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Abstract

In many applications of machine learning, a large number of variables are consid-1

ered. Motivated by machine learning of interacting particle systems, we consider2

the situation when the number of input variables goes to infinity. First, we continue3

the recent investigation of the mean field limit of kernels and their reproducing4

kernel Hilbert spaces, completing the existing theory. Next, we provide results5

relevant for approximation with such kernels in the mean field limit, including6

a representer theorem. Finally, we use these kernels in the context of statistical7

learning in the mean field limit, focusing on Support Vector Machines. In particu-8

lar, we show mean field convergence of empirical and infinite-sample solutions as9

well as the convergence of the corresponding risks. On the one hand, our results10

establish rigorous mean field limits in the context of kernel methods, providing11

new theoretical tools and insights for large-scale problems. On the other hand, our12

setting corresponds to a new form of limit of learning problems, which seems to13

have not been investigated yet in the statistical learning theory literature.14

1 Introduction15

Models with many variables play an important role in many fields of mathematical and physical16

sciences. In this context, going to the limit of infinitely many variables is an important analysis and17

modeling approach. A classic example are interacting particle systems; these are usually modeled18

as dynamical systems describing the temporal evolution of many interacting objects. In physics,19

such systems were first investigated in the context of gas dynamics, cf. [11]. Since even small20

volumes of gases typically contain an enormous number of molecules, a microscopic modeling21

approach quickly becomes infeasible and one considers the evolution of densities instead [12].22

In the past decades, interacting particle systems arising from many different domains have been23

considered, for example, animal movement [4, 23], social and political dynamics [31, 10], crowd24

modeling and control [17, 15, 1], swarms of robots [28, 27, 13] or vehicular traffic [32]. There25

is now a vast literature on such applications, and we refer to the surveys [26, 33, 21] as starting26

points. A prototypical example of such a system is given by ẋi =
1
M

∑M
j=1 ϕ(xi, xj)(xj − xi), for27

i = 1, . . . ,M , where M ∈ N+ particles or agents are modelled by their state xi ∈ Rd, i = 1, . . . ,M ,28

evolving according to some interaction rule ϕ : Rd × Rd → R. Typical questions then concern the29

long-term behavior of such systems, in particular, emergent phenomena like consensus or alignment30

[9]. While first-principles modeling has been very successful for interacting particle systems in31

physical domains, using this approach to model the interaction rules in complex domains like social32

and opinion dynamics, pedestrian and animal movement or vehicular traffic, can be problematic.33

Therefore, learning interaction rules from data has been recently intensively investigated, for example,34

in the pioneering works [6, 25]. The data consists typically of (sampled) trajectories of the particle35

states, potentially with measurement noise, and the goal is to learn a good approximation of the36

interaction rule ϕ.37
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A related question is that of learning a function FM : (Rd)M → R of the particle states. This38

corresponds to a (real-valued) feature of a given population, which depends on each individual particle39

state. Similar to the case of the interaction rule, we might not be able to model such a feature, but we40

could measure it at different time instants and try to learn this mapping from data. We can formalize41

this as a standard supervised learning task: The data set consists of D[M ]
N = ((x⃗1, y1), . . . , (x⃗N , yN )),42

where x⃗n ∈ (Rd)M are snapshot measurements of the particle states (corresponding to the input of43

the functional) and yn ∈ R is the value of the functional of interest, potentially with measurement44

noise, at snapshot state x⃗n. Let us assume an additive noise model, i.e., yn = FM (x⃗n) + ϵn for45

n = 1, . . . , N , where ϵ1, . . . , ϵN ∈ R are noise variables. This is now a regression problem that46

could be solved for example using a Support Vector Machine (SVM) [30]. Note that for this we need47

a kernel kM : (Rd)M × (Rd)M → R on (Rd)M .48

Similarly to classical physical examples like gas dynamics, the case of a large number of particles49

is also relevant in modern complex interacting particle systems. Since this poses computational50

and modeling challenges, it can be advantageous to go also here to a kinetic level and model the51

evolution of the particle distribution instead of every individual particle. It is well-established how52

to derive a kinetic partial differential equation from ordinary differential equations systems on the53

particle level, for example, using the Boltzmann equation or via a mean field limit, cf. [9] for54

an overview in the context of multi-agent systems. Formally, instead of trajectories of particle55

states of the form [0, T ] ∋ t 7→ x⃗(t) ∈ (Rd)M , we then have trajectories of probability measures56

[0, T ] ∋ t 7→ µ(t) ∈ P(Rd). This immediately raises the question of whether the learning setup57

outlined above also allows a corresponding kinetic limit. More precisely, let K ⊆ Rd be compact and58

assume that all particles remain confined to this compactum, i.e., xi(t) ∈ K for all i = 1, . . . ,M59

and all t ∈ [0, T ] under the microscopic dynamics.1 If the underlying dynamics have a mean field60

limit, then it is reasonable to assume that the finite-input functionals FM : KM → R converge also in61

mean field to some F : P(K) → R for M → ∞, see Section 2 for a precise definition of this notion.62

In turn, we can now formulate a corresponding learning problem on the mean field level: A data set63

is then given by DN = ((µ1, y1), . . . , (µN , yN )), where µn ∈ P(K) are snapshots of the particle64

state distribution over time and yn ∈ R are again potentially noisy measurements of the functional.65

Assuming an additive noise model, this corresponds to yn = F (µn) + ϵn, n = 1, . . . , N . If we66

want to use an SVM on the kinetic level, we need a kernel k : P(K)× P(K) → R on probability67

distributions. There are several options available for this, see e.g. [14]. However, assuming that all68

ingredients of the learning problem arise as a mean field limit, this naturally leads to the question69

of whether a mean field limit of kernels exists, and what this means for the relation of the learning70

problems on the finite-input and kinetic level. In [18], this reasoning has motivated the introduction71

and investigation of the mean field limit of kernels. In the present work, we extend the theory of72

these kernels and investigate them in the context of statistical learning theory. We would like to stress73

that the technical developments here are independent of the motivation outlined above, in that they74

apply to mean field limits of functions and kernels that do not necessarily arise form the dynamics of75

interacting particle systems.76

Contributions Our contributions cover three closely related aspects. 1) We extend and complete the77

theory of mean field limit kernels and their RKHSs (Section 2). In Theorem 2.3, we precisely describe78

the relationship between the RKHS of the finite-input kernels and the RKHS of the mean field kernel,79

completing the results from [18]. In particular, this allows us to interpret the latter RKHS as the mean80

field limit of the former RKHSs. Furthermore, in Lemma 2.4 and 2.5, we provide inequalities for81

the corresponding RKHS norms, which are necessary for Γ-convergence arguments. 2) We provide82

results relevant for approximation with mean field limit kernels (Section 3). With Proposition 3.1 we83

give a first result on the approximation power of mean field limit kernels, and in Theorem 3.3 we can84

also provide a representer theorem for these kernels. For its proof, we use a Γ-convergence argument,85

which is to the best of our knowledge the first time this technique has been used in the context of86

kernel methods. 3) We investigate the mean field limit of kernels in the context of statistical learning87

theory (Section 4). We first establish an appropriate mean field limit setup for statistical learning88

problems, based on a slightly stronger mean field limit existence result than available so far, cf.89

Proposition 2.1. To the best of our knowledge, this is a new form of a limit for learning problems. In90

this setup, we then provide existence, uniqueness, and representer theorems for empirical and (using91

an apparently new notion of mean field convergence of probability distributions) infinite-sample92

1This means the dynamics on the level of individual particles.
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solutions of SVMs, cf. Proposition 4.3 and 4.5. Finally, under a uniformity assumption, we can also93

establish convergence of the minimal risks in Proposition 4.7.94

Our developments are relevant from two different perspectives: on the one hand, they constitute95

a theoretical proof-of-concept that the mean field limit can be “pulled through” the (kernel-based)96

statistical learning theory setup. In particular, this demonstrates that rigorous theoretical results can97

be transferred through the mean field limit, similar to works in the context of control of interacting98

particle systems, see e.g. [22]. On the other hand, our setup appears to be a new variant of a large-99

number-of-variables limit in the context of machine learning, complementing established settings100

like infinite-width neural networks [2].101

Due to space constraints, all proofs and some additional technical results have been placed in the102

supplementary material.103

2 Kernels and their RKHSs in the mean field limit104

Setup and preliminaries Let (X, dX) be a compact metric space and denote by P(X) the set105

of Borel probability measures on X . We endow P(X) with the topology of weak convergence106

of probability measures. Recall that for µn, µ ∈ P(X), we say that µn → µ weakly if for all107

bounded and continuous f : X → R (since X is compact, this is equivalent to f continuous) we have108

limn→∞
∫
X
ϕ(x)dµn(x) →

∫
X
ϕ(x)dµ(x). The topology of weak convergence can be metrized by109

the Kantorowich-Rubinstein metric dKR, defined by110

dKR(µ1, µ2) = sup

{∫
X

ϕ(x)d(µ1 − µ2)(x) | ϕ : X → R is 1-Lipschitz
}
.

Note that since X is compact and hence separable, the Kantorowich-Rubinstein metric is equal to the 1-111

Wasserstein metric here. Furthermore, P(X) is compact in this topology. For M ∈ N+ and x⃗ ∈ XM ,112

denote the i-th component of x⃗ by xi, and define the empirical measure for x⃗ by µ̂[x⃗] = 1
M

∑M
i=1 δxi

,113

where δx denotes the Dirac measure centered at x ∈ X . The empirical measures are dense in P(X)114

w.r.t. the Kantorowich-Rubinstein metric. Additionally, define d2KR : P(X)2 × P(X)2 → R≥0115

by d2KR((µ1, µ
′
1), (µ2, µ

′
2)) = dKR(µ1, µ2) + dKR(µ

′
1, µ

′
2), and note that (P(X)2, d2KR) is a compact116

metric space. Moreover, denote the set of permutations on {1, . . . ,M} by SM , and for a tuple117

x⃗ ∈ XM and permutation σ ∈ SM define σx⃗ = (xσ(1), . . . , xσ(M)). Finally, we recall some118

well-known definitions and results from the theory of reproducing kernel Hilbert spaces, following119

[30, Chapter 4]. For an arbitrary set X ̸= ∅ and a Hilbert space (H, ⟨·, ·⟩H) of functions on X , we120

say that a map k : X × X → R is a reproducing kernel for H if 1) k(·, x) ∈ H for all x ∈ X ;121

2) for all x ∈ X and f ∈ H we have f(x) = ⟨f, k(·, x)⟩H . Note that if a reproducing kernel122

exists, it is unique. If such a Hilbert space has a reproducing kernel, we call H a reproducing kernel123

Hilbert space (RKHS) and k its (reproducing) kernel. It is well-known that a reproducing kernel is124

symmetric and positive semidefinite, and that every symmetric and positive semidefinite function has125

a unique RKHS for which it is the reproducing kernel. For brevity, if k is symmetric and positive126

semidefinite, or equivalently, if it is the reproducing kernel of an RKHS, we call k simply a kernel,127

and denote by (Hk, ⟨·, ·⟩k) its unique associated RKHS. Define also Hpre
k = span{k(·, x) | x ∈ X},128

then for f =
∑N

n=1 αnk(·, xn) ∈ Hpre
k and g =

∑M
m=1 βmk(·, ym) ∈ Hpre

k we have ⟨f, g⟩k =129 ∑N
n=1

∑M
m=1 αnβmk(ym, xn), and Hpre

k is dense in Hk.130

The mean field limit of functions and kernels Given fM : XM → R, M ∈ N+, and f : P(X) →131

