorem | follows immediately by adapting via

Lemma E.1| In particular, inconsistency holds for the gradient flow and gradient descent estimators
Jt,pand f; p as soon as they overfit with lower bounded probability.

For arbitrary open sphere caps T = {x € S | 2441 < v}, v € (—1,1), and the open unit ball
B1(0) = {y € R? | ||ly||2 < 1}, define the scaled stereographic projection ¢ : T' — B;(0) C R% as

Cy1 CyTd
¢(m1,...,xd+1):( i ? )

o
1—z441 1—2441

1—v

where the normalization constant ¢, = /7 o

ensures surjectivity.

Straightforward calculations show that ¢ defines a diffeomorphism. Its inverse ¢~* : By (0) — T is
given by

2, My 2, ya ¢ 2 yll3 — 1>
— PR ) — ) — .
oyl +1 o lyl3+17 e ?llyl3 +1

¢1(y1,...,yd)<

We can translate kernel learning with the kernel k£ on S¢ and the probability distribution P, where

Px is supported on 7', to kernel learning with a transformed kernel k£ and P using a sufficiently
smooth diffeomorphism like ¢ : T — B1(0) C R If the RKHS of k is equivalent to H*(S?) then

the RKHS of % is equivalent to H*(B; (0)). We formalize this argument in the following lemma. As
a consequence it suffices to prove all inconsistency results for Sobolev kernels on By (0).

Lemma E.1 (Transfer to sphere caps). Let k be a kernel on S* whose RKHS is equivalent to a
Sobolev space H*(S?). For fixed v € (—1,1), consider an “open sphere cap” T = {x € S¢ |
Zg+1 < v}. Furthermore, consider a distribution P such that Px is supported on T and has lower
and upper bounded density px on T, i.e. 0 < C; < px(x) < Cy < oo forallx € T. Then

o k(x, @) = k(¢ (x), ¢~ (x')) defines a positive definite kernel on By (0) C R? whose
RKHS is equivalent to the Sobolev space H*(B1(0)),

« P:=Poy  withi(z,y) = (¢(x),y) defines a probability distribution such that ]5;(
has lower and upper bounded density on B1(0) C R?,

and kernel learning with (k, P) or with (k, P) is equivalent in the following sense:

For every function f € H(k|}) the transformed function f=foo¢ ' e H(k)has the same RKHS
norm, i.e. || f|#(x1) = Ilfll34(i)- Furthermore, the excess risks of f over P and f over P coincide,

ie.
Eopy (f(x) = fp(2))? = By p, (f(2) — f5(2))%,
where fl’g(i) = E(X)Y)N[D()}Dz = &) denotes the Bayes optimal predictor under P.
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Remark E.2. Many kernel regression estimators can be explicitly written as fp(z) =
fn(k(m,X),k(X,X),y) where f, : R" x R"™*" x R" — R denotes a measurable function
for all n € N. Then the explicit form is preserved under the transformation, i.e. f o ¢! = f ]’% with
the transformed data set D = {(¢(x;), Yi) Yien)- <

Proof of[Lemma E71| Step 1: Bounded density. For i € [d], j € [d 4 1], the partial derivatives of ¢
are given by

1_#, for 1 = j,

Td+41

6tj¢z(m): %, for ¢ € [d], j:d—f—l,
0, otherwise.

Given an arbitrary multi-index «, the partial derivatives 9,¢; € L*(T), 8a¢j_1 € L?(B1(0)) are
bounded for all ¢ € [d], j € [d + 1], using z44+1 < v < 1 and the inverse function theorem.
Now define k(x, ') == k(¢ (), (), ¥(x,y) = (¢(x),y) and P := P o). Then using
integration by substitution (Stroock et al., [2011, Theorem 5.2.16), the Lebesgue density of 15X is
given by

px(®) =px (67 (2) T (2),

where
Jo~ (&) = [det ((<a¢¢‘1(5:)73j¢‘1(i)>Rd+1)i,je{1,...,d})}1/2'

J$ and J¢~! can be continuously extended to T and B;(0), respectively. Then, since J¢~! is
continuous on a compact set and because ¢ with the extended domain remains a diffeomorphism so
that J¢~! cannot attain the value 0, there exists a constant Cs > 0 such that C%, < Jop~l(z) < Cy

for all & € B1(0). Hence, p ¢ is lower and upper bounded.

Step 2: Excess risks coincide. If (X,Y) ~ P, the Bayes predictor of Y given X is given by
(@) =EY|X =2) = f*(¢7'(2)).

Let 7 (x,y) = x be the projection onto the first component. Then, ¢(m(xz,y)) = ¢(x) =
m1(d(x),y) = m(Y(x,y)) and hence

Step 3: Transformed RKHS. We want to show that H(k|;) — H(k), f — f o ¢~' defines
an isometric isomorphism, which especially shows the statement || f|[3(x|,.) = [|f[l3;() from the
proposition. For this, we use the following theorem characterizing RKHSs:

Theorem E.3 (Theorem 4.21 in|Steinwart and Christmann|(2008))). Let k : X x X — R be a positive
definite kernel function with feature space Hy and feature map ®y : X — Hy. Then

H={f:X>R|3weHy: f=(w () g,} with
Ifllz = inf{[|wlm, + f=(w, Po())m,},

is the only RKHS for which k is a reproducing kernel.

A feature map for k|, is given by ® : T — H(k|,), ®(x) = k(x,-). Hence a feature map for k is
given by ® o ¢! : B1(0) — H(k|,).|[Theorem E.3|states that
H(k|,)={f:T—R|3weHk|l): f=(w ())uw,)} wih (E.1)
[ F k1) = inf{llwllar), o f = (W, @)k, b
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as well as

H(k) = {f: Bi(0) = R | Tw e H(k|,): f=(w,®o qu(.))mkm} with  (E2)
1132ty = mf{lwllrgrly) = F = (w0, ® 067 ()agri, }-

As ¢~ is bijective, this characterization induces an isometric isomorphism between H (k| ) and
H(k) by mapping f = (w, ®(-))3(x|,.) € H(k|p)to f = foo ™ = (w, @09 ())pyk|,) € H(k).
This shows || f{l3¢(k|,.) = Hf”f;-[(/;)-

Step 4: RKHS of k. We now show that the RKHS of k, denoted as H,(k), is equivalent to H* (B (0)).
To this end, denoting Ao ¢ == {fo¢ | f € A} and Al = {f| | f € A}, we show the following
equality of sets (ignoring the norms):

H(E) oo L Hk],) D HE), D H (S|, T H(B(0) oo

Since ¢ is bijective, this implies (k) = H*®(B;(0)) as sets, and the norm equivalence then follows

from

Equality (I) follows from Step 3. Equality (II) follows from [Theorem E.3|by observing that if ® is a
feature map for k, then ®|,. is a feature map for £|,.. Equality (IIT) holds by assumption. To show

(IV), we need a characterization of H*(S%) that allows to work with charts like ¢.

Step 4.1: Chart-based characterization of //*(S?). A trivialization of a Riemannian manifold
(M, g) with bounded geometry of dimension d consists of a locally finite open covering {Up }acr
of M, smooth diffeomorphisms x,, : V, C R¢ — U, also called charts, and a partition of unity
{ha}aer of M that fulfills supp(ha) € Us, 0 < hy < land ) ;ho = 1. An admissible
trivialization of (M, g) is a uniformly locally finite trivialization of M that is compatible with
geodesic coordinates, for details see (Schneider and Grof3e, [2013| Definition 12).

In our case, define an open neighborhood of 7' by U; := {x € S | z411 < v + €} with some
¢ € (0,1 —w) arbitrary but fixed, and U := {x € S | 441 > v+¢/2}. It holds that U; UU, = S<.
Moreover, there exists an appropriate partition of unity consisting of C> functions hy, ho : S —
[0, 1]. Especially, we have hq(T) C hy(US) = {1}. Let ¢1 : Uy — By, (0) denote the stereographic
projection with respect to &y = (0,...,0,1) as above, scaled such that ¢1|7 = ¢ and hence
¢1(T) = B1(0). Similarly, let ¢ : Uy — B,,(0) denote an arbitrarily scaled stereographic
projection with respect to &y = (0,...,0,—1). Then ({Uy, Us}, {67, ¢7 '}, {h1, ho}) yields an
admissible trivialization of S¢ consisting of only two charts. A detailed derivation can be found in
(Hubbert et al., 2015} Section 1.7). Therefore (Schneider and Grof3e, 2013, Theorem 14) lets us define
the Sobolev norm on S¢ (up to equivalence) as[_r]

1/2
9]l s sy = <Z [(hag) © HOé”?{S(Rd))

acl
—12 —12 1/2
= (11r19) © 07T 3o gty + 129) © 63 poqasy)
for any distribution g € D’(S?) (i.e. any continuous linear functional on C°(S%)). Then g € H*(S%)
if and only if ||g| g7+ (ge) < 00.

Step 4.2: Showing (IV). First, let ¢ € H*(S?). Then, as we saw in Step 4.1, we must have
[[(hig) o 7" | z75 ey < o0 and thus (h1g) o ¢7' € H*(R?). By our discussion in|[Appendix B.1|
we then have

(9lr) 0 67" = ((hag) 0 ¢1 ") By (o) € H*(B1(0))
which shows g|r € H*(B1(0)) o ¢.

