
Recovering Unbalanced Communities in the
Stochastic Block Model with Application to

Clustering with a Faulty Oracle

Anonymous Author(s)
Affiliation
Address
email

Abstract

The stochastic block model (SBM) is a fundamental model for studying graph1

clustering or community detection in networks. It has received great attention2

in the last decade and the balanced case, i.e., assuming all clusters have large3

size, has been well studied. However, our understanding of SBM with unbalanced4

communities (arguably, more relevant in practice) is still limited. In this paper,5

we provide a simple SVD-based algorithm for recovering the communities in the6

SBM with communities of varying sizes. We improve upon a result of Ailon, Chen7

and Xu [ICML 2013; JMLR 2015] by removing the assumption that there is a8

large interval such that the sizes of clusters do not fall in, and also remove the9

dependency of the size of the recoverable clusters on the number of underlying10

clusters. We further complement our theoretical improvements with experimental11

comparisons. Under the planted clique conjecture, the size of the clusters that can12

be recovered by our algorithm is nearly optimal (up to poly-logarithmic factors)13

when the probability parameters are constant.14

As a byproduct, we obtain an efficient clustering algorithm with sublinear query15

complexity in a faulty oracle model, which is capable of detecting all clusters larger16

than Ω̃(
√
n), even in the presence of Ω(n) small clusters in the graph. In contrast,17

previous efficient algorithms that use a sublinear number of queries are incapable18

of recovering any large clusters if there are more than Ω̃(n2/5) small clusters.19

1 Introduction20

Graph clustering (or community detection) is a fundamental problem in computer science and has21

wide applications in many domains, including biology, social science, and physics. Among others, the22

stochastic block model (SBM) is one of the most basic models for studying graph clustering, offering23

both a theoretical arena for rigorously analyzing the performance of different types of clustering24

algorithms, and synthetic benchmarks for evaluating these algorithms in practice. Since the 1980s25

(e.g., [19, 8, 15, 7]), there has been much progress towards the understanding of the statistical and26

computational tradeoffs for community detection in SBM with various parameter regimes. We refer27

to the recent survey [1] for a list of such results.28

In this paper, we focus on a very basic version of the stochastic block model.29

Definition 1.1 (The SBM(n, k, p, q) model). In this model, given an n-vertex set V with a hidden30

partition V = ∪ki=1Vi such that Vi∩Vj = ∅ for all i 6= j, we say a graphG = (V,E) is sampled from31

SBM(n, k, p, q), if for all pairs of vertices vi, vj ∈ V , (1) an edge (vi, vj) is added independently32

with probability p, if vi, vj ∈ V` for some `; (2) an edge (vi, vj) is added independently with33

probability q, otherwise.34

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

We are interested in the problem of fully recovering all or some of the clusters, given a graph G that35

is sampled from SBM(n, k, p, q). A cluster Vi is said to be fully recovered if the algorithm outputs a36

set S that is exactly Vi. Most of the previous algorithms on the full recovery of SBM either just work37

for the nearly balanced case (i.e., each cluster has size Ω(nk)) when k is small, say k = o(log n) (see38

e.g. [2]), or only work under the following assumption:39

• All of the latent clusters are sufficiently large1, i.e., for each j, |Vj | = Ω̃(
√
n) (see e.g.,40

[25, 6, 10, 9, 1, 28, 11]).41

From a practical perspective, many real-world graphs may have many communities of different sizes,42

that is, large and small clusters co-exist in these graphs. This motivates us to investigate how to43

recover the communities in SBM if the latent communities have very different sizes. In particular, we44

are interested in efficiently recovering all the large clusters in the presence of small clusters. However,45

such a task can be quite difficult, as those small clusters may be confused with noisy edges. Indeed,46

most previous algorithms try to find all the k-clusters in one shot, which always computes some47

structures/information of the graph that are sensitive to noise (and small clusters). For example, the48

classical SVD-based algorithms (e.g., [25, 28]) first compute the first k singular vectors of some49

matrix associated with the graph and then use these k vectors to find clusters. Such singular vectors50

are sensitive to edge insertions or deletions (e.g. [13]). In general, this difficulty was termed by Ailon51

et al. [3] as “small cluster barrier” for graph clustering.52

To overcome such a barrier, Ailon et al. [3, 4] proposed an algorithm that recovers all large latent53

clusters in the presence of small clusters under the following assumptions (see [4]),54

• none of the cluster sizes falls in the interval (α/c, α) for a number α ∼ Θ

(√
p(1−q)n
p−q

)
and55

c > 1 is some universal constant;56

• there exists a large cluster, say of size at least Υ := Θ

(
max

{√
p(1−q)n
p−q , k logn

(p−q)2

})
.57

The algorithm in [4] then has to exhaustively search for such a gap, and then apply a convex program-58

based algorithm to find a large cluster of size at least Υ. As we discuss in the Appendix D. the59

assumption of the recoverable cluster being larger than Ω(
√
p(1− q)n/(p−q)) is (relatively) natural60

as any polynomial time algorithm can only recover clusters of size Ω(
√
n), under the planted clique61

conjecture. Still, two natural questions that remain are62

1. Can we break the small cluster barrier without making the first assumption on the existence63

of a gap between the sizes of some clusters?64

2. Can we remove the dependency of the size of the recoverable cluster on the number k of65

clusters? In particular, when k �
√
n, can we still recover a cluster of size Ω̃(

√
n)?66

The above questions are inherently related to the clustering problem under the faulty oracle model67

which was recently proposed by Mazumdar and Saha [23], as an instance from the faulty oracle68

model is exactly the graph that is sampled from SBM with corresponding parameters. Thus, it is69

natural to ask if one can advance the state-of-the-art algorithm for recovering large clusters for the70

graph instance from the faulty oracle model using an improved algorithm for the SBM?71

1.1 Our contributions72

We affirmatively answer all three questions mentioned above. Specifically, we demonstrate that73

clusters of size Ω̃(
√
n) can be successfully recovered in both the standard SBM and the faulty oracle74

model, regardless of the number of clusters present in the graph. This guarantee surpasses any75

previous achievements in related studies. The practical implications of this finding are significant76

since real-world networks often exhibit a substantial number of clusters (see e.g. [29]), varying in77

size from large to small.78

1.1.1 Recovering large clusters in the SBM79

We first provide a singular value decomposition (SVD) based algorithm, without assuming there80

is a gap between the sizes of some clusters, for recovering large latent clusters. Furthermore, the81

recoverability of the largest cluster is unaffected by the number of underlying clusters.82

1The assumption is sometimes implicit. E.g., in [28], in their Theorem 1, the lower bound on their parameter
∆ implies a lower bound on the smallest cluster size.

2

Theorem 1.2 (Recovering one large cluster). Let G be a graph that is generated from the83

SBM(n, k, p, q) with σ = max
(√

p(1− p),
√
q(1− q)

)
. If both of the following conditions are84

satisfied: (1) the size of the largest cluster, denoted by smax, is at least s∗ :=
213·
√
p(1−q)·n·logn
(p−q) ; (2)85

σ2 = Ω(log n/n). There exists a polynomial time algorithm that exactly recovers a cluster of size at86

least smax

7 with probability 1− 1
n2 .87

We have the following remarks about Theorem 1.2. (1) By the assumption that σ2 = Ω(log n/n), we88

obtain that p = Ω(logn
n), which further implies that the expected degrees are at least logarithmic in n.89

This is necessary as exact recovery in SBM requires the node degrees to be at least logarithmic even90

in the balanced case (i.e. when all the clusters have the same size; see e.g. [1]). (2) In contrast to91

the work [4], our algorithm breaks the small cluster barrier and improves upon the result of [4] in92

the following sense: we do not need to assume there is a large interval such that the sizes of clusters93

do not fall in, nor do our bounds get affected with increasing number of small clusters. (3) As a94

byproduct of Theorem 1.2, we give an algorithm that improves a result of [28] on partially recovering95

clusters in the SBM in the balanced case. We refer to Appendix C for details.96

In addition, the tradeoff of the parameters in our algorithm in Theorem 1.2 is nearly optimal up to97

polylogarithmic factors for constant p and q under the planted clique conjecture (see Appendix D).98

Recovering more clusters. We can apply the above algorithm to recover even more clusters, using99

a “peeling strategy” (see [3]). That is, we first recover the largest cluster (under the preconditions100

of Theorem 1.2), say V1. Then we can remove V1 and all the edges incident to them and obtain the101

induced subgraph of G on the vertices V ′ := V \ {V1}, denoting it as G′. Note that G′ is a graph102

generated from SBM(n′, k−1, p, q) where n′ = n−|V1|. Then we can invoke the previous algorithm103

on G′ to find the largest cluster again. We can repeat the process until the we reach a point where104

the recovery conditions no longer hold on the residual graph. Formally, we introduce the following105

definition of prominent clusters.106

Definition 1.3 (Prominent clusters). Let V1, . . . , Vk be the k latent clusters and s1, . . . , sk be107

the size of the clusters. WLOG we assume s1 ≥ · · · ≥ sk. Let k′ ≥ 0 be the small-108

est integer such that one of the following is true. (1) sk′+1 <
213·
√
p(1−q)

√∑k
i=k′+1

si

(p−q) ,109

(2) σ2 < log(
∑k
i=k′+1 si)/(

∑k
i=k′+1 si). We call V1, . . . , Vk′ prominent clusters of V .110

By the above definition, Theorem 1.2, and the aforementioned algorithm, which we call RECUR-111

SIVECLUSTER, we can efficiently recover all these prominent clusters.112

Corollary 1.4 (Recovering all the prominent communities). Let G be a graph that is generated from113

the SBM(n, k, p, q) model. Then there exists a polynomial time algorithm RECURSIVECLUSTER that114

correctly recovers all the prominent clusters of G, with probability 1− on(1).115

Experimental Comparisons. We evaluate the performance of our algorithm in the simulation116

settings outlined in [4] and confirm its effectiveness. Moreover, the experiments conducted in117

[4] established that their gap constraint is an observable phenomenon. We demonstrate that our118

algorithm can accurately recover clusters even without this gap constraint. Specifically, we succeed119

in identifying large clusters in scenarios where there were Ω(n) single-vertex clusters, a situation120

where the guarantees provided by [4] are inadequate. We observed that simpler spectral algorithms,121

such as [28], also failed to perform well in this scenario. Finally, we present empirical evidence of122

the efficacy of our techniques beyond their theoretical underpinnings.123

1.1.2 An algorithm for clustering with a faulty oracle124

We apply the above algorithm to give an improved algorithm for a clustering problem in a faulty125

oracle model, which was proposed by [23]. The model is defined as follows:126

Definition 1.5. Given a set V = [n] := {1, · · · , n} of n items which contains k latent clusters127

V1, · · · , Vk such that ∪iVi = V and for any 1 ≤ i < j ≤ k, Vi ∩ Vj = ∅. The clusters V1, . . . , Vk128

are unknown. We wish to recover them by making pairwise queries to an oracle O, which answers129

if the queried two vertices belong to the same cluster or not. This oracle gives correct answer with130

probability 1
2 + δ

2 , where δ ∈ (0, 1) is a bias parameter. It is assumed that repeating the same131

question to the oracle O, it always returns the same answer2.132

2This was known as persistent noise in the literature; see e.g. [17].