R, we say that fM converges in mean field to f and that f is the (or a) mean field limit of fM , if132

limM→∞ supx⃗∈XM |fM (x⃗)− f(µ̂[x⃗])| = 0. In this case, we write fM
P1−→ f . Let now (Y, dY ) be133

another metric space and fM : XM × Y → R, M ∈ N+, and f : P(X)× Y → R, then we say that134

fM converges in mean field to f and that f is the (or a) mean field limit of fM , if for all compact135

K ⊆ Y we have136

lim
M→∞

sup
x⃗∈XM ,y∈K

|fM (x⃗, y)− f(µ̂[x⃗], y)| = 0. (1)

and also write fM
P1−→ f . The following existence results for mean field limits is slightly more137

general than what is available in the literature, and it is essentially a direct generalization of [7,138

Theorem 2.1], in the form of [8, Lemma 1.2].139
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Proposition 2.1. Let (X, dX) be a compact metric space and (Z, dZ) a metric space that has a140

countable basis (Un)n such that Ūn is compact for all n ∈ N. Let fM : XM × Z → R, M ∈ N+,141

be a sequence of functions fulfilling the following conditions: 1) (Symmetry in x⃗)2 For all M ∈ N+,142

x⃗ ∈ XM , z ∈ Z and permutations σ ∈ SM , we have fM (σx⃗, z) = fM (x⃗, z); 2) (Uniform143

boundedness) There exists Bf ∈ R≥0 and a function b : Z → R≥0 such that ∀M ∈ N+, x⃗ ∈144

XM , z ∈ z : |fM (x⃗, z)| ≤ Bf+b(z); 3) (Uniform Lipschitz continuity) There exists some Lf ∈ R>0145

such that for all M ∈ N+, x⃗1, x⃗2 ∈ XM , z1, z2 ∈ Z we have |fM (x⃗1, z1) − fM (x⃗2, z2)| ≤146

Lf (dKR(µ̂[x⃗1], µ̂[x⃗2]) + dZ(z1, z2)).147

Then there exists a subsequence (fMℓ
)ℓ and a continuous function f : P(X) × Z → R such that148

fMℓ

P1−→ f for ℓ → ∞. Furthermore, f is Lf -Lipschitz continuous and there exists BF ∈ R≥0 such149

that for all µ ∈ P(X), z ∈ Z we have |f(µ, z)| ≤ BF + b(z).150

We now turn to the mean field limit of kernels as introduced in [18]: Given kM : XM ×XM → R151

and k : P(X) × P(X) → R, we say that kM converges in mean field to k and that k is the (or a)152

mean field limit of kM , if153

lim
M→∞

sup
x⃗,x⃗′∈XM

|kM (x⃗, x⃗′)− k(µ̂[x⃗], µ̂[x⃗′])| = 0. (2)

In this case we write kM
P1−→ k.154

For convenience, we recall [18, Theorem 2.1], which ensures the existence of a mean field limit of a155

sequence of kernels.156

Proposition 2.2. Let kM : XM × XM → R be a sequence of kernels fulfilling the following157

conditions. 1) (Symmetry in x⃗) For all M ∈ N+, x⃗, x⃗′ ∈ XM and permutations σ ∈ SM we158

have kM (σx⃗, x⃗′) = kM (x⃗, x⃗′); 2) (Uniform boundedness) There exists Ck ∈ R≥0 such that ∀M ∈159

N+, x⃗, x⃗
′ ∈ XM : |kM (x⃗, x⃗′)| ≤ Ck; 3) (Uniform Lipschitz continuity) There exists some Lk ∈160

R>0 such that for all M ∈ N+, x⃗1, x⃗
′
1, x⃗2, x⃗

′
2 ∈ XM we have |kM (x⃗1, x⃗

′
1) − kM (x⃗2, x⃗

′
2)| ≤161

Lkd
2
KR [(µ̂[x⃗1], µ̂[x⃗

′
1]), (µ̂[x⃗2], µ̂[x⃗

′
2])].162

Then there exists a subsequence (kMℓ
)ℓ and a continuous kernel k : P(X)×P(X) → R such that163

kMℓ

P1−→ k, and k is also bounded by Ck.164

Let kM : XM ×XM → R be a given sequence of kernels fulfilling the conditions of Proposition 2.2.165

Then there exists a subsequence (kMℓ
)ℓ converging in mean field to a kernel k : P(X)×P(X) → R.166

From now on, we only consider this subsequence and denote it again by (kM )M , i.e., kM
P1−→ k.167

Unless noted otherwise, every time we need a further subsequence, we will make this explicit.3168

The RKHS of the mean field limit kernel Denote by HM := HkM
the (unique) RKHS corre-169

sponding to kernel kM and denote by Hk the unique RKHS of k. For basic properties of these objects170

as well as classes of suitable kernels we refer to [18].171

We clarify the relation between HMand Hk in the next result.172

Theorem 2.3. 1) For every f ∈ Hk, there exists a sequence fM ∈ HM , M ∈ N+, such that173

fM
P1−→ f . 2) Let fM ∈ HM be sequence such that there exists B ∈ R≥0 with ∥fM∥M ≤ B for all174

M ∈ N+. Then there exists a subsequence (fMℓ
)ℓ and f ∈ Hk with fMℓ

P1−→ f and ∥f∥k ≤ B.175

In other words, on the one hand, every RKHS function from Hkarises as a mean field limit of RKHS176

functions from HM .On the other hand, every uniformly norm-bounded sequence of RKHS functions177

(fM )M has a mean field limit in Hk.178

Note that the preceding result is considerably stronger than the corresponding results in [18]: In179

contrast to [18, Theorem 4.4] we do not need to go to another subsequence in the first item, and180

2As is well-known, cf. [8, Remark 1.1.3], this condition is actually implied by the next condition. However,
as usual in the kinetic theory literature, we kept this condition for emphasis.

3It is customary in the kinetic theory literature to switch to such a subsequence. However, for some results
that are about to follow, it is important that no further switch to a subsequence happens, hence we need to be
more explicit in these cases.
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kM k

HM Hk

MFL of kM

M→∞

MFL of fM∈HM

M→∞

Figure 1: The kernel k arises as the mean field limit (MFL) of the kernels kM (Proposition 2.2).
Every uniformly norm-bounded sequence fM ∈ HM , M ∈ N+, has an MFL in Hk, and every
function f ∈ Hk arises as such an MFL (Theorem 2.3). Based on [18, Figure 1].

we ensure that the mean field limit f is contained in Hk (and norm-bounded by the same uniform181

bound), which was missing from Corollary 4.3 in the same reference.182

The relation between the kernels kM and their RKHSs HM , and the mean field limit kernel k and183

its RKHS Hk is illustrated as a commutative diagram in Figure 1. In order to arrive at the mean184

field RKHS Hk, on the one hand, we consider the mean field limit k of the kM , and then form the185

corresponding RKHS Hk. This is essentially the content of Proposition 2.2. On the other hand, we186

can first go from the kernel kM to the associated unique RKHS HM (for each M ∈ N+). Theorem187

2.3 then says that Hk can be interpreted as a mean field limit of the RKHSs HM , since every function188

in Hk arises as a mean field limit of a sequence of functions from the HM , and every uniformly189

norm-bounded sequence of such functions has a mean field limit that is in Hk.190

Next, we state two technical results that will play an important role in the following developments,191

and which might be of independent interest. They describe lim inf and lim sup inequalities required192

for Γ-convergence arguments used later on.193

Lemma 2.4. Let fM ∈ HM , M ∈ N+, and f ∈ Hk such that fM
P1−→ f , then194

∥f∥k ≤ lim inf
M→∞

∥fM∥M . (3)

Lemma 2.5. Let f ∈ Hk. Then there exist fM ∈ HM , M ∈ N+, such that195

limM→∞ supx⃗∈XM |fM (x⃗)− f(µ̂[x⃗])| = 0, and196

lim sup
M→∞

∥fM∥M ≤ ∥f∥k. (4)

3 Approximation with kernels in the mean field limit197

Kernel-based machine learning methods use in general an RKHS as the hypothesis space, and learning198

often reduces to a search or optimization problem over this function space. For this reason, it is199

important to investigate the approximation properties of a given kernel and its associated RKHS as200

well as to ensure that the learning problem over an RKHS (which is in general an infinite-dimensional201

object) can be tackled with finite computations.202

The next result asserts that, under a uniformity condition, the approximation power of the finite-input203

kernels kM is inherited by the mean field limit kernel.204

Proposition 3.1. For M ∈ N+, let FM be the set of symmetric functions that are continuous205

w.r.t. (x⃗, x⃗′) 7→ dKR(µ̂[x⃗], µ̂[x⃗
′]). Let F ⊆ C0(P(X),R) such that for all f ∈ F and ϵ > 0206

there exist B ∈ R≥0 and sequences fM ∈ FM , f̂M ∈ HM , M ∈ N+, such that 1) fM
P1−→ f 2)207

∥fM − f̂M∥∞ ≤ ϵ for all M ∈ N+ 3) ∥f̂M∥M ≤ B for all M ∈ N+. Then for all f ∈ F and ϵ > 0,208

there exists f̂ ∈ Hk with ∥f − f̂∥∞ ≤ ϵ.209

Intuitively, the set F consists of all continuous functions on P(X) that arise as a mean field limit of210

functions which can be uniformly approximated by uniformly norm-bounded RKHS functions. The211

result then states (to use a somewhat imprecise terminology) that the RKHS Hk is dense in F . We212

can interpret this as an appropriate mean field variant of the universality property of kernels: a kernel213

on a compact metric space is called universal if its associated RKHS is dense w.r.t. the supremum214

norm in the space of continuous functions, and many common kernels are universal, cf. e.g. [30,215

Section 4.6]. In our setting, ideally universality of the finite-input kernels kM is inherited by the mean216

field limit kernel k. However, since the mean field limit can be interpreted as a form of smoothing217

limit, some uniformity requirements should be expected. Proposition 3.1 provides exactly such a218

condition.219
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Remark 3.2. In Proposition 3.1, the set F is a subvectorspace of C0(P(X),R). Furthermore, if the220

P1-convergence in the definition of F is uniform, then F is closed.221

Since kM and k are kernels, we have the usual representer theorem for their corresponding RKHSs,222

cf. e.g. [29]. A natural question is then whether we have mean field convergence of the minimizers223

and their representation. This is clarified by the next result.224

Theorem 3.3. Let N ∈ N+, µ1, . . . , µN ∈ P(X) and for n = 1, . . . , N let x⃗[M ]
n ∈ XM , M ∈ N+,225

such that µ̂[x⃗[M ]
n ]

dKR−→ µn for M → ∞. Let L : RN → R≥0 be continuous and strictly convex and226

λ > 0. For each M ∈ N+ consider the problem227

min
f∈HM

L(f(x⃗
[M ]
1 ), . . . , f(x⃗

[M ]
N )) + λ∥f∥M , (5)

as well as the problem228

min
f∈Hk

L(f(µ1), . . . , f(µN )) + λ∥f∥k. (6)

Then for each M ∈ N+ problem (5) has a unique solution f∗
M , which is of the form f∗