Now, let f € H*(B1(0)). Then, again following our discussion in[Appendix B.1] there exists an
extension f € H*(R?) with f|g, o) = f. The set B := ¢1(Uy \ Ua) is a closed ball B,.(0) of radius

"Here, the norms are taken on H*® (Rd) since the respective functions can be extended to R? by zero outside
of their domain of definition, thanks to the properties of the partition of unity.
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1 <7 < rq. Hence, we can find ¢ € C°°(R%) with (B ( d) = {1} and ¢((B,(0))¢) = {0}. Since
¢ is smooth with compact support, we have o - f € H*(R?). Define

) (p-Nlo(x) ,xelh
fsd.Sd%R,xH{o e gl

By construction, we have fga() = 0 for all & € Us. Hence, the equivalent Sobolev norm from Step
4.1is

oulaecony = (NP for) © 67 gy + 1 hafon) o 63 o)
=[[(h1o¢r") - o+ fllgs@ay < oo,
which shows fs« € H*(S?). But then, f o ¢ = fea|r € H*(S)|r.
In total, we obtain H*(S%)|r = H*(B1(0)) o ¢, which shows (IV). O

F Spectral lower bound

F.1 General lower bounds

A common first step to analyze the expected excess risk caused by label noise is to perform a bias-
variance decomposition and integrate over y first (see e.g.|Liang and Rakhlin| 2020, Hastie et al.,
2022, Holzmiiller, 2021)), which is also used in the following lemma.

Lemma F.1. Consider an estimator of the form fx y(x) = (vx.2)'y. If Varp(y|z) > o? for
Px-almost all x, then the expected excess risk satisfies

]EDRP(fX;y) — ng Z (')'QIE)(793 tl"(’UX@(’UX,m)T) .

Proof. A standard bias-variance decomposition lets us lower-bound the expected excess risk by the
estimator variance due to the label noise, which can then be further simplified:

EpRp(fxy) — Bp 2 Ex.a (Byx [fxa(@)?] - Eyxlixy@)])?) .

=Ex By x (fx,y(x) — Ey\XfX,y(w))z
=ExoByx(vx2) (¥ —Eyxy) (¥ —Eyxy) vxo
=Ex2(vx2)" [Eyx ¥ —Eyxy) (¥ —Eyxy) | vx.a
=Ex«(vx.e) Cov(y|X)vxa .

Here, the conditional covariance matrix can be lower bounded in terms of the Loewner order (which
is defined as A = B < B — A positive semi-definite):

Var(y1|x1)
Cov(y|X) = > 0?1,
Var(yy, |x,,)

since the labels y; are conditionally independent given X . We therefore obtain
EpRp(fx,y) = Rp 2 Exe(vxe) Cov(y|X)vx e

> 0'2EX,m tl"((UX,m)T'UX,w)
=0 Ex o tr(vx =(vxa)') - H

Proposition 4 (Spectral lower bound). Assume that the kernel matrix k(X , X)) is almost surely
positive definite, and that Var(y|z) > o for Px-almost all x. Then, the expected excess risk satisfies

(X, X)/n) (1 — G*Qt()\i(k?(X,X)/n)er))Q
k(X X)/m) + p)?

EpRp(fi,) — Rp > = ZE (3)
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Proof. Recall from Eq. (I) that

frp(x) = k(x, X) Ay ,(X)y
At,p(X) — (I —e —2t(k(X, X)+pn1n ) (k(X,X) +pn1n)71

By setting (vx o) = k(x, X)A; ,(X), wecan write fx y ¢ p(x) = fi,p(x) = (vx.z)'y. Using
ILemma F.1| we then obtain

EpRp(fx.ytp) — Rp > 0" Ex o tr(vxz(vx
=0’Ex o tr (A ,(X)

2))
Th(X, 2)k(z, X) A (X)) .
Since
(Ezxk(X, 2)k(x, X)),;; = Exk(x;, ®)k(z, @;) = k(T @5) = b ( X, X)ij
we conclude
EpRp(fx.y.tp) — Rp > 0*Ex tr(A] k. (X, X)Ay,)
= 0" Ex tr(k. (X, X) Ay ,(X) A, (X)T) .

Richter| (1958) showed (see also |[Mirskyl, [1959) that for two symmetric matrices B, C, we have
tr(BC) > > 1 Ai(B)An41-i(C). We can therefore conclude

EpRp(fx,ytp) — Rp = UzEXZ/\ (X, X)) Ant1-i(Arp(X)Ar,(X)T) .

i=1

As A; ,(X)A; ,(X)T is built only out of the matrices k(X , X) and I,,, it is not hard to see that
Ay ,(X)A;,(X)T has the same eigenbasis as k(X X)) with eigenvalues

1 — o= 2tOu(k(X,X))+pn) 1 /1 — e—2ti(k(X,X)/n)+p) \ 2
z 35 )

A T X X)) £ (KX, X)/n) +p

It remains to order these eigenvalues correctly. To this end, we observe that for A > 0, the function
2t
g(\) = =5 satisfies

2t>\€72t)\ _ (1 _ 672“\) 7 (Qt)\ + 1)67215)\ -1 - 62t)\672t)\ -1

/
g (/\) = 22 - 22 = 22 =0.
Therefore, g is nonincreasing, hence the sequence (:\1) is nondecreasing and thus
Ansi—i(AepA[l) = \i,
from which the claim follows. O

Theorem F.2. Let k be a kernel on a compact set ) and let Px be supported on ). Suppose

that k(X , X) is almost surely positive definite and that Var(y|z) > o for Px-almost all x. Fix

constants ¢ > 0 and q,C > 1. Suppose that \; == X\;(Ty py) > ci™9. Let Z(n) be the set of all
€ [n] for which

X /C < Ni(k«(X, X)/n)
both hold at the same time with probability > 1/2. Moreover, let I(n) := max{m € [n] | [m

Z(n)}. Then, there exists a constant ¢’ > 0 depending only on ¢, C such that for all p € [0, c0) an
t € (0, 00], the following two bounds hold:

, 1 Zm)
1+ (p+t-1)ne n

-2 --1/a |
EDRP(fX,y,Lp)—R* >602m1n{(p+t ) 7(p—|—t ) (”)} -

&Iﬁ

EpRp(fxytp) = Rp = do

)

n n " n
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Remark F.3. [Theorem F.2|provides two lower bounds, one for general “concentration sets” Z(n) and
one that applies if concentration holds for a sequence of “head eigenvalues” {1,...,I(n)} C Z(n).
If I(n) = |Z(n)|, the latter bound is stronger for larger regularization levels, and this bound would
be particularly suitable for typical forms of relative concentration inequalities for kernel matrices.
However, in this paper, we obtain concentration only for “middle eigenvalues” Z(n) = {i | en < i <

(1 — €)n}, and therefore we only use the first bound in the proof of <
Proof of[Theorem F2| Step 1: Miscellaneous inequalities. For = > 0,
1 1 T 1
l—e®=1——_>1— = = . F2
¢ er x+1 x+1 141 (£2)
Moreover, since (1 + a)? < (14 a)? + (1 — a)? = 2 + 2a?, we have for a # —1:
2
1 1
> —. F3
<1+a> ~2(1+4a?) E3)
Step 2: Applying the eigenvalue bound. Define
Ni(ka (X, X 1 — e—2tNi(k(X,X)/n)+p))?
5i(x) o 2l X X)) (1~ e ~ )
(Xi(k(X, X)/n) + p)
By[Proposition 3} we have
R o2
EpRp(fxyip) = Rp > — Z;EXSAX) > ;)JEXSAX ) - (F4)
= 1€l(n

Since S;(X) is almost surely positive, we can focus on the case where (F.I)) and @]) hold, which is
true with probability > 1/2 by assumption for ¢ € Z(n). Hence,

1)\22/0 (1 _ 672t()\i/C+p))2 @ 1 /\3/0
2 (CAi +p)? T 2(CN A+ 021+ 26N/ C+p)) 1)
We can upper-bound the denominator, using C' > 1, as
1 C?\i +Cp
CA; 1+ ————— )| <C\ —
( +p)( +2t(Az~/C+p))_ +p+(>\i+Cp)t
<SC*(Ni+p+tTh),

ExSi(X) >

C?\i +C3p
SCON+p+ ——Fnr
= PTG+ Ot
which yields

1 A7 1 1 ®B 1

ExSi(X)> -2 . -~ - & -
X ( )— 205 ()\Z+p+t71)2 205 (1+ p+t_1)2 = 4051+ (p+t‘1)2
Ai

> L (ES)

- 2
4% (leiq)

Step 3: Analyzing the sum. We want to analyze the behavior of the sum

1
0= 2. Ty

i€Z(n)

for g = % > (). We first obtain the trivial bound

1

S(8) > |I(n)|W .

