
"Transition-constant Normalization for Image
Enhancement" Supplementary Material

Jie Huang1∗, Man Zhou1,2∗, Jinghao Zhang1 , Gang Yang1, Mingde Yao1,
Chongyi Li3, Zhiwei Xiong1, Feng Zhao1†

1University of Science and Technology of China, China
2Nanyang Technological University, Singapore

3Nankai University, China
{hj0117, manman, jhaozhang, mdyao, yg1997}@mail.ustc.edu.cn,

lichongyi25@gmail.com, {zwxiong, fzhao956}@ustc.edu.cn,

This supplementary document is organized as follows:

Sec. 1 provides more results of applying the TCN for the underwater image enhancement task.

Sec. 2 provides more implementation details.

Sec. 3 provides more materials of explanation and derivation in the method part.

Sec. 4 provides more results of applying the TCN in other backbones.

Sec. 5 provides more visualization results at the feature level when applying the TCN.

Sec. 6 provides more analysis for the TCN statistics and the affined TCN.

Sec. 7 provides more results and discussions about the toy experiments,

Sec. 8 provides more comparison results about the TCN-Net.

Sec. 9 provides more discussions and results of other TCN formats.

Sec. 10 provides more ablation studies for investigating the TCN.

Sec. 11 provides some discussions in the rebuttal.

Sec. 12 provides more visualization results of various image enhancement tasks.

First of all, we’re very sorry there are some typos in the main body need to be revised, and we explain
and revise them as follows:

(1) We wrote the normalized feature in Fig.5 (page 7) and Sec. 4.1 (line 206) as F̂2 in the main
body, actually, it should be written as F̂1 and the written F̂2 is a typo.

(2) The σ2 in Eq. 9 (page 4) and Fig.2 (page 5) in the main body lacks a symbol of √ in the right
of the equation. It should be written as σ2 = 1

HW

∑
i∈[1,H],j∈[1,W]

√
(Fij − µ2)2.

1 Applying the TCN for Underwater Image Enhancement

In the main body, we have discussed applying the TCN for various image enhancement tasks. Here,
to further prove the scalability of the TCN, we apply it for underwater image enhancement. This task
aims to correct the color and lightness-shifted appearance of underwater images to clear one, which
is an important task in the family of image enhancement tasks.
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Specifically, we apply the TCN and its variants on the backbone of PUIENet [1], and we perform the
experiments on the UIEB dataset [2]. We provide the numeric results in Table 1, and the visualization
results in Fig. 18. Both results validate the effectiveness of the TCN.

Settings Baseline (PUIENet) +IN +TCN +Affined TCN +Skip TCN TCN-Net

PSNR/MS-SSIM 20.79/0.8029 20.13/0.7980 21.24/0.8068 21.25/0.8075 20.86/0.8026 21.03/0.7967

Table 1: Comparisons over underwater image enhancement.

2 More Implementation Details

Pseudo code of the TCN. For the implementation of the TCN, we provide the pseudo-code of the
original TCN and the affined TCN as follows:

def TCN(F):

# F: input with shape [N, C, H, W]
F = PixelUnshuffle(F)
# [N, 4C, H/2, W/2]
F1, F2 = Split(F)
# F1, F2: [N, 2C, H/2, W/2]
M2, S2 = CalValue(F2)
# Calculate values in Eq. 9
F1 = Normalization(F1,M2,S2)
# Normalization in Eq. 10
F2 = F2-F1
# Eq. 11
F = Concat(F1, F2)
# F: [N, 4C, H/2, W/2]

F = PixelShuffle(F)

Return F #[N, C, H, W]

def Affined_TCN(F):

# F: input with shape [N, C, H, W]
F = PixelUnshuffle(F)
# [N, 4C, H/2, W/2]
F1, F2 = Split(F)
# F1, F2: [N, 2C, H/2, W/2]
M2, S2 = CalValue(F2)
# Calculate values in Eq. 9
M2 = M2+b
S2 = S2/r
# b, r are affined parameters
# Affined operation in Eq. 18
F1 = Normalization(F1,M2,S2)
# Normalization in Eq. 19
F2 = F2-F1
# Eq. 20
F = Concat(F1, F2)
# F: [N, 4C, H/2, W/2]

F = PixelShuffle(F)

Return F #[N, C, H, W]

Figure 1: Pseudo-code of the two variants of the proposed TCN. The left is the Original TCN
while the right is the Affined TCN.