M =229 ∑N
n=1 α

[M ]
n kM (·, x⃗[M ]

n ) ∈ HM , with α
[M ]
1 , . . . , α

[M ]
N ∈ R, and problem (6) has a unique solution230

f∗, which is of the form f∗ =
∑N

n=1 αnk(·, µn) ∈ Hk, with α1, . . . , αN ∈ R. Furthermore, there231

exists a subsequence (f∗
Mℓ

)ℓ such that f∗
Mℓ

P1−→ f∗ and232

L(f∗
Mℓ

(x⃗
[Mℓ]
1 ), . . . , f∗

Mℓ
(x⃗

[Mℓ]
N )) + λ∥f∗

Mℓ
∥Mℓ

→ L(f∗(µ1), . . . , f
∗(µN )) + λ∥f∗∥k. (7)

for ℓ → ∞.233

The main point of this result is the convergence of the minimizers, which we will establish using a234

Γ-convergence argument. This approach seems to have been introduced by [20, 6, 19] originally in235

the context of multi-agent systems.236

Remark 3.4. An inspection of the proof reveals that in Theorem 3.3 we can replace the term λ∥ · ∥M237

and λ∥ · ∥k by Ω(∥ · ∥M ) and Ω(∥ · ∥k), where Ω : R≥0 → R≥0 is a nonnegative, strictly increasing238

and continuous function.239

4 Support Vector Machines with mean field limit kernels240

We now turn to the mean field limit of kernels in the context of statistical learning theory, focusing241

on SVMs. We first briefly recall the standard setup of statistical learning theory, and formulate an242

appropriate mean field limit thereof. We then investigate empirical and infinite-sample solutions of243

SVMs and their mean field limits, as well as the convergence of the corresponding risks.244

Statistical learning theory setup We now introduce the standard setup of statistical learning245

theory, following mostly [30, Chapters 2 and 5]. Let X ≠ ∅ (associated with some σ-algebra) and246

∅ ≠ Y ⊆ R closed (associated with the corresponding Borel σ-algebra). A loss function is in this247

setting a measurable function ℓ : X × Y × R → R≥0. Let P be a probability distribution on X × Y248

and f : X → R a measurable function, then the risk of f w.r.t. P and loss function ℓ is defined by249

Rℓ,P (f) =

∫
X×Y

ℓ(x, y, f(x))dP.

Note that this is always well-defined since (x, y) 7→ ℓ(x, y, f(x)) is a measurable and nonnegative250

function. For a set H ⊆ RX of measurable functions we also define the minimal risk over H by251

RH∗
ℓ,P = inf

f∈H
Rℓ,P (f).

If H is a normed vector space, we additionally define the regularized risk of f ∈ H and the minimal252

regularized risk over H by253

Rℓ,P,λ(f) = Rℓ,P (f) + λ∥f∥2H , RH∗
ℓ,P,λ = inf

f∈H
Rℓ,P,λ(f),
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where λ ∈ R>0 is the regularization parameter. A data set of size N ∈ N+ is a tuple DN =254

((x1, y1), . . . , (xN , yN )) ∈ (X × Y )N and for a function f : X → R we define its empirical risk by255

Rℓ,DN
(f) =

1

N

N∑
n=1

ℓ(xn, yn, f(xn)).

If H is a normed vector space and f ∈ H , we define additionally the regularized empirical risk and256

the minimal regularized empirical risk over H by257

Rℓ,DN ,λ(f) = Rℓ,DN
(f) + λ∥f∥2H , RH∗

ℓ,DN ,λ = inf
f∈H

Rℓ,DN ,λ(f),

where λ ∈ R>0 is again the regularization parameter. Note that the notation for the empirical risks258

is consistent with the risk w.r.t. a probability distribution P , if we identify a data set DN by the259

corresponding empirical distribution 1
N

∑N
n=1 δ(xn,yn).260

In the following, H will be a RKHS and a minimizer (assuming existence and uniqueness) of RH∗
ℓ,P,λ261

will be called an infinite-sample support vector machine (SVM). Similarly, RH∗
ℓ,DN ,λ will be called the262

empirical solution of the SVM w.r.t. the data set DN .263

Statistical learning theory setup in the mean field limit Let now ∅ ̸= Y ⊆ R be compact and264

ℓM : XM × Y × R → R≥0, M ∈ N, such that 1) ℓM (σx⃗, y, t) = ℓM (x⃗, y, t) for all x⃗ ∈ XM ,265

σ ∈ SM , y ∈ Y , t ∈ R; 2) there exists Cℓ ∈ R≥0 and a nondecreasing function b : R≥0 → R≥0266

with |ℓM (x⃗, y, t)| ≤ Cℓ+ b(|t|) for all M ∈ N and x⃗ ∈ XM , y ∈ Y, t ∈ R; 3) there exists Lℓ ∈ R≥0267

with268

|ℓM (x⃗1, y1, t1)− ℓM (x⃗2, y2, t2)| ≤ Lℓ(dKR(µ̂[x⃗1], µ̂[x⃗2]) + |y1 − y2|+ |t1 − t2|)

for all x⃗1, x2 ∈ XM , y1, y′1 ∈ Y, t1, t2 ∈ R. In particular, all ℓM are measurable (assuming the Borel269

σ-algebra on XM ) and hence are loss functions on XM × Y . Proposition 2.1 ensures the existence270

of a subsequence (ℓMm
)m and an Lℓ-Lipschitz continuous function ℓ : P(X)× Y × R → R with271

lim
M→∞

sup
x⃗∈XMm

y∈Y,t∈K

|ℓMm(x⃗, y, t)− ℓ(µ̂[x⃗], y, t)| = 0 (8)

for all compact K ⊆ R, and we write again ℓMm

P1−→ ℓ. For readability, from now on we switch to272

this subsequence. Furthermore, we also get from Proposition 2.1 that there exists some CL ∈ R≥0273

such that |ℓ(µ, y, t)| ≤ CL + b(|t|) for all µ ∈ P(X), y ∈ Y, t ∈ R.274

Remark 4.1. Note that, for Proposition 2.1 to apply, it is enough to assume in item 2) above the275

existence of a function b : R → R≥0 with |ℓM (x⃗, y, t)| ≤ Cℓ + b(|t|). However, we chose the276

slightly stronger condition that b is nondecreasing, since then ℓM is a Nemitskii loss according to [30,277

Definition 2.16]. Since the function with constant value Cℓ is actually PM -integrable, this means that278

ℓM is even a PM -integrable Nemitskii loss according to [30]. A similar remark then applies to ℓ.279

Lemma 4.2. The function ℓ is nonnegative. Furthermore, if all ℓM are convex loss functions [30,280

Definition 2.12], i.e., if for all M ∈ N+, x⃗ ∈ XM , y ∈ Y, t1, t2 ∈ R and λ ∈ (0, 1) we have281

ℓM (x⃗, y, λt1 + (1− λ)t2) ≤ λℓM (x⃗, y, t1) + (1− λ)ℓM (x⃗, y, t2), (9)

then so is ℓ.282

Empirical SVM solutions Given data sets D[M ]
N =

(
(x⃗

[M ]
1 , y

[M ]
1 ), . . . , (x⃗

[M ]
N , y

[M ]
N )

)
for all M ∈283

N+ with x⃗
[M ]
n ∈ XM , y[M ]

n ∈ Y , and DN = ((µ1, y1), . . . , (µN , yN )) with µn ∈ P(X) and284

yn ∈ Y , we write D
[M ]
N

P1−→ DN if µ̂[x⃗[M ]
n ]

dKR−→ µn and y
[M ]
n → yn (where M → ∞) for all285

n = 1, . . . , N . We can interpret this as mean field convergence of the data sets.286

Furthermore, consider the empirical risk of hypothesis fM ∈ HM (and f ∈ Hk) on data set D[M ]
N287

(and DN )288

R
ℓM ,D

[M]
N

(fM ) =
1

N

N∑
n=1

ℓM (x⃗[M ]
n , y[M ]

n , fM (x⃗[M ]
n )), Rℓ,DN

(f) =
1

N

N∑
n=1

ℓ(µn, yn, f(µn)),
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and the corresponding regularized risk289

R
ℓM ,D

[M]
N ,λ

(fM ) =
1

N

N∑
n=1

ℓM (x⃗[M ]
n , y[M ]

n , fM (x⃗[M ]
n )) + λ∥fM∥2M

Rℓ,DN ,λ(f) =
1

N

N∑
n=1

ℓ(µn, yn, f(µn)) + λ∥f∥2k,

where λ ∈ R>0 is the regularization parameter.290

Proposition 4.3. Let λ > 0, assume that all ℓM are convex and let D[M ]
N , DN be finite data sets291

with D
[M ]
N

P1−→ DN . Then for all M ∈ N+, HM ∋ fM 7→ R
ℓM ,D

[M]
N ,λ

(fM ) has a unique minimizer292

f∗
M,λ ∈ HM and Hk ∋ f 7→ Rℓ,DN ,λ(f) has a unique minimizer f∗

λ ∈ Hk. Furthermore, for all293

M ∈ N+ there exist α[M ]
n ∈ R, n = 1, . . . , N , such that f∗

M,λ =
∑N

n=1 α
[M ]
n kM (·, x⃗[M ]

n ), and294

there exist α1, . . . , αN ∈ R such that f∗
λ =

∑N
n=1 αnk(·, µn). Finally, there exists a subsequence295

(f∗
Mm,λ)m such that f∗

Mm,λ
P1−→ f∗

λ and R
ℓMm ,D

[Mm]
N ,λ

(f∗
Mm,λ) → Rℓ,DN ,λ(f

∗
λ) for m → ∞.296

Convergence of distributions and infinite-sample SVMs in the mean field limit We now turn297

to the question of mean field limits of distributions and the associated learning problems and SVM298

solutions. Let (P [M ])M be a sequence of distributions, where P [M ] is a probability distribution on299

XM × Y , and let P be a probability distribution on P(X)× Y . We say that P [M ] converges in mean300

field to P and write P [M ] P1−→ P , if for all continuous (w.r.t. the product topology on P(X)× Y )301

and bounded 4 f we have302 ∫
XM×Y

f(µ̂[x⃗], y)dP [M ](x⃗, y) →
∫
P(X)×Y

f(µ, y)dP (µ, y). (10)

This convergence notion of probability distributions (on different input spaces) appears to be not303

standard, but it is a natural concept in the present context. Essentially, it is weak (also called narrow)304

convergence of probability distributions adapated to our setting.305

Consider now data sets D[M ]
N , DN , with D

[M ]
N

P1−→ DN , then we also have convergence in mean field306

of the datasets, interpreted as empirical distributions: let f ∈ C0(P(X)× Y,R) be bounded, then307 ∫
XM×Y

f(µ̂[x⃗], y)dD
[M ]
N (x⃗, y) =

1

N

N∑
n=1

f(µ̂[x⃗[M ]
n ], y[M ]

n )

M→∞−−−−→ 1

N

N∑
n=1

f(µn, yn) =

∫
P(X)×Y

f(µ, y)dDN (µ, y).

This shows that the mean field convergence of probability distributions as defined here is a direct308

generalization of the natural notion of mean field convergence of data sets.309

Finally, consider the risk of hypothesis fM ∈ HM and f ∈ Hk w.r.t. the distribution P [M ] and P ,310

respectively,311

RℓM ,P [M](fM ) =

∫
XM×Y

ℓM (x⃗, y, fM (x⃗))dP [M ](x⃗, y)

Rℓ,P (f) =

∫
P(X)×Y

ℓ(µ, y, f(µ))dP (µ, y),

as well as the minimal risks312

RHM∗
ℓM ,P [M] = inf

fM∈HM

RℓM ,P [M](fM ) RHk∗
ℓ,P = inf

f∈Hk

Rℓ,P (f).