3

Our goal is to recover the latent clusters efficiently (i.e., within polynomial time) with high probability133

by making as few queries to the oracle O as possible. One crucial limitation of all the previous134

polynomial-time algorithms ([23, 21, 27, 20, 14]) that make sublinear3 number of queries is that they135

cannot recover large clusters, if there are at least Ω̃(n2/5) small clusters. Now we present our result136

for the problem of clustering with a faulty oracle.137

Theorem 1.6. In the faulty oracle model with parameters n, k, δ, there exists a polynomial time138

algorithm NOSIYCLUSTERING(s), such that for any n ≥ s ≥ C·
√
n log2 n
δ , it recovers all clusters of139

size larger than s by making O(n
4 log2 n
δ4·s4 + n2 log2 n

s·δ2) queries in the faulty oracle model.140

We remark that our algorithm works without the knowledge of k, i.e., the number of clusters. Note141

that Theorem 1.6 says even if there are Ω(n) small clusters, our efficient algorithm can still find all142

clusters of size larger than Ω(
√
n logn
δ) with sublinear number of queries. We note that the size of143

clusters that our algorithm can recover is nearly optimal under the planted clique conjecture. Due to144

space constraints, all the missing algorithms, analyses, and proofs are deferred to Appendix E and F.145

1.2 Our techniques146

Now we describe our main idea for recovering the largest cluster in a graph G = (V,E) that is147

generated from SBM(n, k, p, q).148

Previous SBM algorithms The starting point of our algorithm is a Singular Value Decomposition149

(SVD) based algorithm by [28], which in turn is built upon the seminal work of [25]. The main idea150

underlying this algorithm is as follows: Given the adjacency matrix A of G, project the columns of A151

to the space Ak, which is the subspace spanned by the first k left singular vectors of Ak. Then it is152

shown that for appropriately chosen parameters, the corresponding geometric representation of the153

vertices satisfies a separability condition. That is, there exists a number r > 0 such that 1) vertices in154

the same cluster have a distance at most r from each other; 2) vertices from different clusters have155

a distance at least 4r from each other. This is proven by showing that each projected point Pu is156

close to its center, which is point u corresponding to a column in the expected adjacency matrix E[A].157

There are exactly k centers corresponding to the k clusters. Then one can easily find the clusters158

according to the distances between the projected points.159

The above SVD-based algorithm aims to find all the k clusters at once. Since the distance between160

two projected points depends on the sizes of the clusters they belong to, the parameter r is inherently161

related to the size s of the smallest cluster. Slightly more formally, in order to achieve the above162

separability condition, the work [28] requires that the minimum distance (which is roughly
√
s(p−q))163

between any two centers is at least Ω(
√
n/s), which essentially leads to the requirement that the164

minimum cluster size is large, say Ω(
√
n), in order to recover all the k clusters.165

High-level idea of our algorithm In comparison to the work [28], we do not attempt to find all166

the k clusters at once. Instead, we focus on finding large clusters, one at a time. As in [28], we first167

project the vertices to points using the SVD. Then instead of directly finding the “perfect” clusters168

from the projected points, we first aim to find a set S that is somewhat close to a latent cluster that is169

large enough. Formally, we introduce the following definition of Vi-plural set.170

Definition 1.7 (Plural set). We call a set S ⊂ V as a Vi-plural set if (1) |S ∩ Vi| ≥ 213
√
n log n; (2)171

For any Vj 6= Vi we have |S ∩ Vj | ≤ 0.1 · |S ∩ Vi|.172

That is, a plural set contains sufficiently many vertices from one cluster and much fewer vertices173

from any other cluster.174

Recall that s∗ :=
C
√
p(1−q)·n·logn

(p−q) for C = 213, and smax ≥ s∗. We will find a Vi-plural set for any175

cluster Vi that is large enough, i.e., |Vi| ≥ smax

7 . To recover large clusters, our crucial observation is176

that it suffices to separate vertices of one large cluster from other large clusters, rather than trying177

to separate it from all the other clusters. This is done by setting an appropriate distance threshold178

L to separate points from any two different and large clusters. Then by refining Vu’s analysis, we179

can show that for any u ∈ Vi with |Vi| ≥ smax

7 , the set S that consists of all vertices whose projected180

points belong to the ball surrounding u with radius L is a Vi-plural set, for some appropriately chosen181

3Since there are Θ(n2) number of possible queries, by “sublinear” number of queries, we mean the number
of queries made by the algorithm is o(n2).

4

L. It is highly non-trivial to find such a radius L. To do so, we carefully analyze the geometric182

properties of the projected points. In particular, we show that the distances between a point and its183

projection can be bounded in terms of the k′-th largest eigenvalue of the expected adjacency matrix184

of the graph (see Lemma 2.2), for a carefully chosen parameter k′. To bound this eigenvalue, we185

make use of the fact that A is a sum of many rank 1 matrices and Weyl’s inequality (see Lemma 2.3).186

We refer to Section 2 for more details.187

Now suppose that the Vi-plural set S is independent of the edges in V × V (which is not true and188

we will show how to remedy this later). Then given S, we can run a statistical test to identify all the189

vertices in Vi. To do so, for any vertex v ∈ V , observe that the subgraph induced by S ∪ {v} is also190

sampled from a stochastic block model. For each vertex v ∈ Vi, the expected number of its neighbors191

in S is192

p · |S ∩ Vi|+ q · |S \ Vi| = q|S|+ (p− q) · |S ∩ Vi|.
On the other hand, for each vertex u ∈ Vj for some different cluster Vj 6= Vi, the expected number of193

its neighbors in S is194

p · |S ∩ Vj |+ q · |S \ Vj | = q|S|+ (p− q) · |S ∩ Vj | ≤ q|S|+ (p− q) · 0.1 · |S ∩ Vi|,
since |S ∩ Vj | ≤ 0.1 · |S ∩ Vi| for any Vj 6= Vi. Hence there exists a Θ((p − q) · |S ∩ Vi|) gap195

between them. Thus, as long as |S ∩ Vi| is sufficiently large, with high probability, we can identify if196

a vertex belong to Vi or not by counting the number of its neighbors in S.197

To address the issue that the set S does depend on the edge set on V , we use a two-phase approach:198

that is, we first randomly partition V into two parts U,W (of roughly equal size), and then find a199

Vi-plural set S from U , then use the above statistical test to find all the vertices of Vi in W (i.e.,200

V \ U), as described in IDENTIFYCLUSTER(S,W, s) (i.e. Algorithm 4).201

Note that the output, say T1, of this test is also Vi-plural set. Then we can find all vertices of Vi in202

U by running the statistical test again using T1 and U , i.e., invoking IDENTIFYCLUSTER(T1, U, s).203

Then the union of the outputs of these two tests gives us Vi. We note that there is correlation between204

T1 and U , which makes our analysis a bit more involved. We solve it by taking a union bound over a205

set of carefully defined bad events; see the proof of Lemma 2.7.206

1.3 Other related work207

In [11] (which improves upon [12]), the author also gave a clustering algorithm for SBM that recovers208

a cluster at a time, while the algorithm only works under the assumption that all latent clusters are of209

size Ω(
√
n), thus they do not break the “small cluster barrier”.210

The model for clustering with a faulty oracle captures some applications in entity resolution (also211

known as the record linkage) problem [16, 24], the signed edges prediction problem in a social network212

[22, 26] and the correlation clustering problem [5]. A sequence of papers has studied the problem213

of query-efficient (and computationally efficient) algorithms for this model [23, 21, 27, 20, 14]. We214

refer to references [23, 21, 27] for more discussions of the motivations for this model.215

2 The algorithm in the SBM216

We start by giving a high-level view of our algorithm (i.e., Algorithm 1). Let G = (V,E) be a graph217

generated from SBM(n, k, p, q). For a vertex v and a set T ⊂ V , we let NT (v) denote the number218

of neighbors of v in T .219

We first preprocess (in Line 1) the graph G by invoking Algorithm 2 PREPROCESSING, which220

randomly partitions V into four subsets Y1, Y2, Z,W such that each vertex is added to Y1, Y2, Z,W221

with probability 1/8, 1/8, 1/4, 1/2, respectively. Let Y = Y1 ∪ Y2, U = Y ∪ Z. See Figure 1 for222

a visual presentation of the partition. Let Â (resp. B̂) be the bi-adjacency matrix between Y1 (resp.223

Y2) and Z. This part is to reduce the correlation between some random variables in the analysis,224

similar to in [25] and [28]. Then we invoke (in Line 2) Algorithm 3 ESTMATINGSIZE to estimate the225

size of the largest cluster. It first samples
√
n log n vertices from Y2 and then counts their number of226

neighbors in W . These counters allow us to obtain a good approximation s of smax.227

We then repeat the following process to find a large cluster (or stop when the number of iterations228

is large enough). In Line 4–7, we sample a vertex u ∈ Y2 and consider the column vector û229

corresponding to u in the bi-adjacency matrix Â between Y2 and Z. Then we consider the projection230

5

PÂk′
û of û onto the subspace of the first k′ singular vectors of Â for some appropriately chosen k′,231

and the set S of all vertices v in Y2 whose projections are within distance L/20 from pu, for some232

parameter L. In Lines 9–15, we give a process that completely recovers a large cluster when S is233

a plural set. More precisely, we first test if |S| ≥ s̄/21 and if so, we invoke Algorithm 4 to obtain234