Moreover, we can bound

and distinguish three cases:
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(a) If 8 > 1, we bound

5(8) =
(b) If 8 € (I(n)~%,1), we observe that

J(B) =18 = (g —1 > %w—”ﬂ > 60

and therefore
J(B) J(B)

1 J(B) B
5(5)>Z1+ (Bi1)? Z1+1 5 = 1 -
(c) If B € (0, I(n)~ 9], we similarly find that

R I(n

Wl
)

=1

Moreover, there is an absolute constant ¢; > 0 such that for any 5 > 0,

S(B) > exmin{B~2, 8749 I(n)}, (F.6)
because
(2) 872 =min{B72,719,1(n)} for 8 > 1,
(b) 8717 = min{B2,371/49,1(n)} for B € (I(n)~9,1), and
(¢) I(n) =min{B~2, =4 I(n)} for 8 € (0,1(n)1.

Step 4: Putting it together. Combining the trivial bound in Step 3 with Eq. (E4) and Eq. (E3)), we
obtain

. L0
EpRp(fxyep) = Rp > — Z ExSi(X) > — - 1=55(8)
1€Z(n)
1
e Z(n) .
1+ (p+t71) n
for a suitable constant ¢’ > 0 depending only on ¢ and C'.
Moreover, from Eq. (F.6), we obtain
S(8) > & min{a~2, 51/, I(n)} > & i+ (p+ 7)1/, 1(n)}
for a suitable constant ¢’ > 0 depending only on c. Again, (E4) and (E3) yield
" o2 1
EpRp(fxytp) = Bp 2 — - 1555(6)
=11 —1\—2 —1y—1/q
L [ (o) 1)) -
4Cb n n n

F.2 Equivalences of norms and eigenvalues

Later, we will use concentration inequalities for kernel matrix eigenvalues proved for specific kernels,
which we then want to transfer to other kernels with equivalent RKHSs. In this subsection, we show
that this is possible.

Definition F.4 (C-equivalence of matrices and norms). Let n > 1 and let K, K € R™" be
symmetric. For C' > 1, we say that K and K are C-equivalent if their ordered eigenvalues satisfy

CTN(K) < M(K) < CN(K)
for all i € [n]. Moreover, we say that two norms || - || 4, || - || 5 on a vector space V' are C-equivalent if
C7Hvlla < Jlvlls < Cllvlla
forallv € V. <
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Lemma F.5. Lern > 1 and let K, K € R"*" pe symmetric. Then, K and K are C-equivalent iff
the Moore-Penrose pseudoinverses K+ and K" are C-equivalent.

Proof. This follows from the fact that if K has eigenvalues A1, ..., A, then KT has eigenvalues
1/A1,...,1/A,, where we define 1/0 := 0. (A detailed proof would be a bit technical due to the
sorting of eigenvalues.) O

LemmaF.6. Letk : X x X — R be a kernel on a set X. Then, for any y € R",

ka(X7X)+y = Hfl:,yH’QHk ’

where Hy, is the RKHS associated with k and f}; y IS the minimum-norm regression solution

fry = arfgelgin 1152
Bi={feH| ) (f®:)—v)* = inf Y (fla:)—u)’}.
i=1 =

Proof. 1t is well-known that f; , (x) = S aik(z, x;), where a := K1y (see e.g. Rangamani
et al., 2023). We then have

THCRO WD SIERY IED 3) St o
i=1 j=1 3, =li=1
=y ' K'KKty=y'K'y,
where the last step follows from a standard identity for the Moore-Penrose pseudoinverse (see e.g.
Section 1.1.1 in|Wang et al.l 2018)). O

Proposition F.7 (Equivalent kernels have equivalent kernel matrices). Let k,k : X x X — R be
kernels such that their RKHSs are equal as sets and the corresponding RKHS-norms are C'-equivalent

as defined inDefinition F4) Then, for any n > 1 and any x1,...,x, € X, the corresponding kernel
matrices k(X, X), k(X, X) are C*-equivalent.
Proof. Let i € [n]. For y € R™ we have, using the notation of

y KX, X) Yy = £y l5, = O 2R3, = C72NF 15, = Oy Th(X, X) My .

Now, by the Courant-Fischer-Weyl theorem,

Ni(k(X, X)) = sup inf T k(X,X)"y
V:dim V=i Yy€V:|lylla=1
>C™? sup inf  yTR(X,X)Ty

Vidim V=3 y€V:|lyll2=1
=C2\(k(X, X))
By switching the roles of k and k, we obtain that k(X , X)* and k(X, X )" are C2-equivalent. By
k(X,X) and k(X , X) are then also C*-equivalent. O

To prove[Theorem 3|for arbitrary input distributions Px with lower and upper bounded densities, we
need the following theorem investigating the corresponding eigenvalues of the integral operator.

Lemma F.8 (Integral operators for equivalent densities have equivalent eigenvalues). Letk : X x X —
R be a kernel and let pi, v be finite measures on X whose support is X such that v has an lower and
upper bounded density w.r.t. ji. Then, \;(Ty,,,) = O(Xi(Tk,p.)).

Proof. Let p be such an upper bounded density, that is, dv = p du and there exist ¢, C' > 0 such that
c<p(x) < Cforallx € X. For f € Ly(v), we have

o+ £12, 0 = / Prdu<c / Ppdu=C / v =Clf2,0) -
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Hence, the linear operator
A Ly(v) = Lo(p), f = p- f
is well-defined and continuous. It is also easily verified that A is bijective. Moreover, we have

(Af Af) o) = / Prrduzc / Ppdu=ec / Pdv = elf, ) -
and
Tl = [ [ @) @hk(z.e) f(@)p(a) dul@) du(a') = (AF. TopAf g

Since T}, ,, and T}, ,, are compact, self-adjoint, and positive, we can use the Courant-Fischer minmax
principle for operators (see e.g. Bell,2014) to obtain

<f7 Tk,l/f>L2(u)

N(Ty) = max min
( k, ) VQLdz'(V%;Eb'SPace fevi{o} <f7 f>L2(1/)
Af. T, A
>ec max min < fv k,p f>L2(M)
VgL(ig(u%/subspace fev\{o} <Af, Af>L2(u)
1m =1
T .
=c_ max H}ln <gv k,/,g>L2(;)
V CLa(v) subspace g€V'\ {0} <g7 9>L2(M)
dim V=4
= C)\i(Tk,,u) .

Here, we have used that since A is bijective, the subspaces AV for dim(V') = i are exactly the
i-dimensional subspaces of Ly (). Our calculation above shows that A; (T%,,,) < O(Xi(T%,.)). Since

dp = % dv with the lower and upper bounded density 1/p, we can reverse the roles of v and p to
also obtain A;(T%,,,) < O(Ai(Tk,,.)), which proves the claim. O

Lemma F.9. Let H1 and Ho be two RKHSs with H1 C Hs. Then there exists a constant C' > 0 such
that || fll2, < Cllf |3

Proof. Let I : H1 — Hs be the inclusion map, i.e. I, := h for all h € ;. Obviously, [ is linear
and we need to show that [ is bounded. To this end, let (hy,),>1 C H; be a sequence such that
there exist b € H; and g € Hy with h,, — hin ‘H; and Th,, — g in Ho. This implies h,, — h
pointwise and h,, = I'h,, = g pointwise, which in turn gives h = g. The closed graph theorem, see
e.g. (Megginson, [1998, Theorem 1.6.11), then shows that I is bounded.

F.3 Kernel matrix eigenvalue bounds

For upper bounds on the eigenvalues of kernel matrices, we use the following result:

Proposition F.10 (Kernel matrix eigenvalue upper bound in expectation). For m > 1, we have
Ex > N(k(X,X)/n) < M(Th) - (F8)
Proof. Theorem 7.29 in|Steinwart and Christmann| (2008 shows that

Epepr Y AiTen) <> AiTh) (F9)

i=m

where T}, ,, : Lao(p) — La(p), f — [ k(x,-)f(z) dp(z) is the integral operator corresponding to
the measure 1 and T}, p is the corresponding discrete version thereof. We set i := Px and need to
show that k(X, X')/n has the same eigenvalues as Ty, p if D and X’ contain the same data points
Z1,...,Z,. Consider a fixed D. Then, we can write Ty, p(f) = n~'ABf, where

A:R" = Ly(D), v Y vik(xi, )
i=1
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B:Ly(D) =R, frs (f(x1),..., flxn)" .

Then, k(X , X)/n is the matrix representation of n~! BA with respect to the standard basis of R™.
But AB and BA have the same non-zero eigenvalues, which means that

n

Do N(K(X, X)/m) = 37 Ai(Tip)

i=m

from which the claim follows. O

To obtain a lower bound, we want to leverage the lower bound by Buchholz|(2022) for a certain radial
basis function kernel with data generated from an open subset of R%. However, we want to consider
different kernels and distributions on the whole sphere. The following theorem bridges the gap by
going to subsets of the data on a sphere cap, projecting them to R¢, and using the kernel equivalence

results from

Theorem F.11 (Kernel matrix eigenvalue lower bound for Sobolev kernels on the sphere). Let k be
a kernel on S? such that its RKHS H,, is equivalent to a Sobolev space H*(S%) with smoothness
s > d/2. Moreover, let Px be a probability distribution on S® with lower and upper bounded density.
Let the rows of X € R™*? are drawn independently from Px. Then, for ¢ € (0,1/20), there exists a
constant ¢ > 0 and ng € N such that for all n > ny,

Am (E(X, X)/n) > cn=28/d
holds with probability > 4/5 for allm € Nwith1 <m < (1 — 11le)n.

