
Recovering Unbalanced Communities in the
Stochastic Block Model with Application to

Clustering with a Faulty Oracle∗

Chandra Sekhar Mukherjee †
chandrasekhar.mukherjee@usc.edu

Pan Peng ‡
ppeng@ustc.edu.cn

Jiapeng Zhang †
jiapengz@usc.edu

Abstract

The stochastic block model (SBM) is a fundamental model for studying graph
clustering or community detection in networks. It has received great attention
in the last decade and the balanced case, i.e., assuming all clusters have large
size, has been well studied. However, our understanding of SBM with unbalanced
communities (arguably, more relevant in practice) is still limited. In this paper,
we provide a simple SVD-based algorithm for recovering the communities in the
SBM with communities of varying sizes. We improve upon a result of Ailon, Chen
and Xu [ICML 2013; JMLR 2015] by removing the assumption that there is a
large interval such that the sizes of clusters do not fall in, and also remove the
dependency of the size of the recoverable clusters on the number of underlying
clusters. We further complement our theoretical improvements with experimental
comparisons. Under the planted clique conjecture, the size of the clusters that can
be recovered by our algorithm is nearly optimal (up to poly-logarithmic factors)
when the probability parameters are constant.
As a byproduct, we obtain an efficient clustering algorithm with sublinear query
complexity in a faulty oracle model, which is capable of detecting all clusters larger
than Ω̃(

√
n), even in the presence of Ω(n) small clusters in the graph. In contrast,

previous efficient algorithms that use a sublinear number of queries are incapable
of recovering any large clusters if there are more than Ω̃(n2/5) small clusters.

1 Introduction

Graph clustering (or community detection) is a fundamental problem in computer science and has
wide applications in many domains, including biology, social science, and physics. Among others, the
stochastic block model (SBM) is one of the most basic models for studying graph clustering, offering
both a theoretical arena for rigorously analyzing the performance of different types of clustering
algorithms, and synthetic benchmarks for evaluating these algorithms in practice. Since the 1980s
(e.g., [19, 8, 15, 7]), there has been much progress towards the understanding of the statistical and
computational tradeoffs for community detection in SBM with various parameter regimes. We refer
to the recent survey [1] for a list of such results.
∗Authors are in alphabetical order.
†Thomas Lord Department of Computer Science, University of Southern California. Research supported by

NSF CAREER award 2141536.
‡School of Computer Science and Technology, University of Science and Technology of China. Research

supported in part by NSFC grant 62272431 and “the Fundamental Research Funds for the Central Universities”.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

In this paper, we focus on a very basic version of the stochastic block model.
Definition 1.1 (The SBM(n, k, p, q) model). In this model, given an n-vertex set V with a hidden
partition V = ∪ki=1Vi such that Vi∩Vj = ∅ for all i 6= j, we say a graphG = (V,E) is sampled from
SBM(n, k, p, q), if for all pairs of vertices vi, vj ∈ V , (1) an edge (vi, vj) is added independently
with probability p, if vi, vj ∈ V` for some `; (2) an edge (vi, vj) is added independently with
probability q, otherwise.

We are interested in the problem of fully recovering all or some of the clusters, given a graph G that
is sampled from SBM(n, k, p, q). A cluster Vi is said to be fully recovered if the algorithm outputs a
set S that is exactly Vi. Most of the previous algorithms on the full recovery of SBM either just work
for the nearly balanced case (i.e., each cluster has size Ω(nk)) when k is small, say k = o(log n) (see
e.g. [2]), or only work under the following assumption:

• All of the latent clusters are sufficiently large4, i.e., for each j, |Vj | = Ω̃(
√
n) (see e.g.,

[25, 6, 10, 9, 1, 28, 11]).

From a practical perspective, many real-world graphs may have many communities of different sizes,
that is, large and small clusters co-exist in these graphs. This motivates us to investigate how to
recover the communities in SBM if the latent communities have very different sizes. In particular, we
are interested in efficiently recovering all the large clusters in the presence of small clusters. However,
such a task can be quite difficult, as those small clusters may be confused with noisy edges. Indeed,
most previous algorithms try to find all the k-clusters in one shot, which always computes some
structures/information of the graph that are sensitive to noise (and small clusters). For example, the
classical SVD-based algorithms (e.g., [25, 28]) first compute the first k singular vectors of some
matrix associated with the graph and then use these k vectors to find clusters. Such singular vectors
are sensitive to edge insertions or deletions (e.g. [13]). In general, this difficulty was termed by Ailon
et al. [3] as “small cluster barrier” for graph clustering.

To overcome such a barrier, Ailon et al. [3, 4] proposed an algorithm that recovers all large latent
clusters in the presence of small clusters under the following assumptions (see [4]),

• none of the cluster sizes falls in the interval (α/c, α) for a number α ∼ Θ

(√
p(1−q)n
p−q

)
and

c > 1 is some universal constant;

• there exists a large cluster, say of size at least Υ := Θ

(
max

{√
p(1−q)n
p−q , k logn

(p−q)2

})
.

The algorithm in [4] then has to exhaustively search for such a gap, and then apply a convex program-
based algorithm to find a large cluster of size at least Υ. As we discuss in the Appendix D. the
assumption of the recoverable cluster being larger than Ω(

√
p(1− q)n/(p−q)) is (relatively) natural

as any polynomial time algorithm can only recover clusters of size Ω(
√
n), under the planted clique

conjecture. Still, two natural questions that remain are
1. Can we break the small cluster barrier without making the first assumption on the existence

of a gap between the sizes of some clusters?
2. Can we remove the dependency of the size of the recoverable cluster on the number k of

clusters? In particular, when k �
√
n, can we still recover a cluster of size Ω̃(

√
n)?

The above questions are inherently related to the clustering problem under the faulty oracle model
which was recently proposed by Mazumdar and Saha [23], as an instance from the faulty oracle
model is exactly the graph that is sampled from SBM with corresponding parameters. Thus, it is
natural to ask if one can advance the state-of-the-art algorithm for recovering large clusters for the
graph instance from the faulty oracle model using an improved algorithm for the SBM?

1.1 Our contributions
We affirmatively answer all three questions mentioned above. Specifically, we demonstrate that
clusters of size Ω̃(

√
n) can be successfully recovered in both the standard SBM and the faulty oracle

model, regardless of the number of clusters present in the graph. This guarantee surpasses any
previous achievements in related studies. The practical implications of this finding are significant

4The assumption is sometimes implicit. E.g., in [28], in their Theorem 1, the lower bound on their parameter
∆ implies a lower bound on the smallest cluster size.

2

since real-world networks often exhibit a substantial number of clusters (see e.g. [29]), varying in
size from large to small.

1.1.1 Recovering large clusters in the SBM

We first provide a singular value decomposition (SVD) based algorithm, without assuming there
is a gap between the sizes of some clusters, for recovering large latent clusters. Furthermore, the
recoverability of the largest cluster is unaffected by the number of underlying clusters.

Theorem 1.2 (Recovering one large cluster). Let G be a graph that is generated from the
SBM(n, k, p, q) with σ = max

(√
p(1− p),

√
q(1− q)

)
. If both of the following conditions are

satisfied: (1) the size of the largest cluster, denoted by smax, is at least s∗ :=
213·
√
p(1−q)·n·logn
(p−q) ; (2)

σ2 = Ω(log n/n). There exists a polynomial time algorithm that exactly recovers a cluster of size at
least smax

7 with probability 1− 1
n2 .

We have the following remarks about Theorem 1.2. (1) By the assumption that σ2 = Ω(log n/n), we
obtain that p = Ω(logn

n), which further implies that the expected degrees are at least logarithmic in n.
This is necessary as exact recovery in SBM requires the node degrees to be at least logarithmic even
in the balanced case (i.e. when all the clusters have the same size; see e.g. [1]). (2) In contrast to
the work [4], our algorithm breaks the small cluster barrier and improves upon the result of [4] in
the following sense: we do not need to assume there is a large interval such that the sizes of clusters
do not fall in, nor do our bounds get affected with increasing number of small clusters. (3) As a
byproduct of Theorem 1.2, we give an algorithm that improves a result of [28] on partially recovering
clusters in the SBM in the balanced case. We refer to Appendix C for details.

In addition, the tradeoff of the parameters in our algorithm in Theorem 1.2 is nearly optimal up to
polylogarithmic factors for constant p and q under the planted clique conjecture (see Appendix D).

Recovering more clusters. We can apply the above algorithm to recover even more clusters, using
a “peeling strategy” (see [3]). That is, we first recover the largest cluster (under the preconditions
of Theorem 1.2), say V1. Then we can remove V1 and all the edges incident to them and obtain the
induced subgraph of G on the vertices V ′ := V \ {V1}, denoting it as G′. Note that G′ is a graph
generated from SBM(n′, k−1, p, q) where n′ = n−|V1|. Then we can invoke the previous algorithm
on G′ to find the largest cluster again. We can repeat the process until the we reach a point where
the recovery conditions no longer hold on the residual graph. Formally, we introduce the following
definition of prominent clusters.

Definition 1.3 (Prominent clusters). Let V1, . . . , Vk be the k latent clusters and s1, . . . , sk be
the size of the clusters. WLOG we assume s1 ≥ · · · ≥ sk. Let k′ ≥ 0 be the small-

est integer such that one of the following is true. (1) sk′+1 <
213·
√
p(1−q)

√∑k
i=k′+1

si

(p−q) ,

(2) σ2 < log(
∑k
i=k′+1 si)/(

∑k
i=k′+1 si). We call V1, . . . , Vk′ prominent clusters of V .

By the above definition, Theorem 1.2, and the aforementioned algorithm, which we call RECUR-
SIVECLUSTER, we can efficiently recover all these prominent clusters.

Corollary 1.4 (Recovering all the prominent communities). Let G be a graph that is generated from
the SBM(n, k, p, q) model. Then there exists a polynomial time algorithm RECURSIVECLUSTER that
correctly recovers all the prominent clusters of G, with probability 1− on(1).

Experimental Comparisons. We evaluate the performance of our algorithm in the simulation
settings outlined in [4] and confirm its effectiveness. Moreover, the experiments conducted in
[4] established that their gap constraint is an observable phenomenon. We demonstrate that our
algorithm can accurately recover clusters even without this gap constraint. Specifically, we succeed
in identifying large clusters in scenarios where there were Ω(n) single-vertex clusters, a situation
where the guarantees provided by [4] are inadequate. We observed that simpler spectral algorithms,
such as [28], also failed to perform well in this scenario. Furthermore, we observe that the run-time
of our algorithm is significantly faster than the SDP based approach of [3, 4]. Finally, we present
empirical evidence of the efficacy of our techniques beyond their theoretical underpinnings.