T1 = IDENTIFYCLUSTER(S,W, s), which simply defines T1 to be the set of all vertices v ∈ W235

with NS(v) ≥ q|S|+ (p− q) s56 . Then we check (Line 10) if the set T1 satisfies a few conditions to236

test if u is indeed a good center (so that S is a plural set) and test if T1 = V1 ∩W . If so, we then237

invoke IDENTIFYCLUSTER(T1, U, s) to find V1 ∩ U . Note that we use a two-step process to find V1,238

as NS(u) is not a sum of independent events for u ∈ U .239

Algorithm 1 CLUSTER(G = (V,E), p, q): Recovering one large cluster

1: Â, B̂, Y2, Y1, Z,W ← PREPROCESSING(G, p, q)
2: s← ESTIMATINGSIZE(G, p, q,W, Y2)
3: for i = 1, · · · , h =

√
n log n do

4: sample a vertex u from Y2
5: u←the column vector consisting of the edges between u and Z
6: pu ← PÂk′

û, the projection of û onto the subspace of the first k′ singular vectors of Â,

where k′ = (p− q)
√
n/
√
p(1− q)

7: S ← {v ∈ Y2: ‖pu − pv‖ ≤ L
20}, where pv ← PÂk′

v̂ and L =
√

0.004(p− q)
√
s

8: if |S| ≥ s
21 then

9: Invoke IDENTIFYCLUSTER(S,W, s) to get set T1
10: if |T1| ≤ s

6 or ∃v ∈ T1 s.t. NT1
(v) ≤ (0.9p + 0.1q) · |T1| or ∃v ∈ W \ T1 s.t.

NT1(v) ≥ (0.9p+ 0.1q) · |T1| then
11: continue
12: else
13: Invoke IDENTIFYCLUSTER(T1, U, |T1|) to obtain a set T2
14: Merge the two sets to form T = T1 ∪ T2
15: Return T .
16: Return ∅

2.1 The analysis240

We first show that ESTIMATINGSIZE outputs an estimator s approximating the size of the largest241

cluster within a factor of 2 with high probability.242

Lemma 2.1. Let s be as defined in Line 6 of Algorithm 3. Then with probability 1− n−8 we have243

0.48 · smax ≤ s ≤ 0.52 · smax.244

Recall that Â (resp. B̂) is the bi-adjacency matrix between Y1 (resp. Y2) and Z. Let A and B be245

the corresponding matrices of expectations. That is, Â = A + E, where E is a random matrix246

consisting of independent random variables with 0 means and standard deviations either
√
p(1− p)247

or
√
q(1− q).248

For a vertex u ∈ Y1, let û and u represent the column vectors corresponding to u in the matrices Â249

and A respectively (We define analogous notations for B̂ and B when u ∈ Y2.). We let eu := û− u,250

i.e., eu is the random vector with zero mean in each of its entries. Recall that pu = PÂk′
û.251

Now we bound the distance between PÂk′
û and the expectation vector u. We set ε = 0.002 in the252

following.253

Lemma 2.2. Follows the setting of Algorithm 2, we fix Y1, Y2, Z,W . For any vector u ∈ Y2 and254

k′ ≥ 1 we have ‖PÂk′
(û)− u‖ ≤ 1√

su
‖(PÂk′

− I)A‖+ ‖PÂk′
(eu).‖255

Furthermore, for some constant C2, and ε as described above we have256

1. ‖(PÂk′
− I)A‖ = ‖(PÂk′

− I)Â− (PÂk′
− I)E‖ ≤ 2C2σ

√
n+λk′+1(A) with probability257

1−O(n−3) for a random Â, where λt(A) is the t-th largest sigular value of A.258

6

V

U W

Y Z

Y1 Y2

Figure 1: Partition of the vertices

Algorithm 2 PREPROCESSING(G, p, q): Parti-
tion and projection

1: Randomly partitions V into four sub-
sets Y1, Y2, Z,W such that each vertex
is added to Y1, Y2, Z,W with probability
1/8, 1/8, 1/4, 1/2, respectively.

2: Let Y = Y1 ∪ Y2, U = Y ∪ Z.
3: Let Â (resp. B̂) be the bi-adjacency matrix

between Y1 (resp. Y2) and Z.
4: Return Â, B̂, Y2, Y1, Z,W

Algorithm 3 ESTIMATINGSIZE(G =
(V,E), p, q,W, Y2): Estimating the size of
the largest cluster

1: s∗ ← 213·
√
p(1−q)·

√
n·logn

(p−q)
2: for i = 1, · · · , h =

√
n log n do

3: sample ui from Y2 uniformly at random.
4: NW (ui)← # of neighbors of ui in W .
5: u← arg maxNW (ui)

6: s← NW (u)−q|W |
(p−q)

7: if s ≤ s∗/3 then
8: Exit(0)
9: else

10: Return s

Algorithm 4 IDENTIFYCLUSTER(S,R, s): Find-
ing a subcluster R ∩ Vi using a Vi-plural set S

1: T ← ∅
2: for each v ∈ R do
3: if Nv,S ≥ q|S|+ (p− q) s56 then
4: add v to T
5: Return T

2. For any set V ′ ⊂ Y2 s.t. |V ′| ≥ 4 logn
ε2 , with probability 1− n−8, we have ‖PÂk′

(eu)‖ ≤259

1
εσ
√
k′ for at least (1− 2ε) fraction of the points u ∈ V ′.260

We have the following result regarding the t-th largest singular value λt(A) of A.261

Lemma 2.3. For any t > 1, λt(A) ≤ (p− q)n/t.262

Now we introduce the a definition of good center, the ball of which induces a plural set.263

Definition 2.4 (Good center). We call a vector û ∈ B̂ a good center if it belongs to a cluster Vi such264

that |Vi| ≥ smax

4 and
∥∥∥PÂk′

(eu)
∥∥∥ ≤ 1

εσ
√
k′.265

That is, a good center is a vertex that belongs to a large cluster and has a low `2 norm after the266

projection. Then by Lemma 2.2, we have the following corollary on the number of good centers.267

Corollary 2.5. If smax ≥ 16
√
n log n, then with probability 1− n−8 there are (1− 2ε) · smax many268

good centers in V .269

This implies that if we sample 100n logn
s many vertices independently at random, we shall sample a270

good center with probability 1− n−8.271

Good center leads to plural set We show that if at line 4 a good center from a cluster Vi is chosen,272

then the set S formed in line 7 is a Vi-plural set. Recall that L =
√

0.004(p− q)
√
s. Let Lε := L.273

Lemma 2.6. Let u be a good center belonging to Vi ∩ Y2 and S = {v ∈ Y2 : ‖pu−pv‖ ≤ Lε/20}.274

Then it holds with probability 1−O(n−3) that |Vi ∩ S| ≥ s/21 and for any other cluster V` with275

` 6= i, |S ∩ V`| ≤ 1.05εs. Thus S is a Vi plural set as 1/21 · 1/10 ≥ 1.05ε.276

Plural set leads to cluster recovery We now prove that given a plural set for a large cluster Vi, we277

can recover the whole cluster. This is done by two invocations of Algorithm 4.278

Lemma 2.7. Let U,W be the random partition as specified in Algorithm 1. Let S ⊆ Y2 be the279

Vi-plural set where |Vi| ≥ smax/4. Let T1 := IDENTIFYCLUSTER(S,W, s) and T := T1 ∪280

IDENTIFYCLUSTER(T1, U, s). Then with probability 1 − O(n−3), it holds that T1 = Vi ∩ W ,281

T1 ≥ s
6 and T = Vi.282

7

Testing if T1 is a sub-cluster Since S may not be a plural set, we show that we can test if283

T1 = W ∩ Vi for some large cluster Vi using the conditions of Line 10 of Algorithm 1.284

Lemma 2.8. Let v be a good center from Vi ∩ Y2 such that |Vi| ≥ smax

4 and let S = {u ∈285

Y2 : ‖pu − pv‖ ≤ Lε

30 }. Let T1 be the set returned by IDENTIFYCLUSTER(S,W, s). Then with286

probability at least 1 − n−8, |T1| ≥ s
6 and NT1

(u) ≥ (0.9p + 0.1q)|T1| for any u ∈ T1 and287

NT1
(u) ≤ (0.9p+ 0.1q)|T1| for any u ∈W \ T1.288

Finally, we show that if the set T1 6= Vi ∩W for some large cluster Vi, then it satisfies one of the289

conditions at line 10 of Algorithm 1. Together with the previous results this guarantees correct290

recovery of a large set at every round.291

Corollary 2.9. Let T1 = IDENTIFYCLUSTER(S,W, s) be a set such that T1 6= Vi ∩W for any292

underlying community Vi of size |Vi| ≥ smax/7. Then with probability 1− n−8 either |T1| ≤ s
6 or293

there is a vertex u ∈ T1 such that NT1
(u) ≤ (0.9p+ 0.1q)|T1|.294

Remark 2.10. Note that in Lemma 2.8 and Corollary 2.9, the quantity NT1
(u) for any u ∈ T1 is a295

sum of independent events. This is because the event that a vertex in v ∈W is chosen in T1 is solely296

based on Nu(S), where S ∩ T = ∅. Thus, for any u1, u2 ∈ T , there is an edge between them (as per297

underlying cluster identities) independent of other edges in the graph.298

The proofs of the above results are deferred to Appendix 2.1.299

Now we are ready to prove Theorem 1.2.300

Proof of Theorem 1.2 By the precondition, we have that smax ≥ s∗. First, in Line 2, Lemma 2.1301

guarantees that 0.48smax ≤ s ≤ 0.52smax. By Corollary 2.5 and the fact that we iteratively sampled302

vertices Ω(
√
n log n) times, with probability 1−n−8, one such vertex u is a good center. Given such303

a good center, by Lemma 2.6, we know with probability 1−O(n−3), a Vi-plural set is recovered on304

Line 7. Then by Lemma 2.7, given such a Vi-plural set, the two invocations of IDENTIFYCLUSTER305

recovers the cluster Vi with probability 1 − O(n−3). Furthermore, Lemma 2.8 shows that if the306

sampled vertex v is a good center, then with probability 1− n−8 none of the conditions of line 10307

are satisfied, and we are able to recover a cluster. On the other hand, Corollary 2.9 shows that if308