Proof. We can choose a suitably large sphere cap 7" such that Px (7") > 1 — . Define the conditional
distribution Pr(-) :== Px(-|T). Out of the points X = (x1, ..., x,), we can consider the submatrix
X7 = (x;,...,x;y) " of the points lying in 7. Conditioned on N, these points are i.i.d. samples
from Pr. Moreover, by applying Markov’s inequality to a Bernoulli distribution, we obtain N >
(1—10¢e)n with probability > 9/10. We fix a value of N > (1 —10¢)n in the following and condition
on it.

We denote the centered unit ball in R? by B (R9). Using a construction as in we can
transport k and Py from T to the unit ball B; (R?) using a rescaled stereographic projection feature
map ¢, such that we obtain a kernel k4 and a distribution P, = (Pr)4 on B;(R?) that generate the
same distribution of kernel matrices as k with Pr, and such that H;,, = H*(B;(R%)). The rows
of X, = ¢(X ) are i.i.d. samples from Py. Moreover, we know that Py has an lower and upper
bounded density w.r.t. the Lebesgue measure on By (R?).

In order to apply the results from Buchholz|(2022), we define a translation-invariant reference kernel
on R? through the Fourier transform

];ref(f) = (1 + ‘§|2)_28 )

see Eq. (3) in Buchholz (2022). The RKHS of k.t on R? is equivalent to the Sobolev space H*(R?).
Therefore, the RKHS 0f kit |5, (e, , (re) is H*(B1(R?)), cf. the remarks in |{Appendix B.1|and
Now, let 1 < m < (1 — 11e)n, which implies

1<m<(1-1le)n<(1-¢)(1—-10e)n < (1 —¢)N .

We apply Theorem 12 by Buchholz| (2022) with bandwidth v = 1 and o = 25 to A, and obtain with
probability at least 1 — 2/N:

» N2(a—d)/d N2(a—d)/d
Am (Kret (X g, X)) 7" < €3 <(N_m)<a_d)/d + 1) < ¢ ((d\f)(a—d)/d * 1)

< 64(na/d71 + 1)

as long as NV is large enough such that (1 — )N < N — 321n(N), which is the case if n is large
enough. Here, the constant c¢3 from Buchholz (2022) does not depend on N or m, but only on «, d,
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and the upper and lower bounds on the density, which in our case depend on ¢ through the choice of
T. Since a = 2s > d, we have n®/%=1 > 1 and therefore

Am (ke (X g, X)/n) = C5n7a/d = 05n*23/d .

Now, we want to translate this to the kernel k. Since the RKHSs of kg4 and k.t on By (Rd) are both
equivalent to H*(B;(R?)), the kernels themselves are C-equivalent for some constant C' > 1 as

defined in Therefore, shows that the corresponding kernel matrices are

C?-equivalent, which implies
A (ko (X 9, X ) /) > e5C 228/
By Cauchy’s interlacing theorem, we therefore have

A (ke (X, X) /1) 2 A (ke (Xr, X7) /1) = A (R (X 9, X ) /) > €502/
Denoting the event where \,, (k. (X, X)/n) > csC~2n~2%/4 by A, we thus have

P(A) = P(AIN > (1 —105)n) P(N > (1 — 10e)n) > %P(AUV > (1 - 10¢)n)
_ 1% Zn: P(N = N|N > (1 - 10e)n)P(A|N = N)

N=[(1-10¢)n]
n

9 Y P(N=NIN>(1-102)n)(1 - 2/N)

>
— 10 .
N=[(1-10e)n]

(o2 i P(N = N|N > (1 —10¢)n)

=10 (1—-10e)n /) N -
N=[(1-10¢)n]

9 2 4
=—(1—-—|>=,

10 (1-10e)n/) — 5

where the last step holds for sufficiently large n. O

F.4 Spectral lower bound for dot-product kernels on the sphere

An application of the spectral generalization bound in requires a lower bound on
eigenvalues of the kernel matrix k. (X, X). To achieve this, we need to understand the properties of
the convolution kernel ... Since the eigenvalues of T}, p, are the squared eigenvalues of T}, p, , one
might hope that if H}, is equivalent to a Sobolev space H*, then Hy,, is equivalent to a Sobolev space
H?3. Unfortunately, this is not the case in general, as . might be a smaller space that involves
additional boundary conditions (Schabackl 2018)). However, perhaps since the sphere is a manifold
without boundary, the desired characterization of H;,, holds for dot-product kernels on the sphere:

Lemma F.12 (RKHS of convolution kernels). Let k be a dot-product kernel on S¢ such that its RKHS
Hy, is equivalent to a Sobolev space H*(S?) with smoothness s > d /2, and let Px be a distribution
on S with lower and upper bounded density. Then, the RKHS H., of the kernel

ke :STx ST 5 R ky(z,2) = /k(a:, " k(z",z') dPx (")
is equivalent to the Sobolev space H?*(S%).
Proof. Define

it (T, €') = /k(m,w”)k(w”,w’) du s (z") .

For the corresponding integral operator, we have

_ 2
T, aniett s = Thegy(sey -
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This means that the corresponding eigenvalues are the squares of the eigenvalues of the corresponding
integral operator of k. Especially, we obtain the Mercer representations

IS Nyi,q
) = Zm Zm,i(:cm,xw’) :
~ Nl d

k*unlfww Z/‘leyvll Y—ll ’
whereyields w = O((l 4+ 1)72), hence uf = O((I + 1)~**) and hence Hy, ., =
)-

HQS (S
Next, we show the equality of the ranges of the integral operators:
R(Tyusty) = R(Tk,py ) -

Let px be a density of Px w.r.t. the uniform distribution U/ (S%). If f € R(T},3(s4)). there exists
g € Ly(U(S?)) with f = T} 11(s+)g- But then, since px is lower bounded, we have g/px € La(Px)
and therefore

f=Tepx(9/px) € R(Tk,py) -
An analogous argument shows that R(Ty, py ) € R(T} 14(sey) since px is upper bounded.

The equality of the ranges yields for the RKHSs (as sets)
His e = BTy u(say) = B(Th,px) = He

Applying twice then shows Hy,, = H?*(S9). O

Theorem 5 (Inconsistency for Sobolev dot-product kernels on the sphere). Let k be a dot-product
kernel on 'S¢, i.e., a kernel of the form k(x,x') = k({x,x')), such that its RKHS Hy, is equivalent
to a Sobolev space H*(S%), s > d/2. Moreover, let P be a distribution on S* x R such that
Px has a lower and upper bounded density w.r.t. the uniform distribution U(S?), and such that
Var(y|x) > 02 > 0 for Px-almost all & € S%. Then, for every C' > 0, there exists ¢ > 0 independent
ofa2 such that foralln > 1, t € (C’_lnzs/”l7 o), and p € [0, Cn_2s/d), the expected excess risk
satisfies
EpRp(fi,) — Rp > co® > 0.

Proof. Step 0: Preparation. Since the Sobelev space H2*(S?) is dense in the space of continuous
functions S? — R, the kernel k& is universal. Applying (Steinwart and Christmann, 2008, Corollary
5.29 and Corollary 5.34) for the least squares loss thus shows that k is strictly positive definite. If
we have mutually distinct @1, . . ., @, the corresponding Gram matrix k((z;, x;)); ;_; is therefore
invertible. Now, our assumptions on P guarantee that X consists almost surely of mutually distinct
observations, and therefore k(X , X) is almost surely invertible.

By we know that

02 I Nk (X, X) /) (1 — e 2 KX X0 /m)+))
E —REH > — E E
PReIX) = RE 2 5 2B i (k(X. X)/n) + p)°

2 n N(ko(X,X)/n) (1 - 6—20’17125”(&-(k(x,X>/n>+o>)2
(Ai(k(X, X)/n) + Cn=2s/d)2

v
|
x

> c,0?

for a suitable constant ¢,, > 0 depending on n but not on o2, ¢, p, since the kernel matrix eigenvalues
are nonzero almost surely. It is therefore sufficient to show the desired statement (with ¢ independent
of n, o2, t, p) for sufficiently large n.

In the following, we assume n > 40 and set ¢ := 1,/100.
Step 1: Eigenvalue decay for the integral operator. From we know that

Xi (T (say) = © (724 .
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Therefore, by we know that
Ai(Tipy) = O(2%) .

Step 2: Eigenvalue upper bound. Next, we want to upper-bound suitable eigenvalues of the form
Ai(k(X, X)/n) using [Proposition F.10l Using Step 1, we derive

[e’e} o0 o]

Z Xi(Th,py) < Ch Z i/ < 02/ 272/ dy = Cym!—28/d

with constants independent of m > 1. For sufficiently large n, we can choose m € Nx; such that

en < m < 2en. Then, [Proposition F.10] yields

Ex Z Al(k(XvX)/n) < Z )\z(Tk) < C’SmI*QS/d < C4n172s/d )

Since Ex \; (k(X, X)/n) is decreasing with ¢, we have for i > 4en > 2m:

Ex\i(k(X, X)/n) < Can' /% /m < Csn™/% < CoXi(Tipy ) -

Step 3: Eigenvalue lower bounds. From[Lemma F.12} we know that H;,, = H?*(S%). Therefore,
we can apply to both k and k. and obtain for sufficiently large n and suitable constants
c1,co > 0 that
Ni(k(X, X)/n) > eyn~28/4
Ni(Fky (X, X)) /1) > con™48/4
individually hold with probability > 4/5 for all 4 € N with 1 < ¢ < (1 — 11¢)n. By the union bound,
both bounds hold at the same time with probability > 3/5.