3

1.1.2 An algorithm for clustering with a faulty oracle
We apply the above algorithm to give an improved algorithm for a clustering problem in a faulty
oracle model, which was proposed by [23]. The model is defined as follows:
Definition 1.5. Given a set V = [n] := {1, · · · , n} of n items which contains k latent clusters
V1, · · · , Vk such that ∪iVi = V and for any 1 ≤ i < j ≤ k, Vi ∩ Vj = ∅. The clusters V1, . . . , Vk
are unknown. We wish to recover them by making pairwise queries to an oracle O, which answers
if the queried two vertices belong to the same cluster or not. This oracle gives correct answer with
probability 1

2 + δ
2 , where δ ∈ (0, 1) is a bias parameter. It is assumed that repeating the same

question to the oracle O, it always returns the same answer5.
Our goal is to recover the latent clusters efficiently (i.e., within polynomial time) with high probability
by making as few queries to the oracle O as possible. One crucial limitation of all the previous
polynomial-time algorithms ([23, 21, 27, 20, 14]) that make sublinear6 number of queries is that they
cannot recover large clusters, if there are at least Ω̃(n2/5) small clusters. Now we present our result
for the problem of clustering with a faulty oracle.
Theorem 1.6. In the faulty oracle model with parameters n, k, δ, there exists a polynomial time
algorithm NOSIYCLUSTERING(s), such that for any n ≥ s ≥ C·

√
n log2 n
δ , it recovers all clusters of

size larger than s by making O(n
4 log2 n
δ4·s4 + n2 log2 n

s·δ2) queries in the faulty oracle model.

We remark that our algorithm works without the knowledge of k, i.e., the number of clusters. Note
that Theorem 1.6 says even if there are Ω(n) small clusters, our efficient algorithm can still find all
clusters of size larger than Ω(

√
n logn
δ) with sublinear number of queries. We note that the size of

clusters that our algorithm can recover is nearly optimal under the planted clique conjecture. Due to
space constraints, all the missing algorithms, analyses, and proofs are deferred to Appendix E and F.

1.2 Our techniques

Now we describe our main idea for recovering the largest cluster in a graph G = (V,E) that is
generated from SBM(n, k, p, q).
Previous SBM algorithms The starting point of our algorithm is a Singular Value Decomposition
(SVD) based algorithm by [28], which in turn is built upon the seminal work of [25]. The main idea
underlying this algorithm is as follows: Given the adjacency matrix A of G, project the columns of A
to the space Ak, which is the subspace spanned by the first k left singular vectors of Ak. Then it is
shown that for appropriately chosen parameters, the corresponding geometric representation of the
vertices satisfies a separability condition. That is, there exists a number r > 0 such that 1) vertices in
the same cluster have a distance at most r from each other; 2) vertices from different clusters have
a distance at least 4r from each other. This is proven by showing that each projected point Pu is
close to its center, which is point u corresponding to a column in the expected adjacency matrix E[A].
There are exactly k centers corresponding to the k clusters. Then one can easily find the clusters
according to the distances between the projected points.

The above SVD-based algorithm aims to find all the k clusters at once. Since the distance between
two projected points depends on the sizes of the clusters they belong to, the parameter r is inherently
related to the size s of the smallest cluster. Slightly more formally, in order to achieve the above
separability condition, the work [28] requires that the minimum distance (which is roughly

√
s(p−q))

between any two centers is at least Ω(
√
n/s), which essentially leads to the requirement that the

minimum cluster size is large, say Ω(
√
n), in order to recover all the k clusters.

High-level idea of our algorithm In comparison to the work [28], we do not attempt to find all
the k clusters at once. Instead, we focus on finding large clusters, one at a time. As in [28], we first
project the vertices to points using the SVD. Then instead of directly finding the “perfect” clusters
from the projected points, we first aim to find a set S that is somewhat close to a latent cluster that is
large enough. Formally, we introduce the following definition of Vi-plural set.
Definition 1.7 (Plural set). We call a set S ⊂ V as a Vi-plural set if (1) |S ∩ Vi| ≥ 213

√
n log n; (2)

For any Vj 6= Vi we have |S ∩ Vj | ≤ 0.1 · |S ∩ Vi|.
5This was known as persistent noise in the literature; see e.g. [17].
6Since there are Θ(n2) number of possible queries, by “sublinear” number of queries, we mean the number

of queries made by the algorithm is o(n2).

4

That is, a plural set contains sufficiently many vertices from one cluster and much fewer vertices
from any other cluster.

Recall that s∗ :=
C
√
p(1−q)·n·logn

(p−q) for C = 213, and smax ≥ s∗. We will find a Vi-plural set for any
cluster Vi that is large enough, i.e., |Vi| ≥ smax

7 . To recover large clusters, our crucial observation is
that it suffices to separate vertices of one large cluster from other large clusters, rather than trying
to separate it from all the other clusters. This is done by setting an appropriate distance threshold
L to separate points from any two different and large clusters. Then by refining Vu’s analysis, we
can show that for any u ∈ Vi with |Vi| ≥ smax

7 , the set S that consists of all vertices whose projected
points belong to the ball surrounding u with radius L is a Vi-plural set, for some appropriately chosen
L. It is highly non-trivial to find such a radius L. To do so, we carefully analyze the geometric
properties of the projected points. In particular, we show that the distances between a point and its
projection can be bounded in terms of the k′-th largest eigenvalue of the expected adjacency matrix
of the graph (see Lemma 2.2), for a carefully chosen parameter k′. To bound this eigenvalue, we
make use of the fact that A is a sum of many rank 1 matrices and Weyl’s inequality (see Lemma 2.3).
We refer to Section 2 for more details.

Now suppose that the Vi-plural set S is independent of the edges in V × V (which is not true and
we will show how to remedy this later). Then given S, we can run a statistical test to identify all the
vertices in Vi. To do so, for any vertex v ∈ V , observe that the subgraph induced by S ∪ {v} is also
sampled from a stochastic block model. For each vertex v ∈ Vi, the expected number of its neighbors
in S is

p · |S ∩ Vi|+ q · |S \ Vi| = q|S|+ (p− q) · |S ∩ Vi|.
On the other hand, for each vertex u ∈ Vj for some different cluster Vj 6= Vi, the expected number of
its neighbors in S is

p · |S ∩ Vj |+ q · |S \ Vj | = q|S|+ (p− q) · |S ∩ Vj | ≤ q|S|+ (p− q) · 0.1 · |S ∩ Vi|,
since |S ∩ Vj | ≤ 0.1 · |S ∩ Vi| for any Vj 6= Vi. Hence there exists a Θ((p − q) · |S ∩ Vi|) gap
between them. Thus, as long as |S ∩ Vi| is sufficiently large, with high probability, we can identify if
a vertex belong to Vi or not by counting the number of its neighbors in S.

To address the issue that the set S does depend on the edge set on V , we use a two-phase approach:
that is, we first randomly partition V into two parts U,W (of roughly equal size), and then find a
Vi-plural set S from U , then use the above statistical test to find all the vertices of Vi in W (i.e.,
V \ U), as described in IDENTIFYCLUSTER(S,W, s) (i.e. Algorithm 4).

Note that the output, say T1, of this test is also Vi-plural set. Then we can find all vertices of Vi in
U by running the statistical test again using T1 and U , i.e., invoking IDENTIFYCLUSTER(T1, U, s).
Then the union of the outputs of these two tests gives us Vi. We note that there is correlation between
T1 and U , which makes our analysis a bit more involved. We solve it by taking a union bound over a
set of carefully defined bad events; see the proof of Lemma 2.7.

1.3 Other related work
In [11] (which improves upon [12]), the author also gave a clustering algorithm for SBM that recovers
a cluster at a time, while the algorithm only works under the assumption that all latent clusters are of
size Ω(

√
n), thus they do not break the “small cluster barrier”.

The model for clustering with a faulty oracle captures some applications in entity resolution (also
known as the record linkage) problem [16, 24], the signed edges prediction problem in a social network
[22, 26] and the correlation clustering problem [5]. A sequence of papers has studied the problem
of query-efficient (and computationally efficient) algorithms for this model [23, 21, 27, 20, 14]. We
refer to references [23, 21, 27] for more discussions of the motivations for this model.

2 The algorithm in the SBM
We start by giving a high-level view of our algorithm (i.e., Algorithm 1). Let G = (V,E) be a graph
generated from SBM(n, k, p, q). For a vertex v and a set T ⊂ V , we let NT (v) denote the number
of neighbors of v in T .

We first preprocess (in Line 1) the graph G by invoking Algorithm 2 PREPROCESSING, which
randomly partitions V into four subsets Y1, Y2, Z,W such that each vertex is added to Y1, Y2, Z,W

5

with probability 1/8, 1/8, 1/4, 1/2, respectively. Let Y = Y1 ∪ Y2, U = Y ∪ Z. See Figure 1 for
a visual presentation of the partition. Let Â (resp. B̂) be the bi-adjacency matrix between Y1 (resp.
Y2) and Z. This part is to reduce the correlation between some random variables in the analysis,
similar to in [25] and [28]. Then we invoke (in Line 2) Algorithm 3 ESTMATINGSIZE to estimate the
size of the largest cluster. It first samples

√
n log n vertices from Y2 and then counts their number of

neighbors in W . These counters allow us to obtain a good approximation s of smax.

We then repeat the following process to find a large cluster (or stop when the number of iterations
is large enough). In Line 4–7, we sample a vertex u ∈ Y2 and consider the column vector û

corresponding to u in the bi-adjacency matrix Â between Y2 and Z. Then we consider the projection
PÂk′

û of û onto the subspace of the first k′ singular vectors of Â for some appropriately chosen k′,
and the set S of all vertices v in Y2 whose projections are within distance L/20 from pu, for some
parameter L. In Lines 9–15, we give a process that completely recovers a large cluster when S is
a plural set. More precisely, we first test if |S| ≥ s̄/21 and if so, we invoke Algorithm 4 to obtain
T1 = IDENTIFYCLUSTER(S,W, s), which simply defines T1 to be the set of all vertices v ∈ W
with NS(v) ≥ q|S|+ (p− q) s56 . Then we check (Line 10) if the set T1 satisfies a few conditions to
test if u is indeed a good center (so that S is a plural set) and test if T1 = V1 ∩W . If so, we then
invoke IDENTIFYCLUSTER(T1, U, s) to find V1 ∩ U . Note that we use a two-step process to find V1,
as NS(u) is not a sum of independent events for u ∈ U .