T1 6= Vi ∩W for any large cluster Vi, (Vi : |Vi| ≥ smax/7) then one of the conditions of line 10309

is satisfied with probability 1 − n−8 and the algorithm goes to the next iteration to sample a new310

vertex in line 4. Taking a union bound on all the events for at mostO(
√
n log n) iterations guarantees311

that algorithm 1 finds a cluster of size smax/7 with probability 1 − O(n−2). This completes the312

correctness of Algorithm 1.313

3 The algorithm in the faulty oracle model314

We describe the main ideas of our algorithm NOISYCLUSTERING for clustering with a faulty oracle.315

Let V be the set of items that contains k latent clusters V1, . . . , Vk and O be the faulty oracle.316

Following the idea of [27], we first sample a subset T ⊆ V of appropriate size and query O(u, v) for317

all pairs u, v ∈ T . Then apply our SBM clustering algorithm (i.e. Algorithm 1 CLUSTER) on the318

graph (with all the edges for the pairs that are reported to belong to the same cluster) induced by T to319

obtain clusters X1, . . . , Xt for some t ≤ k. We can show that each of these sets is a subcluster of320

some large cluster Vi. Then we can use majority voting to find all other vertices that belong to Xi,321

for each i ≤ t. That is, for each Xi and v ∈ V , we check if the number of neighbors of v in Xi is322

at least |Xi|
2 . In this way, we can identify all the large clusters Vi corresponding to Xi, 1 ≤ i ≤ t.323

Furthermore, we can just choose a small subset of Xi of size O(logn
δ2) for majority voting to reduce324

query complexity. Then we can remove all the vertices in Vi’s and remove all the edges incident to325

them from both V and T and then we can use the remaining subsets T and V and corresponding326

subgraphs to find the next sets of large clusters. The algorithm NOISYCLUSTERING then recursively327

finds all the large clusters until we reach a point where the recovery condition on the current graph no328

longer holds. The pseudocode and the analysis of NOISYCLUSTERING are deferred to Appendix F.329

4 Experiments330

Now we exhibit various properties of our algorithms by running it on several unbalanced SBM331

instantiations and also compare our improvement w.r.t the state-of-the-art. We start by running our332

algorithm RECURSIVECLUSTER on the instances used by the authors of [4]. WLOG, we assume that333

|V1| ≥ |V2| · · · ≥ |Vk|. We denote the algorithm in [4] by ACX.334

8

Exp. # n p, q k Cluster sizes Recovery by us Recovery by
ACX

1 1100 0.7, 0.3 4 {800, 200, 80, 20} Largest cluster All clusters
2 3200 0.8, 0.2 5 {800, 200, 200, 50, 50} Largest cluster All clusters

3 750 0.8, 0.2 4 {500, 150, 70, 30} Largest cluster Incorrect
Recovery

4 800 0.8, 0.2 4 {500, 200, 70, 30} Two largest clusters Incorrect
Recovery

Table 1: Comparing RECURSIVECLUSTER with ACX [4]

Comparison with ACX In Exp-1 (abbreviated for Experiment #1) and Exp-2, our algorithm335

recovers the largest cluster while ACX recovers all the clusters. This is because we have a large,336

constant lower bound on the size of the clusters we can recover. If we scale up the size of the clusters337

by a factor of 20 in those instances, then we are also able to recover all clusters.338

Overcoming the gap constraint in practice Exp-3 is the “mid-size-cluster” experiment in [4]. In339

this case, ACX recovers the largest cluster completely, but only some fraction of the second-largest340

cluster, which is an incorrect outcome. In [4], the authors used this experiment to emphasize that their341

“gap-constraint” is not only a theoretical artifact but also observable in practice. In comparison, we342

recover the largest cluster while do not make any partial recovery of the rest of the clusters. In Exp-4,343

we modify the instance in Exp-3 by changing the size of the second cluster to 200. Note that this344

further reduces the gap, and ACX fails in this case as before. In comparison, we are able to recover345

both the largest and the second largest cluster. This exhibits that we are indeed able to overcome the346

experimental impact of the gap constraint observed in [4] in the settings of Table 1.347

Exp. # n p, q k Cluster sizes Recovery by us

5 2900 0.7, 0.3 1000 {1000, 903} ∪ {1}997i=1 Large clusters
6 12300 0.85, 0.15 4 {12000, 100, 100, 100} All clusters

Table 2: Further Evaluation of RECURSIVECLUSTER

We then run some more experiments in the settings of Table 2 to describe other properties of our348

algorithms as well as demonstrate the practical usefulness of our “plural-set” technique.349

Many clusters Exp-5 covers a situation where k = Ω(n) (specifically n/3), which can not be handled350

by ACX, as the size of the recoverable cluster in [4] is lower bounded by k log n/(p− q)2 > n. In351

comparison, our algorithm can recover the two main clusters. We also remark, in this setting, the352

spectral algorithm in [28] with k = 1000 can not geometrically separate the large clusters.353

Recovery of small clusters Exp-6 describes a situation where the peeling strategy successfully354

recovers clusters that were smaller than
√
n in the original graph. Once the largest cluster is removed,355

the smaller cluster then becomes recoverable in the residual graph. Finally, we discuss the usefulness356

of the plural set.357

On the importance of plural sets Recall that in Algorithm 1 (which is the core part of RECUR-358

SIVECLUSTER), we first obtain a plural-set S in the partition Y2 of V (see Figure 1 to recall the359

partition). S is not required to be Vi ∩ Y2 for any cluster Vi, but the majority of the vertices in S must360

belong to a large cluster Vi (which is the one we try to recover). We have the following observations:361

1. In Exp-3 of Table 1, in the first round we recover a cluster V1. Here in our first step, we362

recover a plural set S, where S ⊂ V1 ∩ Y2. That is, we do not recover all the vertices of V1363

in Y2 when forming the plural-set.364

2. In Exp-4 of Table 1, in the second iteration we recover a cluster V2. However, the plural365

set S 6⊂ V2, and in fact contains a few vertices from V4! This is in fact the exact situation366

that motivates the plural-set method.367

In both cases, the plural-set is then used to recover S1 := V1 ∩W and V2 ∩W respectively, and368

then S1 is used to recover the vertices of the corresponding cluster in U . Thus, our technique369

enables us to completely recover the largest cluster even though in the first round we may have370

9

some misclassifications. A more thorough empirical understanding of the Plural sets in different371

applications is an interesting future work.372

References373

[1] Emmanuel Abbe. Community detection and stochastic block models: recent developments. The374

Journal of Machine Learning Research, 18(1):6446–6531, 2017.375

[2] Emmanuel Abbe and Colin Sandon. Community detection in general stochastic block models:376

Fundamental limits and efficient algorithms for recovery. In 2015 IEEE 56th Annual Symposium377

on Foundations of Computer Science, pages 670–688. IEEE, 2015.378

[3] Nir Ailon, Yudong Chen, and Huan Xu. Breaking the small cluster barrier of graph clustering.379

In International conference on machine learning, pages 995–1003. PMLR, 2013.380

[4] Nir Ailon, Yudong Chen, and Huan Xu. Iterative and active graph clustering using trace norm381

minimization without cluster size constraints. J. Mach. Learn. Res., 16:455–490, 2015.382

[5] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine learning,383

56(1-3):89–113, 2004.384

[6] Béla Bollobás and Alex D Scott. Max cut for random graphs with a planted partition. Combina-385

torics Probability and Computing, 13(4-5):451–474, 2004.386

[7] Ravi B Boppana. Eigenvalues and graph bisection: An average-case analysis. In 28th Annual387

Symposium on Foundations of Computer Science (sfcs 1987), pages 280–285. IEEE, 1987.388

[8] Thang Nguyen Bui, Soma Chaudhuri, Frank Thomson Leighton, and Michael Sipser. Graph389

bisection algorithms with good average case behavior. Combinatorica, 7(2):171–191, 1987.390

[9] Kamalika Chaudhuri, Fan Chung, and Alexander Tsiatas. Spectral clustering of graphs with391

general degrees in the extended planted partition model. In Conference on Learning Theory,392

pages 35–1. JMLR Workshop and Conference Proceedings, 2012.393

[10] Yudong Chen, Sujay Sanghavi, and Huan Xu. Clustering sparse graphs. In Proceedings of394

the 25th International Conference on Neural Information Processing Systems-Volume 2, pages395

2204–2212, 2012.396

[11] Sam Cole. Recovering nonuniform planted partitions via iterated projection. Linear Algebra397

and its Applications, 576(1):79–107, 2019.398

[12] Sam Cole, Shmuel Friedland, and Lev Reyzin. A simple spectral algorithm for recovering399

planted partitions. Special Matrices, 5(1):139–157, 2017.400

[13] Chandler Davis and William M Kahan. Some new bounds on perturbation of subspaces. Bulletin401

of the American Mathematical Society, 75(4):863–868, 1969.402

[14] Alberto Del Pia, Mingchen Ma, and Christos Tzamos. Clustering with queries under semi-403

random noise. arXiv preprint arXiv:2206.04583. To appear at Conference on Learning Theory404

(COLT) 2022, 2022.405

[15] Martin E. Dyer and Alan M. Frieze. The solution of some random np-hard problems in406

polynomial expected time. Journal of Algorithms, 10(4):451–489, 1989.407

[16] Ivan P Fellegi and Alan B Sunter. A theory for record linkage. Journal of the American408

Statistical Association, 64(328):1183–1210, 1969.409

[17] Sally A Goldman, Michael J Kearns, and Robert E Schapire. Exact identification of circuits410

using fixed points of amplification functions. In Proceedings [1990] 31st Annual Symposium411

on Foundations of Computer Science, pages 193–202. IEEE, 1990.412

[18] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of413

the American Statistical Association, 58(301):13–30, 1963.414

10

[19] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels:415

First steps. Social networks, 5(2):109–137, 1983.416

[20] Zengfeng Huang Jinghui Xia. Optimal clustering with noisy queries via multi-armed bandit. To417

appear at the 39th International Conference on Machine Learning (ICML 2022), 2022.418