Step 4: Final result. Now, using the value of m from Step 2, consider an index ¢ with 2m < i <
(1 —11e)n. Since 2m < 4en and e = 1/100, there are at least n/2 such indices. By combining Step
3 and Step 1, we have

Xi(k(X, X)/n) > esAi(Ti py)
Ai(ko (X, X)/n) > caXi(Th,py )
with probability > 3/5. By applying Markov’s inequality to Step 2, we obtain
Ai(k(X, X)/n) <10CsNi(Tk,py)

with probability > 9/10. Therefore, by the union bound, all three inequalities hold simultaneously
with probability > 1/2. Moreover, for ¢ = 2s/d, we have A\;(T}, p, ) > c5i~7 by Step 1. We can
thus apply the first lower bound from [Theorem F2]to obtain

1 Z(n)]
P / 2 .
EpRp(fxytp) —Rp 2o 1+ (p+tHn2s/d
1 n/2
/ 2 .
zco 1+ (Cn-25/d 1 Cn-2s/d)p2s/d "
d 9
= D
2+2C"7

G Proof of Theorem 7|

Here we denote the solution of kernel ridge regression on D with the kernel function %k and regular-
ization parameter p > 0 as

fy(@) = k@, X) (k(X, X) + pI) "y,

and write f}(x) = k(x, X )k(X, X )"y for the minimum-norm interpolant in the RKHS of k.

While states that overfitting kernel ridge regression using Sobolev kernels is always
inconsistent as long as the derivatives remain bounded by the derivatives of the minimum-norm
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interpolant of the fixed kernel (Assumption (N)), here we show that consistency over a large class
of distributions is achievable by designing a kernel sequence, which can have Sobolev RKHS, that
consists of a smooth component for generalization and a spiky component for interpolation.

Recall that & denotes any universal kernel function for the smooth component, and IVC,Y denotes
the kernel function of the spiky component with bandwidth . Then we define the p-regularized
spiky-smooth kernel with spike bandwidth ~ as

by (@.2) = K@, ') + p- k(2. 2).

Let Bi(z) := {y € R? | |z — y| < t} denote the Euclidean ball of radius ¢ > 0 around = € R%.

(D2) There exists a constant Sx > 0 and a continuous function ¢ : [0, 00) — [0, 1] with ¢(0) =0
such that Px (B;(x)) < ¢(t) = O(t#x) forall x € Q and all t > 0.

The kernel I;:V of the spiky component should fulfill the following weak assumption on its decay
behaviour. For example, Laplace, Matérn, and Gaussian kernels all fulfill Assumption (SK).

(SK) There exists a function € : (0, 00) x [0,00) — [0, 1] such that for any bandwidth v > 0 and
any ¢ > 0 it holds that
() e(v,0) =1,
(i) e(, d) is monotonically increasing in -,
(iii) Forallz,y € Q. if |z —y| > & then |k, (z,y)| <e(v,9),
(iv) For any rates Bx, B > 0 there exists a rate 3, > 0 such that, if §,, = Q(n~?*) and
Yn = O(n=5), then (7, 6,) = O(n=F*).

Theorem G.1 (Consistency of spiky-smooth ridgeless kernel regression). Assume that the
training set D consists of n i.i.d. pairs (x,y) ~ P such that the marginal Px fulfills (D2) and
Ey? < co. Let the kernel components satisfy:

s k denotes an arbitrary universal kernel, and p,, — 0 and np: — oo.

. lvc% denotes a kernel function that fulfills Assumption (SK) with a sequence of positive
bandwidths (v,,) fulfilling v, = O(exp(—0n)) for some arbitrary § > 0.

Then the minimum-norm interpolant of the p,,-regularized spiky-smooth kernel sequence k, := k,, ..
is consistent for P.

Remark G.2 (Spike bandwidth scaling). Under stronger assumptions on ¢ and € in assumptions
(D2) and (SK), the spilge bandwidths ~,, can be chosen to converge to 0 at a much slower rate. For
example, if we choose k. to be the Laplace kernel, choosing bandwidths 0 < ,, < S yields, for

— Blan
separated points |x — y| > 4,

ke, (z,y) < exp (5) <n P
Tn

For probability measures with upper bounded Lebesgue density, we can choose §,, = n~*% and
=2+ %, forany fixed a > 0, in the proof of Hence the Laplace kernel only requires a
_ 24«
slow bandwidth decay rate of ~,, = Q2 <Zln(dn)> , where o > 0 arbitrary. For the Gaussian kernel an
_442a
n d
aln(n)
bandwidth decay. <
Remark G.3 (Generalizations). If one does not care about continuous kernels, one could simply
take a Dirac kernel as the spike and then obtain consistency for all atom-free Px. However, we
need a continuous kernel to be able to translate it to an activation function for the NTK. Beyond
kernel regression, the spike component k., does not even need to be a kernel, it just needs to fulfill
Assumption (SK) or a similar decay criterion. Then one could still use the quasi minimum-norm
estimator’ © — (k + ppk,, )(x, X) - (K + p, K, )ty. <

Remark G.4 (Consistency with a single kernel function). Without resorting to kernel sequences as
we do, there seems to be no rigorous proof showing that ridgeless kernel regression can be consistent
in fixed dimension. In future work, can an analytical expression of such a kernel be found? According

analogous argument yields ,, = {2 < > . The larger the dimension d, the slower the required
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to the semi-rigorous results in|[Mallinar et al.| (2022) a spectral decay like A\, = ©O(k~! - log®(k)),
o > 1 could lead to such a kernel. <

Proof of[Theorem G.1} Given any universal kernel, (Steinwart, 2001, Theorem 3.11 or Example 4.6)
implies universal consistency of kernel ridge regression if p,, — 0 and np? — oo. Hence, for any
€ > 0 it holds that

n—oo

Due to the triangle inequality in Lo (Px ), we know
Rp(fo") = Re(fp) = Eo(fo" () — f5 (@)
ik ik 2\ /2 tk * 2\'/? ?
< ((Eatltr @) - 5,@0) " + (Bl @) - s3@?) )
It is left to show that k,, fulfills

lim P (D e R xR)" | Byl fi" (@) - f} (2))* = (/2)°) =0,

n—o00 Pn

For this purpose we decompose the above difference into the difference of K = I%% (X,X) and
I, and a remainder term depending on k-, . We denote the 2-operator norm by || - || and the Euclidean
norm in R” by | - |. For any = € R? it holds that

5 @) = 2 @) < |(k+ puks, ) (@, X) - (K + puK,) 'y = k@, X) - (K + pul) 'y
< [@, X) ((K + puKs,) ™ = (K + paLa) ") o
o [ (@ X) (K + oK) 'y
< (e, X - [ (& + o, )™ = (K + puda) |-yl
W (@ X) | (K + puK,) 7| -yl

Consequently we get

N T ~ - . ~ 2
Eo(f§ (@) = £}, (@) < 2 Eolh(@. X)) (K + puK,) ™ = (K +puL) | -yl (G
+2 05 Ba| [y, (2, X)) [[(K + pn K, )7 -yl G2)

We now bound the individual terms in Eq. (G.1)) and (G.2). To this end, fix any o > 0.

Bounding Eq. (G.I):
Since we assumed y; i.i.d. and Ey? < oo, the Markov inequality implies, with b,, = Ey? - n®,

E 2
P(ly[* > bn) < <4 = 7.

Stated differently, with probability at least 1 — n~ it holds that |y|? < Ey? - n'*e.
In order to bound the spectrum of K > implies that there exists a positive sequence
da(n) = n”®x such that with probability at least 1 — O(n~?) it holds that

min |x; — x| > 6a(n).

i,j€[n]:i#£]

Since (7,,) fulfills 7, = O(n="7) for any 3, > 0, by Assumption (SK) there exists a sequence
en = 0(pnn~27%) such that (7, 94 (n)) < ,. Assumption (SK) further implies that whenever
min; je(n):ij [€i — ;| > da(n) itholds that (K, )i = 1and 0 < (K, )ij < &(Vn,0a(n)) < ep

for i # j. Then Gershgorin’s theorem (Gerschgorin, |1931) implies that for all eigenvalues of K A
IN(K.,) — 1] < (n—1)g, foralli € [n].
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This in turn implies

K., —I.|| < (n—1)e,, Amax (K+,) <1+ (n—1)ep, Amin(K4,) > 1 —(n—1)e,.

Using ||(K + po )7 < m <p;land |K,, —I,| < (n-— 1)5n,implies

||(I~< + PnIn)_1||2 'anK% — 1|

(K + po, )™ = (K + pul) | <

L= [|(K + pudn) || pul K5, = I
pr'(n—1en
“1-(n—1)e,

Using |k(x, X;)| < 1foralli € [n] yields the naive bound ||k (z, X)||> < n.

