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Abstract

The success of over-parameterized neural networks trained to near-zero training1

error has caused great interest in the phenomenon of benign overfitting, where2

estimators are statistically consistent even though they interpolate noisy training3

data. While benign overfitting in fixed dimension has been established for some4

learning methods, current literature suggests that for regression with typical kernel5

methods and wide neural networks, benign overfitting requires a high-dimensional6

setting where the dimension grows with the sample size. In this paper, we show7

that the smoothness of the estimators, and not the dimension, is the key: benign8

overfitting is possible if and only if the estimator’s derivatives are large enough.9

We generalize existing inconsistency results to non-interpolating models and more10

kernels to show that benign overfitting with moderate derivatives is impossible11

in fixed dimension. Conversely, we show that benign overfitting is possible for12

regression with a sequence of spiky-smooth kernels with large derivatives. Using13

neural tangent kernels, we translate our results to wide neural networks. We prove14

that while infinite-width networks do not overfit benignly with the ReLU activation,15

this can be fixed by adding small high-frequency fluctuations to the activation16

function. Our experiments verify that such neural networks, while overfitting, can17

indeed generalize well even on low-dimensional data sets.18

1 Introduction19

While neural networks have shown great practical success, our theoretical understanding of their20

generalization properties is still limited. A promising line of work considers the phenomenon of21

benign overfitting, where researchers try to understand when and how models that interpolate noisy22

training data can generalize (Zhang et al., 2021, Belkin et al., 2018, 2019). In the high-dimensional23

regime, where the dimension grows with the number of sample points, consistency of minimum-norm24

interpolants has been established for linear models and kernel regression (Hastie et al., 2022, Bartlett25

et al., 2020, Liang and Rakhlin, 2020, Bartlett et al., 2021). In fixed dimension, minimum-norm26

interpolation with standard kernels is inconsistent (Rakhlin and Zhai, 2019, Buchholz, 2022).27

In this paper, we shed a differentiated light on benign overfitting with kernels and neural networks. We28

argue that the dimension-dependent perspective does not capture the full picture of benign overfitting.29

In particular, we show that harmless interpolation with kernel methods and neural networks is possible,30

even in small fixed dimension, with adequately designed kernels and activation functions. The key is31

to properly design estimators of the form ’signal+spike’. While minimum-norm criteria have widely32

been considered a useful inductive bias, we demonstrate that designing unusual norms can resolve the33

shortcomings of standard norms. For wide neural networks, harmless interpolation can be realized by34

adding tiny fluctuations to the activation function. Such networks do not require regularization and35

can simply be trained to overfit (Figure 1).36
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Figure 1: Spiky-smooth overfitting in 2 dimensions. a. We plot the predicted function for ridgeless
kernel regression with the Laplace kernel (blue) versus our spiky-smooth kernel (4) with Laplace
components (orange) on S1. The dashed black line shows the true regression function, black ’x’
denote noisy training points. Further details can be found in Section 6.2. b. The predicted function of
a trained 2-layer neural network with ReLU activation (blue) versus ReLU plus shifted high-frequency
sin-function (8) (orange). Using the weights learned with the spiky-smooth activation function in a
ReLU network (green) disentangles the spike component from the signal component. c. Training
error (solid lines) and test error (dashed lines) over the course of training for b. evaluated on 104 test
points. The dotted black line shows the optimal test error. The spiky-smooth activation function does
not require regularization and can simply be trained to overfit.

On a technical level, we additionally prove that overfitting in kernel regression can only be consistent37

if the estimators have large derivatives. Using neural tangent kernels or neural network Gaussian38

process kernels, we can translate our results from kernel regression to the world of neural networks39

(Neal, 1996, Jacot et al., 2018). In particular, our results enable the design of activation functions that40

induce benign overfitting in fixed dimension: the spikes in kernels can be translated into infinitesimal41

fluctuations that can be added to an activation function to achieve harmless interpolation with neural42

networks. Such small high frequency oscillations can fit noisy observations without affecting the43

smooth component too much. Training finite neural networks with gradient descent shows that44

spiky-smooth activation functions can indeed achieve good generalization even when interpolating45

small, low-dimensional data sets (Figure 1 b,c).46

Thanks to new technical contributions, our inconsistency results significantly extend existing ones.47

We use a novel noise concentration argument (Lemma D.6) to generalize existing inconsistency48

results on minimum-norm interpolants to the much more realistic regime of overfitting estimators with49

comparable Sobolev norm scaling, which includes training via gradient flow and gradient descent with50

“late stopping” as well as low levels of ridge regression. Moreover, a novel connection to eigenvalue51

concentration results for kernel matrices (Proposition 4) allows us to relax the smoothness assumption52

and to treat heteroscedastic noise in Theorem 5. Lastly, our Lemma E.1 translates inconsistency53

results from bounded open subsets of Rd to the sphere Sd, which leads to results for the neural tangent54

kernel and neural network Gaussian processes.55

2 Setup and prerequisites56

General approach. We consider a general regression problem on Rd with an arbitrary, fixed dimen-57

sion d and analyze kernel-based approaches to solve this problem: kernel ridge regression, kernel58

gradient flow and gradient descent, minimum-norm interpolation, and more generally, overfitting59

norm-bounded estimators. We then translate our results to neural networks via the neural network60

Gaussian process and the neural tangent kernel. Let us now introduce the formal framework.61

Notation. We denote scalars by lowercase letters x, vectors by bold lowercase letters x and matrices62

by bold uppercase letters X . We denote the eigenvalues of A as λ1(A) ≥ . . . ≥ λn(A) and the63

Moore-Penrose pseudo-inverse by A+. We say that a probability distribution P has lower and upper64

bounded density if its density p satisfies 0 < c < p(x) < C for suitable constants c, C and all x on a65

given domain.66

Regression setup. We consider a data set D = ((x1, y1), . . . , (xn, yn)) ∈ (Rd × R)n with i.i.d.67

samples (xi, yi) ∼ P , written as D ∼ Pn, where P is a probability distribution on Rd × R. We68

define X := (x1, . . . ,xn) and y := (y1, . . . , yn)
⊤ ∈ Rn. Random variables (x, y) ∼ P denote69

test points independent of D, and PX denotes the probability distribution of x. The (least squares)70
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empirical risk RD and population risk RP of a function f : Rd → R are defined as71

RD(f) :=
1

n

n∑
i=1

(yi − f(xi))
2, RP (f) := Ex,y[(y − f(x))2] .

We assume Var(y|x) <∞ for all x. Then, RP is minimized by the target function f∗P (x) = E[y|x],
and the excess risk of a function f is given by

RP (f)−RP (f
∗
P ) = Ex(f

∗
P (x)− f(x))2 .

We call a data-dependent estimator fD consistent for P if its excess risk converges to 0 in probability,72

that is, for all ε > 0, limn→∞ Pn
(
D ∈ (Rd × R)n | RP (fD)−RP (f

∗
P ) ≥ ε

)
= 0. We call fD73

consistent in expectation for P if limn→∞ EDRP (fD) − RP (f
∗
P ) = 0. We call fD universally74

consistent if is it consistent for all Borel probability measures P on Rd × R.75

Solutions by kernel regression. Recall that a kernel k induces a reproducing kernel Hilbert space
Hk, abbreviated RKHS (more details in Appendix B). For f ∈ Hk, we consider the objective

Lρ(f) :=
1

n

n∑
i=1

(yi − f(xi))
2 + ρ∥f∥2Hk

with regularization parameter ρ ≥ 0. Denote by ft,ρ the solution to this problem that is obtained by
optimizing on Lρ in Hk with gradient flow until time t ∈ [0,∞], using fixed a regularization constant
ρ > 0, and initializing at f = 0 ∈ Hk. We show in Appendix C.1 that it is given as

ft,ρ(x) := k(x,X)
(
In − e−

2
n t(k(X,X)+ρnIn)

)
(k(X,X) + ρnIn)

−1
y , (1)

where k(x,X) denotes the row vector (k(x,xi))i∈[n] and k(X,X) = (k(xi,xj))i,j∈[n] the kernel76

matrix. ft,ρ elegantly subsumes several popular kernel regression estimators as special cases: (i)77

classical kernel ridge regression for t → ∞, (ii) gradient flow on the unregularized objective for78

ρ↘ 0, and (iii) kernel “ridgeless” regression f∞,0(x) = k(x,X)k(X,X)+y in the joint limit of79

ρ → 0 and t → ∞. If k(X,X) is invertible, f∞,0 is the interpolating function f ∈ Hk with the80

smallest Hk-norm.81

From kernels to neural networks: the neural tangent kernel (NTK) and the neural network82

Gaussian process (NNGP) . Denote the output of a NN with parameters θ on input x by fθ(x).83

It is known that for suitable random initializations θ0, in the infinite-width limit the random initial84

function fθ0
converges in distribution to a Gaussian Process with the so-called Neural Network85

Gaussian Process (NNGP) kernel (Neal, 1996, Lee et al., 2018, Matthews et al., 2018). In Bayesian86

inference, the posterior mean function is then of the form f∞,ρ. With minor modifications (Arora87

et al., 2019, Zhang et al., 2020), training infinitely wide NNs with gradient flow corresponds to88

learning the function ft,0 with the neural tangent kernel (NTK) (Jacot et al., 2018, Lee et al., 2019).89

If only the last layer is trained, the NNGP kernel should be used instead (Daniely et al., 2016). For90

ReLU activation functions, the RKHS of the infinite-width NNGP and NTK on the sphere Sd is91

typically a Sobolev space (Bietti and Bach, 2021, Chen and Xu, 2021), see Appendix B.4.92

3 Related work93

We here provide a short summary of related work. A more detailed account is provided in Appendix A.94

Kernel regression. With appropriate regularization, kernel ridge regularization with typical universal95

kernels like the Gauss, Matérn, and Laplace kernels is universally consistent (Steinwart and Christ-96

mann, 2008, Chapter 9). Optimal rates in Sobolev RKHS can also be achieved using cross-validation97

of the regularization ρ (Steinwart et al., 2009) or early stopping rules (Yao et al., 2007, Raskutti et al.,98

2014, Wei et al., 2017). In the high-dimensional regime, the class of functions that is learnable with99

rotation-invariant kernels is quite limited (Donhauser et al., 2021, Ghorbani et al., 2021, Liang et al.,100

2020).101

Inconsistency results. Besides Rakhlin and Zhai (2019) and Buchholz (2022), Beaglehole et al.102

(2022) derive inconsistency results for ridgeless kernel regression given assumptions on the spectral103

tail in the Fourier basis, and Li et al. (2023) show that polynomial convergence is impossible104

for common kernels including ReLU NTKs. Mallinar et al. (2022) conjecture inconsistency for105
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interpolation with ReLU NTKs based on their semi-rigorous result , which essentially assumes that106

the eigenfunctions can be replaced by structureless Gaussian random variables. Lai et al. (2023) show107

an inconsistency-type result for overfitting two-layer ReLU NNs with d = 1, but for fixed inputs108

X . They also note that an earlier inconsistency result by Hu et al. (2021) relies on an unproven109

result. Mücke and Steinwart (2019) show that global minima of NNs can overfit both benignly and110

harmfully, but their result does not apply to gradient descent training. Overfitting with typical linear111

models around the interpolation peak is inconsistent (Ghosh and Belkin, 2022, Holzmüller, 2021).112

Classification. For binary classification, benign overfitting is a more generic phenomenon than for113

regression (Muthukumar et al., 2021, Shamir, 2022), and consistency has been shown under linear114

separability assumptions (Montanari et al., 2019, Chatterji and Long, 2021, Frei et al., 2022), through115

complexity bounds for reference classes (Cao and Gu, 2019, Chen et al., 2019) or as long as the total116

variation distance of the class conditionals is sufficiently large and f∗(x) = E[y|x] lies in the RKHS117

with bounded norm (Liang and Recht, 2023). Chapter 8 of Steinwart and Christmann (2008) discusses118

how the overlap of the two classes may influence learning rates under positive regularization.119

4 Inconsistency of overfitting with common kernel estimators120

We consider a regression problem on Rd in arbitrary, fixed dimension d that is solved by kernel121

regression. In this section, we derive several new results, stating that overfitting estimators with122

moderate Sobolev norm are inconsistent, in a variety of settings. In the next section, we establish the123

other direction: overfitting estimators can be consistent when we adapt the norm that is minimized.124

4.1 Beyond minimum-norm interpolants: general overfitting estimators with bounded norm125

Existing generalization bounds often consider the perfect minimum norm interpolant. This is a rather126

theoretical construction; estimators obtained by training with gradient descent algorithms merely127

overfit and, in the best case, approximate interpolants with small norm. In this section, we extend128

existing bounds to arbitrary overfitting estimators whose norm does not grow faster than the minimum129

norm that would be required to interpolate the training data. Before we can state the theorem, we130

need to establish some technical assumptions.131

Assumptions on the data generating process. The following assumptions (as in Buchholz (2022))132

allow for quite general domains and distributions. They are standard in nonparametric statistics.133

(D1) Let PX be a distribution on a bounded open Lipschitz domain Ω ⊆ Rd with lower and134

upper bounded Lebesgue density. Consider data sets D = {(x1, y1), . . . , (xn, yn)}, where135

xi ∼ PX i.i.d. and yi = f∗(xi)+εi, where εi is i.i.d. Gaussian noise with positive variance136

σ2 > 0 and f∗ ∈ C∞
c (Ω)\{0} denotes a smooth function with compact support.137

Assumptions on the kernel. Our assumption on the kernel is that its RKHS is equivalent to a138

Sobolev space. For integers s ∈ N, the norm of a Sobolev space Hs(Ω) can be defined as139

∥f∥2Hs(Ω) :=
∑

0≤|α|≤s
∥Dαf∥2L2(Ω),

where Dα denotes partial derivatives in multi-index notation for α. It measures the magnitude140

of derivatives up to some order s. For general s > 0, Hs(Ω) is (equivalent to) an RKHS if and141

only if s > d/2. For example, Laplace and Matérn kernels (Kanagawa et al., 2018, Example 2.6)142

have Sobolev RKHSs. The RKHS of the Gaussian kernel HGauss is contained in every Sobolev143

space, HGauss ⊊ Hs for all s ≥ 0 (Steinwart and Christmann, 2008, Corollary 4.36). Due to its144

smoothness, the Gaussian kernel is potentially even more prone to harmful overfitting than Sobolev145

kernels (Mallinar et al., 2022). We make the following assumption on the kernel:146

(K) Let k be a positive definite kernel function whose RKHS Hk is equivalent to the Sobolev147

space Hs for s ∈ (d2 ,
3d
4 ].148

Now we are ready to state the main result of this section:149

Theorem 1 (Overfitting estimators with small norms are inconsistent). Let assumptions (D1) and150

(K) hold. Let cfit ∈ (0, 1] and Cnorm > 0. Then, there exist c > 0 and n0 ∈ N such that the following151

holds for all n ≥ n0 with probability 1−O(1/n) over the draw of the data set D with n samples:152

Every function f ∈ Hk that satisfies the follwing two conditions153
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(O) 1
n

∑n
i=1(f(xi)− yi)

2 ≤ (1− cfit) · σ2 (training error of f is below Bayes risk)154

(N) ∥f∥Hk
≤ Cnorm∥f∞,0∥Hk

(norm comparable to minimum-norm interpolant (1)),155

has an excess risk that satisfies

RP (f)−RP (f
∗) ≥ c > 0 . (2)

In words: In fixed dimension d, every differentiable function f that overfits the training data and is156

not much “spikier” than the minimum RKHS-norm interpolant is inconsistent!157

Proof idea. Our proof follows a similar approach as Rakhlin and Zhai (2019), Buchholz (2022), and158

also holds for kernels with adaptive bandwidths. For small bandwidths, ∥f∞,0∥L2(PX) is too small,159

because f∞,0 decays to 0 between the training points, which shows that purely ’spiky’ estimators are160

inconsistent. For all other bandwidths, interpolating Θ(n) many noisy labels yi incurs Θ(1) error161

in an area of volume Ω(1/n) around Θ(n) data points with high probability, which accumulates162

to a total error Ω(1). Our observation is that the same logic holds when overfitting by a constant163

fraction. Formally, we show that f∗ and f must then be separated by a constant on a constant fraction164

of training points, with high probability, by using the fact that a constant fraction of the total noise165

cannot concentrate on less than Θ(n) noise variables, with high probability (Lemma D.6). The full166

proof can be found in Appendix D.167

Assumption (O) is necessary in Theorem 1, because optimally regularized kernel ridge regression168

fulfills all other assumptions of Theorem 1 while achieving consistency with minimax optimal169

convergence rates (see Section 3). The necessity of Assumption (N) is demonstrated by Section 5.170

The following proposition establishes that Theorem 1 covers the entire overfitting regime of the171

popular (regularized) gradient flow estimators ft,ρ for all times t ∈ [0,∞] and any regularization172

ρ ≥ 0. The proof in Appendix C.2 also covers gradient descent.173

Proposition 2 (Popular estimators fulfill the norm bound (N)). Let t ∈ [0,∞] and let ρ ≥ 0174

arbitrary. Then ft,ρ as defined in (1) fulfills Assumption (N) with Cnorm = 1.175

4.2 Inconsistency of overfitting with neural kernels176

We would now like to apply the above results to neural kernels, which would allow us to translate177

our inconsistency results from the kernel domain to neural networks. However, to achieve this, we178

need to take one more technical hurdle: the equivalence results for NTKs and NNGPs only hold for179

probability distributions on the sphere Sd (detailed summary in Appendix B.4). Lemma E.1 provides180

the missing technical link: It establishes a smooth correspondence between the respective kernels,181

Sobolev spaces, and probability distributions. The inconsistency of overfitting with (deep) ReLU182

NTKs and NNGP kernels then immediately follows from adapting Theorem 1 via Lemma E.1.183

Theorem 3 (Overfitting with neural network kernels in fixed dimension is inconsistent). Let184

c ∈ (0, 1), and let P be a probability distribution with lower and upper bounded Lebesgue density on185

an arbitrary spherical cap T := {x ∈ Sd | xd+1 < v} ⊆ Sd, v ∈ (−1, 1). Let k either be186

(i) the fully-connected ReLU NTK with 0-initialized biases of any fixed depth L ≥ 2, and d ≥ 2, or187

(ii) the fully-connected ReLU NNGP kernel without biases of any fixed depth L ≥ 3, and d ≥ 6.188

Then, if ft,ρ fulfills Assumption (O) with probability at least c over the draw of the data set D, ft,ρ is189

inconsistent for P .190

Theorem 3 also holds for more general estimators as in Theorem 1, cf. the proof in Appendix E.191

Mallinar et al. (2022) already observed empirically that overfitting common network architectures192

yields suboptimal generalization performance on large data sets in fixed dimension. Theorem 3 now193

provides a rigorous proof for this phenomenon since sufficiently wide trained neural networks and the194

corresponding NTKs have a similar generalization behavior (e.g. (Arora et al., 2019, Theorem 3.2)).195

4.3 Relaxing smoothness and noise assumptions via spectral concentration bounds196

In this section, we consider a different approach to derive lower bounds for the generalization error197

of overfitting kernel regression: through concentration results for the eigenvalues of kernel matrices.198

On a high level, we obtain similar results as in the last section. The novelty of this section is on the199

technical side, and we suggest that non-technical readers skip this section in their first reading.200
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We define the convolution kernel of a given kernel k as k∗(x,x′) :=
∫
k(x,x′′)k(x′′,x′) dPX(x′′),201

which is possible whenever k(x, ·) ∈ L2(PX) for all x. The latter condition is satisfied for bounded202

kernels. Our starting point is the following new lower bound:203

Proposition 4 (Spectral lower bound). Assume that the kernel matrix k(X,X) is almost surely
positive definite, and that Var(y|x) ≥ σ2 for PX -almost all x. Then, the expected excess risk satisfies

EDRP (ft,ρ)−R∗
P ≥ σ2

n

n∑
i=1

EX

λi(k∗(X,X)/n)
(
1− e−2t(λi(k(X,X)/n)+ρ)

)2
(λi(k(X,X)/n) + ρ)2

. (3)

Using concentration inequalities for kernel matrices and the relation between the integral operators of204

k and k∗, it can be seen that for t = ∞ and ρ = 0, every term in the sum in Eq. (3) should converge205

to 1 as n→ ∞. However, since the number of terms in the sum increases with n and the convergence206

may not be uniform, this is not sufficient to show inconsistency in expectation. Instead, relative207

concentration bounds that are even stronger than the ones by Valdivia (2018) would be required to208

show inconsistency in expectation. However, by combining multiple weaker bounds and further209

arguments on kernel equivalences, we can still show inconsistency in expectation for a class of210

dot-product kernels on the sphere, including certain NTK and NNGP kernels (Appendix B.4):211

Theorem 5 (Inconsistency for Sobolev dot-product kernels on the sphere). Let k be a dot-product212

kernel on Sd, i.e., a kernel of the form k(x,x′) = κ(⟨x,x′⟩), such that its RKHS Hk is equivalent213

to a Sobolev space Hs(Sd), s > d/2. Moreover, let P be a distribution on Sd × R such that214

PX has a lower and upper bounded density w.r.t. the uniform distribution U(Sd), and such that215

Var(y|x) ≥ σ2 > 0 for PX -almost all x ∈ Sd. Then, for everyC > 0, there exists c > 0 independent216

of σ2 such that for all n ≥ 1, t ∈ (C−1n2s/d,∞], and ρ ∈ [0, Cn−2s/d), the expected excess risk217

satisfies218

EDRP (ft,ρ)−R∗
P ≥ cσ2 > 0 .

The assumptions of Theorem 5 and Theorem 3 differ in several ways. Theorem 5 applies to arbitrarily219

high smoothness s and therefore to ReLU NTKs and NNGPs in arbitrary dimension d. Moreover, it220

applies to distributions on the whole sphere and allows more general noise distributions. On the flip221

side, it only shows inconsistency in expectation, which we believe could be extended to inconsistency222

for Gaussian noise. Moreover, it only applies to functions of the form ft,ρ but provides an explicit223

bound on t and ρ to get inconsistency. For t = ∞, the bound ρ = O(n−2s/d) appears to be tight, as224

larger ρ yield consistency for comparable Sobolev kernels on Rd (Steinwart et al., 2009, Corollary 3).225

The spectral lower bounds in Theorem F.2 show that our approach can directly benefit from developing226

better kernel matrix concentration inequalities. Conversely, the investigation of consistent kernel227

interpolation might provide information about where such concentration inequalities do not hold.228

5 Consistency via spiky-smooth estimators – even in fixed dimension229

In Section 4, we have seen that when common kernel estimators overfit, they are inconsistent for230

many kernels and a wide variety of distributions. We now design consistent interpolating kernel231

estimators. The key is to violate Assumption (N) and allow for quickly exploding derivatives.232

5.1 Almost universal consistency of spiky-smooth ridgeless kernel regression233

In high dimensional regimes (where the dimension d is supposed to grow with the number of data234

points), benign overfitting of linear and kernel regression has been understood by an additive decom-235

position of the minimum-norm interpolant into a smooth regularized component that is responsible236

for good generalization, and a spiky component that interpolates the noisy data points while not237

harming generalization (Bartlett et al., 2021). This inspires us to enforce such a decomposition in238

arbitrary fixed dimension by adding a sharp kernel spike ρǩγn to a common kernel k̃. In this way, we239

can still generate any Sobolev RKHS (see Appendix G.2).240
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Definition 6 (Spiky-smooth kernel). Let k̃ denote any universal
kernel function on Rd. We call it the smooth component. Consider
a second, translation invariant kernel ǩγ of the form kγ(x,y) =
q(x−y

γ ), for some function q : Rd → R. We call it the spiky
component. Then we define the ρ-regularized spiky-smooth kernel
with spike bandwidth γ as

kρ,γ(x,y) = k̃(x,y) + ρ · ǩγ(x,y), x,y ∈ Rd. (4)

We now show that the minimum-norm interpolant of the spiky-
smooth kernel sequence with properly chosen ρn, γn → 0 is
consistent for a large class of distributions, on a space with fixed
(possibly small) dimension d. We establish our result under the
following assumption (as in Mücke and Steinwart (2019)), which
is weaker than our previous Assumption (D1).