[21] Kasper Green Larsen, Michael Mitzenmacher, and Charalampos Tsourakakis. Clustering with a419

faulty oracle. In Proceedings of The Web Conference 2020, pages 2831–2834, 2020.420

[22] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Predicting positive and negative links421

in online social networks. In Proceedings of the 19th international conference on World wide422

web, pages 641–650, 2010.423

[23] Arya Mazumdar and Barna Saha. Clustering with noisy queries. In Advances in Neural424

Information Processing Systems, pages 5788–5799, 2017.425

[24] Arya Mazumdar and Barna Saha. A theoretical analysis of first heuristics of crowdsourced426

entity resolution. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,427

pages 970–976, 2017.428

[25] Frank McSherry. Spectral partitioning of random graphs. In Proceedings 42nd IEEE Symposium429

on Foundations of Computer Science, pages 529–537. IEEE, 2001.430

[26] Michael Mitzenmacher and Charalampos E Tsourakakis. Predicting signed edges with431

o(n1+o(1) log n) queries. arXiv preprint arXiv:1609.00750, 2016.432

[27] Pan Peng and Jiapeng Zhang. Towards a query-optimal and time-efficient algorithm for433

clustering with a faulty oracle. In Conference on Learning Theory, 2021.434

[28] Van Vu. A simple svd algorithm for finding hidden partitions. Combinatorics, Probability &435

Computing, 27(1):124, 2018.436

[29] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on437

ground-truth. In Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics, pages438

1–8, 2012.439

A Preliminary Notations and Tools440

Notations for vectors. Let M̂ be the adjacency matrix of the graph G = (V,E) that is sampled441

from SBM(n, k, p, q). We denote by M the matrix of expectations, where M [i, j] = p if the i-th and442

j-th vertices belong to the same underlying cluster, and M [i, j] = q otherwise. Going forward, we443

shall work with several sub-matrices of M̂ and for any submatrix M ′, we denote by M̂ ′ and M ′ the444

random matrix and the corresponding matrix of expectations.445

We also use the norm operator ‖ · ‖ frequently in this paper. We use the operator both for vectors446

and matrices. Given a vector x = (x1, . . . , xd), we let ‖x‖ :=
√∑

i x
2
i denote its Euclidean norm.447

When the input is a matrix M , ‖M‖ denotes the spectral norm of M , which is its largest singular448

value.449

We describe the well-known Weyl’s inequality.450

Theorem A.1 (Weyl’s inequality). Let Â = A+ E be a matrix. Then λt+1(Â) ≤ λt+1(A) + ‖E‖451

where ‖ · ‖ is the spectral norm operator as described above.452

We will make use of the following general Chernoff Hoeffding bound.453

Theorem A.2 (Chernoff Hoeffding bound [18]). Let X1, . . . , Xn be i.i.d random variables that can454

take values in {0, 1}, with E[Xi] = p for 1 ≤ i ≤ n. Then we have455

1. Pr
(
1
n

∑n
i=1Xi ≥ p+ ε

)
≤ e−D(p+ε||p)n456

2. Pr
(
1
n

∑n
i=1Xi ≤ p− ε

)
≤ e−D(p−ε||p)n457

11

Here D(x||y) is the KL divergence of x and y. We recall the KL divergence between Bernoulli458

random variables x, y D(x||y) = x ln(x/y) + (1− x) ln((1− x)/(1− y)). it is easy to see that If459

x ≥ y, then D(x||y) ≥ (x−y)2
2x , and D(x||y) ≥ (x−y)2

2y otherwise.460

We also note down a random projection Lemma that we use in our proof.461

Lemma A.3 (Expected random projection [28]). Let PÂk′
be a k′-dimensional projection matrix,462

and eu be an n dimensional random vector where each entry is 0 mean and has a variance of at most463

σ2. Then we have E[‖PÂk′
(eu)‖2] ≤ σ2 · k′.464

B Deferred Proofs from Section 2465

We first give a general concentration bound concerning neighbors of vertices in the different partitions.466

Lemma B.1. Let V be a set of n vertices sampled according to the SBM(n, k, p, q) model. Let467

V ′ ⊂ V where the vertices in V ′ are selected independently of each other. Let Vi be a latent cluster468

with V ′i = Vi ∩ V ′. We denote by NV ′(u) the number of neighbors of u in V ′. Then with probability469

1−O(n−7) we have for every u ∈ V ′i ,470

q|V ′|+ (p− q)|V ′ ∩ Vi| − 16 · √p ·
√
n log n

≤NV ′(u) ≤ q|V ′|+ (p− q)|V ′ ∩ Vi|+ 48 · √p ·
√
n log n.

Proof of Lemma B.1. We look at two different sums of random variables. The first is NV ′
i
(u) which471

is the sum of |Vi ∩ V ′| many random 0− 1 variables with probability of 1 being p. The second is472

NV ′\V ′
i
(u), which is the sum of |V ′ \ V ′i | variables with probability of 1 being q.473

Then we have E[NV ′
i
(u)] = p|Vi ∩ V ′| and E[NV ′\V ′

i
(u)] = q|V ′ \ V ′i |. Finally the Chernoff bound474

implies,475

1. Pr

(
NV ′

i
(u)

|V ′
i |

< p− α
)
≤ e−D(p−α||p)|V ′

i |. We fix α =
8
√
p
√
n logn

|V ′
i |

and then the term476

D(p− α||p)|V ′i | evaluates to477

D(p− α||p)|V ′i | ≥
α2|V ′i |

2p
≥ 8 · p · n · 2 log n · |V ′i |

|V ′i |2 · 2p
≥ 8 · log n · n

|V ′i |
≥ 8 log n.

This gives us478

Pr
(
NV ′

i
(u) < p|V ′i | − 8

√
p
√
n log n

)
≤ n−8 (1)

2. Pr

(
NV ′\V ′

i
(u)

|V ′\V ′
i |

< q − β
)
≤ e−D(q−β||q)|V ′\V ′

i |. We fix β =
8
√
p
√
n logn

|V ′\V ′
i |

and the term479

D(q − β||q)|V ′ \ V ′i | evaluates to480

D(q − β||q)|V ′ \ V ′i | ≥
β2

2q
≥ 8 · p · n · 2 log n

|V ′ \ V ′i |2q
≥ p · 8 log n

q
· n

|V ′ \ V ′i |
≥ 8 log n.

This gives us481

Pr
(
NV ′\V ′

i
(u) < q|V ′ \ V ′i | − 8

√
p
√
n log n

)
≤ n−8 (2)

Combining Equation (1) and (2) gives us482

Pr
(
NV ′

i
(u) +NV ′\V ′

i
(u) < p|V ′i | − 8

√
p
√
n log n+ q|V ′ \ V ′i | − 8

√
p
√
n log n

)
≤ 2n−8

=⇒ Pr
(
NV ′(u) < q|V ′|+ (p− q)|V ′i | − 16

√
p
√
n log n

)
≤ 2n−8.

Now we study the event NV ′(u) ≥ q|V ′|+ (p− q)|V ′ ∩ Vi|+ 48 · √p ·
√
n log n again by483

breaking into two terms.484

12

The probability bounds for two terms NV ′
i
(u) and NV ′\V ′

i
are e−D(p+3α||p)|V ′

i | and485

e−D(q+3β||q)|V ′\V ′
i | respectively. Here note that we use 3α instead of α, to make cal-486

culations easier.487

For the first case we have D(p+ 3α||p)|V ′i | ≥
9α2|V ′

i |
2(p+3α) . If p ≥ α then D(p+ α||p)|V ′i | ≥488

9α2|V ′i |8p which implies we get the same bound as above. If p < α thenD(p+α||p)|V ′i | ≥489

9α2|V ′
i |

8α ≥ α|V ′i |. Now we have α =
8
√
p
√
n logn

|V ′
i |

. Since p = Ω(log n/n) we have490

α|V ′i | ≥ 8 log n. Combining we get that e−D(p+2α||p)|V ′
i | ≤ n−8.491

Next we analyze D(q + 3β||q)|V ′ \ V ′i | ≥
9β2|V ′\V ′

i |
2(q+3β) . As before, if q ≥ β we have492

D(q + 3β||q)|V ′ \ V ′i | ≥
9β2|Vi|

8q and the result follows as before. Otherwise D(q +493

3β||q)|V ′ \ V ′i | ≥
9β2|V ′\V ′

i |
8β ≥ β|V ′ \ V ′i | ≥ 8

√
p
√
n log n ≥ 8 log n, which completes494

the proof.495

496

Then Lemma 2.1 can be proved as follows.497

Proof of Lemma 2.1. We know that smax ≥
213·
√
p(1−q)

√
n logn

p−q from the problem definition. Let498

the corresponding cluster be Vi. Then a simple application of Hoeffding bounds gives us that with499

probability 1− n−8, 0.51 · smax ≥ |Vi ∩W | ≥ 0.49 · smax.500

Furthermore, we are interested in the regime where p ≤ 3/4 so
√

1− q ≥ 1/2.501

Then if we sample u ∈ |Vi ∩ Y2|, Lemma B.1 states that with probability 1− n−8,502

|NW (u)− q|W | − (p− q)|Vi ∩W || ≤ 48
√
p
√
n log n ≤

(p− q) · 96 ·
√
p(1− q)

√
n log n

(p− q)

=⇒ |NW (u)− q|W | − (p− q)|Vi ∩W || ≤
(p− q)|Vi ∩W |

100

This implies with probability 1 − n−8, q|W | + 1.01|Vi ∩W | ≥ NW (u) ≥ q|W | + 0.99|Vi ∩W |503

which coupled with the fact 0.49 ≤ |Vi∩W |
|Vi| ≤ 0.51 implies that if we are able to sample a vertex504

from the largest cluster, we get an estimate of smax as described.505

Since |Vi ∩ Y2| ≥ 100
√
n log n, if we sample

√
n log n vertices, we sample a vertex u from Vi with506

probability 1− n−8. Now, for vertices belonging to smaller clusters, the same bounds apply, and this507

implies that as long as we are able to sample a vertex from the largest cluster, we get an estimate of508

smax between a factor of 0.48 and 0.52.509

Proof of Lemma 2.2. These results follow directly from Vu [28] with some minor modifications. In510

their paper, Vu decomposes the matrix into Y and Z. In comparison, we decompose the matrix to U511

and W first, and then U is decomposed into Y and Z. Thus the size of Y and Z in our framework is512

roughly half as compared to [28]. However, since the size of the clusters we are concerned about are513

all larger than 128 ·
√
n log n, the results follow in the same way with a change of a factor of 2.514

Now we describe the results and how we deviate from Vu’s analysis to get our result. For the first515

part, in [28, page 132] it was proved that for any fixed û ∈ B̂,516

‖PÂk
(û)− u‖ = ‖PÂk

(û− u) + (PÂk
− I)u‖

≤ ‖PÂk
(eu)‖+ ‖(PÂk

− I)u‖ ≤ ‖PÂk
(eu)‖+

1
√
su

∥∥∥(PÂk
− I)A

∥∥∥ .
Furthermore, it was proven (also in page 132 of [28]) that517 ∥∥∥(PÂk

− I)A
∥∥∥ =

∥∥∥(PÂk
− I)Â− (PÂk

− I)E
∥∥∥ .