Combining all terms in Eq. (G.I) yields its convergence to 0 as the product satifies the rate
O(n*tep2e2) = o(1) with probability at least 1 — 2n <.

Bounding Eq. (G22):

The analysis below is restricted to the event of probability at least 1 — 2n~%, on which the bound on

Eq. (GI) holds.

Since (n — 1)e,, — 0, for any C' > 1 it holds for n large enough,

_ . Pn 1
o (K + pnK5,) 7 < ~ < <C.

Amin (K) + pn(1 = (n — 1)&y,) (1 —(n— 1)6”)

Finally we show sup, cga Ezk-, (z,2')? < 2n~ %) for n large enough.
Fix an arbitrary =’ € R?. Then by construction of . (n) and &,, it holds that
Egk,, (z,2')? <1-Px({z € R?: k, (x,2/)> > 2}) + 2
<Px({zx eRY: |z —2'| < da(n)}) +&2
< 0(da(n)) + e <n” Y 4]

Since £2 = o(p2n~47%), we get Bk, (x, z')? < 2n~(+) for n large enough.

Combining all terms in Eq. (G.2) yields its convergence to 0 with the rate O(n~(2+) . 1. pl+e)
O(n~1) with probability at least 1 — 2n~%, which concludes the proof.

ol

G.1 Auxiliary results for the proof of

The distributional Assumption (D2) immediately implies that the training points are separated with
high probability.
Lemma G.5. Assume (D2) is fulfilled with Sx > 0. Then with probability at least 1 — O(n™%),

_2ta
min |z; — x| >n Px .
i,j€[n]:i#£]
Proof. For any i € [n], the union bound implies
P( min |z, —a;|<6) =P [J {z;€Bs®@)}]| < (n— 1))

J€lnl:id jEn)j#i

Another union bound yields
P( min |z, —x;] <§) <n(n—1)¢(9).
i,jE[n]:i#£]

Choosing d,(n) = n” ok yields ¢(da(n)) = O(s7+= ), which concludes the proof. O

The following lemma bounds ||[A™* — B™!|| via ||[A™!|| and ||A — B||. Similar results can for
example be found in (Horn and Johnson, [2013} Section 5.8).
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Lemma G.6. Let A, B € R"*™ be invertible matrices and let || - || be a submultiplicative matrix
normwith ||I,,|| = 1. If A and B fulfill ||A~"|||A — B|| < 1, then it holds that

[ o e =

IB™ - A7 < - :
1—[lA™|- A - B

Proof. Because of |A~'(A — B)|| < ||[A7'|||A — B| < 1 we get
II-A"Y(A-B)|>1-[A7"[|A- B
Writing B = A(I — A™'(A — B))yields B™* = (I — A~*(A — B))~'A~" which implies

Ay
= a4 B]

1B~ <

Now write B~! — A™! = A™(A — B)B™" to get
IB~" — A7 < |A7"]||A - Bl[| B

Combining the last two inequalities concludes the proof. O

G.2 RKHS norm bounds

Here we show that if £ and IE:,Y have RKHS equivalent to some Sobolev space H®, s > d/2, then
the RKHS of the spiky-smooth kernel &, - is also equivalent to H?®, for any fixed p,y > 0. Hence
all members of the spiky-smooth kernel sequence may have RKHS equivalent to a Sobolev space
H* and are individually inconsistent due to[Theorem I} yet the sequence is consistent. This shows
that when arguing about generalization properties based on RKHS equivalence, the constants matter
and the narrative that depth does not matter in the NTK regime as in|Bietti and Bach|(2021)) is too
simplified.

The following proposition states that the sum of kernels with equivalent RKHS yields an RKHS that
is equivalent to the RKHS of the summands. For example, the spiky-smooth kernel with Laplace
components possesses an RKHS equivalent to the RKHS of the Laplace kernel.

Proposition G.7. Let H1 and Ho denote the RKHS of k1 and ks respectively. If H1 = Ho then
the RKHS H of k = ki + ko fulfills H = H1. Moreover, if C > 1 is a constant with %Hqu.L2 <

£l < CllfIats, then we have = || fllae, < || £ll3¢ < [IFll2e,-

Proof. The RKHS of k = k1 + ko is given by H = H1 + Hs with norm

I£13, = min{[lf113,, + 1f2l3e, © £ = fi+ fo, fr € Ha, fo € Ha}.

To see this we consider the map @ : X — H; X Hy defined by ®(x) := (P4 (x, ), P2(=, -)) for all
@ € X, where X is the set, the spaces H; live on and ®,(x) := k;(x, -). The reproducing property
of k; and ko immediately ensures that ® is a feature map of k1 + k5 and|[Theorem E.3|then shows

H= {(w, (I)(‘)>H1><H2 cw € Hy X Hz}
= {{w1, @1(-)) a4y + (wa, Pa(-))a, w1 € Hi,wa € Ho} = Hi + Ha

as well as the formula for the norm on . Now let f € #. Considering the decomposition f = f; +0
then gives || f|l3 < || f||#,- Moreover, for f = f1 + fo with f; € H; we have

1/2
1 £l < Al + 1 F2llzes < Wil + Cllfolln < V2C (A, + 1f205,) "

Taking the infimum over all decomposition then yields the estimate || f||, < v2C/| f|l%. O
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H Spiky-smooth activation functions induced by Gaussian components

Here we explore the properties of the NNGP and NTK activation functions induced by spiky-smooth
kernels with Gaussian components.

To offer some more background, it is well-known that NNGPs and NTKSs on the sphere S? are
dot-product kernels, i.e., kernels of the form ky(x, ') = k({(x,x’)), where the function x has a
series representation r(t) = Y .o, bit* with b; > 0and Y :° ) b; < oc. The function « is independent
of the dimension d of the sphere. Conversely, all such kernels can be realized as NNGPs or NTKs
(Simon et al.| 2022} Theorem 3.1).

As dot-product kernel k(x, y) = «({x, y)) on the sphere, the Gaussian kernel has the simple analytic

expression,
wss 2(z—1
Hsausls(z) = exp ( (Z )) ’
v
with Taylor expansion

e i
Gauss § exp 2/,}/) Py
=0 \—/—"
b?u uss

For spiky-smooth kernels & = k+ p/v{,y with Gaussian components k and 1%7 of width 4 and
respectively, we get Taylor series coefficients

= 2D (2)' e (23 .

Now states that as soon as « induces a dot-product kernel for every input dimension d,
then the dot-product kernels can be written as the NNGP kernel of a 2-layer fully-connected network
without biases and with the induced activation function

b1/2,
PNnap(T E sib; hi(x),

or as the NTK of a 2-layer fully-connected network without biases and with the induced activation

function
=) b 1/2
A = 7 f - hi )
Sork(@) = 2o (7))
where h; denotes the i-th Probabilist’s Hermite polynomial normalized such that || ;|| 1, ar(0,1)) = 1
and s; € {—1, +1} are arbitrarily chosen for all 7 € N.

Now we can study the induced activation functions if we know the kernel’s Taylor coefficients
(b:)ien,- If infinitely many b; > 0, then infinitely many activation functions induce the same dot-
product kernel, with different choices of the signs s;. For alternating signs s; = —1 if ¢ is odd and
s; = 1if i is even, the symmetry property h;(—x) = (—1)%h;(z) of the Hermite polynomials implies

ONNGP+—(T) = dnNap+(—T), ONTE +-(T) = dnTK +(—1).

To form an orthonormal basis of Ly (A (0, 1)) the unnormalized Probabilist’s Hermite polynomials

He; have to be normalized by h;(z) = %Hel(x) We can use the identity exp(at — %) =

Yoo Hei(x ) with t = \/2/+ to analytically express the NNGP activation of the Gaussian kernel
with all s; = —|—1 as the exponential function

o) = on1/0 3 4 (2) i = e ((i) - j) SR

=0 v

For onnap(z) = Do siv/bihi(x), we get ”¢H%2(N(o,1)) — % b, invariant to the choice
{si}ien, which yields

auss = 1
18N NEP 7 0.1)) = exP(=2/7) E T () (H.3)
=0
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because {h; }ien, is an ONB of Ly(N (0, 1)). Analogously,

s} 1 2 i
R 12 vy = exp(=2/7) D = 1 ()
2 — i+ D! \vy

B T =12\ o 2

= eXP(_2/7)§ ; Al <7> =3 (1 — exp <—7>> . (H.4)
This implies that the average amplitude of NNGP activation functions does not depend on +, while
the average amplitude of NTK activation functions decays with v — 0.
By the fact k), (z) = \/nhy,—1(x), we know that any activation function ¢(z) = >_:2 ) s;a;h;(x) has
the derivative ¢ (z) = > o2 siait1vi+ 1 - hy(x) aslong as > 2 |a;41v/i + 1| < oo.
The following proposition formalizes the additive approximation ¢* ~ (;5’} + pt/ 2(;57“7, and quantifies
the necessary scaling of v for any demanded precision of the approximation.
Proposition H.1. Fix 7, p > 0 arbitrary. Let k = k+ pk: denote the spiky-smooth kernel where
k and k are Gaussian kernels of bandwidth 7 and i resi ectively. Assume that we choose the

activation functions ¢, 1, gf) N1 and ¢ N1x as in|Theorem 8| with same signs {s; }ien. Then, for
v > 0 small enough, it holds that

i . 1 Ay (1 + %)
||¢’f\fTK - (¢§€VTK +/p- ¢NTK)||%2(N(071)) < 21/2/)73/2 P (_7) " gl ’
~ . 1\  8my(1+7)
Ik ner — (Phner + Vo ¢NNGP)||%2(N(071)) < 2y exp <_7> " 72

Proof. Letb; , = v%' exp( 2/7) denote the Taylor coefficients of the Gaussian kernel. All consid-
ered infinite series converge absolutely.