Algorithm 1 CLUSTER(G = (V,E), p, q): Recovering one large cluster

1: Â, B̂, Y2, Y1, Z,W ← PREPROCESSING(G, p, q)
2: s← ESTIMATINGSIZE(G, p, q,W, Y2)
3: for i = 1, · · · , h =

√
n log n do

4: sample a vertex u from Y2
5: u←the column vector consisting of the edges between u and Z
6: pu ← PÂk′

û, the projection of û onto the subspace of the first k′ singular vectors of Â,

where k′ = (p− q)
√
n/
√
p(1− q)

7: S ← {v ∈ Y2: ‖pu − pv‖ ≤ L
20}, where pv ← PÂk′

v̂ and L =
√

0.004(p− q)
√
s

8: if |S| ≥ s
21 then

9: Invoke IDENTIFYCLUSTER(S,W, s) to get set T1
10: if |T1| ≤ s

6 or ∃v ∈ T1 s.t. NT1
(v) ≤ (0.9p + 0.1q) · |T1| or ∃v ∈ W \ T1 s.t.

NT1
(v) ≥ (0.9p+ 0.1q) · |T1| then

11: continue
12: else
13: Invoke IDENTIFYCLUSTER(T1, U, |T1|) to obtain a set T2
14: Merge the two sets to form T = T1 ∪ T2
15: Return T .
16: Return ∅

2.1 The analysis
We first show that ESTIMATINGSIZE outputs an estimator s approximating the size of the largest
cluster within a factor of 2 with high probability.

Lemma 2.1. Let s be as defined in Line 6 of Algorithm 3. Then with probability 1− n−8 we have
0.48 · smax ≤ s ≤ 0.52 · smax.

Recall that Â (resp. B̂) is the bi-adjacency matrix between Y1 (resp. Y2) and Z. Let A and B be
the corresponding matrices of expectations. That is, Â = A + E, where E is a random matrix
consisting of independent random variables with 0 means and standard deviations either

√
p(1− p)

or
√
q(1− q).

For a vertex u ∈ Y1, let û and u represent the column vectors corresponding to u in the matrices Â
and A respectively (We define analogous notations for B̂ and B when u ∈ Y2.). We let eu := û− u,
i.e., eu is the random vector with zero mean in each of its entries. Recall that pu = PÂk′

û.

6

V

U W

Y Z

Y1 Y2

Figure 1: Partition of the vertices

Algorithm 2 PREPROCESSING(G, p, q): Parti-
tion and projection

1: Randomly partitions V into four sub-
sets Y1, Y2, Z,W such that each vertex
is added to Y1, Y2, Z,W with probability
1/8, 1/8, 1/4, 1/2, respectively.

2: Let Y = Y1 ∪ Y2, U = Y ∪ Z.
3: Let Â (resp. B̂) be the bi-adjacency matrix

between Y1 (resp. Y2) and Z.
4: Return Â, B̂, Y2, Y1, Z,W

Algorithm 3 ESTIMATINGSIZE(G =
(V,E), p, q,W, Y2): Estimating the size of
the largest cluster

1: s∗ ← 213·
√
p(1−q)·

√
n·logn

(p−q)
2: for i = 1, · · · , h =

√
n log n do

3: sample ui from Y2 uniformly at random.
4: NW (ui)← # of neighbors of ui in W .
5: u← arg maxNW (ui)

6: s← NW (u)−q|W |
(p−q)

7: if s ≤ s∗/3 then
8: Exit(0)
9: else

10: Return s

Algorithm 4 IDENTIFYCLUSTER(S,R, s): Find-
ing a subcluster R ∩ Vi using a Vi-plural set S

1: T ← ∅
2: for each v ∈ R do
3: if Nv,S ≥ q|S|+ (p− q) s56 then
4: add v to T
5: Return T

Now we bound the distance between PÂk′
û and the expectation vector u. We set ε = 0.002 in the

following.
Lemma 2.2. Follows the setting of Algorithm 2, we fix Y1, Y2, Z,W . For any vector u ∈ Y2 and
k′ ≥ 1 we have ‖PÂk′

(û)− u‖ ≤ 1√
su
‖(PÂk′

− I)A‖+ ‖PÂk′
(eu).‖

Furthermore, for some constant C2, and ε as described above we have
1. ‖(PÂk′

− I)A‖ = ‖(PÂk′
− I)Â− (PÂk′

− I)E‖ ≤ 2C2σ
√
n+λk′+1(A) with probability

1−O(n−3) for a random Â, where λt(A) is the t-th largest sigular value of A.

2. For any set V ′ ⊂ Y2 s.t. |V ′| ≥ 4 logn
ε2 , with probability 1− n−8, we have ‖PÂk′

(eu)‖ ≤
1
εσ
√
k′ for at least (1− 2ε) fraction of the points u ∈ V ′.

We have the following result regarding the t-th largest singular value λt(A) of A.
Lemma 2.3. For any t > 1, λt(A) ≤ (p− q)n/t.

Now we introduce the a definition of good center, the ball of which induces a plural set.

Definition 2.4 (Good center). We call a vector û ∈ B̂ a good center if it belongs to a cluster Vi such
that |Vi| ≥ smax

4 and
∥∥∥PÂk′

(eu)
∥∥∥ ≤ 1

εσ
√
k′.

That is, a good center is a vertex that belongs to a large cluster and has a low `2 norm after the
projection. Then by Lemma 2.2, we have the following corollary on the number of good centers.
Corollary 2.5. If smax ≥ 16

√
n log n, then with probability 1− n−8 there are (1− 2ε) · smax many

good centers in V .

This implies that if we sample 100n logn
s many vertices independently at random, we shall sample a

good center with probability 1− n−8.

Good center leads to plural set We show that if at line 4 a good center from a cluster Vi is chosen,
then the set S formed in line 7 is a Vi-plural set. Recall that L =

√
0.004(p− q)

√
s. Let Lε := L.

7

Lemma 2.6. Let u be a good center belonging to Vi ∩ Y2 and S = {v ∈ Y2 : ‖pu−pv‖ ≤ Lε/20}.
Then it holds with probability 1−O(n−3) that |Vi ∩ S| ≥ s/21 and for any other cluster V` with
` 6= i, |S ∩ V`| ≤ 1.05εs. Thus S is a Vi plural set as 1/21 · 1/10 ≥ 1.05ε.

Plural set leads to cluster recovery We now prove that given a plural set for a large cluster Vi, we
can recover the whole cluster. This is done by two invocations of Algorithm 4.

Lemma 2.7. Let U,W be the random partition as specified in Algorithm 1. Let S ⊆ Y2 be the
Vi-plural set where |Vi| ≥ smax/4. Let T1 := IDENTIFYCLUSTER(S,W, s) and T := T1 ∪
IDENTIFYCLUSTER(T1, U, s). Then with probability 1 − O(n−3), it holds that T1 = Vi ∩ W ,
T1 ≥ s

6 and T = Vi.

Testing if T1 is a sub-cluster Since S may not be a plural set, we show that we can test if
T1 = W ∩ Vi for some large cluster Vi using the conditions of Line 10 of Algorithm 1.

Lemma 2.8. Let v be a good center from Vi ∩ Y2 such that |Vi| ≥ smax

4 and let S = {u ∈
Y2 : ‖pu − pv‖ ≤ Lε

30 }. Let T1 be the set returned by IDENTIFYCLUSTER(S,W, s). Then with
probability at least 1 − n−8, |T1| ≥ s

6 and NT1
(u) ≥ (0.9p + 0.1q)|T1| for any u ∈ T1 and

NT1
(u) ≤ (0.9p+ 0.1q)|T1| for any u ∈W \ T1.

Finally, we show that if the set T1 6= Vi ∩W for some large cluster Vi, then it satisfies one of the
conditions at line 10 of Algorithm 1. Together with the previous results this guarantees correct
recovery of a large set at every round.

Corollary 2.9. Let T1 = IDENTIFYCLUSTER(S,W, s) be a set such that T1 6= Vi ∩W for any
underlying community Vi of size |Vi| ≥ smax/7. Then with probability 1− n−8 either |T1| ≤ s

6 or
there is a vertex u ∈ T1 such that NT1(u) ≤ (0.9p+ 0.1q)|T1|.
Remark 2.10. Note that in Lemma 2.8 and Corollary 2.9, the quantity NT1

(u) for any u ∈ T1 is a
sum of independent events. This is because the event that a vertex in v ∈W is chosen in T1 is solely
based on Nu(S), where S ∩ T = ∅. Thus, for any u1, u2 ∈ T , there is an edge between them (as per
underlying cluster identities) independent of other edges in the graph.

The proofs of the above results are deferred to Appendix 2.1.

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2 By the precondition, we have that smax ≥ s∗. First, in Line 2, Lemma 2.1
guarantees that 0.48smax ≤ s ≤ 0.52smax. By Corollary 2.5 and the fact that we iteratively sampled
vertices Ω(

√
n log n) times, with probability 1−n−8, one such vertex u is a good center. Given such

a good center, by Lemma 2.6, we know with probability 1−O(n−3), a Vi-plural set is recovered on
Line 7. Then by Lemma 2.7, given such a Vi-plural set, the two invocations of IDENTIFYCLUSTER
recovers the cluster Vi with probability 1 − O(n−3). Furthermore, Lemma 2.8 shows that if the
sampled vertex v is a good center, then with probability 1− n−8 none of the conditions of line 10
are satisfied, and we are able to recover a cluster. On the other hand, Corollary 2.9 shows that if
T1 6= Vi ∩W for any large cluster Vi, (Vi : |Vi| ≥ smax/7) then one of the conditions of line 10
is satisfied with probability 1 − n−8 and the algorithm goes to the next iteration to sample a new
vertex in line 4. Taking a union bound on all the events for at mostO(

√
n log n) iterations guarantees

that algorithm 1 finds a cluster of size smax/7 with probability 1 − O(n−2). This completes the
correctness of Algorithm 1.