13

It was observed that
∥∥∥(PÂk

− I)Â
∥∥∥ ≤ λk+1(Â) ≤ λk+1(A) + ‖E‖ = ‖E‖ as A has rank at most k;518

and
∥∥∥(PÂk

− I)E
∥∥∥ ≤ ‖E‖. Then from Lemma 2.2 in [28] we have that with probability 1−O(n−3)519

‖E‖ ≤ C2σn
1/2 for some constant C2 > 0.520

Next, we observe that for any k′ ≥ 1, it still holds that521

‖PÂk′
(û)− u‖ = ‖PÂk′

(û− u) + (PÂk′
− I)u‖

≤ ‖PÂk′
(eu)‖+ ‖(PÂk′

− I)u‖ ≤ ‖PÂk′
(eu)‖+ ‖(PÂk′

− I)A‖/
√
su.

Furthermore,522

‖(PÂk′
− I)A‖ = ‖(PÂk′

− I)Â− (PÂk′
− I)E‖

≤ ‖(PÂk′
− I)Â‖+ ‖(PÂk′

− I)E‖

≤ λk′+1(Â) + ‖E‖
≤ λk′+1(A) + 2 ‖E‖

Again, with probability at least 1− 1/n3, ‖E‖ ≤ C2σ
√
n, which further implies that523

‖(PÂk′
− I)A‖ ≤ 2C2σ

√
n+ λk′+1(A).

This is a simple but crucial step that removes our dependency on k, and allows us to treat all clusters524

of size o(
√
n) as noise.525

Now, we analyze the first term. From Lemma A.3 we have E[‖PÂk′
(eu)‖2] ≤ σ2k′ for any u ∈ Y2.526

Then for any u, Markov’s inequality gives us Pr
(
‖PÂk′

(eu)‖ ≥ σ
√
k′

ε

)
≤ ε.527

Now let us consider any set V ′ ⊂ Y2 such that |V ′| ≥ 16
√
n log n. For any u ∈ V ′ we define528

Xu to be the indicator random variable that gets 1 if ‖PÂk′
(eu)‖ ≤ σ

√
k′

ε , and 0 otherwise. Then529

E[Xu] ≥ 1 − ε. Now, since V ′ ⊂ Y2, the variables Xu are independent of each other (as eu are530

independent of each other). Then, using the fact that |V ′| ≥ 4 logn
ε2 , the Chernoff bound gives us531

Pr

(∑
u∈V ′

Xu ≤ (1− ε)|V ′| − ε|V ′|

)
≤ e−

2ε2|V ′|2

|V ′| ≤ n−8

That is, with probability at least 1 − n−8, for at least (1 − 2ε) fraction of the points u ∈ V ′,532

‖PÂk′
(eu)‖ ≤ 1

εσ
√
k′.533

Proof of Lemma 2.3. Let there be k many clusters V1, . . . , Vk in the SBM problem. Then we define534

ai = |Vi ∩ Z| and bi = |Vi ∩ Y1|. Then we have that A is an n1 × n2 matrix where n1 =
∑k
i=1 ai535

and n2 =
∑k
i=1 bi. The matrix A can be then written as a sum of k + 1 many rank 1 matrices:536

A =

k∑
i=1

(p− q)Mi + qM0

Here M0 is the all 1 matrix, and Mi is a block matrix with 1’s in a ai× bi sized diagonal block. Since537

Mi is a ai × bi block diagonal matrix of rank 1, with each entry being (p− q), its singular value is538

(p− q)
√
aibi. Now we define A1 =

∑k
i=1(p− q)Mi. As Mi’s are non-overlapping block diagonal539

matrices, the singular vectors of Mi are also singular vectors of A1, with the same singular values.540

Thus, the sum of singular values of A1 is (p− q)
∑k
i=1

√
aibi ≤ (p− q)√n1n2 ≤ (p−q)n

2 , where541

the first inequality follows from the Cauchy-Schwarz inequality. Thus, for any t ≥ 1542

t · λt(A1) ≤ λ1(A1) + · · ·λt(A1) ≤ (p− q)n
2

,

which gives λt(A1) ≤ (p−q)n
2t . Since M0 has rank 1, λ2(q ·M0) = 0 and thus for t > 1 we have543

λt+1(A) ≤ λt(A1) + λ2(q ·M0) ≤ (p− q)n
2t

≤ (p− q)n
t+ 1

,

where the first inequality follows from the Weyl’s inequality.544

14

The guarantee of obtaining a plural set is a consequence of Lemma B.2.545

Lemma B.2. Let k′ = (p−q)
√
n√

p(1−q)
and ε = 0.002. Let u ∈ Y2 be a good center belonging to Vi, then546

1. There is a set V ′i ⊂ Y2 ∩ Vi such that |V ′i | ≥ (1− 2ε)|Y2 ∩ Vi| so that for all v ∈ V ′i , we547

have ‖PÂk′
(u− v)‖ ≤ Lε

30 with probability 1−O(n−3).548

2. For any Vj 6= Vi which is a ε-large cluster, there is a set V ′j ⊂ Vj ∩ Y2 s.t |V ′j | ≥549

(1 − 2ε)|Vj ∩ Y2| so that for all v ∈ V ′j we have ‖PÂk′
(u − v)‖ ≥ Lε

6 with probability550

1−O(n−3).551

Proof of Lemma B.2. First note that Lε ≥
√

2ε ·211 · (p−q)·(p(1−q))
1/4·n1/4·log1/2 n

(p−q)1/2 ≥ 132, 000 · (p−552

q)1/2 · (p(1− q))1/4 · n1/4 ·
√

log n.553

When u and v belong to the same cluster we have ‖PÂk′
(û−v̂)‖ ≤ ‖PÂk′

(û)−u‖+‖PÂk′
(v̂)−v‖.554

Now, since u is a good center, from Lemma 2.2 we have555

‖PÂk′
(û)− u‖ ≤ 1

ε
σ
√
k′ +

1
√
su

(
2C2σ

√
n+ λk′+1(Â)

)
≤1

ε

√
p(1− q)

√
k′ +

1
√
su

(
2C2

√
p(1− q)

√
n+ λk′+1(A) + ‖E‖

)
≤1

ε

√
p(1− q)

√
k′ +

1
√
su

(
2C2

√
p(1− q)

√
n+ λk′+1(A) + C2

√
p(1− q)

√
n
)

≤1

ε

√
p(1− q)

√
k′ +

1
√
su

(
3C2

√
p(1− q)

√
n+

(p− q)n
k′

)
[Substituting λk′+1(A) from Lemma 2.3]

≤1

ε
(p(1− q))1/4(p− q)1/2n1/4 + 4C2(ε)−1/2(p− q)1/2(p(1− q))1/4n1/4 log−1/2 n

≤2

ε
(p(1− q)1/4(p− q)1/2n1/4

≤ 10, 000Lε

132, 000 log1/2 n
≤ Lε

60
, for n ≥ 64

Now from Lemma 2.2 we also know that at least (1−2ε) fraction of the vertices v ∈ Vi∩Y2 are also556

“good centers” with probability 1−n−8. For all such vertices ‖PÂk′
(û−v̂)‖ ≤ 2‖PÂk′

(û−u)‖ ≤ Lε

30557

with probability 1− n−3.558

On the other hand when they belong to different clusters we have559

‖PÂk′
(û− v̂)‖ ≥ ‖u− v‖ − ‖PÂk′

(û− u)‖ − ‖PÂk′
(v̂ − v)‖.

Since Vj is a ε-large cluster, |Vi| ≥ 256
√
n log n and thus |Vj ∩ Y2| ≥ 16

√
n log n with probability560

1−O(n−8). In that case for at least 1−2ε fraction of points v ∈ Vj∩Y2 we have PÂk′
(v̂−v) ≤ Lε

60 .561

Now ‖u−v‖ ≥ (p−q)
√
su + sv ≥

√
2ε·(p−q)√smax

6 ≥
√
2ε·(p−q)

√
s√

0.52·6 ≥ Lε

5 with probability 1−n−8562

from Lemma 2.1. Thus with probability 1− n−3 we get563

‖PÂk′
(u− v)‖ ≥ ‖u− v‖ − ‖PÂk′

(û− v̂)‖ − ‖PÂk′
(v̂ − v)‖ ≥ Lε

5
− Lε

60
− Lε

60
≥ Lε

6

for 1− 2ε fraction of points v ∈ Y2 ∩ Vj for any ε-large cluster Vj . This completes the proof.564

Proof of Lemma 2.6. By Lemma 2.1, we have |Vi| ≥ smax

4 ≥ s
2.1 with probability 1 − n−8. Then565

the following events happen.566

1. Since u ∈ Vi ∩ Y2 is a good center, for 1− 2ε fraction of points v in Vi ∩ Y2, ‖pu − pv‖ ≤567

Lε/30 with probability 1−O(n−3) as per Lemma B.2. All such points are selected to S.568

15

Furthermore, |Vi ∩ Y2| is lower bounded by |Vi|/9 with probability 1 − n−8. Therefore,569

with probability 1−O(n−3), we have570

|Vi ∩ S| ≥ (1− 2ε)|Vi ∩ Y2| ≥ (1− 2ε)|Vi|/9 ≥ (1− 2ε)s/20 ≥ s/21.