7.7, 5 2
léonNGr — (Dxnap T VP ¢7VNGP)HL2(/\/' 0,1))

:HZ 5i1/bi 5 + pbiyhi(x) — bis + v/ pbiy) )||L2(./\/'(O 1)

1=
oo

- (\/m — (v/biy + ﬂbm)>

IN

1=0
I oo
1 2 1/2
23 " (Vbis + pbiny — ;%) +2prl L, +2 Z b + Phiny — 020127 42 37 b,
i=0 i=I+1 i=I+1

@) (I1) (111 (1v)
for any I € N. To bound (I) observe

I I I
Z(\/ bify + pbi,’y b1/2 Z (ﬂbi,'y + 2bi,’~Y (1 — 41+ pbb_ity )) < pz bi/y'
=0 Y

=0 =0

An analogous calculation for (/1) yields

> (Vhr oy - RS Y b
i=1+1 i=1+1

So overall we get the bound

I 0o
loxnGr = (Dnnap + VP ¢7VNGP)||%2(N(O,1)) < 4ﬂzbm +4 Z bi5- (H.5)
i=0 i=I+1

Now, defining ¢ := 2/,
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where I'(k + 1, ¢) denotes the upper incomplete Gamma function. Choosing I = | 5= |, (Pinelis,
2020, Theorem 1.1) yields, for ¢ > 121,

I+1,¢) (c4 (I +D)I/HIHL exp(—c)(c+ I)I*!
o = PTGy S (g
_ ep(=d(et D)
~(en(1+ 1) (L)
1
< mexp(—c+(1+1)(ln(c+l)—1n(I+1)+1))
§%exp<—c+(%+l)(ln(2ﬁ2:l ¢)—1In ( )+1))
1 c exp(— %)
< e <fc+(2f+1)(ln(27r+l)+1))ST, (H.6)

where we used (I + 1)'1/ I'< I'for I > 3 in the first line, Stirling’s approximation in the second line,
and (= + 1)(In(27 + 1) + 1) < ¢/2 for ¢ > 121 in the last line.

It is obvious that -
c
bis =0, forl=|— .
Z 5 —0, for L27TJ—>oo
i=I+1
To quantify the rate of convergence, we use the bound I'(1 + 1,¢p) > e~ I!(1 + co /(I + 1)),

which follows from applying Jensen’s inequality to T'(I + 1,¢q) = e~ I'E(1 + ¢o/G)?, where
G~ F(I +1,1) and EG = I + 1. Defining ¢y = 2/7, it holds that

I'(I+1,c) _ o ! Co I+
b~<1—7<1— co <l—e"“%[1 .
Z n =t T+1) =+ °°¢ b

i=I+1

Taking the first two terms of the Laurent series expansion of n — (1 + C—“)" about n = oo yields

I+1 c2
( I+1) > e (1 — 2(1+1)) for I large enough (where we demand v € o(52)), thus

oo o\ N
me<1—60<1+ ) ~<1+ )
Myt I+1 I1+1
2 2
ESESIES: TR PN SR S
L+co/(I+1) I+1  2(I+1) F2c
Plugging (H:.6) and (H.7) into (H.3)) yields, for v < 1/61,
5 5 1 81y(1 +7)
loNNGr — (DNnap + VP QS?VNGP)H%Q(N(OJ)) < 2%2py1 /% exp <—7) + e
For the NTK we get

3,7, 5 2
| 7\/%1’}_ Nrr VP N, (v 0.1)

: +pr : Pbi
wZ S EP«J-W iﬁ,MMmWM)

=0

We can proceed exactly as for the NNGP, but choose I = [ 5= | — 1 to get
I I

; I+1
b; ~ ct exp(—c) ¢ exp(—c/2) exp(—c)
2 = — = _—— 1 < —
;H— 7 = exp(=o) 2o i+ 1) c ; il =T c
and replace (H.7) with
i bi’:y _ exp(—co) i c < 1 Co < 7T’y(1 +’§/) 0
co

1+1
i=I+1 + i=I+42
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I Additional experimental results

The code to reproduce all our experiments is provided in the supplementary material. Our imple-
mentations rely on PyTorch (Paszke et al.,2019) for neural networks and mpmath (Johansson et al.|
2023)) for high-precision calculations.

I.1 Experimental details of

For the kernel experiment (Figure Th), we used the Laplace kernel with bandwidth 0.4 and the
spiky-smooth kernel @) with Laplace components with p = 1,5 = 1,7 = 0.01.

For the neural network experiment (Figure Tp,c) we initialize 2-layer networks with NTK parametriza-
tion (Jacot et al.,|2018)) and He initialization (He et al.,|2015)). Using the antisymmetric initialization
trick from|Zhang et al.| (2020) doubles the network width from 10000 to 20000 and helps to prevent
errors induced by the random initialization function. We train the network with stochastic gradient
descent of batch size 1 over the 15 training samples with learning rate 0.04 for 2500 epochs. Train-
ing with gradient descent and learning rate 0.4 produces similar results. We use the spiky-smooth
activation function given by « + ReLU (x) + 0.01 - (sin(100x) + cos(100x)), which corresponds

tox — ReLU(x) + wnrk (2, ﬁ), including both even and uneven Hermite coefficients.

1.2 Disentangling signal from noise in neural networks with spiky-smooth activation functions

Since our spiky-smooth activation function has the additive form ogspsm(x) = ReLU(x) +
wnTK (25 55955 )» we can dissect the learned neural network

fspsm(w) =W,- Jspsm(Wl -+ bl) + by = fReLU(CE) + fspikes(w) (1.1)
into its Re LU-component
frerv(x) = Wo - ReLU(W 1 - + by) + ba,

and its spike component

1
fspikes(w) =W, WNTK(Wl -x+ bl; m)

If the analogy to the spiky-smooth kernel holds and fsp;x.s fits the noise in the labels while having a
small Lo-norm, then fr.r would have learned the signal in the data. Indeed [Figure I.T|demonstrates
that this simple decomposition is useful to disentangle the learned signal from the spike component
in our setting. The figure also suggests that the oscillations in the activations of the hidden layer
constructively interfere to interpolate the training points, while the differing frequencies and phases
approximately destructively interfere on most of the remaining covariate support. shows
some of the functions generated by the hidden layer neurons of the spike component fspikes. Both
the phases and frequencies vary. Destructive interference in sums of many oszillations occurs, for
example, under a uniform phase distribution.

An exciting direction of future work will be to understand when and why the neural networks with
spiky-smooth activation functions learn the target function well, and when the decomposition into
ReLU- and spike component succeeds to disentangle the noise from the signal. Particular challenges
will be to design architectures and learning algorithms that provably work on complex data sets and
to determine their statistical convergence rates. A different line of work could evaluate whether there
exist useful spike components for deep and narrow networks beyond the pure infinite-width limit.
Maybe for deep architectures is suffices to apply spiky-smooth activation functions only between the
penultimate and the last layer.
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Figure I.1: a. The ReLU-component fr.r (blue) and the full spiky-smooth network f,s,, (orange)
of the learned neural network from |Figure ll b. The spike component fp;xes Of the learned neural
network from [Figure T|against the label noise in the training set, derived by subtracting the signal
from the training points. Observe that the Re LU-component has learned the signal, while the spike
component has fitted the noise in the data while regressing to 0 between data points.
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Figure 1.2: Here we plot the functions learned by 12 random hidden layer neurons of the spike
component network fgpires corresponding to

Of course an analogous additive decomposition exists for the minimum-norm interpolant f(’f of the
spiky-smooth kernel,

f[llc(w) = (ié + pnk’Yn)(w’X> : (IN{ + an'Yn)_ly = fsignal(w) + fspik:es(w)a (12)
where
fsignal(w) = ];1(:13, X) . (K =+ pnk’yn)_lzh fspikes(m) = pni‘;'yn (m7X) ' (K + pnk%)_ly-

We plot the results in Observe that the spikes f,pikes regress to 0 more reliably than in the
neural network.

Although spiky-smooth estimators can be consistent, any method that interpolates noise cannot
be adversarially robust. The signal component fs;4nq may be a simple correction towards robust
estimators. suggests that the signal components of spiky-smooth estimators behave
more robustly than ReLU networks or minimum-norm interpolants of Laplace kernels in terms of
finite-sample variance.
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Figure .3: a. The signal component fg;,yq: (blue) and the full minimum-norm interpolant fé“ (orange)
of the spiky-smooth kernel from b. The spike component fgpikes Of the spiky-smooth
kernel from [Figure T|against the label noise in the training set, derived by subtracting the signal from
the training points.

L3 Repeating the finite-sample experiments

We repeat the experiment from 100 times, both randomizing with respect to the training set
and with respect to neural network initialization.