−0.1 0.0 0.1

0.9

1.0

1.1 {ρ

{

γ

Laplace
Spiky-smooth

Figure 2: The spiky-smooth ker-
nel with Laplace components (or-
ange) consists of a Laplace ker-
nel (blue) plus a Laplace kernel of
height ρ and small bandwidth γ.

241

(D2) There exists a constant βX > 0 and a continuous function ϕ : [0,∞) → [0, 1] with ϕ(0) = 0242

such that the data generating probability distribution satisfies PX(Bt(x)) ≤ ϕ(t) = O(tβX )243

for all x ∈ Ω and all t ≥ 0 (here Bt(x) denotes the Euclidean ball of radius t around x).244

Theorem 7 (Consistency of spiky-smooth ridgeless kernel regression). Assume that the training245

set D consists of n i.i.d. pairs (x, y) ∼ P such that the marginal PX fulfills (D2) and Ey2 <∞. Let246

the kernel components satisfy:247

• k̃ is a universal kernel, and ρn → 0 and nρ4n → ∞.248

• ǩγn denotes the Laplace kernel with a sequence of positive bandwidths (γn) fulfilling249

γn = O
(
n−(2+α)/βX/ log(n)

)
, where α > 0 arbitrary.250

Then the minimum-norm interpolant of the ρn-regularized spiky-smooth kernel sequence kn := kρn,γn251

is consistent for P .252

Proof idea. With sharp spikes γ → 0, it holds that ǩγ(X,X) ≈ In, with high probability.253

Hence, ridgeless kernel regression with the spiky-smooth kernel interpolates the training set while254

approximating kernel ridge regression with the smooth component k̃ and regularization ρ.255

The theorem even holds under much weaker assumptions on the decay behavior of the spike compo-256

nent ǩγn , including Gaussian and Matérn kernels. The full version of the theorem and its proof can257

be found in Appendix G. It also applies to kernels and distributions on the sphere Sd.258

5.2 From spiky-smooth kernels to spiky-smooth activation functions259

So far, our discussion revolved around the properties of kernels and whether they lead to estimators260

that are consistent. We now turn our attention to the neural network side. The big question is261

whether it is possible to specifically design activation functions that enable benign overfitting in fixed,262

possibly small dimension. We will see that the answer is yes: similarly to adding sharp spikes to a263

kernel, we add tiny fluctuations to the activation function. Concretely, we exploit (Simon et al., 2022,264

Theorem 3.1). It states that any dot-product kernel on the sphere that is a dot-product kernel in every265

dimension d can be written as an NNGP kernel or an NTK of two-layer fully-connected networks266

with a specifically chosen activation function. Further details can be found in Appendix H.267

Theorem 8 (Connecting kernels and activation functions (Simon et al., 2022)). Let κ : [−1, 1] →
R be a function such that kd : Sd × Sd → R, kd(x,x′) = κ(⟨x,x′⟩) is a kernel for every d ≥ 1.
Then, there exist bi ≥ 0 with

∑∞
i=0 bi < ∞ such that κ(t) =

∑∞
i=0 bit

i, and for any choice of
signs (si)i∈N ⊆ {−1,+1}, the kernel kd can be realized as the NNGP or NTK of a two-layer
fully-connected network with activation function

ϕkdNNGP (x) =

∞∑
i=0

si(bi)
1/2hi(x), ϕkdNTK(x) =

∞∑
i=0

si

(
bi

i+ 1

)1/2

hi(x). (5)

Here, hi denotes the i-th Probabilist’s Hermite polynomial normalized such that ∥hi∥L2(N (0,1)) = 1.268

The following proposition justifies the approach of adding spikes ρ1/2ϕǩγ to an activation function to269

enable harmless interpolation with wide neural networks. Here we state the result for the case of the270

NTK; an analogous result holds for induced NNGP activation functions.271
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Figure 3: a., b. Gaussian NTK activation components ϕǩγNTK defined via (5) induced by the Gaussian
kernel with varying bandwidth γ ∈ [0.2, 0.1, 0.05] (the darker, the smaller γ) for a. bi-alternating
signs si = +1 iff ⌊i/2⌋ even, and b. randomly iid chosen signs si ∼ U({−1,+1}). c. Coefficients
of the Hermite series of a Gaussian NTK activation component with varying bandwidth γ. Observe
peaks at 2/γ. For reliable approximations of activation functions use a truncation ≥ 4/γ. The sum of
squares of the coefficients follows Eq. (6). Figure I.8 visualizes NNGP activation components.

Proposition 9 (Additive decomposition of spiky-smooth activation functions). Fix γ̃, ρ > 0
arbitrary. Let k = k̃ + ρǩγ denote the spiky-smooth kernel where k̃ and ǩγ are Gaussian kernels
of bandwidth γ̃ and γ, respectively. Assume that we choose signs {si}i∈N and then the activation
functions ϕkNTK , ϕk̃NTK and ϕǩγNTK as in Theorem 8. Then, for γ > 0 small enough, it holds that

∥ϕkNTK − (ϕk̃NTK +
√
ρ · ϕǩγNTK)∥2L2(N (0,1)) ≤ 21/2ργ3/2 exp

(
− 1

γ

)
+

4π(1 + γ̃)γ

γ̃
.

Proof idea. When the spikes are sharp enough (γ small enough), the smooth and the spiky component272

of the activation function are approximately orthogonal in L2(N (0, 1)) (Figure 3c), so that the spiky-273

smooth activation function can be approximately additively decomposed into the smooth activation274

component ϕk̃ and the spike component ϕǩ responsible for interpolation.275

To motivate why the added spike functions ρ1/2ϕǩγ should have small amplitudes, observe that
Gaussian activation components ϕǩγ satisfy

∥ϕǩγNNGP ∥2L2(N (0,1)) = 1, ∥ϕǩγNTK∥2L2(N (0,1)) =
γ

2

(
1− exp

(
− 2

γ

))
. (6)

Hence, the average amplitude of NNGP spike activation components ρ1/2ϕǩγ does not depend on γ,276

while the average amplitude of NTK spike components decays to 0 with γ → 0. Since consistency277

requires the quasi-regularization ρ → 0, the spiky component of induced NTK as well as NNGP278

activation functions should vanish for large data sets n→ ∞ to achieve consistency.279

6 Experiments280

Now we explore how appropriate spiky-smooth activation functions might look like and whether they281

indeed enable harmless interpolation for trained networks of finite width on finite data sets. Further282

experimental results are reported in Appendix I.283

6.1 What do common activation functions lack in order to achieve harmless interpolation?284

To understand which properties we have to introduce into activation functions to enable harmless
interpolation, we plot NTK spike components ϕǩγ induced by the Gaussian kernel (Figure 3a,b)
as well as their Hermite series coefficients (Figure 3c). Remarkably, the spike components ϕǩγ
approximately correspond to a shifted, high-frequency sin-curve, when choosing the signs si in (5)
to alternate every second i, that is si = +1 iff ⌊i/2⌋ even (Figure 3a). We empirically determine
(Appendix I.6) that the NNGP activation functions are well approximated by the fluctuation function

ωNNGP(x; γ) :=
√
2 · sin

(√
2/γ · x+ π/4

)
= sin

(√
2/γ · x

)
+ cos

(√
2/γ · x

)
, (7)

where the last equation follows from the trigonometric addition theorem. For small bandwidths γ, the
NTK activation functions are increasingly well approximated by

ωNTK(x; γ) :=
√
γ · sin

(√
2/γ · x+ π/4

)
=
√
γ/2

(
sin
(√

2/γ · x
)
+ cos

(√
2/γ · x

))
. (8)
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With decreasing bandwidth γ → 0 the frequency increases, while the amplitude decreases for the285

NTK and remains constant for the NNGP (see Eq. (6)). Plotting equivalent spike components ϕǩγ286

with different choices of the signs si (Figure 3b and Appendix I.5) suggests that harmless interpolation287

requires activation functions that contain small high-frequency oscillations or that explode at large288

|x|, which only affects few neurons. The Hermite series expansion of suitable activation functions289

should contain non-negligible weight spread across high-order coefficients (Figure 3c). While290

Simon et al. (2022) already truncate the Hermite series of induced activation functions at order 5,291

Figure 3c shows that an accurate approximation of spiky-smooth activation functions requires the292

truncation index to be larger than 2/γ. Only a careful implementation allows us to capture the293

high-order fluctuations in the Hermite series of the spiky activation functions. Our implementation294

can be found in the supplementary material.295

6.2 Training neural networks to achieve harmless interpolation in low dimension296

In Figure 1, we plot the results of (a) ridgeless kernel regression and (b) trained 2-layer neural297

networks with standard choices of kernels and activation functions (blue) as well as our spiky-smooth298

alternatives (orange). We trained on 15 points sampled i.i.d. from x = (x1, x2) ∼ U(S1) and299

y = x1 + ε with ε ∼ N (0, 0.25). The figure shows that both the Laplace kernel and standard300

ReLU networks interpolate the training data too smoothly in low dimension, and do not generalize301

well. However, our spiky-smooth kernel and neural networks with spiky-smooth activation functions302

achieve close to optimal generalization while interpolating the training data with sharp spikes.303

We achieve this by using the adjusted activation function with high-frequency oscillations x 7→304

ReLU(x) + ωNTK(x;
1

5000 ) as defined in Eq. (8). With this choice, we avoid activation functions305

with exploding behavior, which would induce exploding gradients. Other choices of amplitude and306

frequency in Eq. (8) perform worse. Over the course of training (Figure 1c), the standard ReLU307

network exhibits harmful overfitting, whereas the NN with a spiky-smooth activation function quickly308

interpolates the training set with nearly optimal generalization. Training details and hyperparameter309

choices can be found in Appendix I.1. Although the high-frequency oscillations perturb the gradients,310

the NN with spiky smooth activation has a stable training trajectory using gradient descent with a large311

learning rate of 0.4 or stochastic gradient descent with a learning rate of 0.04. Since our activation312

function is the sum of two terms, we can additively decompose the network into its ReLU-component313

and its ωNTK-component. Figure 1b and Appendix I.2 demonstrate that our interpretation of the314

ωNTK-component as ’spiky’ is accurate: The oscillations in the hidden neurons induced by ωNTK315

interfere constructively to interpolate the noise in the training points and regress to 0 between training316

points. This entails immediate access to the signal component of the trained neural network in form317

of its ReLU-component.318

7 Conclusion319

Conceptually, our work shows that inconsistency of overfitting is quite a generic phenomenon for320

regression in fixed dimension. However, particular spiky-smooth estimators enable benign overfitting,321

even in fixed dimension. We translate the spikes that lead to benign overfitting in kernel regression322

into infinitesimal fluctuations that can be added to activation functions to consistently interpolate with323

wide neural networks. Our experiments verify that neural networks with spiky-smooth activation324

functions can exhibit benign overfitting even on small, low-dimensional data sets.325

Technically, our inconsistency results cover many distributions, Sobolev spaces of arbitrary order, and326

arbitrary RKHS-norm-bounded overfitting estimators. Lemma E.1 serves as a generic tool to extend327

generalization bounds to the sphere Sd, allowing us to cover (deep) ReLU NTKs and ReLU NNGPs.328

Future work. While our experiments serve as a promising proof of concept, it remains unclear how329

to design activation functions that enable harmless interpolation of more complex neural network330

architectures and data sets. As another interesting insight, our consistent kernel sequence shows that331

although kernels may have equivalent RKHS (see Appendix G.2), their generalization error can differ332

arbitrarily much; the constants of the equivalence matter and the narrative that depth does not matter333

in the NTK regime as in Bietti and Bach (2021) is too simplified. More promisingly, analyses that334

extend our analysis in the infinite-width limit to a joint scaling of width and depth could help us to335

understand the influence of depth (Fort et al., 2020, Li et al., 2021, Seleznova and Kutyniok, 2022).336
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A Detailed related work571

Motivated by Zhang et al. (2021) and Belkin et al. (2018), an abundance of papers have tried to572

grasp when and how benign overfitting occurs in different settings. Rigorous understanding is mainly573

restricted to linear (Bartlett et al., 2020), feature (Hastie et al., 2022) and kernel regression (Liang and574

Rakhlin, 2020) under restrictive distributional assumptions. In the well-specified linear setting under575

additional assumptions, the minimum-norm interpolant is consistent if and only if k ≪ n≪ d, the576

top-k eigendirections of the covariate covariance matrix align with the signal, followed by sufficiently577

many ’quasi-isotropic’ directions with eigenvalues of similar magnitude (Bartlett et al., 2020).578

Kernel methods. The analysis of kernel methods is more nuanced and depends on the interplay579

between the chosen kernel, the choice of regularization and the data distribution. L2-generalization580

error bounds can be derived in the eigenbasis of the kernel’s integral operator (Mcrae et al., 2022),581

where upper bounds of the form
√
y⊤k(X,X)−1y/n promise good generalization when the regres-582

sion function f∗ is aligned with the dominant eigendirections of the kernel, or in other words, when583

∥f∗∥H is small. Most recent work focuses on high-dimensional limits, where the data dimensionality584

d→ ∞. For d→ ∞, the Hilbert space and its norm change, so that consistency results that demand585

bounded Hilbert norm of rotation-invariant kernels do not even include simple functions like sparse586

products (Donhauser et al., 2021, Lemma 2.1). In the regime dl+δ ≤ n ≤ dl+1−δ , rotation-invariant587

(neural) kernel methods (Ghorbani et al., 2021, Donhauser et al., 2021) can in fact only learn the588

polynomial parts up to order l of the regression function f∗, and fully-connected NTKs do so. Liang589

et al. (2020) uncover a related multiple descent phenomenon in kernel regression, where the risk590

vanishes for most n → ∞, but peaks at n = di for all i ∈ N. The slower d grows, the slower the591

optimal rate n−
1

2i+1 between the peaks. Note, however, that these bounds are only upper bounds, and592

whether they are optimal remains an open question to the best of our knowledge. Another recent line593

of work analyzes how different inductive biases, measured in ∥ · ∥p-norm minimization, p ∈ [1, 2],594

(Donhauser et al., 2022) or in the filter size of convolutional kernels (Aerni et al., 2023), affects the595

generalization properties of minimum-norm interpolants. While the risk on noiseless training samples596

(bias) decreases with decreasing p or small filter size, the sensitivity to noise in the training data597

(variance) increases. Hence only ‘weak inductive biases’, that is large p or large filter sizes, enable598

harmless interpolation. Our results suggest that to achieve harmless interpolation in fixed dimension599

one has to construct and minimize more unusual norms than ∥ · ∥p-norms.600

Regularised kernel regression achieves optimal rates. With appropriate regularization, kernel601

ridge regularization with typical universal kernels like the Gauss, Matérn, and Laplace kernels is602

universally consistent (Steinwart and Christmann, 2008, Chapter 9). Steinwart et al. (2009, Corollary603

6) even implies minimax optimal nonparametric rates for clipped kernel ridge regression with Sobolev604

kernels and f∗ ∈ Hβ where d/2 < β ≤ s for the choice ρn = n−2s/(2β+d). Although f∗ is not605

necessarily in the RKHS, KRR is adaptive and can still achieve optimal learning rates. Lower606

smoothness β of f∗ as well as higher smoothness of the kernel should be met with faster decay of607

ρn. Optimal rates in Sobolev RKHS can also be achieved using cross-validation of the regularization608

ρ (Steinwart et al., 2009), early stopping rules based on empirical localized Rademacher (Raskutti609

et al., 2014) or Gaussian complexity (Wei et al., 2017) or smoothing of the empirical risk via kernel610

matrix eigenvalues (Averyanov and Celisse, 2020).611

Lower bounds for kernel regression. Besides Rakhlin and Zhai (2019) and Buchholz (2022),612

Beaglehole et al. (2022) derive inconsistency results for kernel ridgeless regression given assumptions613

on the spectral tail in the Fourier basis. Mallinar et al. (2022) provide a characterization of kernel614

ridge regression into benign, tempered and catastrophic overfitting using a heuristic approximation of615

the risk via the kernel’s eigenspectrum, essentially assuming that the eigenfunctions can be replaced616

by structureless Gaussian random variables. A general lower bound for ridgeless linear regression617

Holzmüller (2021) predicts bad generalization near the “interpolation threshold”, where the dimension618

of the feature space is close to n, also known as the double descent phenomenon. In this regime,619

Ghosh and Belkin (2022) also consider overfitting by a fraction beyond the noise level and derive a620

lower bound for linear models.621

Benign overfitting in fixed dimension. Only few works have established consistency results for622

interpolating models in fixed dimension. The first statistical guarantees for Nadaraya-Watson kernel623
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smoothing with singular kernels were given by Devroye et al. (1998). Optimal non-asymptotic results624

have only been established more recently. Belkin et al. (2019) show that Nadaraya-Watson kernel625

smoothing achieves minimax optimal convergence rates for a ∈ (0, d/2) under smoothness assump-626

tions on f∗, when using singular kernels such as truncated Hilbert kernels K(u) = ∥u∥a21∥u∥≤1,627

which do not induce RKHS that only contain weakly differentiable functions (as our results do). By628

thresholding the kernel they can adjust the amount of overfitting without affecting the generalization629

bound. To the best of our knowledge, rigorously proving or disproving analogous bounds for kernel630

ridge regression remains an open question. Arnould et al. (2023) show that median random forests are631

able to interpolate consistently in fixed dimension because of an averaging effect introduced through632

feature randomization. They conjecture consistent interpolation for Breiman random forests based on633

numerical experiments.634

Classification. For binary classification tasks, benign overfitting is a more generic phenomenon635

than for regression tasks (Muthukumar et al., 2021, Shamir, 2022). Consistency has been shown under636

linear separability assumptions (Montanari et al., 2019, Chatterji and Long, 2021, Frei et al., 2022)637

and through complexity bounds with respect to reference classes like the ’Neural Tangent Random638

Feature’ model (Cao and Gu, 2019, Chen et al., 2019). Most recently, Liang and Recht (2023) have639

shown that the 0-1-generalization error of minimum RKHS-norm interpolants f̂0 is upper bounded640

by ∥f̂0∥2
H

n and analogously that kernel ridge regression f̂ρ generalizes as y⊤(k(X,X)+ρI)−1y
n , where641

the numerator upper bounds ∥f̂ρ∥2H. Their bounds imply consistency as long as the total variation642

distance between the class conditionals is sufficiently large and the regression function has bounded643

RKHS-norm, and their Lemma 7 shows that the upper bound is rate optimal. Under a noise condition644

on the regression function f∗(x) = E[y|x] for binary classification and bounded ∥f∗∥H, our results645

together with Liang and Recht (2023) reiterate the distinction between benign overfitting for binary646

classification and inconsistent overfitting for least squares regression for a large class of distributions647

in kernel regression over Sobolev RKHS. Chapter 8 of Steinwart and Christmann (2008) discusses648

how the overlap of the two classes may influence learning rates under positive regularization. Using649

Nadaraya-Watson kernel smoothing, Wang and Scott (2022) offer the first consistency result for a650

simple interpolating ensemble method with data-independent base classifiers.651

Connection to neural networks. It is known that neural networks can behave like kernel methods652

in certain infinite-width limits. For example, the function represented by a randomly initialized NN653

behaves like a Gaussian process with the NN Gaussian process (NNGP) kernel, which depends on654

details such as the activation function and depth of the NN (Neal, 1996, Lee et al., 2018, Matthews655

et al., 2018). Hence, Bayesian inference in infinitely wide NNs is GP regression, whose posterior656

predictive mean function is of the form f∞,ρ, where ρ depends on the assumed noise variance.657

Moreover, gradient flow training of certain infinitely wide NNs is similar to gradient flow training658

with the so-called neural tangent kernel (NTK) (Jacot et al., 2018, Lee et al., 2019, Arora et al.,659

2019), and the correspondence can be made exact using small modifications to the NN to remove660

the stochastic effect of the random initial function (Arora et al., 2019, Zhang et al., 2020). In other661

words, certain infinitely wide NNs trained with gradient flow learn functions of the form ft,0.662

When considering the sphere Ω = Sd, the NTK and NNGP kernels of fully-connected NNs are663

dot-product kernels, i.e., k(x,x′) = κ(⟨x,x′⟩) for some function κ : [−1, 1] → R. Moreover, from664

Bietti and Bach (2021) and Chen and Xu (2021) it follows that the RKHSs of typical NTK and NNGP665

kernels for the ReLU activation function are equivalent to the Sobolev spaces H(d+1)/2(Sd) and666

H(d+3)/2(Sd), respectively, cf Appendix B.4.667

Regarding consistency, Ji et al. (2021) use the NTK correspondence to show that early-stopped668

wide NNs for classification are universally consistent under some assumptions. On the other hand,669

Holzmüller and Steinwart (2022) show that zero-initialized biases can prevent certain two-layer670

ReLU NNs from being universally consistent. Lai et al. (2023) show an inconsistency-type result671

for overfitting two-layer ReLU NNs with d = 1, but for fixed inputs X . They also note that an672

earlier inconsistency result by Hu et al. (2021) relies on an unproven result. Li et al. (2023) show673

that consistency with polynomial convergence rates is impossible for minimum-norm interpolants of674

common kernels including ReLU NTKs. Mallinar et al. (2022) conjecture tempered overfitting and675

therefore inconsistency for interpolation with ReLU NTKs based on their semi-rigorous result and the676

results of Bietti and Bach (2021) and Chen and Xu (2021). Xu and Gu (2023) establish consistency677

of overfitting wide 2-layer neural networks beyond the NTK regime for binary classification in very678
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high dimension d = Ω(n2) and for a quite restricted class of distributions (the mean difference µ of679

the class conditionals needs to fulfill µ = Ω((d/n)1/4 log1/4(md/n)) and µ = O((d/n)1/2)).680

B Kernels and Sobolev spaces on the sphere681

B.1 Background on Sobolev spaces682

We say that two Hilbert spaces H1,H2 are equivalent, written as H1
∼= H2, if they are equal as sets683

and the corresponding norms ∥ · ∥H1
and ∥ · ∥H2

are equivalent.684

Let Ω be an open set with C∞ boundary. In this paper, we will mainly consider ℓ2-balls for Ω.685

There are multiple equivalent ways to define a (fractional) Sobolev space Hs(Ω), s ∈ R≥0, these are686

equivalent in the sense that the resulting Hilbert spaces will be equivalent. For example, Hs(Ω) can687

be defined through restrictions of functions from Hs(Rd), through interpolation spaces, or through688

Sobolev-Slobodetski norms (see e.g. Chapter 5 and 14 in Agranovich, 2015 and Chapters 7–10689

in Lions and Magenes, 2012). Some requirements on Ω can be relaxed, for example to Lipschitz690

domains, by using more general extension operators (e.g. DeVore and Sharpley, 1993). Since691

our results are based on equivalent norms and not specific norms, we do not care which of these692

definitions is used. Further background on Sobolev spaces can be found in Adams and Fournier693

(2003), Wendland (2005) and Di Nezza et al. (2012).694

B.2 General kernel theory and notation695

There is a one-to-one correspondence between kernel functions k and the corresponding reproducing696

kernel Hilbert spaces (RKHS) Hk. Mercer’s theorem (Steinwart and Christmann, 2008, Theorem697

4.49) states that for compact Ω, continuous k and a Borel probability measure PX on Ω whose698

support is Ω, the integral operator Tk,PX
: L2(PX) → L2(PX) given by699

Tk,PX
f(x) =

∫
Ω

f(x′)k(x,x′)dPX(x′),

can be decomposed into an orthonormal basis (ei)i∈I of L2(PX) and corresponding eigenvalues700

(λi)i∈I ≥ 0, λl ↘ 0, such that701

Tk,PX
f =

∑
i∈I

λi⟨f, ei⟩ei, f ∈ L2(PX).