2. For other clusters V`, if |V`| ≥ ε · smax, we have ‖pu − pv‖ ≤ Lε

6 for only 2ε fraction of571

points v in V` ∩ Y2 from Lemma B.2. Thus |S ∩ V`| ≤ 2ε|V` ∩ Y2|. On the other hand572

|V` ∩ Y2| ≤ |V`|/6. Thus, with probability 1− n−8 we have573

|S ∩ V`| ≤ 2ε|V`|/6 ≤
2 · ε · smax

6
≤ 2 · ε · s

0.48 · 6
≤ 0.7ε · s

3. Otherwise, if V` is such that ε · smax ≥ |V`| ≥ ε
2 · smax, then |V` ∩ Y2| ≤ |V`|/6 with574

probability 1− n−8. Then |S ∩ V`| ≤ εsmax/6 ≤ εs.575

4. Otherwise, if |V`| ≤ ε
2 · smax then |S ∩V`| ≤ |V`| ≤ ε

2 · smax ≤ εs
2·0.48 ≤

εs
0.96 ≤ 1.05 · ε · s.576

Now, note that for any V` with ` 6= i, it holds with probability 1−O(n−3) that |S∩V`| ≤ 1.05 ·ε ·s ≤577

(21 · 1.05 · ε) · s21 ≤ 0.05 · s21 .578

579

Proof of Lemma 2.7. We first show that if S is a Vi-plural set with Vi ≥ smax/4, then T1 = Vi ∩W580

where T1 is the outcome of IDENTIFYCLUSTER(S,W, s). Since S is a Vi plural set, for any vertex581

v ∈W ∩ Vi, from Lemma B.1 we have that with probability 1−O(n−3),582

NS(v) ≥ q|S|+ (p− q)|Vi ∩ S| − 48
√
p
√
n log n

=⇒ NS(v) ≥ q|S|+ (p− q) · s
21
− 48√

1− q
·

(p− q) ·
√
p(1− q)

√
n log n

(p− q)

=⇒ NS(v) ≥ q|S|+ (p− q) · s
21
− (p− q) ·

96 ·
√
p(1− q)

√
n log n

(p− q)

=⇒ NS(v) ≥ q|S|+ (p− q) · s
21
− (p− q) · 96 · s

213

=⇒ NS(v) ≥ q|S|+ (p− q) · s
28

Now, let us consider the case when v ∈ Vj ∩W where j 6= i. Then we know from Lemma 2.6583

|S ∩ Vj | ≤ 1.05εs ≤ s
210 . Then using Lemma B.1 we have that with probability 1−O(n−3)584

NS(v) ≤ q|S|+ (p− q)|Vj ∩ S|+ 24
√
p
√
n log n

=⇒ NS(v) ≤ q|S|+ (p− q) s

210
+ (p− q)24s

213

=⇒ NS(v) ≤ q|S|+ (p− q) s

128

Now note that in the IDENTIFYCLUSTER(S,W, s) algorithm, we select all vertices from W that have585

q|S|+ (p− q) · s56 neighbors in S. Thus, the above analysis implies with probability 1−O(n−3)586

T1 = IDENTIFYCLUSTER(S,W, s) = Vi ∩ W . Furthermore, since |Vi| ≥ smax/4, we have587

|Vi ∩W | ≥ smax

2.2 ≥
s0.48
2.2 ≥ s/6.588

We then use T1 as a plural set to recover Vi ∩ U so that we are able to recover all the vertices of Vi,589

but now T1 and U are not completely independent and thus we cannot proceed simply as before.590

We overcome this by an union bound based argument. Let’s consider T ′i = Vi ∩W for any i such591

that T ′ ≥ s/6. Then we have the following facts.592

1. Let u ∈ U ∩ Vi. Then E[NT ′
i
(u)] = p|T ′|. Then Lemma B.1 shows that Pr(NT (u) ≤593

q|T ′|+ 0.99(p− q)|T ′|) ≤ n−10.594

16

2. Similarly, let u ∈ U ∩ Vj . Then Pr(NT ′
i
(u) ≥ q|T ′|+ 0.01(p− q)|T ′|) ≤ n−10.595

If either of this is true for a vertex u ∈ U then we call it a bad vertex w.r.t T ′i . Then a union bound596

over all Vi and all u ∈ U gives us that no vertex u ∈ U is bad w.r.t any T ′i with probability 1− n−8.597

Then we can make this argument for T ′i = T1. Since |Vi| > smax/4, we have |Vi ∩W | ≥ Vi/3 with598

probability 1− n−8. Then with probability 1− n−8 no vertex u ∈ U is bad w.r.t T1.599

Then applying Lemma B.1 to T1 w.r.t vertices in U we get, with probability 1−O(n−3)600

1. If v ∈ Vi ∩ U , then NT1(v) ≥ q|T1|+ (p− q)|T1| − (p− q)T1

96 .601

2. If v ∈ Vj ∩ U , then NT1(v) ≤ q|T1|+ (p− q)T1

96 .602

Thus IDENTIFYCLUSTER(T1, U, s) only selects the set of vertices T2 in Vi ∩ U . Then taking the603

union of T1 and T2 gives us Vi.604

Proof of Lemma 2.8. Since |Vi| > 256
√
n log n , and every vertex of Vi will be assigned to W with605

probability 1/2, we have that |Vi ∩W | ≥ |Vi|
2.5 ≥

smax

10 ≥
s

0.52·10 ≥
s
6 with probability 1 − n−8.606

Furthermore if |Vi| ≥ smax

4 , then Lemma 2.7 shows T1 = Vi ∩W and |T1| ≥ s
6 .607

Furthermore, for any vertex u ∈ T1 ∩ {v}, we can calculate NT1(u) in the following way.608

We have E[NT1
(u)] = p|T1|. Then a simple application of Lemma B.1 give us that with probability609

1− n−8, NT1
(u) ≥ p|T1| − (p− q)T1

96 ≥ (0.9p+ 0.1q)|T1|.610

Similarly, since T1 = Vi ∩W for any vertex u ∈W ∩ T1, we have E[NT1
(u)] = q|T1| and Lemma611

B.1 implies that with probability 1− n−8612

NT1
(u) ≤ q|T1|+ (p− q) |T1|

96
≤ p|T1|

3
+

2q|T1|
3
≤ (0.33p+ 0.67q)|T1| < (0.9p+ 0.1q)|T1|.

613

Proof of Corollary 2.9. If T1 is a pure subset of some Vi, such that |Vi| ≤ smax/7, then with614

probability 1−O(n−8), |Y2 ∩ Vi| ≤ s/6. If |T1| < s
6 , the first condition is satisfied.615

Otherwise if |T1| ≥ s
6 and T1 is not a pure set, there exists Vj such that |T1 ∩ Vj | ≤ |T1|

2 . In that case616

for any vertex v ∈ Vj ∩ T1 we have E[NT1(v)] ≤ q|T1|+ (p− q)T1

2 and Lemma B.1 implies that617

with probability 1− n−8,618

NT1
(u) ≤ q|T1|+(p−q) |T1|

2
+(p−q) |T1|

96
≤ (0.5+1/96)p|T1|+(0.5−1/96)q|T1| < (0.9p+0.1q)|T1|.

Finally if T1 ⊂ Vi is a large pure set and T1 6= Vi ∩W , then for a vertex v ∈ Vi ∩ (W \ T1) we have619

NT1
(v) ≥ (0.9p+ 0.1q)|T1|.620

621

C An improved algorithm in the balanced case622

Our algorithm is built upon [28] and [25]. However, even in the balanced case, our algorithm improves623

a result of [28] on partially recovering clusters in the SBM. More precisely, we can use Theorem 1.2624

to prove the following theorem.625

Theorem C.1. Let G = (V,E) be sampled from SBM(n, k, p, q) for σ2 = Ω(log n/n) where size626

of each cluster is Ω(n/k). Then there exists a polynomial time algorithm that exactly recovers all627

clusters if (p− q)
√

n
k > C ′σ

√
k log n for some constant C ′.628

17

In [28] (see Lemma 1.4 therein), Vu gave an algorithm that partially recovers all the clusters in the629

sense that with probability at least 1 − ε, each cluster output by the algorithm contains at 1 − ε630

fraction of any one underlying communities, for any constant ε > 0. For the balanced case, his result631

holds under the assumption that σ2 > C log n/n, and (p − q)
√

n
k > Cσ

√
k. In comparison, we632

obtain a full recovery of all the clusters under Vu’s partial recovery assumptions at the cost of an extra633

log n factor in the tradeoff of parameters.634

Proof of Theorem C.1. We have (p− q)
√
n/k > C ′σ

√
k log n. Let C ′ = 2C. Since p ≤ 3/4, we635

have 1 − p ≥ 1/4 and then σ ≥
√
p(1−q)
2 . Thus (p − q)

√
n/k > C

√
p(1− q)

√
k log n. This636

implies k < (p−q)
√
n

C
√
p(1−q) logn

and n/k > C·
√
p(1−q)

√
n·logn

p−q . That is the size of each cluster is at637

least s∗. Then we can run Algorithm 1 to recover one such cluster. Now, since the size of each638

cluster is same, we can run this iteratively k times, recovering a cluster at each round with probability639

1 − O(n−2). Using union bound we get that we are able to recover all clusters with probability640

1−O(kn−2) = 1−O(n−1).641

D Lower bounds642

First, we show that our algorithm is optimal up to logarithmic factors when p and q are constant. To643

do so, we make use of the well-known planted clique conjecture.644

Conjecture D.1 (Planted clique hardness). Given an Erdős-Rényi random graph G(n, q) with645

q = 1/2, if we plant in G(n, q) a clique of size t where t ∈ [3 · log n, o(
√
n)], then there exists no646

polynomial time algorithm to recover the largest clique in this planted model.647

Under the planted clique conjecture, we note that there is no polynomial time algorithm for the SBM648

problem that recover clusters of size o(
√
n) irrespective of the number k of clusters present in the649

graph, for any constants p and q. This can be seen by defining the partition of V as V = ∪ki=1Vi,650

where V1 is a clique of size t = o(
√
n), and V2, · · · , Vk are singleton vertices, k = n− t. Finally, let651

p = 1, q = 1
2 . Then an algorithm for finding a cluster of size o(

√
n) in a graph G that is sampled652

from the SBM with the above partition solves the planted clique problem.653

Thus, the dependency of our algorithm in Theorem 1.2 on n is optimal under the planted clique654

conjecture up to logarithmic factors.655

The following result was given in [23], we give a proof here for the sake of completeness.656