3 The algorithm in the faulty oracle model
We describe the main ideas of our algorithm NOISYCLUSTERING for clustering with a faulty oracle.
Let V be the set of items that contains k latent clusters V1, . . . , Vk and O be the faulty oracle.
Following the idea of [27], we first sample a subset T ⊆ V of appropriate size and query O(u, v) for
all pairs u, v ∈ T . Then apply our SBM clustering algorithm (i.e. Algorithm 1 CLUSTER) on the
graph (with all the edges for the pairs that are reported to belong to the same cluster) induced by T to
obtain clusters X1, . . . , Xt for some t ≤ k. We can show that each of these sets is a subcluster of
some large cluster Vi. Then we can use majority voting to find all other vertices that belong to Xi,
for each i ≤ t. That is, for each Xi and v ∈ V , we check if the number of neighbors of v in Xi is
at least |Xi|

2 . In this way, we can identify all the large clusters Vi corresponding to Xi, 1 ≤ i ≤ t.

8

Furthermore, we can just choose a small subset of Xi of size O(logn
δ2) for majority voting to reduce

query complexity. Then we can remove all the vertices in Vi’s and remove all the edges incident to
them from both V and T and then we can use the remaining subsets T and V and corresponding
subgraphs to find the next sets of large clusters. The algorithm NOISYCLUSTERING then recursively
finds all the large clusters until we reach a point where the recovery condition on the current graph no
longer holds. The pseudocode and the analysis of NOISYCLUSTERING are deferred to Appendix F.

4 Experiments
Now we exhibit various properties of our algorithms by running it on several unbalanced SBM
instantiations and also compare our improvement w.r.t the state-of-the-art. We start by running our
algorithm RECURSIVECLUSTER on the instances used by the authors of [4]. WLOG, we assume that
|V1| ≥ |V2| · · · ≥ |Vk|. We denote the algorithm in [4] by ACX.

Exp. # n p, q k Cluster sizes Recovery by us Recovery by
ACX

1 1100 0.7, 0.3 4 {800, 200, 80, 20} Largest cluster All clusters
2 3200 0.8, 0.2 5 {800, 200, 200, 50, 50} Largest cluster All clusters

3 750 0.8, 0.2 4 {500, 150, 70, 30} Largest cluster Incorrect
Recovery

4 800 0.8, 0.2 4 {500, 200, 70, 30} Two largest clusters Incorrect
Recovery

Table 1: Comparing RECURSIVECLUSTER with ACX [4]

Comparison with ACX In Exp-1 (abbreviated for Experiment #1) and Exp-2, our algorithm
recovers the largest cluster while ACX recovers all the clusters. This is because we have a large,
constant lower bound on the size of the clusters we can recover. If we scale up the size of the clusters
by a factor of 20 in those instances, then we are also able to recover all clusters.

Overcoming the gap constraint in practice Exp-3 is the “mid-size-cluster” experiment in [4]. In
this case, ACX recovers the largest cluster completely, but only some fraction of the second-largest
cluster, which is an incorrect outcome. In [4], the authors used this experiment to emphasize that their
“gap-constraint” is not only a theoretical artifact but also observable in practice. In comparison, we
recover the largest cluster while do not make any partial recovery of the rest of the clusters. In Exp-4,
we modify the instance in Exp-3 by changing the size of the second cluster to 200. Note that this
further reduces the gap, and ACX fails in this case as before. In comparison, we are able to recover
both the largest and the second largest cluster. This exhibits that we are indeed able to overcome the
experimental impact of the gap constraint observed in [4] in the settings of Table 1.

Exp. # n p, q k Cluster sizes Recovery by us

5 2900 0.7, 0.3 1000 {1000, 903} ∪ {1}997i=1 Large clusters
6 12300 0.85, 0.15 4 {12000, 100, 100, 100} All clusters

Table 2: Further Evaluation of RECURSIVECLUSTER

We then run some more experiments in the settings of Table 2 to describe other properties of our
algorithms as well as demonstrate the practical usefulness of our “plural-set” technique.

Many clusters Exp-5 covers a situation where k = Ω(n) (specifically n/3), which can not be handled
by ACX, as the size of the recoverable cluster in [4] is lower bounded by k log n/(p− q)2 > n. In
comparison, our algorithm can recover the two main clusters. We also remark, in this setting, the
spectral algorithm in [28] with k = 1000 can not geometrically separate the large clusters.

Recovery of small clusters Exp-6 describes a situation where the peeling strategy successfully
recovers clusters that were smaller than

√
n in the original graph. Once the largest cluster is removed,

the smaller cluster then becomes recoverable in the residual graph. Finally, we discuss the usefulness
of the plural set.

Run-time comparison Here, note that our method is a combination of a (p − q)
√
n/
√
p(1− q)

dimensional SVD projection, followed by some majority voting steps. Furthermore, we have

9

(p−q)/
√
p(1− q) ≤ 2

√
p. This implies that the time complexity of our algorithm isO

(
2
√
p · n2.5

)
.

In comparison, the central tool used in the algorithms by [3, 4] is an SDP relaxation, which scales
as O(n3). This implies that the asymptotic time complexity of our method is also an improvement
on the state-of-the-art. We also confirm that the difference in the run-time becomes observable even
for small values of n. For example, our algorithm recovers the largest cluster in Experiment 1 (with
n = 1100) of table 1 in 1.4 seconds. In comparison, [3] recovers all 4 clusters, but takes 44 seconds.

On the importance of plural sets Recall that in Algorithm 1 (which is the core part of RECUR-
SIVECLUSTER), we first obtain a plural-set S in the partition Y2 of V (see Figure 1 to recall the
partition). S is not required to be Vi ∩ Y2 for any cluster Vi, but the majority of the vertices in S must
belong to a large cluster Vi (which is the one we try to recover). We have the following observations:

1. In Exp-3 of Table 1, in the first round we recover a cluster V1. Here in our first step, we
recover a plural set S, where S ⊂ V1 ∩ Y2. That is, we do not recover all the vertices of V1
in Y2 when forming the plural-set.

2. In Exp-4 of Table 1, in the second iteration we recover a cluster V2. However, the plural
set S 6⊂ V2, and in fact contains a few vertices from V4! This is in fact the exact situation
that motivates the plural-set method.

In both cases, the plural-set is then used to recover S1 := V1 ∩W and V2 ∩W respectively, and
then S1 is used to recover the vertices of the corresponding cluster in U . Thus, our technique
enables us to completely recover the largest cluster even though in the first round we may have
some misclassifications. A more thorough empirical understanding of the Plural sets in different
applications is an interesting future work.

We conclude our paper with some more discussion and future directions.

5 Conclusion

In this work, we design a spectral algorithm that recovers large clusters in the SBM model in the
presence of arbitrary numbers of small clusters and compared to previous work, we do not require
gap constraint in the size of consecutive clusters. Some interesting directions that remain open are as
follows.

1. We note that both our algorithm and [4] require knowledge of the probability parameters p
and q ([4] also need the knowledge of k, the number of clusters). Thus, whether parameter-
free community recovery algorithms can be designed with similar recovery guarantees is a
very interesting question.

2. Both our result (Algorithm 1) as well as [4] have a multiplicative log n term in our recovery
guarantees. In comparison, the algorithm by Vu [28], which is the state-of-the-art algorithm
in the dense case when “all” clusters are large, only has an additive logarithmic term. This
raises the question of whether this multiplicative logarithmic factor can be further optimized
when recovering large clusters in the presence of small clusters.

Additionally, we note that the constant in our recovery bound is quite large (213), and we have not
made efforts to optimize this constant. We believe this constant can be optimized significantly, such
as through a more careful calculation of the Chernoff bound in Theorem A.2.

References
[1] Emmanuel Abbe. Community detection and stochastic block models: recent developments. The

Journal of Machine Learning Research, 18(1):6446–6531, 2017.

[2] Emmanuel Abbe and Colin Sandon. Community detection in general stochastic block models:
Fundamental limits and efficient algorithms for recovery. In 2015 IEEE 56th Annual Symposium
on Foundations of Computer Science, pages 670–688. IEEE, 2015.

[3] Nir Ailon, Yudong Chen, and Huan Xu. Breaking the small cluster barrier of graph clustering.
In International conference on machine learning, pages 995–1003. PMLR, 2013.

10

[4] Nir Ailon, Yudong Chen, and Huan Xu. Iterative and active graph clustering using trace norm
minimization without cluster size constraints. J. Mach. Learn. Res., 16:455–490, 2015.

[5] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine learning,
56(1-3):89–113, 2004.

[6] Béla Bollobás and Alex D Scott. Max cut for random graphs with a planted partition. Combina-
torics Probability and Computing, 13(4-5):451–474, 2004.

[7] Ravi B Boppana. Eigenvalues and graph bisection: An average-case analysis. In 28th Annual
Symposium on Foundations of Computer Science (sfcs 1987), pages 280–285. IEEE, 1987.

[8] Thang Nguyen Bui, Soma Chaudhuri, Frank Thomson Leighton, and Michael Sipser. Graph
bisection algorithms with good average case behavior. Combinatorica, 7(2):171–191, 1987.

[9] Kamalika Chaudhuri, Fan Chung, and Alexander Tsiatas. Spectral clustering of graphs with
general degrees in the extended planted partition model. In Conference on Learning Theory,
pages 35–1. JMLR Workshop and Conference Proceedings, 2012.

[10] Yudong Chen, Sujay Sanghavi, and Huan Xu. Clustering sparse graphs. In Proceedings of
the 25th International Conference on Neural Information Processing Systems-Volume 2, pages
2204–2212, 2012.

[11] Sam Cole. Recovering nonuniform planted partitions via iterated projection. Linear Algebra
and its Applications, 576(1):79–107, 2019.

[12] Sam Cole, Shmuel Friedland, and Lev Reyzin. A simple spectral algorithm for recovering
planted partitions. Special Matrices, 5(1):139–157, 2017.

[13] Chandler Davis and William M Kahan. Some new bounds on perturbation of subspaces. Bulletin
of the American Mathematical Society, 75(4):863–868, 1969.

[14] Alberto Del Pia, Mingchen Ma, and Christos Tzamos. Clustering with queries under semi-
random noise. arXiv preprint arXiv:2206.04583. To appear at Conference on Learning Theory
(COLT) 2022, 2022.