We write λi(Tk,PX
) := λi. Moreover, k(x,x′) =

∑
i∈I λiei(x)ei(x

′) converges absolutely and702

uniformly, and the RKHS is given by703

Hk =

{∑
i∈I

ai
√
λiei

∣∣∣∣∣∑
i∈I

a2i <∞
}
. (B.1)

The corresponding inner product between f =
∑
i∈I ai

√
λiei ∈ H and g =

∑
i∈I bi

√
λiei ∈ H can704

then be written as705

⟨f, g⟩H =
∑
i∈I

aibi. (B.2)

We use asymptotic notation O,Ω,Θ for integers n in the following way: We write

f(n) = O(g(n)) ⇔ ∃C > 0∀n : f(n) ≤ Cg(n)

f(n) = Ω(g(n)) ⇔ g(n) = O(f(n))

f(n) = Θ(g(n)) ⇔ f(n) = O(g(n)) and g(n) = O(f(n)) .

Above, we require that the inequality f(n) ≤ Cg(n) holds for all n and not only for n ≥ n0. This
implies that if f(n) = Ω(g(n)), then f must be nonzero whenever g is nonzero. This is an important
detail when arguing about equivalence of RKHSs, since it allows the following statement: If we have
two kernels k, k̃ with Mercer representations

k(x,x′) =
∑
i∈I

λiei(x)ei(x
′)
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k̃(x,x′) =
∑
i∈I

λ̃iei(x)ei(x
′)

with identical eigenfunctions ei and eigenvalues satisfying λi = Θ(λ̃i), then the associated RKHSs706

are equivalent by (B.1) and (B.2).707

B.3 Dot-product kernels on the sphere708

A kernel of the form k(x,x′) = κ(⟨x,x′⟩) for some function κ is called dot-product kernel. Dot-709

product kernels are rotationally invariant. Especially, NTKs and NNGPs of fully-connected NNs710

restricted to the sphere Sd are dot-product kernels. Moreover, kernels like the Laplace, Matérn, and711

Gaussian kernels that only depend on the distance between their inputs are also dot-product kernels712

when restricted to the sphere Sd. Therefore, in this section, we will assume that k : Sd × Sd → R is a713

dot-product kernel.714

We can then leverage some convenient results from the theory of dot-product kernels on the sphere,
which are summarized in more detail by Hubbert et al. (2022). For example, a Mercer representation
of k is given by

k(x,x′) =
∞∑
l=0

µl

Nl,d∑
i=1

Yl,i(x)Yl,i(x
′) ,

where {Yl,1, . . . , Yl,Nl,d
} is a real orthonormal basis for the space of spherical harmonics of degree715

l within L2(Sd). Especially, the integral operator Tk,U(Sd) for the uniform distribution U(Sd) has716

eigenvalues µl with multiplicity Nl,d and unnormalized eigenfunctions Yl,i. The RKHS of k is then717

given by718

Hk =


∞∑
l=0

√
µl

Nl,d∑
i=1

al,iYl,i

∣∣∣∣∣∣
∞∑
l=0

Nl,d∑
i=1

a2l,i <∞

 .

Since the index l starts from zero, we will denote decay asymptotics for l in the form Θ((l + 1)−q)719

and not Θ(l−q), cf. our definition of Θ notation in Appendix B.2.720

Lemma B.1 (Sobolev dot-product kernels on the sphere). For a dot-product kernel k on Sd as above,721

the RKHS Hk is equivalent to the Sobolev space Hs(Sd), s > d/2, if and only if µl = Θ((l+1)−2s).722

In this case, we have723

λi(Tk,U(Sd)) = Θ(i−2s/d) .

Proof. Step 0: Equivalence. If µl = Θ((l + 1)−2s), it is stated in Section 3 in Hubbert et al. (2022)724

that Hk
∼= Hs(Sd). On the other hand, if µl ̸= Θ((l+1)−2s), it is easy to see that Hk is not equivalent725

to the RKHS of a kernel with µl = Θ((l + 1)−2s). It remains to show λi(Tk,U(Sd)) = Θ(i−2s/d).726

Step 1: Ordering the eigenvalues. Consider a permutation π : N0 → N0 such that

µπ(0) ≥ µπ(1) ≥ . . .

We can then define the partial sums

Sl :=

l∑
i=0

Nπ(i),d .

For Sl−1 < i ≤ Sl, we then have λi(Tk,U(Sd)) = µπ(l).727

Step 2: Show π(i) = Θ(i). Let c, C > 0 such that c(l + 1)−2s ≤ µl ≤ C(l + 1)−2s for all l ∈ N0.
For indices i, j ∈ N0, we have the implications

i > j ⇒ c(π(i) + 1)−2s ≤ µπ(i) ≤ µπ(j) ≤ C(π(j) + 1)−2s

⇒ π(i) + 1 ≥
( c
C

)1/(2s)
(π(j) + 1) .

Therefore, for i ≥ 1 and j ≥ 0,

π(i) + 1 ≥
( c
C

)1/(2s)
max
i′<i

(π(i′) + 1) ≥
( c
C

)1/(2s)
((i− 1) + 1) ≥ Ω(i+ 1) ,
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π(j) + 1 ≤
(
C

c

)1/(2s)

min
j′>j

(π(j′) + 1) ≤
(
C

c

)1/(2s)

((j + 1) + 1) ≤ O(j + 1) .

We can thus conclude that π(i) + 1 = Θ(i+ 1).728

Step 3: Individual Eigenvalue decay. As explained in Section 2.1 in Hubbert et al. (2022), we have
Nl,d = Θ((l + 1)d−1). Therefore,

Sl =

l∑
i=0

Θ((π(i) + 1)d−1) =

l∑
i=0

Θ((i+ 1)d−1) = Θ((l + 1)d) .

Now, let i ≥ 1 and let l ∈ N0 such that Sl−1 < i ≤ Sl. We have i ≥ Ω(ld), and i ≤ O((l + 1)d),
which implies i = Θ((l + 1)d) since i ≥ 1. Therefore,

λi = µπ(l) = Θ((π(l) + 1)−2s) = Θ((l + 1)−2s) = Θ
(
i−2s/d

)
.

B.4 Neural kernels729

Several NTK and NNGP kernels have RKHSs that are equivalent to Sobolev spaces on Sd. In the730

following cases, we can deduct this from known results:731

• Consider fully-connected NNs with L ≥ 3 layers without biases and the activation function732

φ(x) = max{0, x}m, m ∈ N0. Especially, the case m = 1 corresponds to the ReLU733

activation. Vakili et al. (2021) generalize the result by Bietti and Bach (2021) from m = 1734

to m ≥ 1, showing that the NTK-RKHS is equivalent to Hs(Sd) for s = (d+ 2m− 1)/2735

and the NNGP-RKHS is equivalent to Hs(Sd) for s = (d + 2m + 1)/2. For m = 0,736

Bietti and Bach (2021) essentially show that the NNGP-RKHS is equivalent to Hs(Sd) for737

s = (d + 22−L)/2. However, all of the aforementioned result have the problem that the738

main theorem by Bietti and Bach (2021) allows for the possibility that finitely many µl are739

zero, which can change the RKHS. Using our Lemma B.2 below, it follows that all µl are in740

fact nonzero for NNGPs and NTKs since they are kernels in every dimension d using the741

same function κ independent of the dimension. Hence, the equivalences to Sobolev spaces742

stated before are correct.743

• Chen and Xu (2021) prove that the RKHS of the NTK corresponding to fully-connected744

ReLU NNs with zero-initialized biases and L ≥ 2 (as opposed to no biases and L ≥ 3745

above) layers is equivalent to the RKHS of the Laplace kernel on the sphere. Since the746

Laplace kernel is a Matérn kernel of order ν = 1/2 (see e.g. Section 4.2 in Rasmussen and747

Williams (2005)), we can use Proposition 5.2 of Hubbert et al. (2022) to obtain equivalence748

to Hs(Sd) with s = (d+1)/2. Alternatively, we can obtain the RKHS of the Laplace kernel749

from Bietti and Bach (2021) combined with Lemma B.2.750

Bietti and Bach (2021) also show that under an integrability condition on the derivatives, C∞751

activations induce NTK and NNGP kernels whose RKHSs are smaller than every Sobolev space.752

Lemma B.2 (Guaranteeing non-zero eigenvalues). Let κ : [−1, 1] → R, let d ≥ 1, and let

kd : Sd × Sd, kd(x,x′) := κ(⟨x,x′⟩)
kd+2 : Sd+2 × Sd+2, kd+2(x,x

′) := κ(⟨x,x′⟩) .
Suppose that kd+2 is a kernel. Then, kd is a kernel. Moreover, if the corresponding eigenvalues µl753

satisfy µl > 0 for infinitely many l, then they satisfy µl > 0 for all l ∈ N0.754

Proof. The fact that kd is a kernel follows directly from the inclusion Φd+2 ⊆ Φd mentioned in755

Gneiting (2013). For D ∈ {d, d+ 2}, let µl,d be the sequence of eigenvalues µl associated with kD.756

Then, as mentioned for example by Hubbert et al. (2022), the Schoenberg coefficients bl,d satisfy757

bl,d =
Γ
(
d+1
2

)
Nm,dµl,d

2π(d+1)/2
.

Especially, the Schoenberg coefficients bl,d have the same sign as the eigenvalues µl,d. We use758

0 ≤ bl,d+2 =


bl,d − 1

2bl+2,d , l = 0 and d = 1
1
2 (l + 1)(bl,d − bl+2,d) , l ≥ 1 and d = 1
(l+d−1)(l+d)
d(2l+d−1) bl,d − (l+1)(l+2)

d(2l+d+3) bl+2,d , d ≥ 2 ,
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where the inequality follows from the fact that kd+2 is a kernel and the equality is the statement of759

Corollary 3 by Gneiting (2013). In any of the three cases, bl+2,d > 0 implies bl,d > 0. Hence, if760

bl,d > 0 for infinitely many l, then bl,d > 0 for all l, which implies µl,d > 0 for all l.761

C Gradient flow and gradient descent with kernels762

C.1 Derivation of gradient flow and gradient descent763

Here, we derive expressions for gradient flow and gradient descent in the RKHS for the regularized
loss

L(f) :=
1

n

n∑
i=1

(yi − f(xi))
2 + ρ∥f∥2Hk

=
1

n

n∑
i=1

(yi − ⟨k(xi, ·), f⟩Hk
)2 + ρ⟨f, f⟩2Hk

.

Note that we will take derivatives in the RKHS with respect to f , which is different from taking764

derivatives w.r.t. the coefficients c in a model f(x) = c⊤k(X,x).765

In the RKHS-Norm, the Fréchet derivative of L is

∂L(f)

f
=

2

n

n∑
i=1

(f(xi)− yi)⟨k(xi, ·), ·⟩Hk
+ 2ρ⟨f, ·⟩Hk

,

which is represented in Hk by

L′(f) =
2

n

n∑
i=1

(f(xi)− yi)k(xi, ·) + 2ρf .

Now assume that f =
∑n
i=1 aik(xi, ·) = a⊤k(X, ·). Then,

L′(f) =
2

n

n∑
i=1

(a⊤k(X,xi)− yi)k(xi, ·) + 2ρa⊤k(X, ·)

=
2

n

(
a⊤k(X,X)k(X, ·)− y⊤k(X, ·) + ρna⊤k(X, ·)

)
=

2

n
((k(X,X) + ρnIn)a− y)

⊤
k(X, ·) .

Especially, under gradient flow of f , the coefficients a follow the dynamics

ȧ(t) =
2

n
(y − (k(X,X) + ρnIn)a(t)) ,

which is solved for a(0) = 0 by

a(t) =
(
In − e−

2
n t(k(X,X)+ρnIn)

)
(k(X,X) + ρnIn)

−1
y ,

which is the closed form expression (1) of ft,ρ.766

For gradient descent, assuming that fGD
t,ρ = c⊤t,ρk(X, ·), we have

fGD
t+1,ρ = fGD

t,ρ − ηtL
′(fGD

t,ρ ) = c⊤t,ρk(X, ·)− ηt
2

n
((k(X,X) + ρnIn)ct,ρ − y)

⊤
k(X, ·)

=

(
ct,ρ + ηt

2

n
(y − (k(X,X) + ρnIn)ct,ρ)

)⊤
k(X, ·)

If fGD
0,ρ ≡ 0, the coefficients evolve as c0 = 0 and

ct+1,ρ = ct,ρ + ηt
2

n
(y − (k(X,X) + ρnIn)ct,ρ) .

For an analysis of gradient descent for kernel regression with ρ = 0, we refer to, e.g., Yao et al.767

(2007).768
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C.2 Gradient flow and gradient descent initialized at 0 have monotonically growing H-norm769

In the following proposition we show that under gradient flow and gradient descent with suffi-770

ciently small learning rates initialized at 0, the RKHS norm grows monotonically with time t. This771

immediately implies that Assumption (N) with Cnorm = 1 holds for all estimators ft,ρ from (1).772

Proposition C.1.773

(i) For any t ∈ [0,∞] and any ρ ≥ 0, ft,ρ from (1) fulfills Assumption (N) with Cnorm = 1.774

(ii) For any t ∈ N0 ∪ {∞} and any ρ ≥ 0, with sufficiently small fixed learning rate 0 ≤ η ≤775
1

2(ρ+λmax(k(X,X))/n) , fGD
t,ρ fulfills Assumption (N) with Cnorm = 1.776

Proof. Proof of (i):777

We write ft,ρ(x) = k(x,X)ct,ρ, where ct,ρ := At,ρ(X)y. We now show that the RKHS-norm
of ft,ρ grows monotonically in t, by using the eigendecomposition k(X,X) = UΛU⊤, where
Λ = diag(λ1, . . . , λn) ∈ Rn×n is diagonal and U ∈ Rn×n is orthonormal, and writing ỹ := U⊤y.
Then it holds that

∥ft,ρ∥2H = (ct,ρ)
⊤k(X,X)ct,ρ = ỹ⊤(Λ + ρnIn)

−1

(
In − exp

(
−2t

n
(Λ + ρnIn)

))
Λ·(

In − exp

(
−2t

n
(Λ + ρnIn)

))
(Λ + ρnIn)

−1ỹ

=

n∑
k=1,λk+ρn>0

ỹ2k
λk

(λk + ρn)2︸ ︷︷ ︸
≤1/λk

(
1− exp

(
−2t

n
(λk + ρn)

))
︸ ︷︷ ︸

≤1

≤
n∑

k=1,λk>0

ỹ2k
1

λk
= ∥f∞,0∥2H.

Proof of (ii):778

Expanding the iteration in the definition of ct,ρ yields779

ct+1,ρ =

t∑
i=0

t−i−1∏
j=0

(
I − 2ηt−j

n
(k(X,X) + ρnI)

)
2ηi
n

y.

We again use the eigendecomposition k(X,X) = UΛU⊤, where Λ = diag(λ1, . . . , λn) ∈ Rn×n
is diagonal and U ∈ Rn×n is orthonormal, and write ỹ := U⊤y. Then, using sufficiently small
learning rates 0 ≤ ηt ≤ 1

2(ρ+λmax(k(X,X))/n) in all time steps t ∈ N, it holds that

∥fGD
t,ρ ∥2H

= (ct,ρ)
⊤k(X,X)ct,ρ

= ỹ⊤

 t∑
i=0

2ηi
n

t−i−1∏
j=0

((1− 2ηt−jρ)I − 2ηt−j
n

Λ)

Λ

 t∑
i=0

2ηi
n

t−i−1∏
j=0

((1− 2ηt−jρ)I − 2ηt−j
n

Λ)

 ỹ

=

n∑
k=1

ỹ2kλk︸︷︷︸
≥0

 t∑
i=0

2ηi
n

t−i−1∏
j=0

(1− 2ηt−j(ρ+ λk/n))︸ ︷︷ ︸
∈[0,1]


2

. (C.1)

The last display shows that ∥fGD
t,ρ ∥2H grows monotonically in t, strictly monotonically if ηt ∈

(0, 1
2(ρ+λmax(k(X,X))/n) ) holds for all t. It also shows that if ρ′ ≥ ρ then ∥fGD

t,ρ′ ∥H ≤ ∥fGD
t,ρ ∥H for

any t ∈ N ∪ {∞}. To see that ∥fGD
t,ρ ∥2H ≤ ∥f∞,0∥2H for all t ∈ N ∪ {∞} and all ρ ≥ 0, observe

that with fixed learning rates ηt = η ∈ (0, 1
2(ρ+λmax(k(X,X))/n) ) ⊆ (0, 1

2λmax(k(X,X))/n ), for all
t ∈ N ∪ {∞} it holds that

t∑
i=0

2ηi
n

t−i−1∏
j=0

(1− 2ηt−jλk/n) =
2η

n

t∑
i=0

(1− 2ηλk/n)
t−i
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=
2η

n

t∑
i=0

(1− 2ηλk/n)
i =

2η

n

1− (1− 2ηλk/n)
t+1

2ηλk/n
≤ 1

λk
.

Since it suffices to consider the case ρ→ 0, using the above derivation in (C.1) yields ∥fGD
t,ρ ∥2H ≤780

∥f∞,0∥2H for all t ∈ N, which concludes the proof.781

D Proof of Theorem 1782

Our goal in this section is to prove Theorem D.1, which can be seen as a generalization of Theorem 1783

to varying bandwidths. To be able to speak of bandwidths, we need to consider translation-invariant784

kernels. Although Theorem 1 is formulated for general kernels with Sobolev RKHS, it follows from785

Theorem D.1 since we can always find, for a fixed bandwidth, a translation-invariant kernel with786

equivalent RKHS, such that only the constant Cnorm changes in the theorem statement.787

To generate the RKHS Hs, Buchholz (2022) uses the translation-invariant kernel kB(x,y) =
uB(x − y) defined via its Fourier transform ûB(ξ) = (1 + |ξ|2)−s. Adapting the bandwidth, the
kernel is then normalized in the usual L1-sense,

kBγ (x,y) = γ−duB((x− y)/γ). (D.1)

Theorem D.1 (Inconsistency of overfitting estimators). Let assumptions (D1) and (K) hold. Let788

cfit ∈ (0, 1] and Cnorm > 0. Then, there exist c > 0 and n0 ∈ N such that the following holds for789

all n ≥ n0 with probability 1−O(1/n) over the draw of the data set D with n samples: For every790

function f ∈ Hk with791

(O) 1
n

∑n
i=1(f(xi)− yi)

2 ≤ (1− cfit) · σ2 (training error below Bayes risk) and792

(N) ∥f∥Hk
≤ Cnorm∥f∞,0∥Hk

(norm comparable to minimum-norm interpolant (1)),793

the excess risk satisfies

RP (f)−RP (f
∗) ≥ c > 0 . (D.2)

If kγ denotes a L1-normalized translation-invariant kernel with bandwidth γ > 0, i.e. there exists a794

q : Rd → R such that kγ(x, y) = γ−dq(x−yγ ), then inequality (D.2) holds with c independent of the795

sequence of bandwidths (γn)n∈N ⊆ (0, 1), as long as fD fulfills (N) for the sequence (Hγn)n∈N with796

constant Cnorm > 0.797

Proof. By assumption, the RKHS norm ∥ · ∥Hk
induced by the kernel k (or kγ if we allow bandwidth

adaptation) is equivalent to the RKHS norm ∥ · ∥Hγ
induced by a kernel of the form (D.1) with an

arbitrary but fixed choice of bandwidth γ ∈ (0, 1), which means that there exists a constant Cγ > 0
such that 1

Cγ
∥f∥Hγ

≤ ∥f∥Hk
≤ Cγ∥f∥Hγ

for all f ∈ Hk. Hence the minimum-norm interpolant
gD,γ in Hγ satisfies

∥fD∥Hγ
≤ Cγ∥fD∥Hk

≤ CγCnorm∥gD∥Hk
≤ CγCnorm∥gD,γ∥Hk

≤ C2
γCnorm∥gD,γ∥Hγ

,

where ∥gD∥Hk
≤ ∥gD,γ∥Hk

because, gD is the minimum-norm interpolant in Hk.798

Now consider the RKHS norm ∥ · ∥H̃γ
of a translation-invariant kernel kγ . Then the functions799

{hp(x) = eip·x}p∈Rd are eigenfunctions of the kernel’s integral operator, so that the RKHS norm800

can be written as (Rakhlin and Zhai, 2019)801

∥f∥2H̃γ
=

1

(2π)d

∫
Rd

|f̂(ω)|2
q̂(ω)

dω,

where f̂ denotes the Fourier transform of f .802

By assumption we know that there exists a Cγ0 > 0 such that 1
Cγ0

∥f∥Hγ0
≤ ∥f∥H̃γ0

≤ Cγ0∥f∥Hγ0

holds for some fixed bandwidth γ0 > 0, then substituting by ω̃ = γ
γ0
ω yields

∥f∥H̃γ
=

1

(2π)d

∫
Rd

|f̂(ω)|2
q̂1(γω)

dω =
1

(2π)d

∫
Rd

|f̂(γ0γ ω̃)|2
q̂1(γ0ω̃)

(
γ0
γ

)d
dω̃ = ∥f̃∥H̃γ0

23



≤ Cγ0∥f̃∥Hγ0
=

Cγ0
(2π)d

∫
Rd

|f̂(γ0γ ω̃)|2
q̂2(γ0ω̃)

(
γ0
γ

)d
dω̃ =

Cγ0
(2π)d

∫
Rd

|f̂(ω)|2
q̂2(γω)

dω = Cγ0∥f∥Hγ
.