Implementation details of the TCN-Net. We implement the TCN in an encoder-decoder architecture,
which consists of four scales with a feature channel number of 8. We employ two convolution layers
as the basic unit for processing features in one scale. Specifically, it is designed by integrating three
Affined TCN operations between the basic unit in the encoder part of the first three scales, and two
Skip TCN operations between the first two scales of encoder and decoder. Note that the performance
of the TCN-Net could be further improved if other effective blocks can replace the basic unit, and we
employ the naive convolution to verify the primary effect of the TCN-Net comes from the TCN.

We train the TCN-Net on a single GTX3090 GPU with a batch size of 4 and total epochs of 1000, the
learning rate is set as 8e-4 and decays to half every 200 epochs. The loss function is set as the L1 loss
and the training process is end-to-end.

Implementation details of applying the TCN. For the Original-TCN and the Affined TCN, we
usually apply them before each group of blocks in the network. We apply 3 TCN operations in the
first 3 groups. While for the skip-TCN, we apply 2 Skip-TCN operations in the first two levels of the
encoder-decoder part in the network.
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3 More Details of the Method’s Material

Verify the Normalization ability. In the main body of Eq. 5, we show that γ ≈ 1 satisfies this
equation for any number of x. In fact, γ can be other numbers, and Eq. 5 could not be satisfied in
some cases. In fact, γ far away from 1 would change the content, and image enhancement tasks
usually recover lightness and color that is content irrelevant.

Besides, we further verify that Eq. 5 could be satisfied for images by a toy experiment. We use the
test samples of the MIT-FiveK dataset [3] and augment them using a random number of Λ ∈ [0.2, 5]
and γ ∈ [0.2, 4.0]. We test the L1 distance between the original and augmented one, as well as their
normalized version. The results in Fig. 2 verify the normalization reduces the distance, corresponding
to the left part of Fig. 1 in the main body.

Figure 2: The distance of samples and their augmented one before and after normalization.

Derivation of the Jacobian Matrix in Eq. 15 of the main body. We provide the detailed calculation
procedure of Eq. 15 in the main body as follows.

Recall Eq. 14 and Eq. 15, we rewrite them here again respectively:

F̂1 = (F1 −M(F2))⊘ S(F2),

F̂2 = F2 − F1 ⊘ S(F2) +M(F2)⊘ S(F2),
(1)

Jg =

∂F̂1

∂F1

∂F̂1

∂F2

∂F̂2

∂F1

∂F̂2

∂F2
.

 (2)

Then, let ∂F̂1

∂F2
= △

∂F̂1

∂F1
=

(1− 0)× S(F2)− 0× S(F2)

S2(F2)
=

1

S(F2)
(3)

∂F̂2

∂F1
= 0− 1× S(F2)− 0× F1

S2(F2)
+ 0 = − 1

S(F2)
(4)

∂F̂2

∂F2
= 1− ∂F̂1

∂F2
= 1−△ (5)
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The Jacobian matrix can be written as:

Jg =

[
∂F̂1

∂F1

∂F̂1

∂F2

∂F̂2

∂F1

∂F̂2

∂F2

]
=

[
1

S(F2)
△

− 1
S(F2)

1−△

]
(6)

Employing elementary row and column operations, Jb can be simplified as:

Jg =

[
1

S(F2)
△

− 1
S(F2)

1−△

]
r1+r2→r2−−−−−−→

[
1

S(F2)
△

0 1

]
(7)

Jg =

[
1

S(F2)
△

0 1

]
c1−c2→c1−−−−−−→

[
1

S(F2)
−△ △

−1 1

]
(8)

Jg =

[
1

S(F2)
−△ △

−1 1

]
r1−r2×△→r1−−−−−−−−−→

[
1

S(F2)
0

−1 1

]
(9)

We can see the det(Jg) of Eq. 9 equals to that of Eq. 7, verifying det(Jg) ̸= 0, which demonstrate the
invertible property of the TCN. We also verify this process follows the invertible process as illustrated
in Fig. 3, which is based on the RealNVP’s rule [4].