[15] Martin E. Dyer and Alan M. Frieze. The solution of some random np-hard problems in
polynomial expected time. Journal of Algorithms, 10(4):451–489, 1989.

[16] Ivan P Fellegi and Alan B Sunter. A theory for record linkage. Journal of the American
Statistical Association, 64(328):1183–1210, 1969.

[17] Sally A Goldman, Michael J Kearns, and Robert E Schapire. Exact identification of circuits
using fixed points of amplification functions. In Proceedings [1990] 31st Annual Symposium
on Foundations of Computer Science, pages 193–202. IEEE, 1990.

[18] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of
the American Statistical Association, 58(301):13–30, 1963.

[19] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels:
First steps. Social networks, 5(2):109–137, 1983.

[20] Zengfeng Huang Jinghui Xia. Optimal clustering with noisy queries via multi-armed bandit. To
appear at the 39th International Conference on Machine Learning (ICML 2022), 2022.

[21] Kasper Green Larsen, Michael Mitzenmacher, and Charalampos Tsourakakis. Clustering with a
faulty oracle. In Proceedings of The Web Conference 2020, pages 2831–2834, 2020.

[22] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Predicting positive and negative links
in online social networks. In Proceedings of the 19th international conference on World wide
web, pages 641–650, 2010.

[23] Arya Mazumdar and Barna Saha. Clustering with noisy queries. In Advances in Neural
Information Processing Systems, pages 5788–5799, 2017.

11

[24] Arya Mazumdar and Barna Saha. A theoretical analysis of first heuristics of crowdsourced
entity resolution. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
pages 970–976, 2017.

[25] Frank McSherry. Spectral partitioning of random graphs. In Proceedings 42nd IEEE Symposium
on Foundations of Computer Science, pages 529–537. IEEE, 2001.

[26] Michael Mitzenmacher and Charalampos E Tsourakakis. Predicting signed edges with
o(n1+o(1) log n) queries. arXiv preprint arXiv:1609.00750, 2016.

[27] Pan Peng and Jiapeng Zhang. Towards a query-optimal and time-efficient algorithm for
clustering with a faulty oracle. In Conference on Learning Theory, 2021.

[28] Van Vu. A simple svd algorithm for finding hidden partitions. Combinatorics, Probability &
Computing, 27(1):124, 2018.

[29] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on
ground-truth. In Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics, pages
1–8, 2012.

12

A Preliminary Notations and Tools

Notations for vectors. Let M̂ be the adjacency matrix of the graph G = (V,E) that is sampled
from SBM(n, k, p, q). We denote by M the matrix of expectations, where M [i, j] = p if the i-th and
j-th vertices belong to the same underlying cluster, and M [i, j] = q otherwise. Going forward, we
shall work with several sub-matrices of M̂ and for any submatrix M ′, we denote by M̂ ′ and M ′ the
random matrix and the corresponding matrix of expectations.

We also use the norm operator ‖ · ‖ frequently in this paper. We use the operator both for vectors
and matrices. Given a vector x = (x1, . . . , xd), we let ‖x‖ :=

√∑
i x

2
i denote its Euclidean norm.

When the input is a matrix M , ‖M‖ denotes the spectral norm of M , which is its largest singular
value.

We describe the well-known Weyl’s inequality.
Theorem A.1 (Weyl’s inequality). Let Â = A+ E be a matrix. Then λt+1(Â) ≤ λt+1(A) + ‖E‖
where ‖ · ‖ is the spectral norm operator as described above.

We will make use of the following general Chernoff Hoeffding bound.
Theorem A.2 (Chernoff Hoeffding bound [18]). Let X1, . . . , Xn be i.i.d random variables that can
take values in {0, 1}, with E[Xi] = p for 1 ≤ i ≤ n. Then we have

1. Pr
(
1
n

∑n
i=1Xi ≥ p+ ε

)
≤ e−D(p+ε||p)n

2. Pr
(
1
n

∑n
i=1Xi ≤ p− ε

)
≤ e−D(p−ε||p)n

Here D(x||y) is the KL divergence of x and y. We recall the KL divergence between Bernoulli
random variables x, y D(x||y) = x ln(x/y) + (1− x) ln((1− x)/(1− y)). it is easy to see that If
x ≥ y, then D(x||y) ≥ (x−y)2

2x , and D(x||y) ≥ (x−y)2
2y otherwise.

We also note down a random projection Lemma that we use in our proof.
Lemma A.3 (Expected random projection [28]). Let PÂk′

be a k′-dimensional projection matrix,
and eu be an n dimensional random vector where each entry is 0 mean and has a variance of at most
σ2. Then we have E[‖PÂk′

(eu)‖2] ≤ σ2 · k′.

B Deferred Proofs from Section 2

We first give a general concentration bound concerning neighbors of vertices in the different partitions.
Lemma B.1. Let V be a set of n vertices sampled according to the SBM(n, k, p, q) model. Let
V ′ ⊂ V where the vertices in V ′ are selected independently of each other. Let Vi be a latent cluster
with V ′i = Vi ∩ V ′. We denote by NV ′(u) the number of neighbors of u in V ′. Then with probability
1−O(n−7) we have for every u ∈ V ′i ,

q|V ′|+ (p− q)|V ′ ∩ Vi| − 16 · √p ·
√
n log n

≤NV ′(u) ≤ q|V ′|+ (p− q)|V ′ ∩ Vi|+ 48 · √p ·
√
n log n.

Proof of Lemma B.1. We look at two different sums of random variables. The first is NV ′
i
(u) which

is the sum of |Vi ∩ V ′| many random 0− 1 variables with probability of 1 being p. The second is
NV ′\V ′

i
(u), which is the sum of |V ′ \ V ′i | variables with probability of 1 being q.

Then we have E[NV ′
i
(u)] = p|Vi ∩ V ′| and E[NV ′\V ′

i
(u)] = q|V ′ \ V ′i |. Finally the Chernoff bound

implies,

1. Pr

(
NV ′

i
(u)

|V ′
i |

< p− α
)
≤ e−D(p−α||p)|V ′

i |. We fix α =
8
√
p
√
n logn

|V ′
i |

and then the term

D(p− α||p)|V ′i | evaluates to

D(p− α||p)|V ′i | ≥
α2|V ′i |

2p
≥ 8 · p · n · 2 log n · |V ′i |

|V ′i |2 · 2p
≥ 8 · log n · n

|V ′i |
≥ 8 log n.

13

This gives us
Pr
(
NV ′

i
(u) < p|V ′i | − 8

√
p
√
n log n

)
≤ n−8 (1)

2. Pr

(
NV ′\V ′

i
(u)

|V ′\V ′
i |

< q − β
)
≤ e−D(q−β||q)|V ′\V ′

i |. We fix β =
8
√
p
√
n logn

|V ′\V ′
i |

and the term

D(q − β||q)|V ′ \ V ′i | evaluates to

D(q − β||q)|V ′ \ V ′i | ≥
β2

2q
≥ 8 · p · n · 2 log n

|V ′ \ V ′i |2q
≥ p · 8 log n

q
· n

|V ′ \ V ′i |
≥ 8 log n.

This gives us

Pr
(
NV ′\V ′

i
(u) < q|V ′ \ V ′i | − 8

√
p
√
n log n

)
≤ n−8 (2)

Combining Equation (1) and (2) gives us

Pr
(
NV ′

i
(u) +NV ′\V ′

i
(u) < p|V ′i | − 8

√
p
√
n log n+ q|V ′ \ V ′i | − 8

√
p
√
n log n

)
≤ 2n−8

=⇒ Pr
(
NV ′(u) < q|V ′|+ (p− q)|V ′i | − 16

√
p
√
n log n

)
≤ 2n−8.

Now we study the event NV ′(u) ≥ q|V ′|+ (p− q)|V ′ ∩ Vi|+ 48 · √p ·
√
n log n again by

breaking into two terms.

The probability bounds for two terms NV ′
i
(u) and NV ′\V ′

i
are e−D(p+3α||p)|V ′

i | and
e−D(q+3β||q)|V ′\V ′

i | respectively. Here note that we use 3α instead of α, to make cal-
culations easier.

For the first case we have D(p+ 3α||p)|V ′i | ≥
9α2|V ′

i |
2(p+3α) . If p ≥ α then D(p+ α||p)|V ′i | ≥

9α2|V ′i |8p which implies we get the same bound as above. If p < α thenD(p+α||p)|V ′i | ≥
9α2|V ′

i |
8α ≥ α|V ′i |. Now we have α =

8
√
p
√
n logn

|V ′
i |

. Since p = Ω(log n/n) we have

α|V ′i | ≥ 8 log n. Combining we get that e−D(p+2α||p)|V ′
i | ≤ n−8.

Next we analyze D(q + 3β||q)|V ′ \ V ′i | ≥
9β2|V ′\V ′

i |
2(q+3β) . As before, if q ≥ β we have

D(q + 3β||q)|V ′ \ V ′i | ≥
9β2|Vi|

8q and the result follows as before. Otherwise D(q +

3β||q)|V ′ \ V ′i | ≥
9β2|V ′\V ′

i |
8β ≥ β|V ′ \ V ′i | ≥ 8

√
p
√
n log n ≥ 8 log n, which completes

the proof.

Then Lemma 2.1 can be proved as follows.

Proof of Lemma 2.1. We know that smax ≥
213·
√
p(1−q)

√
n logn

p−q from the problem definition. Let
the corresponding cluster be Vi. Then a simple application of Hoeffding bounds gives us that with
probability 1− n−8, 0.51 · smax ≥ |Vi ∩W | ≥ 0.49 · smax.

Furthermore, we are interested in the regime where p ≤ 3/4 so
√

1− q ≥ 1/2.

Then if we sample u ∈ |Vi ∩ Y2|, Lemma B.1 states that with probability 1− n−8,

|NW (u)− q|W | − (p− q)|Vi ∩W || ≤ 48
√
p
√
n log n ≤

(p− q) · 96 ·
√
p(1− q)

√
n log n

(p− q)

=⇒ |NW (u)− q|W | − (p− q)|Vi ∩W || ≤
(p− q)|Vi ∩W |

100

This implies with probability 1 − n−8, q|W | + 1.01|Vi ∩W | ≥ NW (u) ≥ q|W | + 0.99|Vi ∩W |
which coupled with the fact 0.49 ≤ |Vi∩W |

|Vi| ≤ 0.51 implies that if we are able to sample a vertex
from the largest cluster, we get an estimate of smax as described.