In the same way we get 1
Cγ0

∥f∥Hγ
≤ ∥f∥H̃γ

for arbitrary γ ∈ (0, 1). This shows that the constant803

Cγ0 , that quantifies the equivalence between ∥ · ∥Hγ and ∥ · ∥H̃γ
does not depend on the bandwidth γ.804

Finally Proposition D.4, Proposition D.2 and Remark D.3 together yield the result.805

The following proposition generalizes the inconsistency result for large bandwidths, Proposition 4806

in Buchholz (2022), beyond interpolating estimators to estimators that overfit at least an arbitrary807

constant fraction beyond the Bayes risk and whose RKHS norm is at most a constant factor larger than808

the RKHS norm of the minimum-norm interpolant. Compared to Rakhlin and Zhai (2019), Buchholz809

gets a statement in probability over the draw of a training set D and less restrictive assumptions on810

the domain Ω and dimension d.811

Proposition D.2 (Inconsistency for large bandwidths). Let cfit ∈ (0, 1] and Cnorm > 0. Let the812

data set D = {(x1, y1), . . . , (xn, yn)} be drawn i.i.d. from a distribution P that fulfills Assumption813

(D1), let gD,γ be the minimum-norm interpolant in H := Hγ with respect to the kernel (D.1) for a814

bandwidth γ > 0. Then, for every A > 0, there exist c > 0 and n0 ∈ N such that the following holds815

for all n ≥ n0 with probability 1−O(1/n) over the draw of the data set D with n samples:816

For every function f ∈ H that fulfills Assumption (O) with cfit and Assumption (N) with Cnorm the
excess risk satisfies

Ex(f(x)− f∗(x))2 ≥ c > 0,

where c depends neither on n nor on 1 > γ > An−1/d > 0.817

Remark D.3. Proposition D.2 holds for any kernel that fulfills Assumption (K). The reason is that818

any kernel k that fulfills assumption (K) and the kernel defined in (D.1) have the same RKHS and819

equivalent norms. Therefore every function f ∈ Hk = Hγ (equality as sets) that fulfills Assumptions820

(O) and (N) for the kernel k also fulfills Assumptions (O) and (N) with an adapted constant Cnorm821

for the kernel (D.1). ◀822

Proof. Step 1: Generalizing the procedure in Buchholz (2022).823

We write [n] = {1, . . . , n} and follow the proof of Proposition 4 in Buchholz (2022). Define824

u(x) = f(x)− f∗(x). We need to show that with probability at least 1−O(n−1) over the draw of825

D it holds that ∥u∥L2(PX) ≥ c > 0, where c depends neither on n nor on γ.826

For this purpose we show that with probability at least 1 − 3n−1 over the draw of D there exist a
constants c′′, κ′′ > 0 depending only on cfit and a subset P ′′ ⊆ [n] with |P ′′| ≥ ⌊κ′′ · n⌋ such that

|f(xi)− f∗(xi)| ≥ c′′ > 0 holds for all i ∈ P ′′. (D.3)

Then via Lemma 7 in Buchholz (2022) as well as Lemma D.7 we can choose a large subset P ′′′ ⊆ [n]827

of the training point indices with |P ′′′| ≥ n− |P ′′|/2, such that the xi for i ∈ P ′′′ are well-separated828

in the sense that min{i,j∈P′′′, i ̸=j} ∥xi−xj∥ ≥ dmin with dmin := c′′′n−1/d, where c′′′ depends on829

cfit, d, the upper bound on the Lebesgue density Cu and on the smoothness of the RKHS s. Then the830

intersection P ′′∩P ′′′ contains at least |P′′|
2 points. Now we can replace P ′ in the proof of Proposition831

4 for s ∈ N in Buchholz (2022) by the intersection P ′′ ∩ P ′′′. The rest of the proof applies without832

modification, where (42) holds by our assumption ∥f∥H ≤ CH∥gD∥H. Our modifications do not833

affect Buchholz’ arguments for the extension to s /∈ N.834

Step 2: The existence of P ′′.835

Given a choice of κ′′, c′′ > 0, consider the event (over the draw of D)

E := {∄ P ′′ ⊆ [n] with |P ′′| ≥ ⌊κ′′ · n⌋ that fulfills (D.3)}
= {∃ P̃ ⊆ [n] with |P̃| ≥ ⌈(1− κ′′)n⌉ such that |f∗(xi)− f(xi)| < c′′ ∀i ∈ P̃}.

With the proper choices of c′′ and κ′′ independent of n and f , we will show P (E) ≤ 3n−1. We836

will find a small c′′ > 0 such that if f∗ and f are closer than c′′ on too many training points P̃837
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and f overfits by at least the fraction cfit, the noise variables εi on the complement P̃c would have838

to be unreasonably large, contradicting the event E6i defined below, and implying (D.3) with high839

probability. We will use the notation ∥f∥2P :=
∑
i∈P f(xi)

2 and ∥y∥2P :=
∑
i∈P y

2
i .840

Step 2b: Noise bounds.841

Lemma D.6 (i) states that there exists a κ′′ > 0 small enough such that the event (over the draw of842

D)843

E6i := {∀P1 ⊆ [n] with |P1| ≤ ⌊κ′′ · n⌋ it holds that
1

n
∥f∗ − y∥2P1

=
1

n

∑
i∈P1

ε2i <
cfit
4
σ2},

fulfills, for n large enough, P (E6i) ≥ 1− n−1.844

Lemma D.6 (ii) implies that there exists a clower > 0 such that the event (over the draw of D)845

E6ii := {∀P2 with |P2| ≥ ⌊(1− κ′′)n⌋ it holds that
1

n
∥f∗ − y∥2P2

≥ clower · σ2},

fulfills, for n large enough, P (E6ii) ≥ 1− n−1.846

Lemma D.5 states that the total amount of noise ∥ε∥2[n] concentrates around its mean nσ2. More847

precisely, we will use that for any cε ∈ (0, 1) the event (over the draw of D)848

E5 :=

{
1

n
∥f∗ − y∥2[n] ≥ cε · σ2

}
,

fulfills P (E5) ≥ 1− exp
(
−n ·

(
1−cε
2

)2)
.849

Step 2c: Lower bounding ∥ε∥2P̃c .850

Given some function f ∈ H, assume in steps 2c and 2d that event E holds and that P̃ ⊆ [n] denotes851

a subset of the training set that fulfills |P̃| ≥ ⌈(1− κ′′)n⌉ and |f∗(xi)− f(xi)| < c′′ ∀i ∈ P̃ .852

In step 2c, assume we choose c̃fit > 0 such that c̃fit∥f∗ − y∥2P̃ ≤ ∥f − y∥2P̃ . Then by the overfitting853

Assumption (O) it holds that854

1

n

(
c̃fit∥f∗ − y∥2P̃ + ∥f − y∥2P̃c

)
≤ 1

n

(
∥f − y∥2P̃ + ∥f − y∥2P̃c

)
≤ (1− cfit)σ

2. (D.4)

If we restrict ourselves to event E5, dropping the term ∥f − y∥2P̃c in (D.4), then dividing by c̃fit and
subtracting the result from the inequality in the definition of event E5 yields

1

n
∥ε∥2P̃c =

1

n
∥f∗ − y∥2P̃c ≥ cεσ

2 − 1− cfit
c̃fit

σ2. (D.5)

Step 2d: Choosing the constants.855

If we choose cε := 1− cfit
4 and c̃fit := 2−2cfit

2−cfit ∈ (0, 1), then (D.5) becomes

1

n
∥ε∥2P̃c ≥ cfit

4
σ2.

Now it is left to show that the condition c̃fit∥f∗ − y∥2P̃ ≤ ∥f − y∥2P̃ , that is required for Step 2c,856

holds with high probability with our choice of c̃fit.857

With some arbitrary but fixed εlower ∈ (0,
√
clower), choose c′′ := (1−√

c̃fit)(
√

clower

1−κ′′ − εlower√
1−κ′′ )σ.

Then on event E6ii, for n large enough, it holds that

(1−
√
c̃fit)

1√
n
∥f∗ − y∥P̃ ≥ (1−

√
c̃fit)

√
clowerσ ≥

√
1− κ′′ · c′′ + c′′√

n
. (D.6)

By definition of P̃ , it holds that858

∥f − f∗∥2P̃ =
∑
i∈P̃

(f(xi)− f∗(xi))
2 < ⌈(1− κ′′)n⌉(c′′)2,
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so that
1√
n
∥f − f∗∥P̃ <

√
1− κ′′ · c′′ + c′′√

n
. (D.7)

Now, using the triangle inequality, (D.7) and (D.6) yields the condition required for Step 2c,
1√
n
∥f − y∥P̃

≥ 1√
n
∥f∗ − y∥P̃ − 1√

n
∥f − f∗∥P̃

≥ 1√
n
∥f∗ − y∥P̃ −

√
1− κ′′ · c′′ − c′′√

n

≥
√
c̃fit

1√
n
∥f∗ − y∥P̃ .

Step 2e: Upper bounding the probability of E.859

To conclude, we have seen in steps 2c and 2d that on E ∩ E6ii ∩ E5, it holds that
1

n
∥ε∥2P̃c ≥ cfit

4
σ2.

On E6i, it holds that860
1

n
∥ε∥2P̃c <

cfit
4
σ2.

Hence E6i ∩ E ∩ E6ii ∩ E5 = ∅. This implies E ⊆ (E5 ∩ E6i ∩ E6ii)
c, where the right hand side

is independent of f ∈ H and just depends on the training data D. Since P (E6i) ≥ 1 − n−1 and
P (E6ii ∩ E5) ≥ 1− n−1 − exp

(
−n ·

(
1−cε
2

)2)
, it must hold that, for n large enough,

P (E) ≤ P ((E5 ∩ E6i ∩ E6ii)
c) ≤ 2n−1 + exp

(
−n ·

(
1− cε

2

)2
)

≤ 3n−1.

The following proposition generalizes the inconsistency result for small bandwidths, Proposition 5861

in Buchholz (2022), beyond interpolating estimators to estimators whose RKHS norm is at most a862

constant factor larger than the RKHS norm of the minimum-norm interpolant. The intuition is that863

if the bandwidth is too small, then the minimum-norm interpolant gD,γ returns to 0 between the864

training points. Then ∥gD,γ∥L2(ρ) is smaller and bounded away from ∥f∗∥L2(ρ). We can replace865

gD,γ by any other function f ∈ H that fulfills Assumption (N).866

Proposition D.4 (Inconsistency for small bandwidths). Under the assumptions of Proposition D.2,
there exist constants B, c > 0 such that, with probability 1 − O(n−1) over the draw of D: For
any function f ∈ H that fulfills Assumption (N) but not necessarily Assumption (O), the excess risk
satisfies

Ex(f(x)− f∗(x))2 ≥ c > 0,

where c depends neither on n nor on γ < Bn−1/d.867

Proof. Denote the upper bound on the Lebesgue density of PX byCu. The triangle inequality implies

∥f∗ − f∥L2(PX) ≥ ∥f∗∥L2(PX) − ∥f∥L2(PX) ≥ ∥f∗∥L2(PX) −
√
Cu∥f∥2

≥ ∥f∗∥L2(PX) −
√
Cu∥f∥H ≥ ∥f∗∥L2(PX) − CH

√
Cu∥gD,γ∥H,

where ∥f∥2 ≤ ∥f∥H follows from the fact that the Fourier transform k̂ of the kernel satisfies k̂(ξ) ≤ 1.868

Now in the proof of Lemma 17 in Buchholz (2022) a > 0 can be chosen smaller to generalize the869

statement to870

∥gD,γ∥2H ≤ 1

6C2
HCu

∥f∗∥2L2(PX) + c9(γ
2n2/d + γ2sn2s/d),

where c9 depends on cu, f∗, d, s and Cnorm. Finally we can choose B small enough such that Eq.
(32) in Buchholz (2022) can be replaced by CH

√
Cu∥gD,γ∥H ≤ 2

3∥f∗∥L2(PX) so that we get

∥f∗ − f∥L2(PX) ≥
1

3
∥f∗∥L2(PX) > 0.
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D.1 Auxiliary results for the proof of Theorem 1871

Lemma D.5 (Concentration of χ2
n variables). Let U be a chi-squared distributed random variable872

with n degrees of freedom. Then, for any c ∈ (0, 1) it holds that873

P

(
U

n
≤ c

)
≤ exp

(
−n ·

(
1− c

2

)2
)
.

Proof. Lemma 1 in Laurent and Massart (2000) implies for any x > 0,874

P

(
U

n
≤ 1− 2

√
x

n

)
≤ exp (−x) .

Solving c = 1− 2
√

x
n for x yields x = n ·

(
1−c
2

)2
.875

Lemma D.6. Let ε1, . . . , εn be i.i.d. N (0, σ2) random variables, σ2 > 0. Let (ε2)(i) denote the i-th876

largest of ε21, . . . , ε
2
n.877

(i) A constant fraction of noise cannot concentrate on less than Θ(n) points: For all constants878

α, c > 0 there exists a constant C ∈ (0, 1) such that with probability at least 1− n−α, for879

n large enough,880

1

n

⌊Cn⌋∑
i=1

(ε2)(i) < cσ2 .

(ii) Θ(n) points amount to a constant fraction of noise: For all constants α > 0 and κ ∈ (0, 1)881

there exists a constant c > 0 such that with probability at least 1− n−α, for n large enough,882

1

n

⌊(1−κ)n⌋∑
i=1

(ε2)(n−i+1) ≥ cσ2 .

Proof. Without loss of generality, we can assume σ2 = 1.883

(i) For a constant C ∈ (0, 1) yet to be chosen, consider the sum884

SC,n :=
1

n

⌊Cn⌋∑
i=1

(ε2)(i) .

For T > 0 yet to be chosen, we consider the random set IT := {i ∈ [n] | ε2i > T}885

and denote its size by K := |IT |. To bound K, we note that K = ξ1 + . . . + ξn, where886

ξi = 1ε2i>T . We first want to bound pT := Eξi = P (ε2i > T ).887

The random variables ε2i follow a χ2
1-distribution, whose CDF we denote by F (t) and whose

PDF is

f(t) = 1(0,∞)(t)C1t
−1/2 exp(−t/2) (D.8)

for some absolute constant C1. Moreover, we use Φ and ϕ to denote the CDF and PDF of888

N (0, 1), respectively.889

Step 1: Tail bounds. Following Duembgen (2010), we have for x > 0:

1− Φ(x) >
2ϕ(x)√

4 + x2 + x
≥ 2ϕ(x)

2 + x+ x
=

ϕ(x)

1 + x

1− Φ(x) <
2ϕ(x)√

2 + x2 + x
≤ 2ϕ(x)

1 + x
.

Hence, for t > 0, we have

1− F (t) = 2(1− Φ(
√
t)) >

2ϕ(
√
t)

1 +
√
t
=

√
2

π

exp(−t/2)
1 +

√
t

1− F (t) = 2(1− Φ(
√
t)) <

4ϕ(
√
t)

1 +
√
t
=

√
8

π

exp(−t/2)
1 +

√
t

.
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By choosing T := −2 log(C
√
π/32) > 0, we obtain

pT = 1− F (T ) <

√
8

π
exp(−T/2) = C/2 .

Step 2: Bounding K. The random variables ξi from above satisfy ξi ∈ [0, 1]. By Hoeffd-
ing’s inequality (Steinwart and Christmann, 2008, Theorem 6.10), we have for τ > 0

P

(
1

n

n∑
i=1

(ξi − Eξi) ≥ (1− 0)

√
τ

2n

)
≤ exp(−τ) .

We choose τ := C2n/2, such that with probability ≥ 1− exp(−C2n/2), we have

K/n− pT =
1

n

n∑
i=1

(ξi − Eξi) ≤
√
C2n/2

2n
= C/2 .

Suppose that this holds. Then, K ≤ npT + Cn/2 < Cn and, since K is an integer,
K ≤ ⌊Cn⌋. This implies

SC,n ≤ 1

n

(
K∑
i=1

(ε2)(i) + (⌊Cn⌋ −K)T

)
≤ CT +

1

n

K∑
i=1

(ε2)(i) . (D.9)

We now want to bound
∑K
i=1(ε

2)(i). To this end, we note that conditioned on K = k for
some k ∈ [n], the k random variables (εi)i∈IT

are i.i.d. drawn from the distribution of ε2
given ε2 > T , for ε ∼ N (0, 1). By X,X1, X2, . . ., we denote i.i.d. random variables drawn
from the distribution of ε2 − T | ε2 > T . This means that conditioned on K = k,

k∑
i=1

(ε2)(i) =
∑
i∈IT

ε2i is distributed as kT +

k∑
i=1

Xi . (D.10)

Step 3: Conditional expectation. The density of X is given by

pX(t) = 1t>0
f(T + t)

1− F (T )

(D.8)
≤ 1t>0

C1(T + t)−1/2 exp(−(t+ T )/2)√
2/π exp(−T/2)/(1 +

√
T )

≤ 1t>0C2 exp(−t/2) ,
where we have used that for t > 0,890

1 +
√
T√

T + t
≤ 1 +

√
T√

T
= 1 +

1√
T

≤ 2

since T = −2 log(C
√
π/32) ≥ −2 log(

√
π/32) ≈ 1.008. We can now bound

E[X] =

∫ ∞

0

tpX(t) dt

≤
∫ ∞

0

C2t exp(−t/2) dt = 4C2 . (D.11)

Step 4: Conditional subgaussian norm. For t ≥ 0,

P (|X| > t) = P (X > t) =
1− F (T + t)

1− F (T )
≤ 2

1 +
√
T

1 +
√
T + t

exp(−(T + t)/2)

exp(−T/2)
≤ 2 exp(−t/2) .

Since the denominator 2 in 2 exp(−t/2) is constant, by Proposition 2.7.1 and Definition891

2.7.5 in Vershynin (2018), the subexponential norm ∥X∥ψ1 is therefore bounded by an892

absolute constant C3. Moreover, by Excercise 2.7.10 in Vershynin (2018), we have ∥X −893

EX∥ψ1
≤ C4∥X∥ψ1

≤ C5 for absolute constants C4, C5.894

Step 5: Conditional Concentration. Now, Bernstein’s inequality for subexponential
random variables (Vershynin, 2018, Corollary 2.8.1) yields for t ≥ 0 and some absolute
constant C6 > 0:

P

(∣∣∣∣∣
k∑
i=1

Xi − EXi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−C6 min

(
t2

kC2
5

,
t

C5

))
. (D.12)
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We choose t = C5Cn and obtain for k ≤ Cn

P

(
k∑
i=1

(ε2)(i) ≥ kT + 4C2k + C5Cn

∣∣∣∣∣K = k

)
(D.10)
= P

(
k∑
i=1

Xi ≥ 4C2k + C5Cn

∣∣∣∣∣K = k

)
(D.11)
≤ P

(∣∣∣∣∣
k∑
i=1

Xi − EXi

∣∣∣∣∣ ≥ t

)
(D.12)
≤ 2 exp (−C6Cn) .

Step 6: Final bound. From Step 2, we know that K ≤ ⌊Cn⌋ with probability ≥ 1 −
exp(−C2n/2). Moreover, in this case, Step 5 yields

K∑
i=1

(ε2)(i) < KT + 4C2K + C5Cn ≤ Cn(T + 4C2 + C5)

with probability ≥ 1− exp(−C6Cn). By Eq. (D.9), we therefore have

SC,n < CT + C(T + 4C2 + C5) = −4C log(C
√
π/32) + C7C .

Since limC↘0 −C log(C) = 0, we can choose C ∈ (0, 1) such that −4C log(C
√
π/32) +895

C7C < c for the given constant c > 0 from the theorem statement, and obtain the desired896

bound with high probability in n.897

(ii) Since the ε2i are non-negative and their distribution has a density, there must exist T > 0
with P (ε2i < T ) ≤ (1 − κ)/4. Similar to the proof of (i), we then want to bound K :=
|{i ∈ [n] | ε2i < T}| = ξ1 + . . .+ ξi with ξi = 1ε2i<T . The ξi ∈ [0, 1] are independent with
Eξi = P (ε2i < T ) ≤ (1− κ)/4. As in Step 2 of (i), Hoeffding’s inequality then yields for
τ > 0:

P

(
1

n

n∑
i=1

(ξi − Eξi) ≥ (1− 0)

√
τ

2n

)
≤ exp(−τ) .

We set τ := (1− κ)2n/2, such that with probability ≥ 1− exp((1− κ)2n/2), we have

K/n− (1− κ)/4 ≤ K/n− P (ε2i < T ) =
1

n

n∑
i=1

(ξi − Eξi) <
√

(1− κ)2n/2

2n

=
1− κ

2
.

In this case, we have

1

n

⌊(1−κ)n⌋∑
i=1

(ε2)(n−i+1) ≥ 1

n
(⌊(1− κ)n⌋ −K)T ≥ 1

n
(((1− κ)n− 1)−K)T

≥
(
1− κ

4
− 1

n

)
T ,

where the right-hand side is lower bounded by c := (1− κ)T/8 for n large enough.898

The next lemma is a generalization of Lemma 9 in Buchholz (2022) to arbitrary fractions κ of the899

training points. Therefore, for any κ ∈ (0, 1) define900

δmin(κ) = n−1/d

(
κ

Cρωd

)1/d

,

Lemma D.7 (Generalization of Lemma 9 in Buchholz (2022)). Let κ, ν ∈ (0, 1), and let cΩ > 0901

be a constant that satisfies PX(dist(x, ∂Ω) < cΩ) ≤ κ. Let P = {x1, . . . ,xn} be i.i.d. points902

distributed according to the measure PX , which has lower and upper bounded density on its entire903
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bounded open Lipschitz domain Ω ⊆ Rd, Cl ≤ pX(x) ≤ Cu. Then there exists a constant Θ > 0904

depending on d,Cu, ν such that with probability at least 1− exp
(
− 3κn

7

)
there exists a good subset905

P ′ ⊆ P , |P ′| ≥ (1− 7κ)n, with the following properties: For x ∈ P ′ we have dist(x, ∂Ω) ≥ cΩ,906

|x− y| > δmin(κ) for x ̸= y ∈ P ′, and for all x ∈ P ′ we have907 ∑
y∈P′\{x}

|x− y|−d−2ν ≤ 2Θδmin(κ)
−2νn

κ2
.

Proof. First by the definition of δmin, it holds that

P

xj ∈
⋃
i<j

B (xi, δmin)

 ≤ Cuωdδ
d
minn ≤ κ

Also for all y ∈ Ω

Ex

(
(x− y)−d−2s1 (|x− y| ≥ δmin)

)
=

∫
B(y,δmin)

c

|x− y|−d−2νpX(x)dx

≤ Cu

∫
B(x,δmin)

c

|x− y|−d−2νdy ≤ Θδ−2ν
min

for some Θ > 0 depending only on Cu, d and ν. We conclude that for each j

P

∑
i<j

|xi − xj |−d−2ν
1 (|xi − xj | > δmin) >

Θδ−2ν
min n

κ

 ≤ κ.

Also P (dist (xj , ∂Ω) < cΩ) < κ. The union bound implies that

P

xj /∈
⋃
i<j

B (xi, δmin) ,
∑
i<j

|xi − xj |−d−2ν
1|xi−xj |>δmin

<
Θδ−2ν

min n

κ
, dist (xj , ∂Ω) > cΩ


=P

xj /∈
⋃
i<j

B (xi, δmin) ,
∑
i<j

|xi − xj |−d−2ν
<

Θδ−2ν
min n

κ
, dist (xj , ∂Ω) > cΩ

 ≥ 1− 3κ.