(a) Forward process (we do not use) (b) Backward process (We use it as forward) 

Set it as calculating 
standard deviation

Set it as calculating 
mean value

Identity mapping

Figure 3: How the TCN is related to the invertible operation.

4 Applying the TCN for more backbones

In the main body, we adopt a few networks as the backbone to integrate the TCN. Here, we employ
more networks as the backbone to demonstrate the scalability and effectiveness of the TCN, which
are described as follows.

For low-light image enhancement. We further employ the NAFNet [5] as the backbone, and perform
the experiments on the Huawei dataset [6]. The extensive results presented in Table 2 validate the
effectiveness of the proposed TCN.

Settings Baseline (NAFNet) +IN +TCN +Affined TCN +Skip TCN
PSNR/MS-SSIM 19.51/0.5738 18.78/0.5558 20.98/0.6210 20.96/0.6217 20.93/0.6064

Table 2: More Comparison over low-light image enhancement on the Huawei dataset.

For exposure correction. We further employ the LCDPNet [7] as the backbone for exposure
correction. We perform the experiments in the SICE dataset [8], and the experimental results in
Table 3 demonstrate the effectiveness of the proposed TCN.

Settings Baseline (LCDPNet) +IN +TCN +Affined TCN +Skip TCN
PSNR/MS-SSIM 20.46/0.6941 20.60/0.6880 20.89/0.7026 20.95/0.7047 20.80/0.6992

Table 3: More Comparison for exposure correction on the SICE dataset.

For SDR2HDR translation. Moreover, we adopt the DRBN [9] as the backbone for SDR2HDR
translation. The experimental results performed on the sritm dataset [10] the HDRTV dataset [11] in
Table 4 demonstrate the effectiveness of the proposed method.

For image dehazing. We also employ the AODNet [12] as the backbone to perform the experiments
in Table 5. The results on the RESIDE dataset [13] validate the TCN’s effectiveness.
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Settings Baseline (DRBN) +IN +TCN +Affined TCN +Skip TCN
sritm dataset 32.52/0.9435 32.39/0.9420 32.88/0.9471 32.94/0.9486 32.77/0.9462

HDRTV dataset 35.48/0.9585 35.11/0.9532 35.61/0.9597 35.53/0.9578 35.76/0.9604

Table 4: More Comparison over SDR2HDR translation in terms of PSNR/SSIM.

Settings Baseline (AODNet) +IN +TCN +Affined TCN +Skip TCN
Indoor 19.69/0.8289 19.08/0.8127 19.74/0.8300 19.69/0.8292 None

Outdoor 23.62/0.9214 24.17/0.9215 23.78/0.9283 23.77/0.9248 None

Table 5: More Comparison over image dehazing in terms of PSNR/SSIM.

5 More Visualization Results of Features

We provide the visualization results of features in the TCN based on the SID as an illustration, which
is trained on the MIT-FiveK dataset. Specifically, as depicted in Fig. 4, the TCN can transform the
feature to a more structured one, demonstrating its ability to extract consistent structure representation.

Moreover, as shown in Fig. 5, the TCN helps stabilize the gradient of the SID in deep layers, which
reflects the TCN could help improve the optimization effect, which has been validated in previous
normalization studies [14, 15].

Input Image Target ImageTCN’s OutputTCN’s Input

Figure 4: Visualization results of the TCN features on SID baseline trained on the MIT-FiveK dataset.

6 More Analysis for Affined TCN and TCN’s Statistic.

Validate the transition-constant of the affined TCN. We further validate the affined TCN satisfies
the invertible constraint that transits information constantly as follows.