Our first result ensures that mean field convergence of distributions P [M ], loss functions ℓM and data313

sets D[M ]
N ensures the convergence of the corresponding risks of the empirical SVM solutions.314

4Of course, since Y is compact, all continuous f are bounded in our present setting.
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Lemma 4.4. Consider the situation and notation of Proposition 4.3 and assume that P [M ] P1−→ P .315

We then have RℓMm ,P [Mm](f∗
Mm,λ) → Rℓ,P (f

∗
λ) for m → ∞.316

Next, we investigate the mean field convergence of infinite-sample SVM solutions and their associated317

risks. Define for λ ∈ R≥0 (and all M ∈ N+) the regularized risk of fM ∈ HM and f ∈ Hk,318

respectively, by319

RℓM ,P [M],λ(fM ) = RℓM ,P [M](fM ) + λ∥fM∥2M , Rℓ,P,λ(f) = Rℓ,P (f) + λ∥f∥2k,

and the corresponding minimal risks by320

RHM∗
ℓM ,P [M],λ

= inf
fM∈HM

RℓM ,P [M],λ(fM ), RHk∗
ℓ,P,λ = inf

f∈Hk

Rℓ,P,λ(f).

Proposition 4.5. 5 Let λ > 0, assume that all ℓM are convex loss functions and let P [M ] and P321

be probability distributions on XM × Y and P(X) × Y , respectively, with P [M ] P1−→ P . Then322

for all M ∈ N+, HM ∋ fM 7→ RℓM ,P [M],λ(fM ) has a unique minimizer f∗
M,λ ∈ HM and323

Hk ∋ f 7→ Rℓ,P,λ(f) has a unique minimizer f∗
λ ∈ Hk. Furthermore, there exists a subsequence324

(f∗
Mm,λ)m such that f∗

Mm,λ
P1−→ f∗

λ and RℓMm ,P [Mm],λ(f
∗
Mm,λ) → Rℓ,P,λ(f

∗
λ) for m → ∞. In325

particular, RHMm∗
ℓMm ,P [Mm],λ

→ RHk∗
ℓ,P,λ.326

Finally, we would like to show that RHM∗
ℓM ,P [M] → RHk∗

ℓ,P for P [M ] P1−→ P . Up to a subsequence, this is327

established under Assumption 4.6. Define the approximation error functions, cf. [30, Definition 5.14],328

by329

A
[M ]
2 (λ) = inf

f∈HM

RℓM ,P [M],λ(f)−RHM∗
ℓM ,P [M] A2(λ) = inf

f∈Hk

Rℓ,P,λ(f)−RHk∗
ℓ,P ,

where M ∈ N+ and λ ∈ R≥0. Note that (for all M ∈ N+) A[M ]
2 , A2 : R≥0 → R≥0 are increas-330

ing, concave and continuous, and A
[M ]
2 , A2(0) = 0, cf. [30, Lemma 5.15]. We need essentially331

equicontinuity of (A[M ]
2 )M in 0, which is formalized in the following assumption.332

Assumption 4.6. For all ϵ > 0 there exists λϵ > 0 such that for all 0 < λ ≤ λϵ and M ∈ N+ we333

have A
[M ]
2 (λ) ≤ ϵ.334

Proposition 4.7. Assume that all ℓM are convex loss functions, let P [M ] and P be probability335

distributions on XM × Y and P(X)× Y , respectively, with P [M ] P1−→ P . If Assumption 4.6 holds,336

there exists a strictly increasing sequence (Mm)m with RHMm∗
ℓMm ,P [Mm] → RHk∗

ℓ,P for m → ∞.337

5 Conclusion338

We investigated the mean field limit of kernels and their RKHSs, as well as the mean field limit of339

statistical learning problems solved with SVMs. In particular, we managed to complete the basic340

theory of mean field kernels as started in [18]. Additionally, we investigated their approximation341

capabilities by providing a first approximation result and a variant of the representer theorem for342

mean field kernels. Finally, we introduced a corresponding mean field limit of statistical learning343

problems and provided convergence results for SVMs using mean field kernels. In contrast to other344

settings involving a large number of variables, for example, infinite-width neural networks, here we345

considered the case of an increasing number of inputs. This work opens many directions for future346

investigation. For example, it would be interesting to remove or weaken Assumption 4.6 for a result347

like Proposition 4.7. Another relevant direction is to find approximation results that are stronger than348

Proposition 3.1. Finally, it would be interesting to investigate whether statistical guarantees, like349

consistency or learning rates, for the finite-input learning problems can be transferred to the mean350

field level.351

5Note that Proposition 4.3 is actually a corollary of this result. However, since the former result is independent
of the notion of mean field convergence of probability distributions, we stated and proved it separately.
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Supplementary Material423

A Proofs424

In this section of the supplementary material, we provide detailed proofs for all results in the main425

text.426

A.1 Proofs for Section 2427

We start with Proposition 2.1, whose proof is based on [8, Lemma 1.2].428

Proof. of Proposition 2.1 For M ∈ N+ define the McShane extension FM : P(X)× Z → R by429

FM (µ, z) = inf
x⃗∈XM

fM (x⃗, z) + LfdKR(µ̂[x⃗], µ).

Observe that FM is well-defined (i.e., R-valued) since fM (·, z) and LfdKR(µ̂[·], µ) are bounded for430

every z ∈ Z (since fM and dKR(µ̂[·], µ) are continuous and P(X) is compact, hence bounded).431

Step 1 FM extends fM , i.e., for all M ∈ N+, x⃗ ∈ XM and z ∈ Z we have FM (µ̂[x⃗], z) = fM (x⃗, z).432

To show this, let x⃗ ∈ XM and z ∈ Z be arbitrary and observe that by definition433

FM (µ̂[x⃗], z) = inf
x⃗′∈XM

fM (x⃗′, z)+LfdKR(µ̂[x⃗
′], µ̂[x⃗]) ≤ fM (x⃗, z)+LfdKR(µ̂[x⃗], µ̂[x⃗]) = fM (x⃗, z).

If FM (µ̂[x⃗], z) < fM (x⃗, z), then there exists some x⃗′ ∈ XM such that434

fM (x⃗′, z) + LfdKR(µ̂[x⃗
′], µ̂[x⃗]) < fM (x⃗, z),

but this means that435

LfdKR(µ̂[x⃗
′], µ̂[x⃗]) < fM (x⃗, z)− fM (x⃗′, z) ≤ |fM (x⃗, z)− fM (x⃗′, z)|,

contradicting the Lf -Lipschitz continuity of fM .436

Step 2 All FM are Lf -continuous: Let M ∈ N+, µi ∈ P(X) and zi ∈ Z, i = 1, 2, be arbitrary.437

Since XM is compact and fM (·, z) and LfdKR(µ̂[·], µi), i = 1, 2, are continuous, the infimum in438

the definition of FM is actually attained. Let x⃗2 ∈ XM such that FM (µ2, z2) = fM (x⃗2, z2) +439

LfdKR(µ̂[x⃗2], µ2), then we have440

FM (µ1, z1) ≤ fM (x⃗2, z1) + LfdKR(µ̂[x⃗2], µ1)

= fM (x⃗2, z1) + LfdKR(µ̂[x⃗2], µ2)− LfdKR(µ̂[x⃗2], µ2) + LfdKR(µ̂[x⃗2], µ1)

≤ fM (x⃗2, z2) + LfdKR(µ̂[x⃗2], µ2) + LfdZ(z1, z2)− LfdKR(µ̂[x⃗2], µ2)

+ LfdKR(µ̂[x⃗2], µ1)

≤ FM (µ2, z2) + LfdZ(z1, z2)− LfdKR(µ̂[x⃗2], µ2) + LfdKR(µ1, µ2)

+ LfdKR(µ̂[x⃗2], µ2)

= FM (µ2, z2) + Lf (dKR(µ1, µ2) + dZ(z1, z2)),

where we used the definition of FM in the first inequality, the Lipschitz continuity of fM (w.r.t.441

the second argument) for the second inequality, and then the fact that x⃗2 attains the infimum in the442

definition of FM (µ2, z2) and the triangle inequality for dKR. Interchanging the roles of µ1, z1 and443

µ2, z2 then establishes the claim.444

Step 3 There exists BF ∈ R≥0 such that for all M ∈ N+, µ ∈ P(X) and z ∈ Z we have445

|FM (µ, z)| ≤ BF + h(z): Let DP(X) be the diameter of P(X) (which is finite since P(X) is446

compact), then for all M ∈ N+ and x⃗ ∈ XM , z ∈ Z, µ ∈ P(X) we have447

−(Bf + LfDP(X) + b(z)) ≤ fM (x⃗, z) + LfdKR(µ̂[x⃗], µ) ≤ Bf + LfDP(X) + b(z),

therefore |FM (µ, z)| ≤ Bf + LfDP(X) + b(z), showing the claim with BF = Bf + LfDP(X).448

Step 4 Summarizing, (FM )M is a sequence of Lf -Lipschitz continuous and hence equicontinuous449

functions such that for all µ ∈ P(X) and z ∈ Z, the set {FM (µ, z) | M ∈ N+} is relatively compact450

(since it is a bounded subset of R). We can now use a variant of the Arzela-Ascoli theorem, cf. [24,451
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Corollary III.3.3]. From the assumption on Z, we can find a sequence (Vn)n of open subsets of Z452

such that all V̄n are compact, V̄n ⊆ Vn+1 and we have
⋃

n Vn = Z. Then (FM |V̄n
)M is a sequence453

of functions that fulfills the conditions of the Arzela-Ascoli theorem (since P(X)×Kn is compact),454

so there exists a subsequence (F
M

(n)
ℓ

|V̄n
)ℓ that converges uniformly to a continuous function on455

P(X)× V̄n. Denote the diagonal subsequence of all these subsequences by (FMℓ
)ℓ, then there exists456

a continuous f : P(X)× Z → R such that (FMℓ
)ℓ converges uniformly on compact subsets to f .457

Since P(X) is compact, this means that for all compact K ⊆ Z458

lim
ℓ

sup
µ∈P(X)
z∈K

|FMℓ
(µ, z)− f(µ, z)| = 0.

This also implies that for all µ ∈ P(X) and z ∈ Z we have |f(µ, z)| ≤ BF + b(z).459

Furthermore, f is also Lf -Lipschitz continuous: Let µi ∈ P(X), zi ∈ Z, i = 1, 2, and ϵ > 0 be460

arbitrary. Let K ⊆ Z be compact with z1, z2 ∈ K and choose ℓ ∈ N+ such that461

sup
µ∈P(X)
z∈K

|FMℓ
(µ, z)− f(µ, z)| ≤ ϵ

2
.

We then have462

|f(µ1, z1)− f(µ2, z2)| ≤ |f(µ1, z1)− FMℓ
(µ1, z1)|+ |FMℓ

(µ1, z1)− FMℓ
(µ2, z2)|

+ |FMℓ
(µ2, z2)− f(µ2, z2)|

≤ Lf (dKR(µ1, µ2) + dZ(z1, z2)) + ϵ,

and since ϵ > 0 was arbitrary, the claim follows.463

Step 5 For ℓ ∈ N+ and x⃗ ∈ XMℓ , z ∈ Z we have464

|fMℓ
(x⃗, z)− f(µ̂[x⃗], z)| = |FMℓ

(µ̂[x⃗], z)− f(µ̂[x⃗], z)|
since FMℓ

extends fMℓ
, and hence465

sup
x⃗∈XMℓ

z∈K

|fMℓ
(x⃗, z)− f(µ̂[x⃗], z)| → 0.