We use a martingale construction similar to the one in Lemma 7 of Buchholz (2022) by defining908

Ej :=

xj ∈
⋃
i<j

B (xi, δmin) , or
∑
i<j

|xi − xj |−d−2ν ≥ Θδ−2ν
min n

κ
, or dist(xj , ∂Ω) ≤ cΩ

 .

Now define Sn :=
∑n
i=1 1Ei . Using the filtration Fi = σ(x1, . . . ,xi), Sn can be decomposed into909

Sn =Mn +An, where Mn is a martingale and An is predictable with respect to Fn. We then get910

An ≤ ∑n
i=1 P (Ei|Fi−1) ≤ 3κn as well as Var(Mi|Fi−1) ≤ 3κ. Hence Freedman’s inequality911

Theorem D.8 yields912

P (Sn ≥ 6κn) ≤ P (An ≥ 3κn) + P (Mn ≥ 3κn) ≤ exp

(
−3κn

7

)
.

This implies that with probability at least 1− exp
(
− 3κn

7

)
we can find a subset Ps = {z1, . . . ,zm}

with |Ps| ≥ (1− 6κ)n on which it holds that mini ̸=j |zi − zj | ≥ δmin,dist (zj , ∂Ω) ≥ cΩ and∑
i̸=j

|zi − zj |−d−2ν ≤ 2Θδ−2ν
min n

2

κ
.

Using Markov’s inequality we see that there are at most κn points in Ps such that∑
z′∈Ps,z ̸=z′

|z − z′|−d−2ν ≥ 2Θδ−2ν
min n

κ2
.
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Removing those points we find a subset P ′ ⊂ Ps such that |P ′| ≥ (1− 7κ)n and for each z ∈ P ′913

∑
z′∈Ps,z ̸=z′

|z − z′|−d−2ν ≤ 2Θδ−2ν
min n

κ2
.

Theorem D.8 (Freedman’s inequality, Theorem 6.1 in Chung and Lu (2006)). Let Mi be a discrete
martingale adapted to the filtration Fi with M0 = 0 that satisfies for all i ≥ 0

|Mi+1 −Mi| ≤ K

Var (Mi | Fi−1) ≤ σ2
i .

Then

P (Mn − E (Mn) ≥ λ) ≤ e
− λ2

2
∑n

i=1
σ2
i
+Kλ/3 .

E Translating between Rd and Sd
914

Since the RKHS of the ReLU NTK and NNGP kernels mentioned in Theorem 3 are equivalent to915

the Sobolev spaces H(d+1)/2(Sd) and H(d+3)/2(Sd), respectively (Chen and Xu, 2021, Bietti and916

Bach, 2021) (detailed summary in Appendix B.4). Inconsistency of functions in these RKHS that917

fulfill Assumptions (O) and (N), as in Theorem 1, follows immediately by adapting Theorem 1 via918

Lemma E.1. In particular, inconsistency holds for the gradient flow and gradient descent estimators919

ft,ρ and fGD
t,ρ as soon as they overfit with lower bounded probability.920

For arbitrary open sphere caps T := {x ∈ Sd | xd+1 < v}, v ∈ (−1, 1), and the open unit ball921

B1(0) := {y ∈ Rd | ∥y∥2 < 1}, define the scaled stereographic projection ϕ : T → B1(0) ⊆ Rd as922

ϕ(x1, . . . , xd+1) =

(
cvx1

1− xd+1
, . . . ,

cvxd
1− xd+1

)
,

where the normalization constant cv =
√

1−v
1+v ensures surjectivity.923

Straightforward calculations show that ϕ defines a diffeomorphism. Its inverse ϕ−1 : B1(0) → T is924

given by925

ϕ−1(y1, . . . , yd) =

(
2c−1
v y1

c−2
v ∥y∥22 + 1

, . . . ,
2c−1
v yd

c−2
v ∥y∥22 + 1

,
c−2
v ∥y∥22 − 1

c−2
v ∥y∥22 + 1

)
.

We can translate kernel learning with the kernel k on Sd and the probability distribution P , where926

PX is supported on T , to kernel learning with a transformed kernel k̃ and P̃ using a sufficiently927

smooth diffeomorphism like ϕ : T → B1(0) ⊆ Rd. If the RKHS of k is equivalent to Hs(Sd) then928

the RKHS of k̃ is equivalent to Hs(B1(0)). We formalize this argument in the following lemma. As929

a consequence it suffices to prove all inconsistency results for Sobolev kernels on B1(0).930

Lemma E.1 (Transfer to sphere caps). Let k be a kernel on Sd whose RKHS is equivalent to a931

Sobolev space Hs(Sd). For fixed v ∈ (−1, 1), consider an “open sphere cap” T := {x ∈ Sd |932

xd+1 < v}. Furthermore, consider a distribution P such that PX is supported on T and has lower933

and upper bounded density pX on T , i.e. 0 < Cl ≤ pX(x) ≤ Cu <∞ for all x ∈ T . Then934

• k̃(x,x′) := k(ϕ−1(x), ϕ−1(x′)) defines a positive definite kernel on B1(0) ⊆ Rd whose935

RKHS is equivalent to the Sobolev space Hs(B1(0)),936

• P̃ := P ◦ ψ−1 with ψ(x, y) := (ϕ(x), y) defines a probability distribution such that P̃X̃937

has lower and upper bounded density on B1(0) ⊆ Rd,938

and kernel learning with (k, P ) or with (k̃, P̃ ) is equivalent in the following sense:939

For every function f ∈ H(k|T ) the transformed function f̃ = f ◦ ϕ−1 ∈ H(k̃) has the same RKHS940

norm, i.e. ∥f∥H(k|T ) = ∥f̃∥H(k̃). Furthermore, the excess risks of f over P and f̃ over P̃ coincide,941

i.e.942

Ex∼PX
(f(x)− f∗P (x))

2 = Ex̃∼P̃X
(f̃(x̃)− f̃∗

P̃
(x̃))2,

where f̃∗
P̃
(x̃) = E(X̃,Ỹ )∼P̃ (Ỹ |X̃ = x̃) denotes the Bayes optimal predictor under P̃ .943
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Remark E.2. Many kernel regression estimators can be explicitly written as fkD(x) =944

f̂n(k(x,X), k(X,X),y) where f̂n : Rn × Rn×n × Rn → R denotes a measurable function945

for all n ∈ N. Then the explicit form is preserved under the transformation, i.e. f ◦ ϕ−1 = f k̃
D̃

with946

the transformed data set D̃ = {(ϕ(xi), yi)}i∈[n]. ◀947

Proof of Lemma E.1. Step 1: Bounded density. For i ∈ [d], j ∈ [d+ 1], the partial derivatives of ϕ948

are given by949

∂xj
ϕi(x) =


cv

1−xd+1
, for i = j,

cvxi

(1−xd+1)2
, for i ∈ [d], j = d+ 1,

0, otherwise.

Given an arbitrary multi-index α, the partial derivatives ∂αϕi ∈ L2(T ), ∂αϕ−1
j ∈ L2(B1(0)) are950

bounded for all i ∈ [d], j ∈ [d+ 1], using xd+1 ≤ v < 1 and the inverse function theorem.951

Now define k̃(x,x′) := k(ϕ−1(x), ϕ−1(x′)), ψ(x, y) := (ϕ(x), y) and P̃ := P ◦ ψ−1. Then using952

integration by substitution (Stroock et al., 2011, Theorem 5.2.16), the Lebesgue density of P̃X is953

given by954

pX̃(x̃) = pX(ϕ−1(x̃))Jϕ−1(x̃),

where955

Jϕ−1(x̃) :=
[
det
((〈

∂iϕ
−1(x̃), ∂jϕ

−1(x̃)
〉
Rd+1

)
i,j∈{1,...,d}

)]1/2
.

Jϕ and Jϕ−1 can be continuously extended to T̄ and B̄1(0), respectively. Then, since Jϕ−1 is956

continuous on a compact set and because ϕ with the extended domain remains a diffeomorphism so957

that Jϕ−1 cannot attain the value 0, there exists a constant Cϕ > 0 such that 1
Cϕ

≤ Jϕ−1(x̃) ≤ Cϕ958

for all x̃ ∈ B1(0). Hence, pX̃ is lower and upper bounded.959

Step 2: Excess risks coincide. If (X̃, Ỹ ) ∼ P̃ , the Bayes predictor of Ỹ given X̃ is given by960

f̃∗(x̃) = E(Ỹ |X̃ = x̃) = f∗(ϕ−1(x̃)).961

Let π1(x, y) = x be the projection onto the first component. Then, ϕ(π1(x, y)) = ϕ(x) =
π1(ϕ(x), y) = π1(ψ(x, y)) and hence

Ex∼PX
(f(x)− f∗(x))2 = E(x,y)∼P (f(π1(x, y))− f∗(π1(x, y)))

2

= E(x,y)∼P (f(ϕ
−1(ϕ(π1(x, y))))− f∗(ϕ−1(ϕ(π1(x, y))))

2

= E(x,y)∼P (f̃(π1(ψ(x, y)))− f̃∗(π1(ψ(x, y))))
2

= E(x,y)∼P̃ (f̃(π1(x, y))− f̃∗(π1(x, y)))
2

= Ex∼P̃X̃
(f̃(x)− f̃∗(x))2 .

Step 3: Transformed RKHS. We want to show that H(k|T ) → H(k̃), f 7→ f ◦ ϕ−1 defines962

an isometric isomorphism, which especially shows the statement ∥f∥H(k|T ) = ∥f̃∥H(k̃) from the963

proposition. For this, we use the following theorem characterizing RKHSs:964

Theorem E.3 (Theorem 4.21 in Steinwart and Christmann (2008)). Let k : X×X → R be a positive
definite kernel function with feature space H0 and feature map Φ0 : X → H0. Then

H = {f : X → R | ∃w ∈ H0 : f = ⟨w,Φ0(·)⟩H0
} with

∥f∥H := inf{∥w∥H0
: f = ⟨w,Φ0(·)⟩H0

},
is the only RKHS for which k is a reproducing kernel.965

A feature map for k|T is given by Φ : T → H(k|T ), Φ(x) = k(x, ·). Hence a feature map for k̃ is
given by Φ ◦ ϕ−1 : B1(0) → H(k|T ). Theorem E.3 states that

H(k
∣∣
T
) =

{
f : T → R | ∃w ∈ H(k

∣∣
T
) : f = ⟨w,Φ(·)⟩H(k|T )

}
with (E.1)

∥f∥H(k|T ) := inf{∥w∥H(k|T ) : f = ⟨w,Φ(·)⟩H(k|T )},
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as well as

H(k̃) =
{
f̃ : B1(0) → R | ∃w ∈ H(k

∣∣
T
) : f̃ = ⟨w,Φ ◦ ϕ−1(·)⟩H(k|T )

}
with (E.2)

∥f̃∥H(k̃) := inf{∥w∥H(k|T ) : f̃ = ⟨w,Φ ◦ ϕ−1(·)⟩H(k|T )}.

As ϕ−1 is bijective, this characterization induces an isometric isomorphism between H(k|T ) and966

H(k̃) by mapping f = ⟨w,Φ(·)⟩H(k|T ) ∈ H(k|T ) to f̃ = f ◦ϕ−1 = ⟨w,Φ ◦ϕ−1(·)⟩H(k|T ) ∈ H(k̃).967

This shows ∥f∥H(k|T ) = ∥f̃∥H(k̃).968

Step 4: RKHS of k̃. We now show that the RKHS of k̃, denoted as H(k̃), is equivalent toHs(B1(0)).
To this end, denoting A ◦ ϕ := {f ◦ ϕ | f ∈ A} and A|T := {f |T | f ∈ A}, we show the following
equality of sets (ignoring the norms):

H(k̃) ◦ ϕ (I)
= H(k

∣∣
T
)
(II)
= H(k)

∣∣
T

(III)
= Hs(Sd)

∣∣
T

(IV)
= Hs(B1(0)) ◦ ϕ .

Since ϕ is bijective, this implies H(k̃) = Hs(B1(0)) as sets, and the norm equivalence then follows969

from Lemma F.9.970

Equality (I) follows from Step 3. Equality (II) follows from Theorem E.3 by observing that if Φ is a971

feature map for k, then Φ|T is a feature map for k|T . Equality (III) holds by assumption. To show972

(IV), we need a characterization of Hs(Sd) that allows to work with charts like ϕ.973

Step 4.1: Chart-based characterization of Hs(Sd). A trivialization of a Riemannian manifold974

(M, g) with bounded geometry of dimension d consists of a locally finite open covering {Uα}α∈I975

of M , smooth diffeomorphisms κα : Vα ⊂ Rd → Uα, also called charts, and a partition of unity976

{hα}α∈I of M that fulfills supp(hα) ⊆ Uα, 0 ≤ hα ≤ 1 and
∑
α∈I hα = 1. An admissible977

trivialization of (M, g) is a uniformly locally finite trivialization of M that is compatible with978

geodesic coordinates, for details see (Schneider and Große, 2013, Definition 12).979

In our case, define an open neighborhood of T by U1 := {x ∈ Sd | xd+1 < v + ε} with some
ε ∈ (0, 1−v) arbitrary but fixed, and U2 := {x ∈ Sd | xd+1 > v+ ε/2}. It holds that U1∪U2 = Sd.
Moreover, there exists an appropriate partition of unity consisting of C∞ functions h1, h2 : Sd →
[0, 1]. Especially, we have h1(T ) ⊆ h1(U

c
2 ) = {1}. Let ϕ1 : U1 → Br1(0) denote the stereographic

projection with respect to x0 = (0, . . . , 0, 1) as above, scaled such that ϕ1|T = ϕ and hence
ϕ1(T ) = B1(0). Similarly, let ϕ2 : U2 → Br2(0) denote an arbitrarily scaled stereographic
projection with respect to x0 = (0, . . . , 0,−1). Then ({U1, U2}, {ϕ−1

1 , ϕ−1
1 }, {h1, h2}) yields an

admissible trivialization of Sd consisting of only two charts. A detailed derivation can be found in
(Hubbert et al., 2015, Section 1.7). Therefore (Schneider and Große, 2013, Theorem 14) lets us define
the Sobolev norm on Sd (up to equivalence) as1

∥g∥Hs(Sd) :=

(∑
α∈I

∥(hαg) ◦ κα∥2Hs(Rd)

)1/2

=
(
∥(h1g) ◦ ϕ−1

1 ∥2Hs(Rd) + ∥(h2g) ◦ ϕ−1
2 ∥2Hs(Rd)

)1/2
,

for any distribution g ∈ D′(Sd) (i.e. any continuous linear functional on C∞
c (Sd)). Then g ∈ Hs(Sd)980

if and only if ∥g∥Hs(Sd) <∞.981

Step 4.2: Showing (IV). First, let g ∈ Hs(Sd). Then, as we saw in Step 4.1, we must have
∥(h1g) ◦ ϕ−1

1 ∥Hs(Rd) < ∞ and thus (h1g) ◦ ϕ−1
1 ∈ Hs(Rd). By our discussion in Appendix B.1,

we then have

(g|T ) ◦ ϕ−1 = ((h1g) ◦ ϕ−1
1 )|B1(0) ∈ Hs(B1(0)) ,

which shows g|T ∈ Hs(B1(0)) ◦ ϕ.982

Now, let f ∈ Hs(B1(0)). Then, again following our discussion in Appendix B.1, there exists an
extension f̄ ∈ Hs(Rd) with f̄ |B1(0) = f . The set B := ϕ1(U1 \ U2) is a closed ball Br(0) of radius

1Here, the norms are taken on Hs(Rd) since the respective functions can be extended to Rd by zero outside
of their domain of definition, thanks to the properties of the partition of unity.
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1 < r < r1. Hence, we can find φ ∈ C∞(Rd) with φ(B1(0)) = {1} and φ((Br(0))c) = {0}. Since
φ is smooth with compact support, we have φ · f̄ ∈ Hs(Rd). Define

fSd : Sd → R,x 7→
{
(φ · f̄)(ϕ(x)) ,x ∈ U1

0 ,x ̸∈ U1 .

By construction, we have fSd(x) = 0 for all x ∈ U2. Hence, the equivalent Sobolev norm from Step
4.1 is

∥fSd∥Hs(Sd) =
(
∥(h1fSd) ◦ ϕ−1

1 ∥2Hs(Rd) + ∥(h2fSd) ◦ ϕ−1
2 ∥2Hs(Rd)

)1/2
= ∥(h1 ◦ ϕ−1

1 ) · φ · f̄∥Hs(Rd) <∞ ,

which shows fSd ∈ Hs(Sd). But then, f ◦ ϕ = fSd |T ∈ Hs(Sd)|T .983

In total, we obtain Hs(Sd)|T = Hs(B1(0)) ◦ ϕ, which shows (IV).984

F Spectral lower bound985

F.1 General lower bounds986

A common first step to analyze the expected excess risk caused by label noise is to perform a bias-987

variance decomposition and integrate over y first (see e.g. Liang and Rakhlin, 2020, Hastie et al.,988

2022, Holzmüller, 2021), which is also used in the following lemma.989

Lemma F.1. Consider an estimator of the form fX,y(x) = (vX,x)
⊤y. If VarP (y|x) ≥ σ2 for

PX -almost all x, then the expected excess risk satisfies

EDRP (fX,y)−R∗
P ≥ σ2EX,x tr(vX,x(vX,x)

⊤) .

Proof. A standard bias-variance decomposition lets us lower-bound the expected excess risk by the
estimator variance due to the label noise, which can then be further simplified:

EDRP (fX,y)−R∗
P ≥ EX,x

(
Ey|X

[
fX,y(x)

2
]
−
(
Ey|X [fX,y(x)]

)2)
.

= EX,xEy|X
(
fX,y(x)− Ey|XfX,y(x)

)2
= EX,xEy|X(vX,x)

⊤(y − Ey|Xy)(y − Ey|Xy)⊤vX,x

= EX,x(vX,x)
⊤ [Ey|X(y − Ey|Xy)(y − Ey|Xy)⊤

]
vX,x

= EX,x(vX,x)
⊤ Cov(y|X)vX,x .

Here, the conditional covariance matrix can be lower bounded in terms of the Loewner order (which
is defined as A ⪰ B ⇔ B −A positive semi-definite):

Cov(y|X) =

Var(y1|x1)
. . .

Var(yn|xn)

 ⪰ σ2In

since the labels yi are conditionally independent given X . We therefore obtain

EDRP (fX,y)−R∗
P ≥ EX,x(vX,x)

⊤ Cov(y|X)vX,x

≥ σ2EX,x tr((vX,x)
⊤vX,x)

= σ2EX,x tr(vX,x(vX,x)
⊤) .

Proposition 4 (Spectral lower bound). Assume that the kernel matrix k(X,X) is almost surely
positive definite, and that Var(y|x) ≥ σ2 for PX -almost all x. Then, the expected excess risk satisfies

EDRP (ft,ρ)−R∗
P ≥ σ2

n

n∑
i=1

EX

λi(k∗(X,X)/n)
(
1− e−2t(λi(k(X,X)/n)+ρ)

)2
(λi(k(X,X)/n) + ρ)2

. (3)
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Proof. Recall from Eq. (1) that

ft,ρ(x) = k(x,X)At,ρ(X)y ,

At,ρ(X) :=
(
In − e−

2
n t(k(X,X)+ρnIn)

)
(k(X,X) + ρnIn)

−1
.

By setting (vX,x)
⊤ := k(x,X)At,ρ(X), we can write fX,y,t,ρ(x) := ft,ρ(x) = (vX,x)

⊤y. Using
Lemma F.1, we then obtain

EDRP (fX,y,t,ρ)−R∗
P ≥ σ2EX,x tr(vX,x(vX,x)

⊤)

= σ2EX,x tr
(
At,ρ(X)⊤k(X,x)k(x,X)At,ρ(X)

)
.

Since

(Exk(X,x)k(x,X))ij = Exk(xi,x)k(x,xj) = k∗(xi,xj) = k∗(X,X)ij ,

we conclude

EDRP (fX,y,t,ρ)−R∗
P ≥ σ2EX tr(A⊤

t,ρk∗(X,X)At,ρ)

= σ2EX tr(k∗(X,X)At,ρ(X)At,ρ(X)⊤) .

Richter (1958) showed (see also Mirsky, 1959) that for two symmetric matrices B,C, we have
tr(BC) ≥∑n

i=1 λi(B)λn+1−i(C). We can therefore conclude

EDRP (fX,y,t,ρ)−R∗
P ≥ σ2EX

n∑
i=1

λi(k∗(X,X))λn+1−i(At,ρ(X)At,ρ(X)⊤) .

As At,ρ(X)At,ρ(X)⊤ is built only out of the matrices k(X,X) and In, it is not hard to see that
At,ρ(X)At,ρ(X)⊤ has the same eigenbasis as k(X,X) with eigenvalues

λ̃i :=

(
1− e−

2
n t(λi(k(X,X))+ρn)

λi(k(X,X)) + ρn

)2

=
1

n2

(
1− e−2t(λi(k(X,X)/n)+ρ)

λi(k(X,X)/n) + ρ

)2

.

It remains to order these eigenvalues correctly. To this end, we observe that for λ > 0, the function
g(λ) := 1−e−2tλ

λ satisfies

g′(λ) =
2tλe−2tλ − (1− e−2tλ)

λ2
=

(2tλ+ 1)e−2tλ − 1

λ2
≤ e2tλe−2tλ − 1

λ2
= 0 .

Therefore, g is nonincreasing, hence the sequence (λ̃i) is nondecreasing and thus

λn+1−i(At,ρA
⊤
t,ρ) = λ̃i ,

from which the claim follows.990

Theorem F.2. Let k be a kernel on a compact set Ω and let PX be supported on Ω. Suppose
that k(X,X) is almost surely positive definite and that Var(y|x) ≥ σ2 for PX -almost all x. Fix
constants c > 0 and q, C ≥ 1. Suppose that λi := λi(Tk,PX

) ≥ ci−q. Let I(n) be the set of all
i ∈ [n] for which

λi/C ≤ λi(k(X,X)/n) ≤ Cλi (F.1)
λ2i /C ≤ λi(k∗(X,X)/n)

both hold at the same time with probability ≥ 1/2. Moreover, let I(n) := max{m ∈ [n] | [m] ⊆
I(n)}. Then, there exists a constant c′ > 0 depending only on c, C such that for all ρ ∈ [0,∞) and
t ∈ (0,∞], the following two bounds hold:

EDRP (fX,y,t,ρ)−R∗
P ≥ c′σ2 1

1 + (ρ+ t−1)nq
· |I(n)|

n
,

EDRP (fX,y,t,ρ)−R∗
P ≥ c′σ2 min

{
(ρ+ t−1)−2

n
,
(ρ+ t−1)−1/q

n
,
I(n)

n

}
.
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Remark F.3. Theorem F.2 provides two lower bounds, one for general “concentration sets” I(n) and991

one that applies if concentration holds for a sequence of “head eigenvalues” {1, . . . , I(n)} ⊆ I(n).992

If I(n) ≈ |I(n)|, the latter bound is stronger for larger regularization levels, and this bound would993

be particularly suitable for typical forms of relative concentration inequalities for kernel matrices.994

However, in this paper, we obtain concentration only for “middle eigenvalues” I(n) = {i | εn ≤ i ≤995

(1− ε)n}, and therefore we only use the first bound in the proof of Theorem 5. ◀996

Proof of Theorem F.2. Step 1: Miscellaneous inequalities. For x > 0,

1− e−x = 1− 1

ex
≥ 1− 1

x+ 1
=

x

x+ 1
=

1

1 + x−1
. (F.2)

Moreover, since (1 + a)2 ≤ (1 + a)2 + (1− a)2 = 2 + 2a2, we have for a ̸= −1:(
1

1 + a

)2

≥ 1

2(1 + a2)
. (F.3)

Step 2: Applying the eigenvalue bound. Define

Si(X) :=
λi(k∗(X,X)/n)

(
1− e−2t(λi(k(X,X)/n)+ρ)

)2
(λi(k(X,X)/n) + ρ)2

.