14

Since |Vi ∩ Y2| ≥ 100
√
n log n, if we sample

√
n log n vertices, we sample a vertex u from Vi with

probability 1− n−8. Now, for vertices belonging to smaller clusters, the same bounds apply, and this
implies that as long as we are able to sample a vertex from the largest cluster, we get an estimate of
smax between a factor of 0.48 and 0.52.

Proof of Lemma 2.2. These results follow directly from Vu [28] with some minor modifications. In
their paper, Vu decomposes the matrix into Y and Z. In comparison, we decompose the matrix to U
and W first, and then U is decomposed into Y and Z. Thus the size of Y and Z in our framework is
roughly half as compared to [28]. However, since the size of the clusters we are concerned about are
all larger than 128 ·

√
n log n, the results follow in the same way with a change of a factor of 2.

Now we describe the results and how we deviate from Vu’s analysis to get our result. For the first
part, in [28, page 132] it was proved that for any fixed û ∈ B̂,

‖PÂk
(û)− u‖ = ‖PÂk

(û− u) + (PÂk
− I)u‖

≤ ‖PÂk
(eu)‖+ ‖(PÂk

− I)u‖ ≤ ‖PÂk
(eu)‖+

1
√
su

∥∥∥(PÂk
− I)A

∥∥∥ .
Furthermore, it was proven (also in page 132 of [28]) that∥∥∥(PÂk

− I)A
∥∥∥ =

∥∥∥(PÂk
− I)Â− (PÂk

− I)E
∥∥∥ .

It was observed that
∥∥∥(PÂk

− I)Â
∥∥∥ ≤ λk+1(Â) ≤ λk+1(A) + ‖E‖ = ‖E‖ as A has rank at most k;

and
∥∥∥(PÂk

− I)E
∥∥∥ ≤ ‖E‖. Then from Lemma 2.2 in [28] we have that with probability 1−O(n−3)

‖E‖ ≤ C2σn
1/2 for some constant C2 > 0.

Next, we observe that for any k′ ≥ 1, it still holds that

‖PÂk′
(û)− u‖ = ‖PÂk′

(û− u) + (PÂk′
− I)u‖

≤ ‖PÂk′
(eu)‖+ ‖(PÂk′

− I)u‖ ≤ ‖PÂk′
(eu)‖+ ‖(PÂk′

− I)A‖/
√
su.

Furthermore,

‖(PÂk′
− I)A‖ = ‖(PÂk′

− I)Â− (PÂk′
− I)E‖

≤ ‖(PÂk′
− I)Â‖+ ‖(PÂk′

− I)E‖

≤ λk′+1(Â) + ‖E‖
≤ λk′+1(A) + 2 ‖E‖

Again, with probability at least 1− 1/n3, ‖E‖ ≤ C2σ
√
n, which further implies that

‖(PÂk′
− I)A‖ ≤ 2C2σ

√
n+ λk′+1(A).

This is a simple but crucial step that removes our dependency on k, and allows us to treat all clusters
of size o(

√
n) as noise.

Now, we analyze the first term. From Lemma A.3 we have E[‖PÂk′
(eu)‖2] ≤ σ2k′ for any u ∈ Y2.

Then for any u, Markov’s inequality gives us Pr
(
‖PÂk′

(eu)‖ ≥ σ
√
k′

ε

)
≤ ε.

Now let us consider any set V ′ ⊂ Y2 such that |V ′| ≥ 16
√
n log n. For any u ∈ V ′ we define

Xu to be the indicator random variable that gets 1 if ‖PÂk′
(eu)‖ ≤ σ

√
k′

ε , and 0 otherwise. Then
E[Xu] ≥ 1 − ε. Now, since V ′ ⊂ Y2, the variables Xu are independent of each other (as eu are
independent of each other). Then, using the fact that |V ′| ≥ 4 logn

ε2 , the Chernoff bound gives us

Pr

(∑
u∈V ′

Xu ≤ (1− ε)|V ′| − ε|V ′|

)
≤ e−

2ε2|V ′|2
|V ′| ≤ n−8

That is, with probability at least 1 − n−8, for at least (1 − 2ε) fraction of the points u ∈ V ′,
‖PÂk′

(eu)‖ ≤ 1
εσ
√
k′.

15

Proof of Lemma 2.3. Let there be k many clusters V1, . . . , Vk in the SBM problem. Then we define
ai = |Vi ∩ Z| and bi = |Vi ∩ Y1|. Then we have that A is an n1 × n2 matrix where n1 =

∑k
i=1 ai

and n2 =
∑k
i=1 bi. The matrix A can be then written as a sum of k + 1 many rank 1 matrices:

A =

k∑
i=1

(p− q)Mi + qM0

Here M0 is the all 1 matrix, and Mi is a block matrix with 1’s in a ai× bi sized diagonal block. Since
Mi is a ai × bi block diagonal matrix of rank 1, with each entry being (p− q), its singular value is
(p− q)

√
aibi. Now we define A1 =

∑k
i=1(p− q)Mi. As Mi’s are non-overlapping block diagonal

matrices, the singular vectors of Mi are also singular vectors of A1, with the same singular values.

Thus, the sum of singular values of A1 is (p− q)
∑k
i=1

√
aibi ≤ (p− q)√n1n2 ≤ (p−q)n

2 , where
the first inequality follows from the Cauchy-Schwarz inequality. Thus, for any t ≥ 1

t · λt(A1) ≤ λ1(A1) + · · ·λt(A1) ≤ (p− q)n
2

,

which gives λt(A1) ≤ (p−q)n
2t . Since M0 has rank 1, λ2(q ·M0) = 0 and thus for t > 1 we have

λt+1(A) ≤ λt(A1) + λ2(q ·M0) ≤ (p− q)n
2t

≤ (p− q)n
t+ 1

,

where the first inequality follows from the Weyl’s inequality.

The guarantee of obtaining a plural set is a consequence of Lemma B.2.

Lemma B.2. Let k′ = (p−q)
√
n√

p(1−q)
and ε = 0.002. Let u ∈ Y2 be a good center belonging to Vi, then

1. There is a set V ′i ⊂ Y2 ∩ Vi such that |V ′i | ≥ (1− 2ε)|Y2 ∩ Vi| so that for all v ∈ V ′i , we
have ‖PÂk′

(u− v)‖ ≤ Lε

30 with probability 1−O(n−3).

2. For any Vj 6= Vi which is a ε-large cluster, there is a set V ′j ⊂ Vj ∩ Y2 s.t |V ′j | ≥
(1 − 2ε)|Vj ∩ Y2| so that for all v ∈ V ′j we have ‖PÂk′

(u − v)‖ ≥ Lε

6 with probability
1−O(n−3).

Proof of Lemma B.2. First note that Lε ≥
√

2ε ·211 · (p−q)·(p(1−q))
1/4·n1/4·log1/2 n

(p−q)1/2 ≥ 132, 000 · (p−
q)1/2 · (p(1− q))1/4 · n1/4 ·

√
log n.

When u and v belong to the same cluster we have ‖PÂk′
(û−v̂)‖ ≤ ‖PÂk′

(û)−u‖+‖PÂk′
(v̂)−v‖.

Now, since u is a good center, from Lemma 2.2 we have

‖PÂk′
(û)− u‖ ≤ 1

ε
σ
√
k′ +

1
√
su

(
2C2σ

√
n+ λk′+1(Â)

)
≤1

ε

√
p(1− q)

√
k′ +

1
√
su

(
2C2

√
p(1− q)

√
n+ λk′+1(A) + ‖E‖

)
≤1

ε

√
p(1− q)

√
k′ +

1
√
su

(
2C2

√
p(1− q)

√
n+ λk′+1(A) + C2

√
p(1− q)

√
n
)

≤1

ε

√
p(1− q)

√
k′ +

1
√
su

(
3C2

√
p(1− q)

√
n+

(p− q)n
k′

)
[Substituting λk′+1(A) from Lemma 2.3]

≤1

ε
(p(1− q))1/4(p− q)1/2n1/4 + 4C2(ε)−1/2(p− q)1/2(p(1− q))1/4n1/4 log−1/2 n

≤2

ε
(p(1− q)1/4(p− q)1/2n1/4

≤ 10, 000Lε

132, 000 log1/2 n
≤ Lε

60
, for n ≥ 64

16

Now from Lemma 2.2 we also know that at least (1−2ε) fraction of the vertices v ∈ Vi∩Y2 are also
“good centers” with probability 1−n−8. For all such vertices ‖PÂk′

(û−v̂)‖ ≤ 2‖PÂk′
(û−u)‖ ≤ Lε

30

with probability 1− n−3.

On the other hand when they belong to different clusters we have

‖PÂk′
(û− v̂)‖ ≥ ‖u− v‖ − ‖PÂk′

(û− u)‖ − ‖PÂk′
(v̂ − v)‖.

Since Vj is a ε-large cluster, |Vi| ≥ 256
√
n log n and thus |Vj ∩ Y2| ≥ 16

√
n log n with probability

1−O(n−8). In that case for at least 1−2ε fraction of points v ∈ Vj∩Y2 we have PÂk′
(v̂−v) ≤ Lε

60 .

Now ‖u−v‖ ≥ (p−q)
√
su + sv ≥

√
2ε·(p−q)√smax

6 ≥
√
2ε·(p−q)

√
s√

0.52·6 ≥ Lε

5 with probability 1−n−8

from Lemma 2.1. Thus with probability 1− n−3 we get

‖PÂk′
(u− v)‖ ≥ ‖u− v‖ − ‖PÂk′

(û− v̂)‖ − ‖PÂk′
(v̂ − v)‖ ≥ Lε

5
− Lε

60
− Lε

60
≥ Lε

6

for 1− 2ε fraction of points v ∈ Y2 ∩ Vj for any ε-large cluster Vj . This completes the proof.

Proof of Lemma 2.6. By Lemma 2.1, we have |Vi| ≥ smax

4 ≥ s
2.1 with probability 1 − n−8. Then

the following events happen.