466

Next, we provide the proofs for the Γ-lim inf and Γ-lim sup results.467

Proof. of Lemma 2.4 Assume the statement is not true, i.e., ∥f∥k > lim infM→∞ ∥fM∥M . This468

means that there exists a subsequence Mℓ and C ∈ R≥0 such that ∥f∥k > limℓ ∥fMℓ
∥Mℓ

= C. Note469

that this implies that ∥f∥k > 0.470

Let ϵ1, ϵ2 > 0 and α > 1, β ∈ (0, 1) be arbitrary. From Theorem B.1, there exists (µ⃗, α⃗) ∈471

P(X)N × RN such that472

D(µ⃗, α⃗, f, k) + ϵ1 ≥ ∥f∥k,
and w.l.o.g. we can assume that ϵ1 > 0 is small enough so that D(µ⃗, α⃗, f, k) > 0. The latter implies473

that E(µ⃗, α⃗, f), W(µ⃗, α⃗, k) > 0, so defining474

ϵα =
α− 1

α
E(µ⃗, α⃗, f)

ϵβ = (1/β − 1)W(µ⃗, α⃗, k)

we get ϵα, ϵβ > 0. For each n = 1, . . . , N , choose x⃗[M ]
n ∈ XM such that x⃗[M ]

n
dKR−→ µn for M → ∞.475

Choose now L1 ∈ N such that for all ℓ ≥ L1 we get476

|E(X⃗ [Mℓ], α⃗, fMℓ
)− E(µ⃗, α⃗, f)| ≤ ϵα

|W(X⃗ [Mℓ], α⃗, kMℓ
)−W(µ⃗, α⃗, k)| ≤ ϵβ .

(cf. also the proof of Theorem 2.3) and W(X⃗ [Mℓ], α⃗, k[Mℓ]) > 0. We then get477

E(µ⃗, α⃗, f) ≤ αE(X⃗ [Mℓ], α⃗, fMℓ
)

W(µ⃗, α⃗, k) ≥ βW(X⃗ [Mℓ], α⃗, k[Mℓ]),
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so altogether478

E(µ⃗, α⃗, f)
W(µ⃗, α⃗, k)

≤ αE(X⃗ [Mℓ], α⃗, fMℓ
)

βW(X⃗ [Mℓ], α⃗, k[Mℓ])
.

Using Theorem B.1 again leads to479

αE(X⃗ [Mℓ], α⃗, fM )

βW(X⃗ [Mℓ], α⃗, k[Mℓ])
= D(X⃗ [Mℓ], α⃗, fMℓ

, k[Mℓ]) ≤ ∥fMℓ
∥Mℓ

.

Finally, let L2 such that for all ℓ ≥ L2 we have ∥fMℓ
∥Mℓ

≤ C + ϵ2. For ℓ ≥ L1, L2 we then get480

C < ∥f∥k ≤ D(µ⃗, α⃗, f, k) + ϵ1

=
E(µ⃗, α⃗, f)
W(µ⃗, α⃗, k)

+ ϵ1

≤ αE(X⃗ [Mℓ], α⃗, fMℓ
)

βW(X⃗ [Mℓ], α⃗, k[Mℓ])
+ ϵ1

≤ α

β
∥fMℓ

∥Mℓ
+ ϵ1

≤ α

β
C +

α

β
ϵ2 + ϵ1.

Since ϵ1, ϵ2 > 0 and α > 1, β ∈ (0, 1) were arbitrary, this implies that481

C < ∥f∥k ≤ C,

a contradiction.482

Proof. of Lemma 2.5 Let f ∈ Hk be arbitrary and choose (ϵn)n ⊆ R>0 with ϵn ↘ 0.483

Step 1 For each n ∈ N choose484

f pre
n =

Ln∑
ℓ=1

α
(n)
ℓ k(·, µ(n)

ℓ ) ∈ Hpre
k ,

where α
(n)
1 , . . . , α

(n)
Ln

∈ R and µ
(n)
1 , . . . , µ

(n)
Ln

∈ P(X), with485

∥f − f pre
n ∥k ≤ ϵn

3
√
Ck

and ∥f pre
n ∥k ≤ ∥f∥k. To see that such a sequence of functions exists, choose some sequence486

(f̄n)n ∈ Hpre
k with f̄n =

∑L̄n

ℓ=1 ᾱ
(n)
ℓ k(·, µ̄(n)

ℓ ), where ᾱ
(n)
ℓ ∈ R, µ̄(n)

ℓ ∈ P(X), with f̄n
∥·∥k−→ f487

(exists since Hpre
k is dense in Hk). Define now for n ∈ N488

H̄n = span{k(·, µ̄(m)
ℓ ) | m = 1, . . . , n, ℓ = 1, . . . , L̄m}

and f̂n = PH̄n
f , where PH̄n

is the orthogonal projection onto H̄n. Then H̄n ⊆ Hpre
k , ∥f̂n∥k =489

∥PH̄n
f∥k ≤ ∥f∥k and ∥f − f̂n∥k ≤ ∥f − f̄n∥k → 0 (since f̂n = PH̄n

f is the orthogonal projection490

of f onto H̄n and f̄n ∈ H̄n), hence f̂n
∥·∥k−→ f . We can now choose (f pre

n )n as a subsequence of491

(f̂n)n.492

Next, for all n ∈ N and ℓ = 1, . . . , Ln choose x⃗
(n,ℓ)
M ∈ XM with µ̂[x⃗

(n,ℓ)
M ]

dKR−→ µ
(n)
ℓ for M → ∞.493

Furthermore, for all n ∈ N choose Mn ∈ N such that for all M ≥ Mn and ℓ = 1, . . . , Ln we have494

dKR(µ̂[x⃗
(n,ℓ)
M ], µ

(n)
ℓ ) ≤ min

 ϵn

3
(
1 + Lk

∑Ln

ℓ′=1 |α
(n)
ℓ′ |

) , ϵ2n

2
(
1 + 2Lk

∑Ln

i,j=1 |α
(n)
i ||α(n)

j |
)


and495

sup
x⃗,x⃗′∈XM

|kM (x⃗, x⃗′)− k(µ̂[x⃗], µ̂[x⃗′])| ≤ min

 ϵn

3
(
1 +

∑Ln

ℓ′=1 |α
(n)
ℓ′ |

) , ϵ2n

2
(
1 +

∑Ln

i,j=1 |α
(n)
i ||α(n)

j |
)
 .
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W.l.o.g. we can assume that (Mn)n is strictly increasing. For M ∈ N, let n(M) be the largest integer496

such that Mn(M) ≤ M and define497

f̂ pre
M =

Ln(M)∑
ℓ=1

α
(n(M))
ℓ k(·, µ̂[x⃗(n(M),ℓ)

M ]) ∈ Hpre
k

fM =

Ln(M)∑
ℓ=1

α
(n(M))
ℓ kM (·, x⃗(n(M),ℓ)

M ) ∈ Hpre
M .

Step 2 We now show that fM
P1−→ f . For this, let ϵ > 0 be arbitrary and nϵ ∈ N such that ϵn ≤ ϵ.498

Let now M ≥ Mnϵ
(note that this implies that n(M) ≥ nϵ and hence ϵn(M) ≤ ϵn) and x⃗ ∈ XM ,499

then we have500

|f(µ̂[x⃗])− fM (x⃗)| ≤ |f(µ̂[x⃗])− fn(M)(µ̂[x⃗])|︸ ︷︷ ︸
=I

+ |fn(M)(µ̂[x⃗])− f̂ pre
M (µ̂[x⃗])|︸ ︷︷ ︸

=II

+ |f̂ pre
M (µ̂[x⃗])− fM (x⃗)|︸ ︷︷ ︸

=III

We continue with501

I = |f(µ̂[x⃗])− fn(M)(µ̂[x⃗])|
= |⟨f − fn(M), k(·, µ̂[x⃗])⟩k|
≤ ∥f − fn(M)∥k∥k(·, µ̂[x⃗])∥k
= ∥f − fn(M)∥k

√
k(µ̂[x⃗], µ̂[x⃗])

≤
ϵn(M)

3
√
Ck

√
Ck

where we first used the reproducing property of k, then Cauchy-Schwarz, again the reproducing502

property of k, and finally the choice fn(M) and the boundedness of k.503

Next,504

II = |fn(M)(µ̂[x⃗])− f̂ pre
M (µ̂[x⃗])|

=

∣∣∣∣∣∣
Ln(M)∑
ℓ=1

α
(n(M))
ℓ k(·, µ(n(M))

ℓ )−
Ln(M)∑
ℓ=1

α
(n(M))
ℓ k(·, µ̂[x⃗(n(M),ℓ)

M ])

∣∣∣∣∣∣
≤

Ln(M)∑
ℓ=1

∣∣∣α(n(M))
ℓ

∣∣∣ |k(·, µ(n(M))
ℓ )− k(·, µ̂[x⃗(n(M),ℓ)

M ])|

≤ Lk

Ln(M)∑
ℓ=1

∣∣∣α(n(M))
ℓ

∣∣∣ dKR(µ̂[x⃗
(n(M),ℓ)
M ], µ

(n(M))
ℓ )

≤
ϵn(M)

3
,

where we used the triangle inequality, the Lipschitz continuity of k, and then the choice of the505

sequence (Mn)n.506

Finally,507

III = |f̂ pre
M (µ̂[x⃗])− fM (x⃗)|

=

∣∣∣∣∣∣
Ln(M)∑
ℓ=1

α
(n(M))
ℓ k(·, µ̂[x⃗(n(M),ℓ)

M ])−
Ln(M)∑
ℓ=1

α
(n(M))
ℓ kM (·, x⃗(n(M),ℓ)

M )

∣∣∣∣∣∣
≤

Ln(M)∑
ℓ=1

∣∣∣α(n(M))
ℓ

∣∣∣ |k(·, µ̂[x⃗(n(M),ℓ)
M ])− kM (·, x⃗(n(M),ℓ)

M )|

≤
ϵn(M)

3
,
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where the triangle inequality has been used in the first step and then again the choice of the sequence508

(Mn)n.509

Altogether,510

|f(µ̂[x⃗])− fM (x⃗)| ≤ I + II + III

≤
ϵn(M)

3
+

ϵn(M)

3
+

ϵn(M)

3
≤ ϵ,

establishing fM
P1−→ f .511

Step 3 We now show lim supM→∞ ∥fM∥M ≤ ∥f∥k. Let ϵ > 0 be arbitrary and nϵ ∈ N such that512

ϵn ≤ ϵ and let M ≥ Mnϵ
. We have513

∥fM∥2M =

Ln(M)∑
ℓ,ℓ′=1

α
(n(M))
ℓ α

(n(M))
ℓ′ kM (x⃗

(n(M),ℓ′)
M , x⃗

(n(M),ℓ′)
M )

≤
Ln(M)∑
ℓ,ℓ′=1

α
(n(M))
ℓ α

(n(M))
ℓ′ k(µ

(n(M))
ℓ′ , µ

(n(M))
ℓ ) + |R1|+ |R2|

= ∥f pre
n(M)∥

2
k +R1 +R2

≤ ∥f∥2k +R1 +R2.