By Proposition 4, we have

EDRP (fX,y,t,ρ)−R∗
P ≥ σ2

n

n∑
i=1

EXSi(X) ≥ σ2

n

∑
i∈I(n)

EXSi(X) . (F.4)

Since Si(X) is almost surely positive, we can focus on the case where (F.1) and (F.2) hold, which is
true with probability ≥ 1/2 by assumption for i ∈ I(n). Hence,

EXSi(X) ≥ 1

2

λ2i /C · (1− e−2t(λi/C+ρ))2

(Cλi + ρ)2

(F.2)
≥ 1

2

λ2i /C

(Cλi + ρ)2(1 + (2t(λi/C + ρ))−1)2
.

We can upper-bound the denominator, using C ≥ 1, as

(Cλi + ρ)

(
1 +

1

2t(λi/C + ρ)

)
≤ Cλi + ρ+

C2λi + Cρ

(λi + Cρ)t
≤ Cλi + ρ+

C2λi + C3ρ

(λi + Cρ)t

≤ C2
(
λi + ρ+ t−1

)
,

which yields

EXSi(X) ≥ 1

2C5

λ2i
(λi + ρ+ t−1)2

=
1

2C5

1(
1 + ρ+t−1

λi

)2 (F.3)
≥ 1

4C5

1

1 +
(
ρ+t−1

λi

)2
≥ 1

4C5

1

1 +
(
ρ+t−1

c iq
)2 . (F.5)

Step 3: Analyzing the sum. We want to analyze the behavior of the sum

S(β) :=
∑
i∈I(n)

1

1 + (βiq)2

for β := ρ+t−1

c > 0. We first obtain the trivial bound997

S(β) ≥ |I(n)| 1

1 + (βnq)2
.

Moreover, we can bound

S(β) ≥
I(n)∑
i=1

1

1 + (βiq)2

and distinguish three cases:998
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(a) If β ≥ 1, we bound

S(β) ≥
I(n)∑
i=1

1

2(βiq)2
≥ 1

2β2
.

(b) If β ∈ (I(n)−q, 1), we observe that

J(β) := ⌊β−1/q⌋ ≥ ⌈β−1/q⌉ − 1 ≥ 1

2
⌈β−1/q⌉ ≥ β−1/q

2
and therefore

S(β) ≥
J(β)∑
i=1

1

1 + (βiq)2
≥
J(β)∑
i=1

1

1 + 1
=
J(β)

2
≥ β−1/q

4
.

(c) If β ∈ (0, I(n)−q], we similarly find that

S(β) ≥
I(n)∑
i=1

1

1 + 1
=
I(n)

2
.

Moreover, there is an absolute constant c1 > 0 such that for any β > 0,999

S(β) ≥ c1 min{β−2, β−1/q, I(n)} , (F.6)

because1000

(a) β−2 = min{β−2, β−1/q, I(n)} for β ≥ 1,1001

(b) β−1/q = min{β−2, β−1/q, I(n)} for β ∈ (I(n)−q, 1), and1002

(c) I(n) = min{β−2, β−1/q, I(n)} for β ∈ (0, I(n)−q].1003

Step 4: Putting it together. Combining the trivial bound in Step 3 with Eq. (F.4) and Eq. (F.5), we
obtain

EDRP (fX,y,t,ρ)−R∗
P ≥ σ2

n

∑
i∈I(n)

EXSi(X) ≥ σ2

n
· 1

4C5
S(β)

≥ c′σ2 1

1 + (ρ+ t−1)nq
· |I(n)|

n
(F.7)

for a suitable constant c′ > 0 depending only on c and C.1004

Moreover, from Eq. (F.6), we obtain

S(β) ≥ c̃1 min{β−2, β−1/q, I(n)} ≥ c̃′′ min{(ρ+ t−1)−2, (ρ+ t−1)−1/q, I(n)}
for a suitable constant c̃′′ > 0 depending only on c. Again, (F.4) and (F.5) yield

EDRP (fX,y,t,ρ)−R∗
P ≥ σ2

n
· 1

4C5
S(β)

≥ c̃′′

4C5
σ2 min

{
(ρ+ t−1)−2

n
,
(ρ+ t−1)−1/q

n
,
I(n)

n

}
.

F.2 Equivalences of norms and eigenvalues1005

Later, we will use concentration inequalities for kernel matrix eigenvalues proved for specific kernels,1006

which we then want to transfer to other kernels with equivalent RKHSs. In this subsection, we show1007

that this is possible.1008

Definition F.4 (C-equivalence of matrices and norms). Let n ≥ 1 and let K, K̃ ∈ Rn×n be
symmetric. For C ≥ 1, we say that K and K̃ are C-equivalent if their ordered eigenvalues satisfy

C−1λi(K) ≤ λi(K̃) ≤ Cλi(K)

for all i ∈ [n]. Moreover, we say that two norms ∥ · ∥A, ∥ · ∥B on a vector space V are C-equivalent if

C−1∥v∥A ≤ ∥v∥B ≤ C∥v∥A
for all v ∈ V . ◀1009
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Lemma F.5. Let n ≥ 1 and let K, K̃ ∈ Rn×n be symmetric. Then, K and K̃ are C-equivalent iff1010

the Moore-Penrose pseudoinverses K+ and K̃
+

are C-equivalent.1011

Proof. This follows from the fact that if K has eigenvalues λ1, . . . , λn, then K+ has eigenvalues1012

1/λ1, . . . , 1/λn, where we define 1/0 := 0. (A detailed proof would be a bit technical due to the1013

sorting of eigenvalues.)1014

Lemma F.6. Let k : X × X → R be a kernel on a set X . Then, for any y ∈ Rn,1015

y⊤k(X,X)+y = ∥f∗k,y∥2Hk
,

where Hk is the RKHS associated with k and f∗k,y is the minimum-norm regression solution

f∗k,y := argmin
f∈B

∥f∥2Hk
,

B := {f ∈ Hk |
n∑
i=1

(f(xi)− yi)
2 = inf

f̃∈Hk

n∑
i=1

(f̃(xi)− yi)
2} .

Proof. It is well-known that f∗k,y(x) =
∑n
i=1 αik(x,xi), where α := K+y (see e.g. Rangamani

et al., 2023). We then have

∥f∗k,y∥2Hk
=

〈
n∑
i=1

αik(xi, ·),
n∑
j=1

αjk(xj , ·)
〉

Hk

=

n∑
i=1

n∑
j=1

αiKijαj

= y⊤K+KK+y = y⊤K+y ,

where the last step follows from a standard identity for the Moore-Penrose pseudoinverse (see e.g.1016

Section 1.1.1 in Wang et al., 2018).1017

Proposition F.7 (Equivalent kernels have equivalent kernel matrices). Let k, k̃ : X × X → R be1018

kernels such that their RKHSs are equal as sets and the corresponding RKHS-norms are C-equivalent1019

as defined in Definition F.4. Then, for any n ≥ 1 and any x1, . . . ,xn ∈ X , the corresponding kernel1020

matrices k(X,X), k̃(X,X) are C2-equivalent.1021

Proof. Let i ∈ [n]. For y ∈ Rn we have, using the notation of Lemma F.6:

y⊤k(X,X)+y = ∥f∗k,y∥2Hk
≥ C−2∥f∗k,y∥2Hk̃

≥ C−2∥f∗
k̃,y

∥2Hk̃
= C−2y⊤k̃(X,X)+y .

Now, by the Courant-Fischer-Weyl theorem,

λi(k(X,X)+) = sup
V :dimV=i

inf
y∈V :∥y∥2=1

y⊤k(X,X)+y

≥ C−2 sup
V :dimV=i

inf
y∈V :∥y∥2=1

y⊤k̃(X,X)+y

= C−2λi(k̃(X,X)+) .

By switching the roles of k and k̃, we obtain that k(X,X)+ and k̃(X,X)+ are C2-equivalent. By1022

Lemma F.5 k(X,X) and k̃(X,X) are then also C2-equivalent.1023

To prove Theorem 5 for arbitrary input distributions PX with lower and upper bounded densities, we1024

need the following theorem investigating the corresponding eigenvalues of the integral operator.1025

Lemma F.8 (Integral operators for equivalent densities have equivalent eigenvalues). Let k : X×X →1026

R be a kernel and let µ, ν be finite measures on X whose support is X such that ν has an lower and1027

upper bounded density w.r.t. µ. Then, λi(Tk,ν) = Θ(λi(Tk,µ)).1028

Proof. Let p be such an upper bounded density, that is, dν = p dµ and there exist c, C > 0 such that1029

c ≤ p(x) ≤ C for all x ∈ X . For f ∈ L2(ν), we have1030

∥p · f∥2L2(µ)
=

∫
f2p2 dµ ≤ C

∫
f2p dµ = C

∫
f2 dν = C∥f∥2L2(ν)

.
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Hence, the linear operator1031

A : L2(ν) → L2(µ), f 7→ p · f
is well-defined and continuous. It is also easily verified that A is bijective. Moreover, we have1032

⟨Af,Af⟩L2(µ) =

∫
f2p2 dµ ≥ c

∫
f2p dµ = c

∫
f2 dν = c⟨f, f⟩L2(ν) .

and1033

⟨f, Tk,νf⟩L2(ν) =

∫ ∫
p(x)f(x)k(x,x′)f(x′)p(x′) dµ(x) dµ(x′) = ⟨Af, Tk,µAf⟩L2(µ) .

Since Tk,µ and Tk,ν are compact, self-adjoint, and positive, we can use the Courant-Fischer minmax
principle for operators (see e.g. Bell, 2014) to obtain

λi(Tk,ν) = max
V⊆L2(ν) subspace

dimV=i

min
f∈V \{0}

⟨f, Tk,νf⟩L2(ν)

⟨f, f⟩L2(ν)

≥ c max
V⊆L2(ν) subspace

dimV=i

min
f∈V \{0}

⟨Af, Tk,µAf⟩L2(µ)

⟨Af,Af⟩L2(µ)

= c max
Ṽ⊆L2(ν) subspace

dim Ṽ=i

min
g∈Ṽ \{0}

⟨g, Tk,µg⟩L2(µ)

⟨g, g⟩L2(µ)

= cλi(Tk,µ) .

Here, we have used that since A is bijective, the subspaces AV for dim(V ) = i are exactly the1034

i-dimensional subspaces of L2(µ). Our calculation above shows that λi(Tk,µ) ≤ O(λi(Tk,ν)). Since1035

dµ = 1
p dν with the lower and upper bounded density 1/p, we can reverse the roles of ν and µ to1036

also obtain λi(Tk,ν) ≤ O(λi(Tk,µ)), which proves the claim.1037

Lemma F.9. Let H1 and H2 be two RKHSs with H1 ⊂ H2. Then there exists a constant C > 0 such1038

that ∥f∥H2
≤ C∥f∥H1

.1039

Proof. Let I : H1 → H2 be the inclusion map, i.e. Ih := h for all h ∈ H1. Obviously, I is linear1040

and we need to show that I is bounded. To this end, let (hn)n≥1 ⊂ H1 be a sequence such that1041

there exist h ∈ H1 and g ∈ H2 with hn → h in H1 and Ihn → g in H2. This implies hn → h1042

pointwise and hn = Ihn → g pointwise, which in turn gives h = g. The closed graph theorem, see1043

e.g. (Megginson, 1998, Theorem 1.6.11), then shows that I is bounded.1044

F.3 Kernel matrix eigenvalue bounds1045

For upper bounds on the eigenvalues of kernel matrices, we use the following result:1046

Proposition F.10 (Kernel matrix eigenvalue upper bound in expectation). For m ≥ 1, we have

EX

n∑
i=m

λi(k(X,X)/n) ≤
∞∑
i=m

λi(Tk) . (F.8)

Proof. Theorem 7.29 in Steinwart and Christmann (2008) shows that1047

ED∼µn

∞∑
i=m

λi(Tk,D) ≤
∞∑
i=m

λi(Tk,µ) , (F.9)

where Tk,µ : L2(µ) → L2(µ), f 7→
∫
k(x, ·)f(x) dµ(x) is the integral operator corresponding to

the measure µ and Tk,D is the corresponding discrete version thereof. We set µ := PX and need to
show that k(X,X)/n has the same eigenvalues as Tk,D if D and X contain the same data points
x1, . . . ,xn. Consider a fixed D. Then, we can write Tk,D(f) = n−1ABf , where

A : Rn → L2(D),v 7→
n∑
i=1

vik(xi, ·)
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B : L2(D) → Rn, f 7→ (f(x1), . . . , f(xn))
⊤ .

Then, k(X,X)/n is the matrix representation of n−1BA with respect to the standard basis of Rn.
But AB and BA have the same non-zero eigenvalues, which means that

n∑
i=m

λi(k(X,X)/n) =

∞∑
i=m

λi(Tk,D) ,

from which the claim follows.1048

To obtain a lower bound, we want to leverage the lower bound by Buchholz (2022) for a certain radial1049

basis function kernel with data generated from an open subset of Rd. However, we want to consider1050

different kernels and distributions on the whole sphere. The following theorem bridges the gap by1051

going to subsets of the data on a sphere cap, projecting them to Rd, and using the kernel equivalence1052

results from Appendix F.2:1053

Theorem F.11 (Kernel matrix eigenvalue lower bound for Sobolev kernels on the sphere). Let k be
a kernel on Sd such that its RKHS Hk is equivalent to a Sobolev space Hs(Sd) with smoothness
s > d/2. Moreover, let PX be a probability distribution on Sd with lower and upper bounded density.
Let the rows of X ∈ Rn×d are drawn independently from PX . Then, for ε ∈ (0, 1/20), there exists a
constant c > 0 and n0 ∈ N such that for all n ≥ n0,

λm(k(X,X)/n) ≥ cn−2s/d

holds with probability ≥ 4/5 for all m ∈ N with 1 ≤ m ≤ (1− 11ε)n.1054

Proof. We can choose a suitably large sphere cap T such that PX(T ) ≥ 1− ε. Define the conditional1055

distribution PT (·) := PX(·|T ). Out of the points X = (x1, . . . ,xn), we can consider the submatrix1056

XT = (xi1 , . . . ,xiN )⊤ of the points lying in T . Conditioned on N , these points are i.i.d. samples1057

from PT . Moreover, by applying Markov’s inequality to a Bernoulli distribution, we obtain N ≥1058

(1−10ε)n with probability ≥ 9/10. We fix a value ofN ≥ (1−10ε)n in the following and condition1059

on it.1060

We denote the centered unit ball in Rd by B1(Rd). Using a construction as in Lemma E.1, we can1061

transport k and PT from T to the unit ball B1(Rd) using a rescaled stereographic projection feature1062

map ϕ, such that we obtain a kernel kϕ and a distribution Pϕ = (PT )ϕ on B1(Rd) that generate the1063

same distribution of kernel matrices as k with PT , and such that Hkϕ
∼= Hs(B1(Rd)). The rows1064

of Xϕ := ϕ(XT ) are i.i.d. samples from Pϕ. Moreover, we know that Pϕ has an lower and upper1065

bounded density w.r.t. the Lebesgue measure on B1(Rd).1066

In order to apply the results from Buchholz (2022), we define a translation-invariant reference kernel1067

on Rd through the Fourier transform1068

k̂ref(ξ) = (1 + |ξ|2)−2s ,

see Eq. (3) in Buchholz (2022). The RKHS of kref on Rd is equivalent to the Sobolev space Hs(Rd).1069

Therefore, the RKHS of kref |B1(Rd),B1(Rd) is Hs(B1(Rd)), cf. the remarks in Appendix B.1 and1070

Lemma F.9.1071

Now, let 1 ≤ m ≤ (1− 11ε)n, which implies1072

1 ≤ m ≤ (1− 11ε)n ≤ (1− ε)(1− 10ε)n ≤ (1− ε)N .

We apply Theorem 12 by Buchholz (2022) with bandwidth γ = 1 and α = 2s to λm and obtain with
probability at least 1− 2/N :

λm(kref(Xϕ,Xϕ))
−1 ≤ c3

(
N2(α−d)/d

(N −m)(α−d)/d
+ 1

)
≤ c3

(
N2(α−d)/d

(εN)(α−d)/d
+ 1

)
≤ c4(n

α/d−1 + 1)

as long as N is large enough such that (1 − ε)N < N − 32 ln(N), which is the case if n is large
enough. Here, the constant c3 from Buchholz (2022) does not depend on N or m, but only on α, d,
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and the upper and lower bounds on the density, which in our case depend on ε through the choice of
T . Since α = 2s > d, we have nα/d−1 > 1 and therefore

λm(kref(Xϕ,Xϕ)/n) ≥ c5n
−α/d = c5n

−2s/d .

Now, we want to translate this to the kernel k. Since the RKHSs of kϕ and kref on B1(Rd) are both
equivalent to Hs(B1(Rd)), the kernels themselves are C-equivalent for some constant C ≥ 1 as
defined in Definition F.4. Therefore, Proposition F.7 shows that the corresponding kernel matrices are
C2-equivalent, which implies

λm(k∗,ϕ(Xϕ,Xϕ)/n) ≥ c5C
−2n−2s/d .

By Cauchy’s interlacing theorem, we therefore have

λm(k∗(X,X)/n) ≥ λm(k∗(XT ,XT )/n) = λm(k∗,ϕ(Xϕ,Xϕ)/n) ≥ c5C
−2n−2s/d .

Denoting the event where λm(k∗(X,X)/n) ≥ c5C
−2n−2s/d by A, we thus have

P (A) = P (A|N ≥ (1− 10ε)n)P (N ≥ (1− 10ε)n) ≥ 9

10
P (A|N ≥ (1− 10ε)n)

=
9

10

n∑
N̂=⌈(1−10ε)n⌉

P (N = N̂ |N ≥ (1− 10ε)n)P (A|N = N̂)

≥ 9

10

n∑
N̂=⌈(1−10ε)n⌉

P (N = N̂ |N ≥ (1− 10ε)n)(1− 2/N)

≥ 9

10

(
1− 2

(1− 10ε)n

) n∑
N̂=⌈(1−10ε)n⌉

P (N = N̂ |N ≥ (1− 10ε)n)

=
9

10

(
1− 2

(1− 10ε)n

)
≥ 4

5
,

where the last step holds for sufficiently large n.1073

F.4 Spectral lower bound for dot-product kernels on the sphere1074

An application of the spectral generalization bound in Proposition 4 requires a lower bound on1075

eigenvalues of the kernel matrix k∗(X,X). To achieve this, we need to understand the properties of1076

the convolution kernel k∗. Since the eigenvalues of Tk∗,PX
are the squared eigenvalues of Tk,PX

, one1077

might hope that if Hk is equivalent to a Sobolev space Hs, then Hk∗ is equivalent to a Sobolev space1078

H2s. Unfortunately, this is not the case in general, as Hk∗ might be a smaller space that involves1079

additional boundary conditions (Schaback, 2018). However, perhaps since the sphere is a manifold1080

without boundary, the desired characterization of Hk∗ holds for dot-product kernels on the sphere:1081

Lemma F.12 (RKHS of convolution kernels). Let k be a dot-product kernel on Sd such that its RKHS1082

Hk is equivalent to a Sobolev space Hs(Sd) with smoothness s > d/2, and let PX be a distribution1083

on Sd with lower and upper bounded density. Then, the RKHS Hk∗ of the kernel1084

k∗ : Sd × Sd → R, k∗(x,x′) :=
∫
k(x,x′′)k(x′′,x′) dPX(x′′)

is equivalent to the Sobolev space H2s(Sd).1085

Proof. Define

k∗,unif(x,x
′) =

∫
k(x,x′′)k(x′′,x′) dU(Sd)(x′′) .

For the corresponding integral operator, we have

Tk∗,unif ,U(Sd) = T 2
k,U(Sd) .
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This means that the corresponding eigenvalues are the squares of the eigenvalues of the corresponding
integral operator of k. Especially, we obtain the Mercer representations

k(x,x′) =
∞∑
l=0

µl

Nl,d∑
i=1

Yl,i(x)Yl,i(x
′) ,

k∗,unif(x,x
′) =

∞∑
l=0

µ2
l

Nl,d∑
i=1

Yl,i(x)Yl,i(x
′) ,

where Lemma B.1 yields µl = Θ((l + 1)−2s), hence µ2
l = Θ((l + 1)−4s) and hence Hk∗,unif

∼=1086

H2s(Sd).1087

Next, we show the equality of the ranges of the integral operators:1088

R(Tk,U(Sd)) = R(Tk,PX
) .

Let pX be a density of PX w.r.t. the uniform distribution U(Sd). If f ∈ R(Tk,U(Sd)), there exists1089

g ∈ L2(U(Sd)) with f = Tk,U(Sd)g. But then, since pX is lower bounded, we have g/pX ∈ L2(PX)1090

and therefore1091

f = Tk,PX
(g/pX) ∈ R(Tk,PX

) .

An analogous argument shows that R(Tk,PX
) ⊆ R(Tk,U(Sd)) since pX is upper bounded.1092

The equality of the ranges yields for the RKHSs (as sets)

Hk∗,unif
= R(Tk,U(Sd)) = R(Tk,PX

) = Hk∗ ,

Applying Lemma F.9 twice then shows Hk∗
∼= H2s(Sd).1093

Theorem 5 (Inconsistency for Sobolev dot-product kernels on the sphere). Let k be a dot-product1094

kernel on Sd, i.e., a kernel of the form k(x,x′) = κ(⟨x,x′⟩), such that its RKHS Hk is equivalent1095

to a Sobolev space Hs(Sd), s > d/2. Moreover, let P be a distribution on Sd × R such that1096

PX has a lower and upper bounded density w.r.t. the uniform distribution U(Sd), and such that1097

Var(y|x) ≥ σ2 > 0 for PX -almost all x ∈ Sd. Then, for everyC > 0, there exists c > 0 independent1098

of σ2 such that for all n ≥ 1, t ∈ (C−1n2s/d,∞], and ρ ∈ [0, Cn−2s/d), the expected excess risk1099

satisfies1100

EDRP (ft,ρ)−R∗
P ≥ cσ2 > 0 .