Let’s revisit Eq. 13 in the main body, which is written as:

F̂1 = (F1 −M(F2))⊘ S(F2),

F̂2 = F2 − F̂1,
(10)

Following the above format, the affined TCN in Eq. 20 of main body can be expressed as:

F̂1 = (F1 −M(F2)− β)⊘ S(F2)⊙ γ,

F̂2 = F2 − F̂1,
(11)
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Figure 5: The parameter fluctuation in different layers, the TCN stabilizes the weight changes.

where ⊙ denotes the element multiplication. Then, it can be converted as:

F̂1 = (F1 −M(F2)− β)⊘ S(
F2

γ
),

F̂2 = F2 − F1 ⊘ S(
F2

γ
) +M(F2)⊘ S(

F2

γ
) + β ⊘ S(

F2

γ
),

(12)

We calculate the Jacobian matrix of Eq. 12 as:

Jg =

∂F̂1

∂F1

∂F̂1

∂F2

∂F̂2

∂F1

∂F̂2

∂F2

 =

 1

∂S(
F2
γ )

0

−1 1

 (13)

The derivation process is the same as those in Sec.3 in the supplementary material and we omit here.
Upon the det(Jg) ̸= 0, it indicates that Jg is full rank, verifying the invertible property of Affined
TCN and further the transition-constant ability.

Validate µ2 ≈ µ1 and σ2 ≈ σ1 in the TCN. We then further validate the µ2 and σ2 satisfy the
µ2 ≈ µ1 and σ2 ≈ σ1 by the toy experiment in Sec. 4.1 in the main body. Specifically, we replace the
µ2 and σ2 with µ1 and σ1 in Eq. 9 in the main body respectively to demonstrate the reconstruction
results are very similar to the original reconstruction results. We present the experimental settings in
Fig. 6, and the results are shown in Table 6.

As can be seen, setting µ2, σ2 to either µ1, σ1 would lead to nearly the same reconstructed results,
demonstrating they are correspondingly the same. Moreover, these statistics also correspond to those
of the original feature F (Setting (a)). When the statistics have changed, the reconstructed results
would have lower similarity to original one (Setting (b)). All results can validate µ2 ≈ µ1, σ2 ≈ σ1.

Settings Set µ2 as µ1 Set σ2 as σ1 Set µ2 ,σ2 as µ1,σ1 Set µ2 ,σ2 as (a) Set µ2 ,σ2 as (b)
PSNR (dB) 61.95 59.12 59.11 62.15 45.21

Table 6: Reconstruction results by replacing µ2, σ2 in Eq. 9 with other statistics. (a) denotes the
statistics of the original feature F , (b) denotes the statistics of the half-part channels in F .

Decoder

𝑇𝐶𝑁

Encoder

Features

Decoder

𝑇𝐶𝑁

Encoder

Features

Fixed Fixed

Set 𝛍𝟐 𝛔𝟐 in 
Eq.9 to others

PSNR

Figure 6: The experiment illustration corresponding to Sec. 6 and Table 6 in the supplementary.
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7 More Materials of Toy Experiments

We provide more results of the toy experiments here. We provide the reconstruction PSNR of each
test sample on the MIT-FiveK dataset for toy experiment in Fig. 7 (a), which also validates the TCN
has better transition-constant ability than the IN.

Moreover, besides the features provided in the main body, we further test the average distance
between the underexposure and overexposure pairs feature in the TCN. As illustrated in Fig. 7 (b),
the TCN has effectively reduced their distances, demonstrating the normalization ability of the TCN
for capturing lightness-consistence representations. We further present the feature maps in Fig. 8,
which also validates the above conclusion intuitively.

(a) Self-reconstruction performance of testing samples 
in terms of different settings in toy experiment.

(b) Feature distance (MSE) between underexposure and
overexposure samples in the TCN of toy experiment.

Figure 7: Toy experiment results on sample levels. The left is the self-reconstruction similarity of
testing samples, and right is the similarity of underexposure and overexposure pair features in TCN.

Underexposure Input

Overexposure Input

𝑭 of Underexposure 𝑭𝟏 of Underexposure

𝑭 of Overexposure 𝑭𝟏 of Overexposure

𝑭 of Underexposure

𝑭 of Overexposure

Figure 8: Feature visualization of toy experiment. We can see the normalized features (3rd row) and
the output features of the TCN (last row) of underexposure and overexposure become more similar.