For the kernels (Figure I.4h), observe that all minimum-norm kernel interpolants are biased towards
0. While the Laplace kernel and the signal component ([.2) of the spiky-smooth kernel have similar
averages, the spiky-smooth kernel has a slightly larger bias. However, both the spiky-smooth kernel
as well as its signal component produces lower variance estimates than the Laplace kernel.

Considering the trained neural networks (Figure I.4b), the ReLU networks are approximately unbiased,
but have large variance. The neural networks with spiky-smooth activation function as well as the
extracted signal network ([T) are similar on average: They are slighly biased towards 0, but have
much smaller variance than the ReLU networks.

a. b. c.
2 1.2
Lo — RelLU
g 11 JTZEED g 1 m 0.8 .‘m Spiky-smooth
.g 0 .g 0 2, \
5 01 2 01 0.6
'8 = — Lapluce Se '8 = RgLU E 0.4
Q‘: -11 = Spiky-smooth | Q‘: -1 Spiky-smooth 0‘2
— Signal — Signal -2
-2+ : T T T —24 T T T 0.0 T T T T
- = 0 z ™ - = 0 z ™ 0 10° 10! 10? 10°
Angle (radians Angle (radians Epochs
g g

Figure 1.4: We repeat the experiment from [Figure 1] 100 times and report the mean values (lines).
Confidence bands denote the interval between the empirical 2.5%- and 97.5%-quantiles from the 100
independent runs.

The training curves (Figure T.4k) offer similar conclusions as While the ReLU networks

harmfully overfit over the course of training, the neural networks with spiky-smooth activation
function quickly overfit to O training error with monotonically decreasing test error, which on average
is almost optimal, already with only 15 training points. The spiky-smooth networks have smaller
confidence bands, indicating increased robustness compared to the ReLU networks. If the ReLU
networks would be early-stopped with perfect timing, they would generalize similarly well as the
networks with spiky-smooth activation function.

1.4 Spiky-smooth activation functions

In [Figures T.5|and [L.6] we plot the 2-layer NTK activation functions induced by spiky-smooth kernels
with Gaussian components, where k has bandwidth 1, and in the first figure p = 1 while in the second
figure p = 0.1.
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Figure I.5: The 2-layer NTK activation functions for Gaussian-Gaussian spiky-smooth kernels with
varying v (columns) with k., = 1000, k has bandwidth 1, p = 1. Top: all s; = +1, middle:
+,+,—,—,+,+, ..., bottom: Random +1 and —1. Although the activation function induced by the
spiky-smooth kernel is not exactly the sum of the activation functions induced by its components, this
approximation is accurate because the spike components approximately live in a subspace of higher
frequency in the Hermite basis orthogonal to the low-frequency subspace of the smooth component.
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Figure 1.6: Same as above but p = 0.1. The high-frequency fluctuations are much smaller compared

to[Figure T.5]

In we plot the corresponding 2-layer NNGP activation functions with p = 1. In contrast to
the NTK activation functions the amplitudes of the fluctuations only depends on p and not on «y. Our
intuition is the following: Since the first layer weights are not learned in case of the NNGP, the first
layer cannot learn constructive interference, so that the oscillations in the activation function need to
be larger.

The additive approximation ¢F ~ ¢ 4 pl/ 2@57“ remains accurate in all considered cases
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Figure [.7: Same as above but NNGP and p = 1. As expected from the isolated spike plots: Spikes
essentially add fluctuations that increase in frequency and stay constant in amplitude for v — 0, p
regulates the amplitude.

LI.5 Isolated spike activation functions

[Figure I.8]is the equivalent of for the NNGP.

By plotting the NTK activation components corresponding to Gaussian spikes ¢* with varying
choices of the signs s, in[Figure T.9] we observe the following properties:

1. All s; = +1 leads to exponentially exploding activation functions, cf. Eq. (H.2).

2. If the signs s; alternate every second i, i.e. s; = +1 iff L%J even, ¢*v is approximately a
single shifted sin-curve with increasing frequency and decreasing/constant amplitude for
NTK/NNGP activation functions, cf. Eq. (@

3. If 5; is chosen uniformly at random, with high probability, ¢*» both oscillates at a high
frequency around 0 and explodes for |z| — oco.

a. b. I

1.5 4 =]

101 AYA 5 g

0.5 5=02 Z

0.0 4 —7=0.1 0 R3]
~0.51 — =005 3}
10 VAV <
“1517 . . . — — Q

2 -1 0 1 2 3 2 o0 1 2 3© 0 25 50 75 100 125 150 175

Index

Figure 1.8: Same as but for the NNGP. In contrast to the NTK, the amplitudes of the
oscillations in a. do not shrink with v — 0. Otherwise the behaviour is analogous. For example, the
Hermite coefficients peak at 2/. The squared coefficients sum to 1 (Eq. (6)).
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Figure 1.9: The spike activation components of 2-layer NTK for Gaussian spikes with varying ~y
(columns), ke, = 1000, top: all s; = +1, middle: signs alternate every second index, bottom:
3 draws from uniformly random signs. With v — 0, the amplitude shrinks, while the frequency
increases.

[Figure .10 visualizes NNGP activation functions induced by Gaussian spikes with varying bandwidth
7. Observe similar behaviour as for the NTK but amplitudes invariant to y as predicted by Eq. (6).
For smaller ~y the explosion of (all+) activation functions starts at larger x, but appears sharper as can
be seen in the analytic expression (H:2).

[Figure T.T1] resembles [Figure 1.9 but plotted on a larger range to visualize the exploding behaviour for

|x] — oo.
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Figure 1.10: Spike activation components as in[Figure 1.9} but for the NNGP with = between [—4, 4].
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Figure I.11: Spike NTK activation components as in [Figure 1.9|but with x between [—4, 4]. The all+
NTK activation explodes exponentially. While random sign activations explode as well, + + ——-
activations remain stable sin-fluctuations with slowly decaying amplitude for |z| — oco.
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1.6 Additive decomposition and sin-fit

Here we quantify the error of the sin-approximation (§)) of Gaussian NTK activation components.

The additive decomposition ¢* ~ ¢* + p'/2¢% quickly becomes accurate in the limit v — 0
(Figures I.12|and [I.13])), the sin-approximation seems to converge pointwise at rate ©(|x|v), where
a good approximation can be expected when |z| < 1/v. The error at large |z| arises because the
spike component decays for |z| — oco. For O(1) inputs, we conjecture that this inaccuracy does not
dramatically affect the test error of neural networks when + is chosen to be small.
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Figure 1.12: The isolated NTK spike activation function (orange), the difference between spiky-
smooth and smooth activation function (blue) and a fitted sin-curve (8) (green). All curves roughly
align, in particular for v — 0.
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Figure 1.13: The error of the additive decomposition ¢ ~ ¢* 4 p'/2¢*~ (blue) and the sin-fit (8] (or-
ange) for the NTK. While the additive decomposition makes errors of order 102, 10~4,1079,1071°
(from left to right) in the domain [—4, 4], the sin-fit is increasingly inaccurate for |z| — oo, and
increasingly accurate for v — 0.

Now we evaluate the approximation quality of the sin-fits (7) and (8] to the isolated spike activation

components (j)kv. The NNGP oscillating activation function gbkv of a Gaussian spike component is
extremely well approximated by Eq. (7). Both for the NNGP and for the NTK, the approximations
become increasingly accurate with smaller bandwidths v — 0 (Figure T.14). Again the approximation

quality suffers for |x| — oo, since @™ slowly decay to 0 for |x] = oo.
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L.7 Spiky-smooth kernel hyper-parameter selection

To understand the empirical performance of spiky-smooth kernels on finite data sets, we generate
i.i.d. data where  ~ U(S?) and

d+1
y=x; + a3+ sin(xs) + Ha:i+6,
i=1

with e ~ N(0, 0?) independent of  and evaluate the least squares excess risk of the minimum-norm
interpolant. shows that

* the smaller the spike bandwidth ~, the better. At some point, the improvement saturates,

* p should be carefully tuned, it has large impact. As with v — 0 ridgeless regression with
the spiky-smooth kernel approximates ridge regression with &k and regularization p, simply
choose the optimal regularization p°P! of ridge regression.

* The spiky-smooth kernel with Gaussian components exhibits catastrophic overfitting, when
7 is too large (cf. Mallinar et al.|(2022)), the Laplace kernel is more robust with respect to 7.

» With sufficiently thin spikes and properly tuned p, spiky-smooth kernels with Gaussian
components outperform the Laplace counterparts.

We repeat the experiment in with a slightly more complex generating function and come
to the same conclusions.
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Figure 1.15: Least squares excess risk for spiky-smooth kernel ridgeless regression with Laplace
components (left) and Gaussian components (right), with n = 1000,d = 2, estimated on 10000
independent test points, 02 = 0.5,5 = 1. The smaller the spike bandwidth =, the better. Properly
tuning p is important.
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Figure 1.16: Same as Figure 1.15|but with the more complex generating function y = |x;| + =3 +

sin(2ra3) + H 1 x; + €. The errors are larger compared to|Figure I.15/and the optimal values of p
are smaller, but the conceptual conclusions remain the same.
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