Theorem D.2 ([23]). LetA be a polynomial time algorithm in the faulty oracle model with parameters657

n, k, δ. Suppose that A finds a cluster of size t irrespective of the value of k. Then under the planted658

clique conjecture, it holds that t = Ω(
√
n).659

Proof. Let G be a graph generated from the planted clique problem with parameter t. Note that each660

potential edge in the size-t clique, say K, appears with probability 1, and each of the remaining661

potential edges appear with probability 1
2 . Now we delete each edge inG with probability 1

3 . Then the662

resulting graph can be viewed as an instance generated from the faulty oracle model with parameters663

n, k = n− t+ 1 and δ = 1
3 : there are k clusters, one being H , and n− t clusters being singleton664

vertices. Furthermore, each intra-cluster edge is removed with probability 1
3 and each inter-cluster is665

added with probability 1
2 · (1 −

1
3) = 1

3 . If there is a polynomial time algorithm that recovers the666

cluster H , no matter how many queries it performs, then it also solves the planted clique problem667

with clique size t. Under the planted clique conjecture, t = Ω(
√
n).668

E High-level ideas of the algorithm for the faulty oracle669

Discussion about the previous algorithm in the faulty oracle model One crucial limitation of670

all the previous polynomial-time algorithms that make sublinear number of queries is that they671

cannot recover large clusters, if there are at least Ω̃(n2/5) small clusters. The reason is that the672

query complexities of all these algorithms are at least Ω(k5), and if there are Ω̃(n2/5) small clusters,673

then k = Ω̃(n2/5), which further implies that these polynomial time algorithms have to make674

Ω(k5) = Ω(n2) queries.675

18

Algorithm 5 NOISYCLUSTERING(V, δ, s): recover all clusters of size more than s ≥ s∗

1: V ′ ← V ; t′ ← 0

2: Randomly sample a subset T ⊂ V ′ of size |T | = C2n2 log2 n
s2δ2

3: Query all pairs u, v ∈ T and let G[T] be graph on vertex set T with only positive edges from the
query answers

4: for each ` from 1 to bn/sc do
5: Apply CLUSTER(G[T], 12 + δ, 12 − δ) to obtain a cluster T`
6: if T` = ∅ then
7: continue
8: else
9: t′ ← t′ + 1

10: Find an arbitrary subset T ′` ⊆ T` of size 4 logn
δ2

11: C ′t′ ← {v ∈ V ′ \ T : NT ′
`
(v) ≥ |T ′` |/2}

12: Ct′ ← T` ∩ C ′t′
13: V ′ ← V \ Ct′
14: Return C1, · · · , Ct′

Main ideas of our algorithm Now we apply our algorithm in the SBM to the faulty oracle model.676

Consider the faulty oracle model with and parameters n, k, δ. Assume that the oracle O outputs ‘+’677

to indicate the queried two vertices belong to the same cluster, and ‘-’ otherwise.678

Observe that if we make queries on all pairs u, v ∈ V , then the graph G that is obtained by adding679

all + edges answered by the oracle O is exactly the graph that is generated from the SBM(n, k, p, q)680

with parameters n, k, p = 1
2 + δ

2 and q = 1
2 −

δ
2 . However, the goal is to recover the clusters by681

making sublinear number of queries, i.e., without seeing the whole graph.682

We now describe our algorithm NOISYCLUSTERING (i.e., Algorithm 5) for clustering with a faulty683

oracle. Let V be the items which contains k latent clusters V1, . . . , Vk and O be the faulty oracle.684

Following the idea of [27], we first sample a subset T ⊆ V of appropriate size and query O(u, v)685

for all pairs u, v ∈ T . Then apply our SBM clustering algorithm (i.e. Algorithm 1 CLUSTER) on686

the graph induced by T to obtain clusters X1, . . . , Xt for some t ≤ k. We can show that each of687

these sets is a subcluster of some large cluster Vi. Then we can use a majority voting to find all688

other vertices that belong to Xi, for each i ≤ t. That is, for each Xi and v ∈ V , we check if the689

number of neighbors of v in Xi is at least |Xi|
2 . In this way, we can identify all the large clusters Vi690

corresponding to Xi, 1 ≤ i ≤ t. Furthermore, we note that we can choose a small subset of Xi of691

size O(logn
δ2) for majority voting to reduce query complexity. Then we can remove all the vertices in692

Vi’s and remove all the edges incident to them from both V and T and then we can use the remaining693

subsets T and V and corresponding subgraphs to find the next sets of large clusters. The algorithm694

NOISYCLUSTERING then recursively find all the large clusters until we reach a point where the695

recovery condition on the current graph no longer holds.696

F The algorithm in faulty oracle model697

Now we turn to the faulty oracle model and give the corresponding algorithm Algorithm 5.698

To analyze the algorithm NOISYCLUSTERING (i.e., Algorithm 5), we first describe two results.699

Lemma F.1. Let |V | = n and Vi ⊂ V : |Vi| = s ≥ C
√
n·log2 n
δ for some constant C > 1. If700

a set T ⊂ V of size 16C2n2 logn
δ2s2 is sampled randomly, then with probability 1 − n−8, we have701

|T ∩ Vi| ≥
C
√
|T | log |T |
4δ ≥ C logn

δ2 .702

Proof. We use Hoeffding bound to obtain these bounds. We have |T | ≥ 16C2n2 log2 n
δ2s2 ≥ 16 log2 n.703

For every vertex u ∈ T , we define Xu as the indicator random variable which is 1 if u ∈ Vi.704

19

Then E[Xu] = |Vi|/|V |. Thus applying Hoeffding bound we get705

Pr

(∑
u∈T

Xu ≤
0.5 · |T ||Vi|
|V |

)
≤ e−8 logn ≤ n−8

Now, substituting value of |T | we get 0.5·|T ||Vi|
|V | ≥ 8·C2·n2 log2 n·s

s2·δ2·n ≥ 4C·n·logn
s·δ · C·lognδ ≥706

C·
√
|T |·logn
δ ≥ C

√
|T |·log |T |
δ . Furthermore, the last equation shows 0.5·|T ||Vi|

|V | ≥ C
√
|T |·log |T |
δ ≥707

Cn logn
s·δ·δ ≥ C logn

δ2 . Now the proof follows by noting that |T ∩ Vi| =
∑
u∈T Xu.708

Lemma F.2. Let V be partitioned into two sets U and W , where each vertex v ∈ V is independently709

assigned to either set with equal probability . Let S ⊂ Vi ∩ U be a set such that |S| ≥ 4 logn
δ2 . Then710

with probability 1−O(n−8), we have NS(u) ≥ |S|2 for all u ∈ Vi ∩W , and NS(u) < |S|
2 for all711

u ∈ Vj ∩W for any j 6= i.712

Proof. Let u ∈ Vi ∩W . Then E[NS(u)] = (0.5 + δ) · |S|. Then713

Pr(NS(u) ≤ (0.5+δ) · |S|−δ|S|) = Pr(NS(u) ≤ 0.5|S|) ≤ e−2δ
2|S|2/|S| ≤ e−2δ

2|S| ≤ e−8 logn

The last inequality holds |S| ≥ 4 log n/δ2. Thus if u ∈ Vi∩W thenNS(u) ≥ 0.5|S| with probability714

1− n−8.715

Similarly, if u /∈ Vi, then with probability 1− n−8 we have NS(u) ≤ 0.5|S|.716

717

F.1 Proof of Theorem 1.6718

Given s, first we randomly sample n′ = C2n2 log2 n
s2δ2 many vertices from V , and denote this set as T .719

Then Lemma F.2 proves that for any cluster Vi : |Vi| ≥ s∗, we have |Ti| = |T ∩ Vi| ≥ C
√
n′ logn′

δ720

with probability 1− n−8. For any underlying cluster Vi, we denote Ti = T ∩ Vi.721

Next we query all the pair of edges for vertices in T , which amounts O
(
n4 log2 n
δ4s4

)
queries. The722

resultant graph G′ is an SBM graph on n′ vertices with p = 0.5 + δ and q = 0, .5− δ.723

Thus, if we run Algorithm 1 with parameters G′, 0.5 + δ, 0.5− δ, then Theorem 1.2 implies that we724

recover a cluster Ti such that |Ti| ≥ Cn′ logn′

δ with probability 1− n−2.725

Once we get such a set Ti, we can take 4 log n/δ2 many vertices from it, calling it a set S. Then for726

every vertex v ∈ V \ T , we obtain NS(v), which requires |S| many queries, and select all vertices727

such that NS(u) ≥ 0.5|S|. Lemma F.1 shows that we recover Vi ∩ (V \ T) with probability 1− n−8,728

together recovering Vi. Thus this step requires 4n log n/δ2 queries for each iteration.729

Once we have recovered Vi, we can then remove Ti from T and run Algorithm 1 again on the residual730

graph, followed by the sample-and recovery step of Line 10. Note that once we remove a recovered731

cluster, all sets Tj that satisfied the recovery requirement of Theorem 1.2 in the graph G′ defined on732

T , also satisfies it on the graph G′′ defined on T \ Ti, and we do not need to sample any more edges.733

Finally, there are at most δ2
√
T many clusters Ti ∈ T such that |Ti| ≥

√
|T | log |T |/δ2. Here we734

have δ2
√
T = Cn logn

s . This upper bounds the number of iterations and thus the number of times the735

voting system on Line 10 is applied.736

Thus the query complexity is O
(
n4 log2 n
δ4s4 + n logn

s · 4n logn
δ2

)
= O

(
n4 log2 n
s4·δ4 + n2 log2 n

s·δ2

)
. This737

finishes the proof of Theorem 1.6.738

20

	Introduction
	Our contributions
	Recovering large clusters in the SBM
	An algorithm for clustering with a faulty oracle

	Our techniques
	Other related work

	The algorithm in the SBM
	The analysis

	The algorithm in the faulty oracle model
	Experiments
	Preliminary Notations and Tools
	Deferred Proofs from Section 2
	An improved algorithm in the balanced case
	Lower bounds
	High-level ideas of the algorithm for the faulty oracle
	The algorithm in faulty oracle model
	Proof of Theorem 1.6