Proof. Step 0: Preparation. Since the Sobelev space H2s(Sd) is dense in the space of continuous1101

functions Sd → R, the kernel k is universal. Applying (Steinwart and Christmann, 2008, Corollary1102

5.29 and Corollary 5.34) for the least squares loss thus shows that k is strictly positive definite. If1103

we have mutually distinct x1, . . . ,xn, the corresponding Gram matrix k((xi,xj))ni,j=1 is therefore1104

invertible. Now, our assumptions on P guarantee that X consists almost surely of mutually distinct1105

observations, and therefore k(X,X) is almost surely invertible.1106

By Proposition 4, we know that

EDRP (fX,y,t,ρ)−R∗
P ≥ σ2

n

n∑
i=1

EX

λi(k∗(X,X)/n)
(
1− e−2t(λi(k(X,X)/n)+ρ)

)2
(λi(k(X,X)/n) + ρ)2

≥ σ2

n

n∑
i=1

EX

λi(k∗(X,X)/n)
(
1− e−2C−1n2s/d(λi(k(X,X)/n)+0)

)2
(λi(k(X,X)/n) + Cn−2s/d)2

≥ cnσ
2

for a suitable constant cn > 0 depending on n but not on σ2, t, ρ, since the kernel matrix eigenvalues1107

are nonzero almost surely. It is therefore sufficient to show the desired statement (with c independent1108

of n, σ2, t, ρ) for sufficiently large n.1109

In the following, we assume n ≥ 40 and set ε := 1/100.1110

Step 1: Eigenvalue decay for the integral operator. From Lemma B.1, we know that

λi(Tk,U(Sd)) = Θ(i−2s/d) .
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Therefore, by Lemma F.8, we know that

λi(Tk,PX
) = Θ(i−2s/d) .

Step 2: Eigenvalue upper bound. Next, we want to upper-bound suitable eigenvalues of the form1111

λi(k(X,X)/n) using Proposition F.10. Using Step 1, we derive1112

∞∑
i=m

λi(Tk,PX
) ≤ C1

∞∑
i=m

i−2s/d ≤ C2

∫ ∞

m

x−2s/d dx = C3m
1−2s/d

with constants independent of m ≥ 1. For sufficiently large n, we can choose m ∈ N≥1 such that1113

εn ≤ m ≤ 2εn. Then, Proposition F.10 yields1114

EX

n∑
i=m

λi(k(X,X)/n) ≤
∞∑
i=m

λi(Tk) ≤ C3m
1−2s/d ≤ C4n

1−2s/d .

Since EXλi(k(X,X)/n) is decreasing with i, we have for i ≥ 4εn ≥ 2m:1115

EXλi(k(X,X)/n) ≤ C4n
1−2s/d/m ≤ C5n

−2s/d ≤ C6λi(Tk,PX
) .

Step 3: Eigenvalue lower bounds. From Lemma F.12, we know that Hk∗
∼= H2s(Sd). Therefore,

we can apply Lemma F.12 to both k and k∗ and obtain for sufficiently large n and suitable constants
c1, c2 > 0 that

λi(k(X,X)/n) ≥ c1n
−2s/d

λi(k∗(X,X)/n) ≥ c2n
−4s/d

individually hold with probability ≥ 4/5 for all i ∈ N with 1 ≤ i ≤ (1− 11ε)n. By the union bound,1116

both bounds hold at the same time with probability ≥ 3/5.1117

Step 4: Final result. Now, using the value of m from Step 2, consider an index i with 2m ≤ i ≤
(1− 11ε)n. Since 2m ≤ 4εn and ε = 1/100, there are at least n/2 such indices. By combining Step
3 and Step 1, we have

λi(k(X,X)/n) ≥ c3λi(Tk,PX
)

λi(k∗(X,X)/n) ≥ c4λi(Tk,PX
)2

with probability ≥ 3/5. By applying Markov’s inequality to Step 2, we obtain1118

λi(k(X,X)/n) ≤ 10C6λi(Tk,PX
)

with probability ≥ 9/10. Therefore, by the union bound, all three inequalities hold simultaneously
with probability ≥ 1/2. Moreover, for q = 2s/d, we have λi(Tk,PX

) ≥ c5i
−q by Step 1. We can

thus apply the first lower bound from Theorem F.2 to obtain

EDRP (fX,y,t,ρ)−R∗
P ≥ c′σ2 1

1 + (ρ+ t−1)n2s/d
· |I(n)|

n

≥ c′σ2 1

1 + (Cn−2s/d + Cn−2s/d)n2s/d
· n/2
n

=
c′

2 + 2C
σ2 .

G Proof of Theorem 71119

Here we denote the solution of kernel ridge regression on D with the kernel function k and regular-1120

ization parameter ρ > 0 as1121

f̂kρ (x) = k(x,X) (k(X,X) + ρI)
−1

y,

and write f̂k0 (x) = k(x,X)k(X,X)+y for the minimum-norm interpolant in the RKHS of k.1122

While Theorem 1 states that overfitting kernel ridge regression using Sobolev kernels is always1123

inconsistent as long as the derivatives remain bounded by the derivatives of the minimum-norm1124
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interpolant of the fixed kernel (Assumption (N)), here we show that consistency over a large class1125

of distributions is achievable by designing a kernel sequence, which can have Sobolev RKHS, that1126

consists of a smooth component for generalization and a spiky component for interpolation.1127

Recall that k̃ denotes any universal kernel function for the smooth component, and ǩγ denotes1128

the kernel function of the spiky component with bandwidth γ. Then we define the ρ-regularized1129

spiky-smooth kernel with spike bandwidth γ as1130

kρ,γ(x,x
′) = k̃(x,x′) + ρ · ǩγ(x,x′).

Let Bt(x) := {y ∈ Rd | |x− y| ≤ t} denote the Euclidean ball of radius t ≥ 0 around x ∈ Rd.1131

(D2) There exists a constant βX > 0 and a continuous function ϕ : [0,∞) → [0, 1] with ϕ(0) = 01132

such that PX(Bt(x)) ≤ ϕ(t) = O(tβX ) for all x ∈ Ω and all t ≥ 0.1133

The kernel ǩγ of the spiky component should fulfill the following weak assumption on its decay1134

behaviour. For example, Laplace, Matérn, and Gaussian kernels all fulfill Assumption (SK).1135

(SK) There exists a function ε : (0,∞)× [0,∞) → [0, 1] such that for any bandwidth γ > 0 and1136

any δ > 0 it holds that1137

(i) ε(γ, 0) = 1,1138

(ii) ε(γ, δ) is monotonically increasing in γ,1139

(iii) For all x,y ∈ Ω, if |x− y| ≥ δ then |ǩγ(x,y)| ≤ ε(γ, δ),1140

(iv) For any rates βX , βk > 0 there exists a rate βγ > 0 such that, if δn = Ω(n−βX ) and1141

γn = O(n−βγ ), then ε(γn, δn) = O(n−βk).1142

Theorem G.1 (Consistency of spiky-smooth ridgeless kernel regression). Assume that the1143

training set D consists of n i.i.d. pairs (x, y) ∼ P such that the marginal PX fulfills (D2) and1144

Ey2 <∞. Let the kernel components satisfy:1145

• k̃ denotes an arbitrary universal kernel, and ρn → 0 and nρ4n → ∞.1146

• ǩγn denotes a kernel function that fulfills Assumption (SK) with a sequence of positive1147

bandwidths (γn) fulfilling γn = O(exp(−βn)) for some arbitrary β > 0.1148

Then the minimum-norm interpolant of the ρn-regularized spiky-smooth kernel sequence kn := kρn,γn1149

is consistent for P .1150

Remark G.2 (Spike bandwidth scaling). Under stronger assumptions on ϕ and ε in assumptions1151

(D2) and (SK), the spike bandwidths γn can be chosen to converge to 0 at a much slower rate. For1152

example, if we choose ǩγ to be the Laplace kernel, choosing bandwidths 0 < γn ≤ δ
β lnn yields, for1153

separated points |x− y| ≥ δ,1154

ǩγn(x,y) ≤ exp

(
− δ

γn

)
≤ n−β .

For probability measures with upper bounded Lebesgue density, we can choose δn = n−
2+α
d and1155

β = 9
4 +

α
2 , for any fixed α > 0, in the proof of Theorem 7. Hence the Laplace kernel only requires a1156

slow bandwidth decay rate of γn = Ω

(
n− 2+α

d

α ln(n)

)
, where α > 0 arbitrary. For the Gaussian kernel an1157

analogous argument yields γn = Ω

(
n− 4+2α

d

α ln(n)

)
. The larger the dimension d, the slower the required1158

bandwidth decay. ◀1159

Remark G.3 (Generalizations). If one does not care about continuous kernels, one could simply1160

take a Dirac kernel as the spike and then obtain consistency for all atom-free PX . However, we1161

need a continuous kernel to be able to translate it to an activation function for the NTK. Beyond1162

kernel regression, the spike component ǩγ does not even need to be a kernel, it just needs to fulfill1163

Assumption (SK) or a similar decay criterion. Then one could still use the ’quasi minimum-norm1164

estimator’ x 7→ (k̃ + ρnǩγn)(x,X) · (K̃ + ρnǨγn)
+y. ◀1165

Remark G.4 (Consistency with a single kernel function). Without resorting to kernel sequences as1166

we do, there seems to be no rigorous proof showing that ridgeless kernel regression can be consistent1167

in fixed dimension. In future work, can an analytical expression of such a kernel be found? According1168
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to the semi-rigorous results in Mallinar et al. (2022) a spectral decay like λk = Θ(k−1 · logα(k)),1169

α > 1 could lead to such a kernel. ◀1170

Proof of Theorem G.1. Given any universal kernel, (Steinwart, 2001, Theorem 3.11 or Example 4.6)1171

implies universal consistency of kernel ridge regression if ρn → 0 and nρ4n → ∞. Hence, for any1172

ε > 0 it holds that1173

lim
n→∞

Pn
(
D ∈ (Rd × R)n | RP (f̂ k̃ρn)−RP (f

∗
P ) = Ex(f̂

k̃
ρn(x)− f∗P (x))

2 ≥ (ε/2)2
)
= 0.

Due to the triangle inequality in L2(PX), we know

RP (f̂
kn
0 )−RP (f

∗
P ) = Ex(f̂

kn
0 (x)− f∗P (x))

2

≤
((

Ex(f̂
kn
0 (x)− f̂ k̃ρn(x))

2
)1/2

+
(
Ex(f̂

k̃
ρn(x)− f∗P (x))

2
)1/2)2

.

It is left to show that kn fulfills1174

lim
n→∞

Pn
(
D ∈ (Rd × R)n | Ex(f̂

kn
0 (x)− f̂ k̃ρn(x))

2 ≥ (ε/2)2
)
= 0.

For this purpose we decompose the above difference into the difference of Ǩγn := ǩγn(X,X) and
In and a remainder term depending on ǩγn . We denote the 2-operator norm by ∥ ·∥ and the Euclidean
norm in Rn by | · |. For any x ∈ Rd it holds that

|f̂k0 (x)− f̂ k̃ρn(x)| ≤
∣∣∣(k̃ + ρnǩγn)(x,X) · (K̃ + ρnǨγn)

−1y − k̃(x,X) · (K̃ + ρnIn)
−1y

∣∣∣
≤
∣∣∣k̃(x,X)

(
(K̃ + ρnǨγn)

−1 − (K̃ + ρnIn)
−1
)
y
∣∣∣

+ρn ·
∣∣∣ǩγn(x,X)(K̃ + ρnǨγn)

−1y
∣∣∣

≤ ∥k̃(x,X)∥ ·
∥∥∥(K̃ + ρnǨγn)

−1 − (K̃ + ρnIn)
−1
∥∥∥ · |y|

+ρn · ∥ǩγn(x,X)∥ · ∥(K̃ + ρnǨγn)
−1∥ · |y|.

Consequently we get

Ex(f̂
k
0 (x)− f̂ k̃ρn(x))

2 ≤ 2 Ex∥k̃(x,X)∥2 ·
∥∥∥(K̃ + ρnǨγn)

−1 − (K̃ + ρnIn)
−1
∥∥∥2 · |y|2 (G.1)

+ 2 ρ2n · Ex∥ǩγn(x,X)∥2 · ∥(K̃ + ρnǨγn)
−1∥2 · |y|2. (G.2)

We now bound the individual terms in Eq. (G.1) and (G.2). To this end, fix any α > 0.1175

Bounding Eq. (G.1):1176

Since we assumed yi i.i.d. and Ey21 <∞, the Markov inequality implies, with bn = Ey21 · nα,1177

P (|y|2 ≥ bnn) ≤
Ey21
bn

= n−α.

Stated differently, with probability at least 1− n−α it holds that |y|2 ≤ Ey21 · n1+α.1178

In order to bound the spectrum of Ǩγn , Lemma G.5 implies that there exists a positive sequence1179

δα(n) = n
− 2+α

βX such that with probability at least 1−O(n−α) it holds that1180

min
i,j∈[n]:i ̸=j

|xi − xj | ≥ δα(n).

Since (γn) fulfills γn = O(n−βγ ) for any βγ > 0, by Assumption (SK) there exists a sequence1181

εn = o(ρnn
−2−α

2 ) such that ε(γn, δα(n)) ≤ εn. Assumption (SK) further implies that whenever1182

mini,j∈[n]:i ̸=j |xi − xj | ≥ δα(n) it holds that (Ǩγn)ii = 1 and 0 ≤ (Ǩγn)ij ≤ ε(γn, δα(n)) ≤ εn1183

for i ̸= j. Then Gershgorin’s theorem (Gerschgorin, 1931) implies that for all eigenvalues of Ǩγn1184

|λi(Ǩγn)− 1| ≤ (n− 1)εn for all i ∈ [n].

45



This in turn implies1185

∥Ǩγn − In∥ ≤ (n− 1)εn, λmax(Ǩγn) ≤ 1 + (n− 1)εn, λmin(Ǩγn) ≥ 1− (n− 1)εn.

Using ∥(K̃ + ρnIn)
−1∥ ≤ 1

λmin(K̃)+ρn
≤ ρ−1

n and ∥Ǩγn − In∥ ≤ (n− 1)εn, Lemma G.6 implies∥∥∥(K̃ + ρnǨγn)
−1 − (K̃ + ρnIn)

−1
∥∥∥ ≤ ∥(K̃ + ρnIn)

−1∥2 · ρn∥Ǩγn − In∥
1− ∥(K̃ + ρnIn)−1∥ · ρn∥Ǩγn − In∥

≤ ρ−1
n (n− 1)εn

1− (n− 1)εn
.

Using |k̃(x,Xi)| ≤ 1 for all i ∈ [n] yields the naive bound ∥k̃(x,X)∥2 ≤ n.1186

Combining all terms in Eq. (G.1) yields its convergence to 0 as the product satifies the rate1187

O(n4+αρ−2
n ε2n) = o(1) with probability at least 1− 2n−α.1188

Bounding Eq. (G.2):1189

The analysis below is restricted to the event of probability at least 1− 2n−α, on which the bound on1190

Eq. (G.1) holds.1191

Since (n− 1)εn → 0, for any C > 1 it holds for n large enough,1192

ρn · ∥(K̃ + ρnǨγn)
−1∥ ≤ ρn

λmin(K̃) + ρn(1− (n− 1)εn)
≤ 1

(1− (n− 1)εn)
≤ C.

Finally we show supx′∈Rd Exǩγn(x,x
′)2 ≤ 2n−(2+α) for n large enough.1193

Fix an arbitrary x′ ∈ Rd. Then by construction of δα(n) and εn it holds that

Exǩγn(x,x
′)2 ≤ 1 · PX({x ∈ Rd : ǩγn(x,x′)2 ≥ ε2n}) + ε2n

≤ PX({x ∈ Rd : |x− x′| < δα(n)}) + ε2n
≤ ϕ(δα(n)) + ε2n ≤ n−(2+α) + ε2n.

Since ε2n = o(ρ2nn
−4−α), we get Exǩγn(x,x

′)2 ≤ 2n−(2+α) for n large enough.1194

Combining all terms in Eq. (G.2) yields its convergence to 0 with the rate O(n−(2+α) · 1 · n1+α) =1195

O(n−1) with probability at least 1− 2n−α, which concludes the proof.1196

G.1 Auxiliary results for the proof of Theorem 71197

The distributional Assumption (D2) immediately implies that the training points are separated with1198

high probability.1199

Lemma G.5. Assume (D2) is fulfilled with βX > 0. Then with probability at least 1−O(n−α),1200

min
i,j∈[n]:i ̸=j

|xi − xj | ≥ n
− 2+α

βX .

Proof. For any i ∈ [n], the union bound implies1201

P ( min
j∈[n]:i̸=j

|xi − xj | ≤ δ) = P

 ⋃
j∈[n]:j ̸=i

{xj ∈ Bδ(xi)}

 ≤ (n− 1)ϕ(δ).

Another union bound yields1202

P ( min
i,j∈[n]:i̸=j

|xi − xj | ≤ δ) ≤ n(n− 1)ϕ(δ).

Choosing δα(n) = n
− 2+α

βX yields ϕ(δα(n)) = O( 1
n2+α ), which concludes the proof.1203

The following lemma bounds ∥A−1 − B−1∥ via ∥A−1∥ and ∥A − B∥. Similar results can for1204

example be found in (Horn and Johnson, 2013, Section 5.8).1205

46



Lemma G.6. Let A,B ∈ Rn×n be invertible matrices and let ∥ · ∥ be a submultiplicative matrix1206

norm with ∥In∥ = 1. If A and B fulfill ∥A−1∥∥A−B∥ < 1, then it holds that1207

∥B−1 −A−1∥ ≤ ∥A−1∥2 · ∥A−B∥
1− ∥A−1∥ · ∥A−B∥

.

Proof. Because of ∥A−1(A−B)∥ ≤ ∥A−1∥∥A−B∥ < 1 we get1208

∥I −A−1(A−B)∥ ≥ 1− ∥A−1∥∥A−B∥.

Writing B = A(I −A−1(A−B)) yields B−1 = (I −A−1(A−B))−1A−1 which implies1209

∥B−1∥ ≤ ∥A−1∥
1− ∥A−1∥∥A−B∥

.

Now write B−1 −A−1 = A−1(A−B)B−1 to get1210

∥B−1 −A−1∥ ≤ ∥A−1∥∥A−B∥∥B−1∥.

Combining the last two inequalities concludes the proof.1211

G.2 RKHS norm bounds1212

Here we show that if k̃ and ǩγ have RKHS equivalent to some Sobolev space Hs, s > d/2, then1213

the RKHS of the spiky-smooth kernel kρ,γ is also equivalent to Hs, for any fixed ρ, γ > 0. Hence1214

all members of the spiky-smooth kernel sequence may have RKHS equivalent to a Sobolev space1215

Hs and are individually inconsistent due to Theorem 1; yet the sequence is consistent. This shows1216

that when arguing about generalization properties based on RKHS equivalence, the constants matter1217

and the narrative that depth does not matter in the NTK regime as in Bietti and Bach (2021) is too1218

simplified.1219

The following proposition states that the sum of kernels with equivalent RKHS yields an RKHS that1220

is equivalent to the RKHS of the summands. For example, the spiky-smooth kernel with Laplace1221

components possesses an RKHS equivalent to the RKHS of the Laplace kernel.1222

Proposition G.7. Let H1 and H2 denote the RKHS of k1 and k2 respectively. If H1 = H2 then1223

the RKHS H of k = k1 + k2 fulfills H = H1. Moreover, if C ≥ 1 is a constant with 1
C ∥f∥H2 ≤1224

∥f∥H1
≤ C∥f∥H2

, then we have 1√
2C

∥f∥H1
≤ ∥f∥H ≤ ∥f∥H1

.1225

Proof. The RKHS of k = k1 + k2 is given by H = H1 +H2 with norm

∥f∥2H = min{∥f1∥2H1
+ ∥f2∥2H2

: f = f1 + f2, f1 ∈ H1, f2 ∈ H2} .

To see this we consider the map Φ : X → H1 ×H2 defined by Φ(x) := (Φ1(x, ·),Φ2(x, ·)) for all1226

x ∈ X , where X is the set, the spaces Hi live on and Φi(x) := ki(x, ·). The reproducing property1227

of k1 and k2 immediately ensures that Φ is a feature map of k1 + k2 and Theorem E.3 then shows1228

H =
{
⟨w,Φ(·)⟩H1×H2

: w ∈ H1 ×H2

}
=
{
⟨w1,Φ1(·)⟩H1

+ ⟨w2,Φ2(·)⟩H2
: w1 ∈ H1, w2 ∈ H2

}
= H1 +H2

as well as the formula for the norm on H. Now let f ∈ H. Considering the decomposition f = f1+01229

then gives ∥f∥H ≤ ∥f∥H1
. Moreover, for f = f1 + f2 with fi ∈ Hi we have1230

∥f∥H1
≤ ∥f1∥H1

+ ∥f2∥H1
≤ ∥f1∥H1

+ C∥f2∥H2
≤

√
2C
(
∥f1∥2H1

+ ∥f2∥2H1

)1/2
.

Taking the infimum over all decomposition then yields the estimate ∥f∥H1
≤

√
2C∥f∥H.1231
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H Spiky-smooth activation functions induced by Gaussian components1232

Here we explore the properties of the NNGP and NTK activation functions induced by spiky-smooth1233

kernels with Gaussian components.1234

To offer some more background, it is well-known that NNGPs and NTKs on the sphere Sd are1235

dot-product kernels, i.e., kernels of the form kd(x,x
′) = κ(⟨x,x′⟩), where the function κ has a1236

series representation κ(t) =
∑∞
i=0 bit

i with bi ≥ 0 and
∑∞
i=0 bi <∞. The function κ is independent1237

of the dimension d of the sphere. Conversely, all such kernels can be realized as NNGPs or NTKs1238

(Simon et al., 2022, Theorem 3.1).1239

As dot-product kernel k(x,y) = κ(⟨x,y⟩) on the sphere, the Gaussian kernel has the simple analytic1240

expression,1241

κGaussγ (z) = exp

(
2(z − 1)

γ

)
,

with Taylor expansion1242

κGaussγ (z) =

∞∑
i=0

2i

γii!
exp(−2/γ)︸ ︷︷ ︸
bGauss
i

zi.

For spiky-smooth kernels k = k̃ + ρǩγ with Gaussian components k̃ and ǩγ of width γ̃ and γ
respectively, we get Taylor series coefficients

bi =
exp(−2/γ̃)

i!

(
2

γ̃

)i
+ ρ

exp(−2/γ)

i!

(
2

γ

)i
. (H.1)

Now Theorem 8 states that as soon as κ induces a dot-product kernel for every input dimension d,1243

then the dot-product kernels can be written as the NNGP kernel of a 2-layer fully-connected network1244

without biases and with the induced activation function1245

ϕκNNGP (x) =

∞∑
i=0

sib
1/2
i hi(x),

or as the NTK of a 2-layer fully-connected network without biases and with the induced activation1246

function1247

ϕκNTK(x) =

∞∑
i=0

si

(
bi

i+ 1

)1/2

hi(x),

where hi denotes the i-th Probabilist’s Hermite polynomial normalized such that ∥hi∥L2(N (0,1)) = 11248

and si ∈ {−1,+1} are arbitrarily chosen for all i ∈ N.1249

Now we can study the induced activation functions if we know the kernel’s Taylor coefficients1250

(bi)i∈N0
. If infinitely many bi > 0, then infinitely many activation functions induce the same dot-1251

product kernel, with different choices of the signs si. For alternating signs si = −1 if i is odd and1252

si = 1 if i is even, the symmetry property hi(−x) = (−1)ihi(x) of the Hermite polynomials implies1253

ϕNNGP,+−(x) = ϕNNGP,+(−x), ϕNTK,+−(x) = ϕNTK,+(−x).