1. Since u ∈ Vi ∩ Y2 is a good center, for 1− 2ε fraction of points v in Vi ∩ Y2, ‖pu − pv‖ ≤
Lε/30 with probability 1−O(n−3) as per Lemma B.2. All such points are selected to S.
Furthermore, |Vi ∩ Y2| is lower bounded by |Vi|/9 with probability 1 − n−8. Therefore,
with probability 1−O(n−3), we have

|Vi ∩ S| ≥ (1− 2ε)|Vi ∩ Y2| ≥ (1− 2ε)|Vi|/9 ≥ (1− 2ε)s/20 ≥ s/21.

2. For other clusters V`, if |V`| ≥ ε · smax, we have ‖pu − pv‖ ≤ Lε

6 for only 2ε fraction of
points v in V` ∩ Y2 from Lemma B.2. Thus |S ∩ V`| ≤ 2ε|V` ∩ Y2|. On the other hand
|V` ∩ Y2| ≤ |V`|/6. Thus, with probability 1− n−8 we have

|S ∩ V`| ≤ 2ε|V`|/6 ≤
2 · ε · smax

6
≤ 2 · ε · s

0.48 · 6
≤ 0.7ε · s

3. Otherwise, if V` is such that ε · smax ≥ |V`| ≥ ε
2 · smax, then |V` ∩ Y2| ≤ |V`|/6 with

probability 1− n−8. Then |S ∩ V`| ≤ εsmax/6 ≤ εs.

4. Otherwise, if |V`| ≤ ε
2 · smax then |S ∩V`| ≤ |V`| ≤ ε

2 · smax ≤ εs
2·0.48 ≤

εs
0.96 ≤ 1.05 · ε · s.

Now, note that for any V` with ` 6= i, it holds with probability 1−O(n−3) that |S∩V`| ≤ 1.05 ·ε ·s ≤
(21 · 1.05 · ε) · s21 ≤ 0.05 · s21 .

Proof of Lemma 2.7. We first show that if S is a Vi-plural set with Vi ≥ smax/4, then T1 = Vi ∩W
where T1 is the outcome of IDENTIFYCLUSTER(S,W, s). Since S is a Vi plural set, for any vertex
v ∈W ∩ Vi, from Lemma B.1 we have that with probability 1−O(n−3),

NS(v) ≥ q|S|+ (p− q)|Vi ∩ S| − 48
√
p
√
n log n

=⇒ NS(v) ≥ q|S|+ (p− q) · s
21
− 48√

1− q
·

(p− q) ·
√
p(1− q)

√
n log n

(p− q)

=⇒ NS(v) ≥ q|S|+ (p− q) · s
21
− (p− q) ·

96 ·
√
p(1− q)

√
n log n

(p− q)

=⇒ NS(v) ≥ q|S|+ (p− q) · s
21
− (p− q) · 96 · s

213

=⇒ NS(v) ≥ q|S|+ (p− q) · s
28

17

Now, let us consider the case when v ∈ Vj ∩W where j 6= i. Then we know from Lemma 2.6
|S ∩ Vj | ≤ 1.05εs ≤ s

210 . Then using Lemma B.1 we have that with probability 1−O(n−3)

NS(v) ≤ q|S|+ (p− q)|Vj ∩ S|+ 24
√
p
√
n log n

=⇒ NS(v) ≤ q|S|+ (p− q) s

210
+ (p− q)24s

213

=⇒ NS(v) ≤ q|S|+ (p− q) s

128

Now note that in the IDENTIFYCLUSTER(S,W, s) algorithm, we select all vertices from W that have
q|S|+ (p− q) · s56 neighbors in S. Thus, the above analysis implies with probability 1−O(n−3)
T1 = IDENTIFYCLUSTER(S,W, s) = Vi ∩ W . Furthermore, since |Vi| ≥ smax/4, we have
|Vi ∩W | ≥ smax

2.2 ≥
s0.48
2.2 ≥ s/6.

We then use T1 as a plural set to recover Vi ∩ U so that we are able to recover all the vertices of Vi,
but now T1 and U are not completely independent and thus we cannot proceed simply as before.

We overcome this by an union bound based argument. Let’s consider T ′i = Vi ∩W for any i such
that T ′ ≥ s/6. Then we have the following facts.

1. Let u ∈ U ∩ Vi. Then E[NT ′
i
(u)] = p|T ′|. Then Lemma B.1 shows that Pr(NT (u) ≤

q|T ′|+ 0.99(p− q)|T ′|) ≤ n−10.

2. Similarly, let u ∈ U ∩ Vj . Then Pr(NT ′
i
(u) ≥ q|T ′|+ 0.01(p− q)|T ′|) ≤ n−10.

If either of this is true for a vertex u ∈ U then we call it a bad vertex w.r.t T ′i . Then a union bound
over all Vi and all u ∈ U gives us that no vertex u ∈ U is bad w.r.t any T ′i with probability 1− n−8.

Then we can make this argument for T ′i = T1. Since |Vi| > smax/4, we have |Vi ∩W | ≥ Vi/3 with
probability 1− n−8. Then with probability 1− n−8 no vertex u ∈ U is bad w.r.t T1.

Then applying Lemma B.1 to T1 w.r.t vertices in U we get, with probability 1−O(n−3)

1. If v ∈ Vi ∩ U , then NT1(v) ≥ q|T1|+ (p− q)|T1| − (p− q)T1

96 .

2. If v ∈ Vj ∩ U , then NT1(v) ≤ q|T1|+ (p− q)T1

96 .

Thus IDENTIFYCLUSTER(T1, U, s) only selects the set of vertices T2 in Vi ∩ U . Then taking the
union of T1 and T2 gives us Vi.

Proof of Lemma 2.8. Since |Vi| > 256
√
n log n , and every vertex of Vi will be assigned to W with

probability 1/2, we have that |Vi ∩W | ≥ |Vi|
2.5 ≥

smax

10 ≥
s

0.52·10 ≥
s
6 with probability 1 − n−8.

Furthermore if |Vi| ≥ smax

4 , then Lemma 2.7 shows T1 = Vi ∩W and |T1| ≥ s
6 .

Furthermore, for any vertex u ∈ T1 ∩ {v}, we can calculate NT1(u) in the following way.

We have E[NT1
(u)] = p|T1|. Then a simple application of Lemma B.1 give us that with probability

1− n−8, NT1
(u) ≥ p|T1| − (p− q)T1

96 ≥ (0.9p+ 0.1q)|T1|.
Similarly, since T1 = Vi ∩W for any vertex u ∈W ∩ T1, we have E[NT1(u)] = q|T1| and Lemma
B.1 implies that with probability 1− n−8

NT1(u) ≤ q|T1|+ (p− q) |T1|
96
≤ p|T1|

3
+

2q|T1|
3
≤ (0.33p+ 0.67q)|T1| < (0.9p+ 0.1q)|T1|.

Proof of Corollary 2.9. If T1 is a pure subset of some Vi, such that |Vi| ≤ smax/7, then with
probability 1−O(n−8), |Y2 ∩ Vi| ≤ s/6. If |T1| < s

6 , the first condition is satisfied.

18

Otherwise if |T1| ≥ s
6 and T1 is not a pure set, there exists Vj such that |T1 ∩ Vj | ≤ |T1|

2 . In that case
for any vertex v ∈ Vj ∩ T1 we have E[NT1

(v)] ≤ q|T1|+ (p− q)T1

2 and Lemma B.1 implies that
with probability 1− n−8,

NT1
(u) ≤ q|T1|+(p−q) |T1|

2
+(p−q) |T1|

96
≤ (0.5+1/96)p|T1|+(0.5−1/96)q|T1| < (0.9p+0.1q)|T1|.

Finally if T1 ⊂ Vi is a large pure set and T1 6= Vi ∩W , then for a vertex v ∈ Vi ∩ (W \ T1) we have
NT1

(v) ≥ (0.9p+ 0.1q)|T1|.

C An improved algorithm in the balanced case

Our algorithm is built upon [28] and [25]. However, even in the balanced case, our algorithm improves
a result of [28] on partially recovering clusters in the SBM. More precisely, we can use Theorem 1.2
to prove the following theorem.

Theorem C.1. Let G = (V,E) be sampled from SBM(n, k, p, q) for σ2 = Ω(log n/n) where size
of each cluster is Ω(n/k). Then there exists a polynomial time algorithm that exactly recovers all
clusters if (p− q)

√
n
k > C ′σ

√
k log n for some constant C ′.

In [28] (see Lemma 1.4 therein), Vu gave an algorithm that partially recovers all the clusters in the
sense that with probability at least 1 − ε, each cluster output by the algorithm contains at 1 − ε
fraction of any one underlying communities, for any constant ε > 0. For the balanced case, his result
holds under the assumption that σ2 > C log n/n, and (p − q)

√
n
k > Cσ

√
k. In comparison, we

obtain a full recovery of all the clusters under Vu’s partial recovery assumptions at the cost of an extra
log n factor in the tradeoff of parameters.

Proof of Theorem C.1. We have (p− q)
√
n/k > C ′σ

√
k log n. Let C ′ = 2C. Since p ≤ 3/4, we

have 1 − p ≥ 1/4 and then σ ≥
√
p(1−q)
2 . Thus (p − q)

√
n/k > C

√
p(1− q)

√
k log n. This

implies k < (p−q)
√
n

C
√
p(1−q) logn

and n/k > C·
√
p(1−q)

√
n·logn

p−q . That is the size of each cluster is at

least s∗. Then we can run Algorithm 1 to recover one such cluster. Now, since the size of each
cluster is same, we can run this iteratively k times, recovering a cluster at each round with probability
1 − O(n−2). Using union bound we get that we are able to recover all clusters with probability
1−O(kn−2) = 1−O(n−1).

D Lower bounds

First, we show that our algorithm is optimal up to logarithmic factors when p and q are constant. To
do so, we make use of the well-known planted clique conjecture.

Conjecture D.1 (Planted clique hardness). Given an Erdős-Rényi random graph G(n, q) with
q = 1/2, if we plant in G(n, q) a clique of size t where t ∈ [3 · log n, o(

√
n)], then there exists no

polynomial time algorithm to recover the largest clique in this planted model.

Under the planted clique conjecture, we note that there is no polynomial time algorithm for the SBM
problem that recovers clusters of size o(

√
n) irrespective of the number k of clusters present in the

graph, for any constants p and q. This can be seen by defining the partition of V as V = ∪ki=1Vi,
where V1 is a clique of size t = o(

√
n), and V2, · · · , Vk are singleton vertices, k = n− t. Finally, let

p = 1, q = 1
2 . Then an algorithm for finding a cluster of size o(

√
n) in a graph G that is sampled

from the SBM with the above partition solves the planted clique problem.