with remainder terms514

R1 =

Ln(M)∑
ℓ,ℓ′=1

α
(n(M))
ℓ α

(n(M))

ℓ′ kM (x⃗
(n(M),ℓ′)
M , x⃗

(n(M),ℓ′)
M )−

Ln(M)∑
ℓ,ℓ′=1

α
(n(M))
ℓ α

(n(M))

ℓ′ k(µ̂[x⃗
(n(M),ℓ′)
M ], µ̂[x⃗

(n(M),ℓ′)
M ])

R2 =

Ln(M)∑
ℓ,ℓ′=1

α
(n(M))
ℓ α

(n(M))

ℓ′ k(µ̂[x⃗
(n(M),ℓ′)
M ], µ̂[x⃗

(n(M),ℓ′)
M ])−

Ln(M)∑
ℓ,ℓ′=1

α
(n(M))
ℓ α

(n(M))

ℓ′ k(µ
(n(M))

ℓ′ , µ
(n(M))
ℓ )

We now bound these terms, so that515

R1 =

∣∣∣∣∣∣
Ln(M)∑
ℓ,ℓ′=1

α
(n(M))
ℓ α

(n(M))

ℓ′ kM (x⃗
(n(M),ℓ′)
M , x⃗

(n(M),ℓ′)
M )−

Ln(M)∑
ℓ,ℓ′=1

α
(n(M))
ℓ α

(n(M))

ℓ′ k(µ̂[x⃗
(n(M),ℓ′)
M ], µ̂[x⃗

(n(M),ℓ′)
M ])

∣∣∣∣∣∣
≤

Ln(M)∑
ℓ,ℓ′=1

|α(n(M))
ℓ ||α(n(M))

ℓ′ ||kM (x⃗
(n(M),ℓ′)
M , x⃗

(n(M),ℓ′)
M )− k(µ̂[x⃗

(n(M),ℓ′)
M ], µ̂[x⃗

(n(M),ℓ′)
M ])|

≤
ϵ2n(M)

2
,

and516

R2 =

∣∣∣∣∣∣
Ln(M)∑
ℓ,ℓ′=1

α
(n(M))
ℓ α

(n(M))

ℓ′ k(µ̂[x⃗
(n(M),ℓ′)
M ], µ̂[x⃗

(n(M),ℓ′)
M ])−

Ln(M)∑
ℓ,ℓ′=1

α
(n(M))
ℓ α

(n(M))

ℓ′ k(µ
(n(M))

ℓ′ , µ
(n(M))
ℓ )

∣∣∣∣∣∣
≤

Ln(M)∑
ℓ,ℓ′=1

|α(n(M))
ℓ ||α(n(M))

ℓ′ ||k(µ̂[x⃗(n(M),ℓ′)
M ], µ̂[x⃗

(n(M),ℓ′)
M ])− k(µ

(n(M))

ℓ′ , µ
(n(M))
ℓ )|

≤ Lk

Ln(M)∑
ℓ,ℓ′=1

|α(n(M))
ℓ ||α(n(M))

ℓ′ |
(
dKR(µ̂[x⃗

(n(M),ℓ)
M ], µ

(n(M))
ℓ ) + dKR(µ̂[x⃗

(n(M),ℓ′)
M ], µ

(n(M))

ℓ′ )
)

≤
ϵ2n(M)

2
.

Altogether,517

∥fM∥2M ≤ ∥f∥2k + |R1|+ |R2|

≤ ∥f∥2k +
ϵ2n(M)

2
+

ϵ2n(M)

2

≤ ∥f∥2k + ϵ2,
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so ∥fM∥M ≤ ∥f∥k + ϵ for all M ≥ Mnϵ , and since ϵ > 0 was arbitrary, we finally get518

lim supM→∞ ∥fM∥M ≤ ∥f∥k.519

Finally, we can now provide the proof for the central Theorem 2.3.520

Proof. of Theorem 2.3 The first statement is part of Lemma 2.5. Let us turn to the second statement:521

The existence of the subsequence (fMℓ
)ℓ and the continuous function f : P(X) → R with fMℓ

P1−→ f522

was shown in [18, Corollary 4.3], so we only have to ensure that f ∈ Hk with ∥f∥k ≤ B. For this,523

we use the characterization of RKHS functions from Theorem B.1. In particular, we will utilize the524

notation introduced there.525

Step 1 Let (µ⃗, α⃗) ∈ P(X)N × RN . We show that if W(µ⃗, α⃗, k) = 0, then E(µ⃗, α⃗, f) = 0.526

Assume that W(µ⃗, α⃗, k) = 0. If B = 0, then fM ≡ 0 and fMℓ

P1−→ f implies that f ≡ 0, so the527

claim is clear in this case. Assume now B > 0, let ϵ > 0 be arbitary and for n = 1, . . . , N , choose528

sequences x⃗
[M ]
n ∈ XM such that x⃗[M ]

n
dKR−→ µn for M → ∞. For convenience, define X⃗ [M ] =529 (

x⃗
[M ]
1 · · · x⃗

[M ]
N

)
. Choose now ℓϵ ∈ N such that for all M ≥ Mℓϵ we get W(X⃗ [M ], α⃗, kM ) ≤530

ϵ/B. This is possible since kM
P1−→ k together with the continuity of kM and k as well as x⃗[M ]

n
dKR−→531

µn for M → ∞ and all n = 1, . . . , N implies that W(X⃗ [M ], α⃗, kM ) → W(µ⃗, α⃗, k) = 0. Let now532

ℓ ≥ ℓϵ be arbitrary and observe that fM ∈ HM implies N (fM , kM ) < ∞ according to Theorem533

B.1, so in particular D(X⃗ [Mℓ], α⃗, fMℓ
, kMℓ

) < ∞.534

If W(X⃗ [Mℓ], α⃗, kMℓ
) = 0, then we get that E(X⃗ [Mℓ], α⃗, fMℓ

) = 0 ≤ ϵ since535

D(X⃗ [Mℓ], α⃗, fMℓ
, kMℓ

) < ∞, which implies by definition that E(X⃗ [Mℓ], α⃗, fMℓ
) = 0.536

If W(X⃗ [Mℓ], α⃗, kMℓ
) > 0, then we have537

E(X⃗ [Mℓ], α⃗, fMℓ
)

W(X⃗ [Mℓ], α⃗, kMℓ
)
= D(X⃗ [Mℓ], α⃗, fMℓ

, kMℓ
) ≤ N (fMℓ

, kMℓ
) = ∥fMℓ

∥Mℓ
≤ B,

which implies538

E(X⃗ [Mℓ], α⃗, fMℓ
) ≤ BW(X⃗ [Mℓ], α⃗, kMℓ

) ≤ ϵ.

Since fMℓ

P1−→ f together with the continuity of fM and f as well as x⃗
[M ]
n

dKR−→ µn implies that539

E(X⃗ [Mℓ], α⃗, fMℓ
) → E(µ⃗, α⃗, f), we get that E(µ⃗, α⃗, f) ≤ ϵ, and since ϵ > 0 was arbitrary we arrive540

at E(µ⃗, α⃗, f) ≤ 0.541

Assume now that E(µ⃗, α⃗, f) < 0. This implies that there exist δ > 0 and ℓδ ∈ N such that for all ℓ ≥542

ℓδ we have E(X⃗ [Mℓ], α⃗, fMℓ
) ≤ −δ < 0, since E(X⃗ [Mℓ], α⃗, fMℓ

) → E(µ⃗, α⃗, f). Let ℓ ≥ ℓδ , then we543

get that E(X⃗ [Mℓ],−α⃗, fMℓ
) ≥ δ > 0 and we have W(X⃗ [Mℓ],−α⃗, kMℓ

) = W(X⃗ [Mℓ], α⃗, kMℓ
) > 0.544

We can then continue with545

δ

W(X⃗ [Mℓ], α⃗, kMℓ
)
≤ E(X⃗ [Mℓ],−α⃗, fMℓ

)

W(X⃗ [Mℓ],−α⃗, kMℓ
)

≤ D(X⃗ [Mℓ],−α⃗, fMℓ
, kMℓ

)

≤ N (fMℓ
, kMℓ

)

= ∥fMℓ
∥Mℓ

≤ B,

which implies that W(X⃗ [Mℓ],−α⃗, kMℓ
) = W(X⃗ [Mℓ], α⃗, kMℓ

) ≥ δ/B. But since546

W(X⃗ [Mℓ], α⃗, kMℓ
) → W(µ⃗, α⃗, k), this implies that W(µ⃗, α⃗, k) ≥ δ/B > 0, a contradiction. Alto-547

gether, E(µ⃗, α⃗, f) = 0.548

Step 2 Let (µ⃗, α⃗) ∈ P(X)N × RN . If W(µ⃗, α⃗, k) > 0 and E(µ⃗, α⃗, f) > 0, then549

E(µ⃗, α⃗, f)
W(µ⃗, α⃗, k)

≤ B.
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To show this, let α > 1 and β ∈ (0, 1) be arbitrary. Define550

ϵα =
α− 1

α
E(µ⃗, α⃗, f)

ϵβ = (1/β − 1)W(µ⃗, α⃗, k)

and observe that ϵα, ϵβ > 0. Furthermore, for all n = 1, . . . , N choose a sequence x⃗[M ]
n ∈ XM such551

that x⃗[M ]
n

dKR−→ µn for M → ∞, and define X⃗ [M ] =
(
x⃗
[M ]
1 · · · x⃗

[M ]
N

)
. Choose ℓϵ ∈ N+ such that552

for all ℓ ≥ ℓϵ we have553

|E(X⃗ [Mℓ], α⃗, fMℓ
)− E(µ⃗, α⃗, f)| ≤ ϵα

|W(X⃗ [Mℓ], α⃗, kMℓ
)−W(µ⃗, α⃗, k)| ≤ ϵβ

and W(X⃗ [Mℓ], α⃗, kMℓ
) > 0. Such an ℓϵ exists because kM

P1−→ k together with the continuity of kM554

and k as well as the convergence of x⃗[M ]
n to µn imply that W(X⃗ [Mℓ], α⃗, kMℓ

) → W(µ⃗, α⃗, k), and555

fMℓ

P1−→ f together with the continuity of fM and f imply that E(X⃗ [Mℓ], α⃗, fMℓ
) → E(µ⃗, α⃗, f).556

Let now ℓ ≥ ℓϵ be arbitrary. By definition of ϵα we get αϵα ≤ (α− 1)E(µ⃗, α⃗, f), which in turn leads557

to558

ϵα ≤ ϵα − αϵα + (α− 1)E(µ⃗, α⃗, f)
= −(α− 1)ϵα + (α− 1)E(µ⃗, α⃗, f)
= (α− 1)(E(µ⃗, α⃗, f)− ϵα)

≤ (α− 1)E(X⃗ [Mℓ], α⃗, fMℓ
),

where we used in the last inequality that α − 1 > 0 and by choice of ℓϵ we have E(µ⃗, α⃗, f) ≤559

E(X⃗ [Mℓ], α⃗, fMℓ
) + ϵα. We can then continue with560

E(µ⃗, α⃗, f) ≤ E(X⃗ [Mℓ], α⃗, fMℓ
) + ϵα

≤ E(X⃗ [Mℓ], α⃗, fMℓ
) + (α− 1)E(X⃗ [Mℓ], α⃗, fMℓ

)

= αE(X⃗ [Mℓ], α⃗, fMℓ
).