To form an orthonormal basis of L2(N (0, 1)) the unnormalized Probabilist’s Hermite polynomials
Hei have to be normalized by hi(x) = 1√

i!
Hei(x). We can use the identity exp(xt − t2

2 ) =∑∞
i=0Hei(x)

ti

i! with t =
√
2/γ to analytically express the NNGP activation of the Gaussian kernel

with all si = +1 as the exponential function

ϕGaussNNGP (x) = exp(−1/γ)

∞∑
i=0

1

i!

(
2

γ

) i
2

hi(x) = exp

((
2

γ

) 1
2

· x− 2

γ

)
. (H.2)

For ϕNNGP (x) =
∑∞
i=0 si

√
bihi(x), we get ∥ϕ∥2L2(N (0,1)) =

∑∞
i=0 bi invariant to the choice

{si}i∈N, which yields

∥ϕGaussNNGP ∥2L2(N (0,1)) = exp(−2/γ)

∞∑
i=0

1

i!

(
2

γ

)i
= 1, (H.3)
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because {hi}i∈N0 is an ONB of L2(N (0, 1)). Analogously,

∥ϕGaussNTK ∥2L2(N (0,1)) = exp(−2/γ)

∞∑
i=0

1

(i+ 1)!

(
2

γ

)i
= exp(−2/γ)

γ

2

∞∑
i=1

1

i!

(
2

γ

)i
=
γ

2

(
1− exp

(
− 2

γ

))
. (H.4)

This implies that the average amplitude of NNGP activation functions does not depend on γ, while1254

the average amplitude of NTK activation functions decays with γ → 0.1255

By the fact h′n(x) =
√
nhn−1(x), we know that any activation function ϕ(x) =

∑∞
i=0 siaihi(x) has1256

the derivative ϕ′(x) =
∑∞
i=0 siai+1

√
i+ 1 · hi(x) as long as

∑∞
i=0 |ai+1

√
i+ 1| <∞.1257

The following proposition formalizes the additive approximation ϕk ≈ ϕk̃ + ρ1/2ϕǩγ , and quantifies1258

the necessary scaling of γ for any demanded precision of the approximation.1259

Proposition H.1. Fix γ̃, ρ > 0 arbitrary. Let k = k̃ + ρǩγ denote the spiky-smooth kernel where
k̃ and ǩγ are Gaussian kernels of bandwidth γ̃ and γ, respectively. Assume that we choose the
activation functions ϕkNTK , ϕk̃NTK and ϕǩγNTK as in Theorem 8 with same signs {si}i∈N. Then, for
γ > 0 small enough, it holds that

∥ϕkNTK − (ϕk̃NTK +
√
ρ · ϕǩγNTK)∥2L2(N (0,1)) ≤ 21/2ργ3/2 exp

(
− 1

γ

)
+

4πγ(1 + γ̃)

γ̃
,

∥ϕkNNGP − (ϕk̃NNGP +
√
ρ · ϕǩγNNGP )∥2L2(N (0,1)) ≤ 23/2ργ1/2 exp

(
− 1

γ

)
+

8πγ(1 + γ̃)

γ̃2
.

Proof. Let bi,γ = 2i

γii! exp(−2/γ) denote the Taylor coefficients of the Gaussian kernel. All consid-
ered infinite series converge absolutely.

∥ϕγ̃,γ,ρNNGP − (ϕγ̃NNGP +
√
ρ · ϕγNNGP )∥2L2(N (0,1))

=∥
∞∑
i=0

si
√
bi,γ̃ + ρbi,γhi(x)−

∞∑
i=0

si(
√
bi,γ̃ +

√
ρbi,γ)hi(x)∥2L2(N (0,1))

=

∞∑
i=0

(√
bi,γ̃ + ρbi,γ − (

√
bi,γ̃ +

√
ρbi,γ)

)2
≤ 2

I∑
i=0

(
√
bi,γ̃ + ρbi,γ − b

1/2
i,γ̃ )

2

︸ ︷︷ ︸
(I)

+2 ρ

I∑
i=0

bi,γ︸ ︷︷ ︸
(II)

+2

∞∑
i=I+1

(
√
bi,γ̃ + ρbi,γ − ρ1/2b

1/2
i,γ )

2

︸ ︷︷ ︸
(III)

+2

∞∑
i=I+1

bi,γ̃︸ ︷︷ ︸
(IV )

,

for any I ∈ N. To bound (I) observe
I∑
i=0

(
√
bi,γ̃ + ρbi,γ − b

1/2
i,γ̃ )

2 =

I∑
i=0

(
ρbi,γ + 2bi,γ̃

(
1−

√
1 +

ρbi,γ
bi,γ̃

))
≤ ρ

I∑
i=0

bi,γ .

An analogous calculation for (III) yields1260

∞∑
i=I+1

(
√
bi,γ̃ + ρbi,γ − ρ1/2b

1/2
i,γ )

2 ≤
∞∑

i=I+1

bi,γ̃ .

So overall we get the bound

∥ϕγ̃,γ,ρNNGP − (ϕγ̃NNGP +
√
ρ · ϕγNNGP )∥2L2(N (0,1)) ≤ 4ρ

I∑
i=0

bi,γ + 4

∞∑
i=I+1

bi,γ̃ . (H.5)

Now, defining c := 2/γ,1261

I∑
i=0

bi,γ = exp(−c)
I∑
i=0

1

i!
ci =

Γ(I + 1, c)

I!
,
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where Γ(k + 1, c) denotes the upper incomplete Gamma function. Choosing I = ⌊ c
2π ⌋, (Pinelis,

2020, Theorem 1.1) yields, for c ≥ 121,
Γ(I + 1, c)

I!
≤ exp(−c) (c+ (I + 1)!1/I)I+1

(I + 1)! · (I + 1)!1/I
≤ exp(−c)(c+ I)I+1

(I + 1)!(I+1)/I

≤ exp(−c)(c+ I)I+1

(2π(I + 1))1/2
(
I+1
e

)(I+1)2/I

≤ 1√
2π(I + 1)

exp
(
− c+ (I + 1)

(
ln(c+ I)− ln(I + 1) + 1

))
≤ 1√

c
exp

(
− c+ (

c

2π
+ 1)

(
ln(

2π + 1

2π
c)− ln(

c

2π
) + 1

))
≤ 1√

c
exp

(
− c+ (

c

2π
+ 1)

(
ln(2π + 1) + 1

))
≤ exp

(
− c

2 )√
c

, (H.6)

where we used (I + 1)!1/I ≤ I for I ≥ 3 in the first line, Stirling’s approximation in the second line,1262

and ( c2π + 1)
(
ln(2π + 1) + 1

)
≤ c/2 for c ≥ 121 in the last line.1263

It is obvious that1264 ∞∑
i=I+1

bi,γ̃ → 0, for I = ⌊ c
2π

⌋ → ∞.

To quantify the rate of convergence, we use the bound Γ(I + 1, c0) ≥ e−c0I!(1 + c0/(I + 1))I ,
which follows from applying Jensen’s inequality to Γ(I + 1, c0) = e−c0I!E(1 + c0/G)

I , where
G ∼ Γ(I + 1, 1) and EG = I + 1. Defining c0 = 2/γ̃, it holds that

∞∑
i=I+1

bi,γ̃ ≤ 1− Γ(I + 1, c0)

I!
≤ 1− e−c0

(
1 +

c0
I + 1

)I
≤ 1− e−c0

(
1 +

c0
I + 1

)I+1

.

Taking the first two terms of the Laurent series expansion of n 7→
(
1 + c0

n

)n
about n = ∞ yields1265 (

1 + c0
I+1

)I+1

> ec0(1− c20
2(I+1) ) for I large enough (where we demand γ ∈ o(γ̃2)), thus1266

∞∑
i=I+1

bi,γ̃ ≤ 1− e−c0
(
1 +

c0
I + 1

)I+1

·
(
1 +

c0
I + 1

)−1

≤ c0/(I + 1) + c20/(2(I + 1))

1 + c0/(I + 1)
≤ c0
I + 1

+
c20

2(I + 1)
≤ 4π

γ̃c
+

4π

γ̃2c
. (H.7)

Plugging (H.6) and (H.7) into (H.5) yields, for γ ≤ 1/61,1267

∥ϕγ̃,γ,ρNNGP − (ϕγ̃NNGP +
√
ρ · ϕγNNGP )∥2L2(N (0,1)) ≤ 23/2ργ1/2 exp

(
− 1

γ

)
+

8πγ(1 + γ̃)

γ̃2
.

For the NTK we get
∥ϕγ̃,γ,ρNTK − (ϕγ̃NTK +

√
ρ · ϕγNTK)∥2L2(N (0,1))

=∥
∞∑
i=0

si

√
bi,γ̃ + ρbi,γ
i+ 1

hi(x)−
∞∑
i=0

si

(√
bi,γ̃
i+ 1

+

√
ρbi,γ
i+ 1

)
hi(x)∥2L2(N (0,1))

=

∞∑
i=0

1

i+ 1

(√
bi,γ̃ + ρbi,γ − (

√
bi,γ̃ +

√
ρbi,γ)

)2
.

We can proceed exactly as for the NNGP, but choose I = ⌊ c
2π ⌋ − 1 to get1268

I∑
i=0

bi,γ
i+ 1

= exp(−c)
I∑
i=0

ci

(i+ 1)!
=

exp(−c)
c

(
I+1∑
i=0

ci

i!
− 1

)
≤ exp(−c/2)

c3/2
− exp(−c)

c
,

and replace (H.7) with
∞∑

i=I+1

bi,γ̃
i+ 1

=
exp(−c0)

c0

∞∑
i=I+2

ci0
i!

≤ 1

I + 2
+

c0
2(I + 2)

≤ πγ(1 + γ̃)

γ̃
.
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I Additional experimental results1269

The code to reproduce all our experiments is provided in the supplementary material. Our imple-1270

mentations rely on PyTorch (Paszke et al., 2019) for neural networks and mpmath (Johansson et al.,1271

2023) for high-precision calculations.1272

I.1 Experimental details of Figure 11273

For the kernel experiment (Figure 1a), we used the Laplace kernel with bandwidth 0.4 and the1274

spiky-smooth kernel (4) with Laplace components with ρ = 1, γ̃ = 1, γ = 0.01.1275

For the neural network experiment (Figure 1b,c) we initialize 2-layer networks with NTK parametriza-1276

tion (Jacot et al., 2018) and He initialization (He et al., 2015). Using the antisymmetric initialization1277

trick from Zhang et al. (2020) doubles the network width from 10000 to 20000 and helps to prevent1278

errors induced by the random initialization function. We train the network with stochastic gradient1279

descent of batch size 1 over the 15 training samples with learning rate 0.04 for 2500 epochs. Train-1280

ing with gradient descent and learning rate 0.4 produces similar results. We use the spiky-smooth1281

activation function given by x 7→ ReLU(x) + 0.01 · (sin(100x) + cos(100x)), which corresponds1282

to x 7→ ReLU(x) + ωNTK(x, 1
5000 ), including both even and uneven Hermite coefficients.1283

I.2 Disentangling signal from noise in neural networks with spiky-smooth activation functions1284

Since our spiky-smooth activation function has the additive form σspsm(x) = ReLU(x) +
ωNTK(x; 1

5000 ), we can dissect the learned neural network

fspsm(x) = W 2 · σspsm(W 1 · x+ b1) + b2 = fReLU (x) + fspikes(x) (I.1)

into its ReLU -component1285

fReLU (x) = W 2 ·ReLU(W 1 · x+ b1) + b2,

and its spike component1286

fspikes(x) = W 2 · ωNTK(W 1 · x+ b1;
1

5000
).

If the analogy to the spiky-smooth kernel holds and fspikes fits the noise in the labels while having a1287

small L2-norm, then fReLU would have learned the signal in the data. Indeed Figure I.1 demonstrates1288

that this simple decomposition is useful to disentangle the learned signal from the spike component1289

in our setting. The figure also suggests that the oscillations in the activations of the hidden layer1290

constructively interfere to interpolate the training points, while the differing frequencies and phases1291

approximately destructively interfere on most of the remaining covariate support. Figure I.2 shows1292

some of the functions generated by the hidden layer neurons of the spike component fspikes. Both1293

the phases and frequencies vary. Destructive interference in sums of many oszillations occurs, for1294

example, under a uniform phase distribution.1295

An exciting direction of future work will be to understand when and why the neural networks with1296

spiky-smooth activation functions learn the target function well, and when the decomposition into1297

ReLU - and spike component succeeds to disentangle the noise from the signal. Particular challenges1298

will be to design architectures and learning algorithms that provably work on complex data sets and1299

to determine their statistical convergence rates. A different line of work could evaluate whether there1300

exist useful spike components for deep and narrow networks beyond the pure infinite-width limit.1301

Maybe for deep architectures is suffices to apply spiky-smooth activation functions only between the1302

penultimate and the last layer.1303
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Figure I.1: a. TheReLU -component fReLU (blue) and the full spiky-smooth network fspsm (orange)
of the learned neural network from Figure 1. b. The spike component fspikes of the learned neural
network from Figure 1 against the label noise in the training set, derived by subtracting the signal
from the training points. Observe that the ReLU -component has learned the signal, while the spike
component has fitted the noise in the data while regressing to 0 between data points.
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Figure I.2: Here we plot the functions learned by 12 random hidden layer neurons of the spike
component network fspikes corresponding to Figure 1.

Of course an analogous additive decomposition exists for the minimum-norm interpolant f̂k0 of the
spiky-smooth kernel,

f̂k0 (x) = (k̃ + ρnǩγn)(x,X) · (K̃ + ρnǨγn)
−1y = fsignal(x) + fspikes(x), (I.2)

where1304

fsignal(x) = k̃(x,X) · (K̃ + ρnǨγn)
−1y, fspikes(x) = ρnǩγn(x,X) · (K̃ + ρnǨγn)

−1y.

We plot the results in Figure I.3. Observe that the spikes fspikes regress to 0 more reliably than in the1305

neural network.1306

Although spiky-smooth estimators can be consistent, any method that interpolates noise cannot1307

be adversarially robust. The signal component fsignal may be a simple correction towards robust1308

estimators. Figure I.4 suggests that the signal components of spiky-smooth estimators behave1309

more robustly than ReLU networks or minimum-norm interpolants of Laplace kernels in terms of1310

finite-sample variance.1311
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Figure I.3: a. The signal component fsignal (blue) and the full minimum-norm interpolant f̂k0 (orange)
of the spiky-smooth kernel from Figure 1. b. The spike component fspikes of the spiky-smooth
kernel from Figure 1 against the label noise in the training set, derived by subtracting the signal from
the training points.

I.3 Repeating the finite-sample experiments1312

We repeat the experiment from Figure 1 100 times, both randomizing with respect to the training set1313

and with respect to neural network initialization.1314

For the kernels (Figure I.4a), observe that all minimum-norm kernel interpolants are biased towards1315

0. While the Laplace kernel and the signal component (I.2) of the spiky-smooth kernel have similar1316

averages, the spiky-smooth kernel has a slightly larger bias. However, both the spiky-smooth kernel1317

as well as its signal component produces lower variance estimates than the Laplace kernel.1318

Considering the trained neural networks (Figure I.4b), the ReLU networks are approximately unbiased,1319

but have large variance. The neural networks with spiky-smooth activation function as well as the1320

extracted signal network (I.1) are similar on average: They are slighly biased towards 0, but have1321

much smaller variance than the ReLU networks.1322
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Figure I.4: We repeat the experiment from Figure 1 100 times and report the mean values (lines).
Confidence bands denote the interval between the empirical 2.5%- and 97.5%-quantiles from the 100
independent runs.

The training curves (Figure I.4c) offer similar conclusions as Figure 1: While the ReLU networks1323

harmfully overfit over the course of training, the neural networks with spiky-smooth activation1324

function quickly overfit to 0 training error with monotonically decreasing test error, which on average1325

is almost optimal, already with only 15 training points. The spiky-smooth networks have smaller1326

confidence bands, indicating increased robustness compared to the ReLU networks. If the ReLU1327

networks would be early-stopped with perfect timing, they would generalize similarly well as the1328

networks with spiky-smooth activation function.1329

I.4 Spiky-smooth activation functions1330

In Figures I.5 and I.6 we plot the 2-layer NTK activation functions induced by spiky-smooth kernels1331

with Gaussian components, where k̃ has bandwidth 1, and in the first figure ρ = 1 while in the second1332

figure ρ = 0.1.1333
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Figure I.5: The 2-layer NTK activation functions for Gaussian-Gaussian spiky-smooth kernels with
varying γ (columns) with kmax = 1000, k̃ has bandwidth 1, ρ = 1. Top: all si = +1, middle:
+,+,−,−,+,+, ..., bottom: Random +1 and −1. Although the activation function induced by the
spiky-smooth kernel is not exactly the sum of the activation functions induced by its components, this
approximation is accurate because the spike components approximately live in a subspace of higher
frequency in the Hermite basis orthogonal to the low-frequency subspace of the smooth component.
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Figure I.6: Same as above but ρ = 0.1. The high-frequency fluctuations are much smaller compared
to Figure I.5.

In Figure I.7 we plot the corresponding 2-layer NNGP activation functions with ρ = 1. In contrast to1334

the NTK activation functions the amplitudes of the fluctuations only depends on ρ and not on γ. Our1335

intuition is the following: Since the first layer weights are not learned in case of the NNGP, the first1336

layer cannot learn constructive interference, so that the oscillations in the activation function need to1337

be larger.1338

The additive approximation ϕk ≈ ϕk̃ + ρ1/2ϕǩγ remains accurate in all considered cases (Ap-1339

pendix I.6).1340
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Figure I.7: Same as above but NNGP and ρ = 1. As expected from the isolated spike plots: Spikes
essentially add fluctuations that increase in frequency and stay constant in amplitude for γ → 0, ρ
regulates the amplitude.

I.5 Isolated spike activation functions1341

Figure I.8 is the equivalent of Figure 3 for the NNGP.1342

By plotting the NTK activation components corresponding to Gaussian spikes ϕǩγ with varying1343

choices of the signs si in Figure I.9, we observe the following properties:1344

1. All si = +1 leads to exponentially exploding activation functions, cf. Eq. (H.2).1345

2. If the signs si alternate every second i, i.e. si = +1 iff ⌊ i2⌋ even, ϕǩγ is approximately a1346

single shifted sin-curve with increasing frequency and decreasing/constant amplitude for1347

NTK/NNGP activation functions, cf. Eq. (6).1348

3. If si is chosen uniformly at random, with high probability, ϕǩγ both oscillates at a high1349

frequency around 0 and explodes for |x| → ∞.1350
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Figure I.8: Same as Figure 3 but for the NNGP. In contrast to the NTK, the amplitudes of the
oscillations in a. do not shrink with γ → 0. Otherwise the behaviour is analogous. For example, the
Hermite coefficients peak at 2/γ. The squared coefficients sum to 1 (Eq. (6)).
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Figure I.10 visualizes NNGP activation functions induced by Gaussian spikes with varying bandwidth1351

γ. Observe similar behaviour as for the NTK but amplitudes invariant to γ as predicted by Eq. (6).1352

For smaller γ the explosion of (all+) activation functions starts at larger x, but appears sharper as can1353

be seen in the analytic expression (H.2).1354

Figure I.11 resembles Figure I.9 but plotted on a larger range to visualize the exploding behaviour for1355

|x| → ∞.1356
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Figure I.10: Spike activation components as in Figure I.9, but for the NNGP with x between [−4, 4].
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I.6 Additive decomposition and sin-fit1357

Here we quantify the error of the sin-approximation (8) of Gaussian NTK activation components.1358

The additive decomposition ϕk ≈ ϕk̃ + ρ1/2ϕǩγ quickly becomes accurate in the limit γ → 01359

(Figures I.12 and I.13), the sin-approximation seems to converge pointwise at rate Θ(|x|γ), where1360

a good approximation can be expected when |x| ≪ 1/γ. The error at large |x| arises because the1361

spike component decays for |x| → ∞. For O(1) inputs, we conjecture that this inaccuracy does not1362

dramatically affect the test error of neural networks when γ is chosen to be small.1363
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Figure I.12: The isolated NTK spike activation function (orange), the difference between spiky-
smooth and smooth activation function (blue) and a fitted sin-curve (8) (green). All curves roughly
align, in particular for γ → 0.
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Figure I.13: The error of the additive decomposition ϕk ≈ ϕk̃ + ρ1/2ϕǩγ (blue) and the sin-fit (8) (or-
ange) for the NTK. While the additive decomposition makes errors of order 10−3, 10−4, 10−9, 10−15

(from left to right) in the domain [−4, 4], the sin-fit is increasingly inaccurate for |x| → ∞, and
increasingly accurate for γ → 0.

Now we evaluate the approximation quality of the sin-fits (7) and (8) to the isolated spike activation1364

components ϕǩγ . The NNGP oscillating activation function ϕǩγ of a Gaussian spike component is1365

extremely well approximated by Eq. (7). Both for the NNGP and for the NTK, the approximations1366

become increasingly accurate with smaller bandwidths γ → 0 (Figure I.14). Again the approximation1367

quality suffers for |x| → ∞, since ϕǩγ slowly decay to 0 for |x| → ∞.1368
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I.7 Spiky-smooth kernel hyper-parameter selection1369

To understand the empirical performance of spiky-smooth kernels on finite data sets, we generate1370

i.i.d. data where x ∼ U(Sd) and1371

y = x1 + x2
2 + sin(x3) +

d+1∏
i=1

xi + ε,

with ε ∼ N (0, σ2) independent of x and evaluate the least squares excess risk of the minimum-norm1372

interpolant. Figure I.15 shows that1373

• the smaller the spike bandwidth γ, the better. At some point, the improvement saturates,1374

• ρ should be carefully tuned, it has large impact. As with γ → 0 ridgeless regression with1375

the spiky-smooth kernel approximates ridge regression with k̃ and regularization ρ, simply1376

choose the optimal regularization ρopt of ridge regression.1377

• The spiky-smooth kernel with Gaussian components exhibits catastrophic overfitting, when1378

γ is too large (cf. Mallinar et al. (2022)), the Laplace kernel is more robust with respect to γ.1379

• With sufficiently thin spikes and properly tuned ρ, spiky-smooth kernels with Gaussian1380

components outperform the Laplace counterparts.1381

We repeat the experiment in Figure I.16 with a slightly more complex generating function and come1382

to the same conclusions.1383
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Figure I.16: Same as Figure I.15 but with the more complex generating function y = |x1|+ x2
2 +

sin(2πx3) +
∏d+1
i=1 xi + ε. The errors are larger compared to Figure I.15 and the optimal values of ρ

are smaller, but the conceptual conclusions remain the same.
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