8 More results about the TCN-Net

We provide more quantitative results of the TCN-Net and other comparison methods on the low-light
enhancement and exposure correction. The results are presented in Fig. 9, which demonstrates the
TCN-Net achieves an elegant balance between performance and efficiency.
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(a) PSNR and parameters balance of different methods 
in LOL dataset for low-light image enhancement 

(b) PSNR and parameters balance of different methods 
in SICE dataset for exposure correction

TCN-Net (Ours)

RUAS

TCN-Net (Ours)

ECLNet
FECNet

DRBN

SID

MSEC

SNR-Former

DRBN
SID

KIND

KIND++

Uretinex-Net

Restormer

Figure 9: Balance trade-off between PSNR and parameters for different methods.

H
, 
W

C

Batch Normalization

H
, 
W

C

Instance Normalization

H
, 
W

C

Group Normalization

H
, 
W

C

Layer Normalization

Figure 10: The normalization family of different operations, including BN, IN, GN and LN.

9 More Materials of Other TCN Formats

In Sec.3.3 of the main body, besides IN, we have discussed the calculation of µ2 and σ2 can be other
formats, resulting in other TCN formats based on LN, BN, or GN. To depict them besides Eq. 2 in
the main body, we illustrate them in Fig. 10.

Then, we conduct experiments by extending the TCN of these formats on the MIT-FiveK dataset [3],
which is based on the SID backbone. We present the results in Table 7, proving the effectiveness of
the other TCN formats for image enhancement. For GN, its group size is set as 4, and each group has
the same number of channels. In the future, we will investigate more usage of them in other tasks.

Settings Baseline (DRBN) +TCN(IN) +TCN(LN) +TCN(GN) +TCN(BN)

PSNR/MS-SSIM 22.11/0.8684 23.98/0.8851 23.91/0.8846 24.02/0.8859 22.67/0.8733

Settings Baseline (SID) +TCN(IN) +TCN(LN) +TCN(GN) +TCN(BN)

PSNR/MS-SSIM 21.49/0.8425 23.11/0.8581 23.36/0.8607 23.42/0.8595 21.58/0.8510

Table 7: Investigating more TCN formats of other normalization operations on the MIT-FiveK dataset.

More discussions. (1) Since there exist various invertible frameworks, the TCN can be constructed
in other formats if the invertible rules can be satisfied such as the illustration in Fig. 3. (2) The
subsampling manner for dividing the two streams can be other manners which satisfy they have
nearly the same statistics (µ2 ≈ µ1 and σ2 ≈ σ1). After all, the core of our method is its design
concept rather than its implementation formats, which could inspire more work toward designing
transition-constant operations for image enhancement or image restoration tasks.

10 Ablations for Investigating the TCN.

We further investigate the core design of the TCN to validate the reasonableness of its design. We
conduct the experiments on the SID baseline on the MIT-FiveK dataset [3]. We present the two
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IN

(a) Illustration of “half-norm” 

The Same as
TCN’s

operation

(b) Illustration of “split-TCN”, all operations are same 
except the feature sampling manner is the channel split

𝑭𝟐

𝑭𝟏

𝑭𝟐

𝑭𝟏𝑭𝟏

𝑭𝟐
𝑭𝟐

𝑭𝟏

Figure 11: The ablation settings for comparison.

Settings Baseline (DRBN) +IN +half-norm +split-TCN +TCN

PSNR/MS-SSIM 22.11/0.8684 22.93/0.8727 23.80/0.8839 23.76/0.8812 23.98/0.8851

Table 8: Alations for investigating the TCN.

configurations as shown in Fig. 11. The left one denotes that only half of all channels are instance
normalized and we name it "half-norm", which only satisfies the normalization ability but has limited
transition-constant ability without invertible constraint. The right one denotes we replace the sub-
sampling operation of unshuffle with channel split, and we name it "split-TCN". It only satisfies the
transition-constant ability but has limited normalization ability due to the inconsistent statistics of the
two streams (µ2 ≈ µ1 and σ2 ≈ σ1 can not satisfy). The results in Table 8 validate that the TCN
outperforms these two settings and proves its effectiveness.