Next, by definition of ϵβ and choice of ℓϵ we find that561

W(X⃗ [Mℓ], α⃗, kMℓ
) ≤ W(µ⃗, α⃗, k) + ϵβ
= W(µ⃗, α⃗, k) + (1/β − 1)W(µ⃗, α⃗, k)

= (1/β)W(µ⃗, α⃗, k),

hence562
1

W(µ⃗, α⃗, k)
≤ 1

βW(X⃗ [Mℓ], α⃗, kMℓ
)
.

Combining these results, we get that for all ℓ ≥ ℓϵ563

E(µ⃗, α⃗, f)
W(µ⃗, α⃗, k)

≤ α

β

E(X⃗ [Mℓ], α⃗, fMℓ
)

W(X⃗ [Mℓ], α⃗, kMℓ
)
≤ α

β
N (fMℓ

, kMℓ
) =

α

β
∥fMℓ

∥Mℓ
≤ α

β
B.

Since α > 1 and β ∈ (0, 1) were arbitrary, this shows that564

E(µ⃗, α⃗, f)
W(µ⃗, α⃗, k)

≤ B.

Step 3 Let (µ⃗, α⃗) ∈ P(X)N × RN be arbitrary. If W(µ⃗, α⃗, k) = 0, then we get from Step 1 that565

E(µ⃗, α⃗, f) = 0 ≤ B. Assume now W(µ⃗, α⃗, k) > 0. If E(µ⃗, α⃗, f) = 0, then again E(µ⃗, α⃗, f) = 0 ≤566

B. If E(µ⃗, α⃗, f) > 0, then Step 2 ensures that567

E(µ⃗, α⃗, f)
W(µ⃗, α⃗, k)

= D(µ⃗, α⃗, f, k) ≤ B.

Finally, if E(µ⃗, α⃗, f) < 0, then again568

E(µ⃗, α⃗, f)
W(µ⃗, α⃗, k)

= D(µ⃗, α⃗, f, k) < 0 ≤ B.

Altogether, we get that D(µ⃗, α⃗, f, k) ≤ B. Since (µ⃗, α⃗) was arbitrary, maximization leads to569

N (f, k) ≤ B < ∞, hence f ∈ Hk and ∥f∥k = N (f, k) ≤ B.570
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A.2 Proofs for Section 3571

In this section we provide the proofs for the results relating to approximation with kernels in the572

mean field limit.573

Proof. of Proposition 3.1 Let f ∈ F and ϵ > 0 be arbitrary. Let B ∈ R≥0 and fM ∈ FM ,574

f̂M ∈ HM , M ∈ N+, such that fM
P1−→ f , ∥fM − f̂M∥ ≤ ϵ

5 and ∥f̂M∥M ≤ B for all M ∈ N+575

(exist by definition of F). Theorem 2.3 ensures that there exists a subsequence (fMℓ
)ℓ and f̂ ∈ Hk576

with ∥f̂∥k ≤ B such that f̂Mℓ

P1−→ f̂ for ℓ → ∞. Choose now L1 ∈ N+ such that for all ℓ ≥ L1 we577

have578

sup
x⃗∈XMℓ

|f̂Mℓ
(x⃗)− f̂(µ̂[x⃗])| ≤ ϵ

5

sup
x⃗∈XMℓ

|fMℓ
(x⃗)− f(µ̂[x⃗])| ≤ ϵ

5
.

Let now µ ∈ P(X) be arbitrary and choose a sequence x⃗M ∈ XM with µ̂[x⃗M ]
dKR−→ µ. Finally, let579

L2 ∈ N+ such that for all ℓ ≥ L2 we have580

|f(µ)− f(µ̂[x⃗Mℓ
])| ≤ ϵ

5

|f̂(µ)− f̂(µ̂[x⃗Mℓ
])| ≤ ϵ

5

(such an L2 exists due to the continuity of f and f̂ ).581

We now have for ℓ ≥ max{L1, L2} that582

|f(µ)− f̂(µ)| ≤ |f(µ)− f(µ̂[x⃗Mℓ ])|+ |f(µ̂[x⃗Mℓ ])− fMℓ(x⃗Mℓ)|+ |fMℓ(x⃗Mℓ)− f̂Mℓ(x⃗Mℓ)|

+ |f̂Mℓ(x⃗Mℓ)− f̂(µ̂[x⃗Mℓ ])|+ |f̂(µ̂[x⃗Mℓ ])− f̂(µ)|

≤ ϵ

5
+

ϵ

5
+

ϵ

5
+

ϵ

5
+

ϵ

5
= ϵ.

Since µ was arbitrary, the result follows.583

Proof. of Remark 3.2 We first show that F is a subvectorspace. Let f, g ∈ F and λ ∈ R, ϵ > 0584

be arbitrary. W.l.o.g. we can assume λ ̸= 0. Choose sequences fM , gM ∈ FM , f̂M , ĝM ∈ HM ,585

M ∈ N+, and constants Bf , Bg ∈ R≥0 from the definition of F for f , ϵ
2|λ| , and g, ϵ

2 , respectively.586

Let M ∈ N+, x⃗ ∈ XM be arbitrary, then587

|λfM (x⃗) + g(x⃗)− (λf(µ̂[x⃗])− g(µ̂[x⃗]))| ≤ |λ||fM (x⃗)− f(µ̂[x⃗])|+ |gM (x⃗)− g(µ̂[x⃗])|

together with fM
P1−→ f , gM

P1−→ g shows that λfM + gM
P1−→ λf + g.588

Next, we have for all M ∈ N+ that589

∥(λfM + gM )− (λf̂M + ĝM )∥∞ ≤ |λ|∥fM − f̂M∥∞ + ∥gM − ĝM∥∞ ≤ |λ| ϵ

2|λ|
+

ϵ

2
= ϵ.

Finally,590

∥λf̂M + ĝM∥M ≤ |λ|∥f̂M∥M + ∥ĝM∥M ≤ |λ|Bf +Bg,

establishing that (λf̂M + ĝM )M is uniformly norm-bounded. Altogether, we have that λf + g ∈ F .591

We now turn to the second claim. Let (f (n))n ⊆ F such that f (n) → f for some f ∈ C0(P(X),R)592

and for all ϵ̄ > 0 there exist f (n)
M ∈ FM , f̂ (n)

M ∈ HM , (ρM )M ⊆ R≥0 and B(n) ∈ R≥0 with593

ρM ↘ 0, ∥f (n)
M − f̂

(n)
M ∥∞ ≤ ϵ̄ and ∥f̂ (n)

M ∥M ≤ B(n) for all n,M ∈ N+, and594

sup
x⃗∈XM

|f (n)
M (x⃗)− f (n)(µ̂[x⃗])| ≤ ρM
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for all n,M ∈ N+. We now show that f ∈ F . For this, let ϵ > 0 be arbitrary and choose f (n)
M ∈ FM ,595

f̂
(n)
M ∈ HM , (ρM )M ⊆ R≥0 and B(n) ∈ R≥0 as above with ϵ̄ = ϵ

4 . Let N ∈ N+ be such that596

∥f (m) − f (n)∥∞ ≤ ϵ
4 for all m,n ≥ N (such an N exists since (f (n))n converges in C0(P(X),R)597

and hence is a Cauchy sequence). Furthermore, let Mρ ∈ N+ be such that for all M ≥ Mρ we have598

ρM ≤ ϵ
4 . Define now fM = f

(M)
M and f̂M = f̂

(M)
M for M = 1, . . . ,Mρ − 1, and fM = f

(M+N)
M ,599

f̂M = f̂
(N)
M for M ≥ Mρ.600

Step 1 Let M ≥ Mρ and x⃗ ∈ XM be arbitrary. We have601

|fM (x⃗)− f(µ̂[x⃗])| = |f (N+M)
M (x⃗)− f(µ̂[x⃗])|

≤ |f (N+M)
M (x⃗)− f (N+M)(µ̂[x⃗])|+ |f (N+M)(µ̂[x⃗])− f(µ̂[x⃗])|

≤ ρM + ∥f (N+M) − f∥∞,

and since the right hand side (which is independent of x⃗) converges to 0 for M → ∞, we get602

fM
P1−→ f .603

Step 2 For M = 1, . . . ,Mρ we get604

∥fM − f̂M∥∞ = ∥f (M)
M − f̂

(M)
M ∥∞ ≤ ϵ̄ ≤ ϵ.

Let now M ≥ Mρ and x⃗ ∈ XM be arbitrary. We have605

|fM (x⃗)− f̂M (x⃗)| = |f (M+N)
M (x⃗)− f̂

(N)
M (x⃗)|

≤ |f (M+N)
M (x⃗)− f (N+M)(µ̂[x⃗])|+ |f (N+M)(µ̂[x⃗])− f (N)(µ̂[x⃗])|

+ |f (N)(µ̂[x⃗])− f
(N)
M (x⃗)|+ |f (N)

M (x⃗)− f̂
(N)
M (x⃗)|

≤ sup
x⃗′∈XM

|f (M+N)
M (x⃗′)− f (M+N)(µ̂[x⃗′])|+ ∥f (M+N) − f (N)∥∞

+ sup
x⃗′∈XM

|f (N)(µ̂[x⃗′])− f
(N)
M (x⃗′)|+ ∥f (N)

M − f̂
(N)
M ∥∞

≤ ρM +
ϵ

4
+ ρM + ϵ̄

≤ 4
ϵ

4
= ϵ,

and since x⃗ ∈ XM was arbitrary, we get ∥fM − f̂M∥∞ ≤ ϵ.606

Step 3 For M = 1, . . . ,Mρ − 1 we get by construction that ∥f̂M∥M = ∥f̂ (M)
M ∥M ≤ B(M), and for607

M ≥ Mρ we find ∥f̂M∥M = ∥f̂ (N)
M ∥M ≤ B(N). Altogether, we get for M ∈ N+ that608

∥f̂M∥M ≤ max{B(1), . . . , B(Mρ−1), B(N)}.
Combining the three steps establishes that f ∈ F .609

Finally, here is the proof of the represnter theorem in the mean field limit.610

Proof. of Theorem 3.3 The existence and uniqueness of fM and f follows from the well-known611

representer theorem (applied to all kM and k).612

We now turn to the convergence of the minimizers. For all M ∈ N+ we have613

λ∥f∗
M∥M ≤ L(f∗

M (x⃗
[M ]
1 ), . . . , f∗

M (x⃗
[M ]
N )) + λ∥f∥M ≤ L(0, . . . , 0),

i.e., ∥f∗
M∥M ≤ L(0, . . . , 0)/λ. Define614

LM : HM → R≥0, f 7→ L(f(x⃗
[M ]
1 ), . . . , f(x⃗

[M ]
N )) + λ∥f∥M

L : Hk → R≥0, f 7→ L(f(µ1), . . . , f(µN )) + λ∥f∥k,

and let fM ∈ HM with fM
P1−→ f for some f ∈ Hk. The continuity of fM , f615

and L as well as x⃗
[M ]
n

dKR−→ µn for M → ∞ and all n = 1, . . . , N , imply then that616
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limM→∞ L(fM (x⃗
[M ]
1 ), . . . , fM (x⃗

[M ]
N )) = L(f(µ1), . . . , f(µN )). Combining this with Lemma617

2.4 leads to618

L(f) ≤ lim inf
M→∞

LM (f).

Let now f ∈ Hk be arbitrary and let fM ∈ HM be the sequence from Lemma 2.5. Using the same619

arguments as above we find that620

lim sup
M→∞

LM (fM ) ≤ ∥f∥k.