Thus, the dependency of our algorithm in Theorem 1.2 on n is optimal under the planted clique
conjecture up to logarithmic factors.

The following result was given in [23], we give a proof here for the sake of completeness.

19

Theorem D.2 ([23]). LetA be a polynomial time algorithm in the faulty oracle model with parameters
n, k, δ. Suppose that A finds a cluster of size t irrespective of the value of k. Then under the planted
clique conjecture, it holds that t = Ω(

√
n).

Proof. Let G be a graph generated from the planted clique problem with parameter t. Note that each
potential edge in the size-t clique, say K, appears with probability 1, and each of the remaining
potential edges appear with probability 1

2 . Now we delete each edge inG with probability 1
3 . Then the

resulting graph can be viewed as an instance generated from the faulty oracle model with parameters
n, k = n− t+ 1 and δ = 1

3 : there are k clusters, one being H , and n− t clusters being singleton
vertices. Furthermore, each intra-cluster edge is removed with probability 1

3 and each inter-cluster is
added with probability 1

2 · (1 −
1
3) = 1

3 . If there is a polynomial time algorithm that recovers the
cluster H , no matter how many queries it performs, then it also solves the planted clique problem
with clique size t. Under the planted clique conjecture, t = Ω(

√
n).

E High-level ideas of the algorithm for the faulty oracle

Discussion about the previous algorithm in the faulty oracle model One crucial limitation of
all the previous polynomial-time algorithms that make sublinear number of queries is that they
cannot recover large clusters, if there are at least Ω̃(n2/5) small clusters. The reason is that the
query complexities of all these algorithms are at least Ω(k5), and if there are Ω̃(n2/5) small clusters,
then k = Ω̃(n2/5), which further implies that these polynomial time algorithms have to make
Ω(k5) = Ω(n2) queries.

Main ideas of our algorithm Now we apply our algorithm in the SBM to the faulty oracle model.
Consider the faulty oracle model with and parameters n, k, δ. Assume that the oracle O outputs ‘+’
to indicate the queried two vertices belong to the same cluster, and ‘-’ otherwise.

Observe that if we make queries on all pairs u, v ∈ V , then the graph G that is obtained by adding
all + edges answered by the oracle O is exactly the graph that is generated from the SBM(n, k, p, q)
with parameters n, k, p = 1

2 + δ
2 and q = 1

2 −
δ
2 . However, the goal is to recover the clusters by

making sublinear number of queries, i.e., without seeing the whole graph.

We now describe our algorithm NOISYCLUSTERING (i.e., Algorithm 5) for clustering with a faulty
oracle. Let V be the items which contains k latent clusters V1, . . . , Vk and O be the faulty oracle.
Following the idea of [27], we first sample a subset T ⊆ V of appropriate size and query O(u, v)
for all pairs u, v ∈ T . Then apply our SBM clustering algorithm (i.e. Algorithm 1 CLUSTER) on
the graph induced by T to obtain clusters X1, . . . , Xt for some t ≤ k. We can show that each of
these sets is a subcluster of some large cluster Vi. Then we can use a majority voting to find all
other vertices that belong to Xi, for each i ≤ t. That is, for each Xi and v ∈ V , we check if the
number of neighbors of v in Xi is at least |Xi|

2 . In this way, we can identify all the large clusters Vi
corresponding to Xi, 1 ≤ i ≤ t. Furthermore, we note that we can choose a small subset of Xi of
size O(logn

δ2) for majority voting to reduce query complexity. Then we can remove all the vertices in
Vi’s and remove all the edges incident to them from both V and T and then we can use the remaining
subsets T and V and corresponding subgraphs to find the next sets of large clusters. The algorithm
NOISYCLUSTERING then recursively find all the large clusters until we reach a point where the
recovery condition on the current graph no longer holds.

F The algorithm in faulty oracle model

Now we turn to the faulty oracle model and give the corresponding algorithm Algorithm 5.

To analyze the algorithm NOISYCLUSTERING (i.e., Algorithm 5), we first describe two results.

Lemma F.1. Let |V | = n and Vi ⊂ V : |Vi| = s ≥ C
√
n·log2 n
δ for some constant C > 1. If

a set T ⊂ V of size 16C2n2 logn
δ2s2 is sampled randomly, then with probability 1 − n−8, we have

|T ∩ Vi| ≥
C
√
|T | log |T |
4δ ≥ C logn

δ2 .

20

Algorithm 5 NOISYCLUSTERING(V, δ, s): recover all clusters of size more than s ≥ s∗

1: V ′ ← V ; t′ ← 0

2: Randomly sample a subset T ⊂ V ′ of size |T | = C2n2 log2 n
s2δ2

3: Query all pairs u, v ∈ T and let G[T] be graph on vertex set T with only positive edges from the
query answers

4: for each ` from 1 to bn/sc do
5: Apply CLUSTER(G[T], 12 + δ, 12 − δ) to obtain a cluster T`
6: if T` = ∅ then
7: continue
8: else
9: t′ ← t′ + 1

10: Find an arbitrary subset T ′` ⊆ T` of size 4 logn
δ2

11: C ′t′ ← {v ∈ V ′ \ T : NT ′
`
(v) ≥ |T ′` |/2}

12: Ct′ ← T` ∩ C ′t′
13: T ← T \ T`.
14: V ′ ← V \ Ct′
15: Return C1, · · · , Ct′

Proof. We use Hoeffding bound to obtain these bounds. We have |T | ≥ 16C2n2 log2 n
δ2s2 ≥ 16 log2 n.

For every vertex u ∈ T , we define Xu as the indicator random variable which is 1 if u ∈ Vi.
Then E[Xu] = |Vi|/|V |. Thus applying Hoeffding bound we get

Pr

(∑
u∈T

Xu ≤
0.5 · |T ||Vi|
|V |

)
≤ e−8 logn ≤ n−8

Now, substituting value of |T | we get 0.5·|T ||Vi|
|V | ≥ 8·C2·n2 log2 n·s

s2·δ2·n ≥ 4C·n·logn
s·δ · C·lognδ ≥

C·
√
|T |·logn
δ ≥ C

√
|T |·log |T |
δ . Furthermore, the last equation shows 0.5·|T ||Vi|

|V | ≥ C
√
|T |·log |T |
δ ≥

Cn logn
s·δ·δ ≥ C logn

δ2 . Now the proof follows by noting that |T ∩ Vi| =
∑
u∈T Xu.

Lemma F.2. Let V be partitioned into two sets U and W , where each vertex v ∈ V is independently
assigned to either set with equal probability . Let S ⊂ Vi ∩ U be a set such that |S| ≥ 4 logn

δ2 . Then
with probability 1−O(n−8), we have NS(u) ≥ |S|2 for all u ∈ Vi ∩W , and NS(u) < |S|

2 for all
u ∈ Vj ∩W for any j 6= i.

Proof. Let u ∈ Vi ∩W . Then E[NS(u)] = (0.5 + δ) · |S|. Then

Pr(NS(u) ≤ (0.5+δ) · |S|−δ|S|) = Pr(NS(u) ≤ 0.5|S|) ≤ e−2δ
2|S|2/|S| ≤ e−2δ

2|S| ≤ e−8 logn

The last inequality holds |S| ≥ 4 log n/δ2. Thus if u ∈ Vi∩W thenNS(u) ≥ 0.5|S| with probability
1− n−8.

Similarly, if u /∈ Vi, then with probability 1− n−8 we have NS(u) ≤ 0.5|S|.

F.1 Proof of Theorem 1.6

Given s, first we randomly sample n′ = C2n2 log2 n
s2δ2 many vertices from V , and denote this set as T .

Then Lemma F.2 proves that for any cluster Vi : |Vi| ≥ s∗, we have |Ti| = |T ∩ Vi| ≥ C
√
n′ logn′

δ

with probability 1− n−8. For any underlying cluster Vi, we denote Ti = T ∩ Vi.

Next we query all the pair of edges for vertices in T , which amounts O
(
n4 log2 n
δ4s4

)
queries. The

resultant graph G′ is an SBM graph on n′ vertices with p = 0.5 + δ and q = 0, .5− δ.

21

Thus, if we run Algorithm 1 with parameters G′, 0.5 + δ, 0.5− δ, then Theorem 1.2 implies that we
recover a cluster Ti such that |Ti| ≥ Cn′ logn′

δ with probability 1− n−2.

Once we get such a set Ti, we can take 4 log n/δ2 many vertices from it, calling it a set S. Then for
every vertex v ∈ V \ T , we obtain NS(v), which requires |S| many queries, and select all vertices
such that NS(u) ≥ 0.5|S|. Lemma F.1 shows that we recover Vi ∩ (V \ T) with probability 1− n−8,
together recovering Vi. Thus this step requires 4n log n/δ2 queries for each iteration.

Once we have recovered Vi, we can then remove Ti from T and run Algorithm 1 again on the residual
graph, followed by the sample-and recovery step of Line 10. Note that once we remove a recovered
cluster, all sets Tj that satisfied the recovery requirement of Theorem 1.2 in the graph G′ defined on
T , also satisfies it on the graph G′′ defined on T \ Ti, and we do not need to sample any more edges.

Finally, there are at most δ2
√
T many clusters Ti ∈ T such that |Ti| ≥

√
|T | log |T |/δ2. Here we

have δ2
√
T = Cn logn

s . This upper bounds the number of iterations and thus the number of times the
voting system on Line 10 is applied.

Thus the query complexity is O
(
n4 log2 n
δ4s4 + n logn

s · 4n logn
δ2

)
= O

(
n4 log2 n
s4·δ4 + n2 log2 n

s·δ2

)
. This

finishes the proof of Theorem 1.6.

22

	Introduction
	Our contributions
	Recovering large clusters in the SBM
	An algorithm for clustering with a faulty oracle

	Our techniques
	Other related work

	The algorithm in the SBM
	The analysis

	The algorithm in the faulty oracle model
	Experiments
	Conclusion
	Preliminary Notations and Tools
	Deferred Proofs from Section 2
	An improved algorithm in the balanced case
	Lower bounds
	High-level ideas of the algorithm for the faulty oracle
	The algorithm in faulty oracle model
	Proof of Theorem 1.6