Moreover, referring to the setting of the toy experiment, we also validate that the "half-norm" in
Sec. 10 can not self-reconstruct well as the TCN as shown in Fig. 12 (HIN is "half-norm" here),
which proves its limited transition-constant ability for reconstructing itself.

11 Some Discussions in the Rebuttal

About the relationship of transition-constant ability and image enhancement. First, for archi-
tectures such as CNN and transformer, they convey information with the driven of reconstruction
losses, thus the whole part of them is nearly transition-constant. However, Instance normalization
(IN) discards information [16] instead of learning to filter the information like CNN or transformer,
making the sub-sequential parts cannot restore the information. This is how IN’s weakness is different

Figure 12: The self-reconstruction results when inserting different operations in the toy experiments.
We additionally include the reconstruction result of "half-norm (HIN)" here.
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from other architectures. Second, due to the IN’s weakness, and its advantage is normalizing different
lightness and thus is useful for image enhancement tasks, we improve the IN with the transition-
constant ability that enables IN can be practically used for image enhancement. Note that this ability
is equipped for IN instead of other parts. Finally, DSN [17] shows the transition-constant ability of
networks can be developed for image enhancement, while this work doesn’t explore IN’s property.

About applying TCN in small features or features with odd number resolution. For the first
question, we implement TCN on the feature with large-size features, while small-size features contain
much less information than the large size, therefore applying the TCN in such information-reduced
features is not necessary. As for the latter question, in experiments, most images’ resolution can be
divided by 2, and we usually apply TCN in the large features whose sizes can be divided by 2. When
applying TCN on features with odd number resolution, we need to resize the feature to the nearest
even resolution preliminary.

Discussion with BN. Firstly, BN is a kind of normalization that has the best capability of keeping
information representation property [18]. Therefore, BN can transit almost all information and thus
can be employed for some low-level vision tasks directly. Differently, other normalization formats
especially IN would destroy information representation according to [1], which is different from
BN. Secondly, for image enhancement, IN is useful for capturing lightness-consistent representation
according to Fig.1, it depicts IN has the potential for image enhancement once with transition constant
property. Meanwhile, BN is not very effective for capturing low-level statistics and thus is not suitable
for image enhancement as shown in supplementary (Table 7). This is why our work is different from
the mentioned two works. We will further clarify this point in the updated version.

Discussion with LN. In fact, LayerNorm(LN) plays the role of balance activation function in the
Transformer, which is different from what we explore for image enhancement. Besides, LN has
a weaker activation ability to the feature than IN, thus improving IN with TCN formats is more
meaningful to extend it for normalizing lightness while conveying the information constantly

12 More Qualitative Results

Due to the page limit of the main body, we provide more visualization results here. We respectively
present the results of low-light image enhancement (Fig. 14 and Fig. 13), exposure correction (Fig. 15),
SDR2HDR translation (Fig. 16), image dehazing (Fig. 17) and underwater image enhancement 18 as
follows. As can be seen, our TCN can help enhance more correct lightness and color, or reduce the
structure artifacts.

Input DRBN DRBN+TCN Ground truth

Figure 13: Visual results of low-light image enhancement on LOL (up) and Huawei (down) datasets.
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Input SID SID+TCN Ground truth

Figure 14: Visual results of low-light image enhancement on MIT-FiveK dataset.

Input DRBN DRBN+TCN Ground truth

Figure 15: Visual results of exposure correction on SICE (up) and MSEC (down) datasets.

Input NAFNet NAFNet+TCN Ground truth

Figure 16: Visual results of SDR2HDR translation on HDRTV dataset (up) and sritm dataset (down).
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Input PFFNet PFFNet+TCN Ground truth

Figure 17: Visual results of image dehazing on SOTS indoor dataset (up) and outdoor dataset (down).

Input PUIENet PUIENet+TCN Ground truth

Figure 18: Visual results of underwater image enhancement on UIEB dataset.

References
[1] Zhenqi Fu, Wu Wang, Yue Huang, Xinghao Ding, and Kai-Kuang Ma. Uncertainty inspired

underwater image enhancement. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 465–482. Springer, 2022.

[2] Chongyi Li, Chunle Guo, Wenqi Ren, Runmin Cong, Junhui Hou, Sam Kwong, and Dacheng
Tao. An underwater image enhancement benchmark dataset and beyond. IEEE Transactions on
Image Processing, 29:4376–4389, 2019.

[3] Vladimir Bychkovsky, Sylvain Paris, Eric Chan, and Frédo Durand. Learning photographic
global tonal adjustment with a database of input/output image pairs. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 97–104, 2011.

[4] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp.
International Conference on Learning Representations, 2017.

[5] Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun. Simple baselines for image
restoration. In Proceedings of the European Conference on Computer Vision (ECCV), pages
17–33. Springer, 2022.

[6] Jiang Hai, Zhu Xuan, Ren Yang, Yutong Hao, Fengzhu Zou, Fang Lin, and Songchen Han.
R2rnet: Low-light image enhancement via real-low to real-normal network. arXiv preprint
arXiv:2106.14501, 2021.

[7] Haoyuan Wang, Ke Xu, and Rynson W.H. Lau. Local color distributions prior for image
enhancement. In Proceedings of the European Conference on Computer Vision (ECCV), 2022.

[8] Jianrui Cai, Shuhang Gu, and Lei Zhang. Learning a deep single image contrast enhancer from
multi-exposure images. IEEE Transactions on Image Processing, 27(4):2049–2062, 2018.

12



[9] Wenhan Yang, Shiqi Wang, Yuming Fang, Yue Wang, and Jiaying Liu. From fidelity to percep-
tual quality: A semi-supervised approach for low-light image enhancement. In Proceedings of
the IEEE/CVF international conference on computer vision (CVPR), pages 3063–3072, 2020.

[10] Soo Ye Kim, Jihyong Oh, and Munchurl Kim. Deep sr-itm: Joint learning of super-resolution
and inverse tone-mapping for 4k uhd hdr applications. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 3116–3125, 2019.

[11] Xiangyu Chen, Zhengwen Zhang, Jimmy S Ren, Lynhoo Tian, Yu Qiao, and Chao Dong. A
new journey from sdrtv to hdrtv. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 4500–4509, 2021.

[12] Boyi Li, Xiulian Peng, Zhangyang Wang, Jizheng Xu, and Dan Feng. Aod-net: All-in-one
dehazing network. In ICCV, pages 4770–4778, 2017.

[13] Hang Dong, Jinshan Pan, Lei Xiang, Zhe Hu, Xinyi Zhang, Fei Wang, and Ming-Hsuan
Yang. Multi-scale boosted dehazing network with dense feature fusion. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 2154–2164, 2020.

[14] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pages
448–456. PMLR, 2015.

[15] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch
normalization help optimization? Advances in neural information processing systems, 31, 2018.

[16] Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance
normalization. In Proceedings of the IEEE international conference on computer vision, pages
1501–1510, 2017.

[17] Lin Zhao, Shao-Ping Lu, Tao Chen, Zhenglu Yang, and Ariel Shamir. Deep symmetric network
for underexposed image enhancement with recurrent attentional learning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 12075–12084, 2021.

[18] Antoine Labatie, Dominic Masters, Zach Eaton-Rosen, and Carlo Luschi. Proxy-normalizing
activations to match batch normalization while removing batch dependence. Advances in Neural
Information Processing Systems, 34:16990–17006, 2021.

13


	Applying the TCN for Underwater Image Enhancement
	More Implementation Details
	More Details of the Method's Material
	Applying the TCN for more backbones
	More Visualization Results of Features
	More Analysis for Affined TCN and TCN's Statistic.
	More Materials of Toy Experiments
	More results about the TCN-Net
	More Materials of Other TCN Formats
	Ablations for Investigating the TCN.
	Some Discussions in the Rebuttal
	More Qualitative Results