We have shown that LM
Γ−→ L and hence Proposition B.3 ensures that there exists a subsequence621

(f∗
Mℓ

)ℓ such that f∗
Mℓ

P1−→ f∗ and LMℓ
(f∗

Mℓ
) → L(f∗).622

A.3 Proofs for Section 4623

Proof. of Lemma 4.2 That ℓ is nonnegative is clear from the proof of Proposition 2.1. Let now624

all ℓM be convex and let µ ∈ P(X), y ∈ Y, t1, t2 ∈ R and λ ∈ (0, 1) be arbitrary, and define625

I = [min{t1, t2},max{t1, t2}]. Furthermore, let x⃗M ∈ XM with x⃗M
dKR−→ µ for M → ∞ and626

ϵ > 0 be arbitrary. Choose now M so large that627

|ℓ(µ, y, λt1 + (1− λ)t2)− ℓ(µ̂[x⃗M ], y, λt1 + (1− λ)t2)| ≤
ϵ

6
sup

x⃗∈XM

y′∈Y,t∈I

|ℓM (x⃗, y′, t′)− ℓ(µ̂[x⃗], y′, t′)|

≤ ϵ

6
.

This is possible due to the continuity of ℓ, as well as ℓM
P1−→ ℓ. We then have628

ℓ(µ, y, λt1 + (1− λ)t2) ≤ ℓ(µ̂[x⃗], y, λt1 + (1− λ)t2) +
ϵ

6

≤ ℓM (x⃗M , y, λt1 + (1− λ)t2) +
ϵ

3

≤ λℓM (x⃗M , y, t1) + (1− λ)ℓM (x⃗M , y, t2) +
ϵ

3

≤ λℓ(µ̂[x⃗M ], y, t1) + (1− λ)ℓ(µ̂[x⃗M ], y, t2) +
ϵ

3
+ (λ+ 1− λ)

ϵ

6
≤ λℓ(µ, y, t1) + (1− λ)ℓ(µ, y, t2) + ϵ,

and since ϵ > 0 was arbitrary, this establishes629

ℓ(µ, y, λt1 + (1− λ)t2) ≤ λℓ(µ, y, t1) + (1− λ)ℓ(µ, y, t2),

i.e., convexity of ℓ.630

Proof. of Proposition 4.3 From Lemma 4.2 we get that ℓ is nonnegative and convex. The existence,631

uniqueness and the representation formulas follow then from the standard representer theorem, cf.632

e.g., [30, Theorem 5.5].633

Furthermore, for all M ∈ N+ we have634

λ∥f∗
M,λ∥2M ≤ 1

N

N∑
n=1

ℓM (x⃗[M ]
n , y[M ]

n , f∗
M,λ(x⃗

[M ]
n )) + λ∥f∗

M,λ∥2M

≤ R
ℓM ,D

[M]
N ,λ

(0)

≤ NCℓ,

hence ∥f∗
M,λ∥M ≤

√
NCℓ

λ .635

Let f ∈ Hk and (fM )M , fM ∈ HM , such that fM
P1−→ f . From D

[M ]
N

P1−→ DN and the continuity636

of ℓM , ℓ, together with ℓM
P1−→ ℓ and the boundedness of {y[M ]

n | M ∈ N+, n = 1, . . . , N} ⊆ Y637

and {fM (x⃗
[M ]
n ) | M ∈ N+, N = 1, . . . , N} we find that638

lim
M

1

N

N∑
n=1

ℓM (x⃗[M ]
n , y[M ]

n , fM (x⃗[M ]
n )) =

1

N

N∑
n=1

ℓ(µn, yn, f(µn)).
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Combining this with Lemma 2.4 and Lemma 2.5 then establishes that R
ℓM ,D

[M]
N ,λ

Γ−→ Rℓ,DN ,λ and639

the remaining claims follow from Proposition B.3 and the uniqueness of the minimizers.640

Proof. of Lemma 4.4 Let ϵ > 0 be arbitrary. Recall from the proof of Proposition 4.3 that for all641

M ∈ N+ we have ∥f∗
M,λ∥M ≤

√
NCℓ

λ , and hence for all x⃗ ∈ XM we have642

|f∗
M,λ(x⃗)| ≤ ∥f∗

M,λ∥k∥kM (·, x⃗)∥k

≤
√

NCℓ

λ

√
Ck.

A similar argument applies to f∗
λ ∈ Hk, so we can find a compact set K ⊆ R with643

{f∗
M,λ(x⃗

[M ]
n ) | M ∈ N+, n = 1, . . . , N} ∪ {f∗

λ(µn) | n = 1, . . . , N} ⊆ K.

Choose now mϵ ∈ N+ such that for all m ≥ mϵ we have644

sup
x⃗∈XMm

y∈Y

|ℓMm
(x⃗, y, f∗

Mm,λ(x⃗))− ℓMm
(x⃗, y, f∗

λ(µ̂[x⃗]))| ≤
ϵ

3

sup
x⃗∈XMm

y∈Y,t∈K

|ℓMm
(x⃗, y, t)− ℓ(µ̂[x⃗], y, t)| ≤ ϵ

3∣∣∣∣∣
∫
XMm×Y

ℓ(µ̂[x⃗], y, f∗
λ(µ̂[x⃗]))dP

[Mm](x⃗, y)−
∫
P(X)×Y

ℓ(µ, y, f∗
λ(µ))d(µ, y)

∣∣∣∣∣ ≤ ϵ

3
.

Such a mϵ exists since f∗
Mm,λ

P1−→ f∗
λ and all ℓMm

are uniformly Lipschitz continuous (first inequal-645

ity), ℓMm

P1−→ ℓ and Y and K are compact (second inequality), and P [M ] P1−→ P as well as that646

(µ, y) 7→ ℓ(µ, y, f∗
λ(µ)) is continuous and bounded (third inequality). We now have647 ∣∣∣RℓMm ,P [Mm](f∗
Mm,λ)−Rℓ,P (f

∗
λ)
∣∣∣

≤
∣∣∣∣∫

XMm×Y

ℓMm
(x⃗, y, f∗

Mm,λ(x⃗))− ℓMm
(x⃗, y, f∗

λ(µ̂[x⃗]))dP
[Mm](x⃗, y)

∣∣∣∣
+

∣∣∣∣∫
XMm×Y

ℓMm
(x⃗, y, f∗

λ(µ̂[x⃗]))− ℓ(µ̂[x⃗], y, f∗
λ(µ̂[x⃗]))dP

[Mm](x⃗, y)

∣∣∣∣
+

∣∣∣∣∣
∫
XMm×Y

ℓ(µ̂[x⃗], y, f∗
λ(µ̂[x⃗]))dP

[Mm](x⃗, y)−
∫
P(X)×Y

ℓ(µ, y, f∗
λ(µ))d(µ, y)

∣∣∣∣∣
≤

∫
XMm×Y

|ℓMm(x⃗, y, f∗
Mm,λ(x⃗))− ℓMm(x⃗, y, f∗

λ(µ̂[x⃗]))|dP [Mm](x⃗, y)

+

∫
XMm×Y

|ℓMm(x⃗, y, f∗
λ(µ̂[x⃗]))− ℓ(µ̂[x⃗], y, f∗

λ(µ̂[x⃗]))|dP [Mm](x⃗, y)

+
ϵ

3
≤ ϵ,

and since ϵ > 0 was arbitrary, the claim follows.648

Proof. of Proposition 4.5 Observe that all kM are bounded measurable kernels, RℓM ,P [M](fM ) < ∞649

for all f ∈ HM , ℓM is a convex, P [M ]-integrable Nemitskii loss (cf. Remark 4.1) and hence [30,650

Lemma 5.1, Theorem 5.2] guarantee the existence and uniqueness of f∗
M,λ. A completely analogous651

argument shows the existence and uniqueness of f∗
λ .652

We now show that RℓM ,P [M],λ
Γ−→ Rℓ,P,λ. For the Γ-lim inf-inequality, let fM ∈ HM , f ∈ Hk be653

arbitrary with fM
P1−→ f , and let ϵ > 0. Choose Mϵ ∈ N+ so large that for all M ≥ Mϵ654 ∣∣∣∣∫ ℓ(µ̂[x⃗], y, f(µ̂[x⃗])dP [M ](x⃗, y))−

∫
ℓ(µ, y, f(µ))dP (µ, y)

∣∣∣∣ ≤ ϵ

2
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(this is possible since (µ, y) 7→ ℓ(µ, y, f(µ)) is bounded and continuous and P [M ] P1−→ P ) and655

|ℓM (x⃗, y, fM (x⃗))− ℓ(µ̂[x⃗], y, f(µ̂[x⃗]))| ≤ ϵ

2

for all x⃗ ∈ XM , y ∈ Y (this is possible due to the same argument used in the proof of Lemma 4.4).656

For M ≥ Mϵ we then find657

Rℓ,P,λ(f) =

∫
ℓ(µ, y, f(µ))dP (µ, y) + λ∥f∥2k

≤
∫

ℓM (x⃗, y, fM (x⃗))dP [M ](x⃗, y)

+

∣∣∣∣∫ ℓ(µ̂[x⃗], y, f(µ̂[x⃗])dP [M ](x⃗, y))−
∫

ℓ(µ, y, f(µ))dP (µ, y)

∣∣∣∣
+

∣∣∣∣∫ ℓM (x⃗, y, fM (x⃗))− ℓ(µ̂[x⃗], y, f(µ̂[x⃗]))dP [M ](x⃗, y)

∣∣∣∣+ λ∥f∥2k

≤
∫

ℓM (x⃗, y, fM (x⃗))dP [M ](x⃗, y) + λ lim inf
M

∥fM∥2M + ϵ,

where we used Lemma 2.4 in the last inequality.658

For the Γ-lim sup-inequality, let f ∈ Hk be arbitrary and let (fM )M be the recovery sequence from659

Lemma 2.5. The desired inequality then follows by repeating the arguments from above.660

Finally, using exactly the same argument as in the proof of Proposition 4.3 shows that ∥f∗
M,λ∥M ≤661 √

NCℓ

λ , so we can apply Proposition B.3 and the result follows.662

Proof. of Proposition 4.7 Let (ϵn)n ⊆ R>0 with ϵm ↘ 0. We construct a strictly increasing sequence663

(Mn)n such that664 ∣∣∣RHMn∗
ℓMn ,P [Mn] −RHk∗

ℓ,P

∣∣∣ ≤ ϵn

for all n ∈ N+.665

We start with n = 1: Since A2(0) = 0 and A2 is continuous in 0, cf. [30, Lemma 5.15], there exists666

λ′
1 ∈ R>0 such that A2(λ) ≤ ϵ1

3 for all 0 < λ ≤ λ′
1. From Assumption 4.6 we get λ′′

1 ∈ R>0 such667

that for all M ∈ N+ we have A
[M ]
2 (λ) ≤ ϵ1

3 for all 0 < λ ≤ λ′′
1 . Define now λ1 = min{λ′

1, λ
′′
1},668

and observe that λ1 > 0. Proposition 4.5 ensures the existence of a strictly increasing sequence669

(M
(1)
m )m ⊆ N+ with670

R
H

M
(1)
m

∗

ℓ
M

(1)
m

,P [M
(1)
m ],λ1

→ RHk∗
ℓ,P,λ1

for m → ∞. Choose m1 ∈ N+ such that for all m ≥ m1 we have671 ∣∣∣∣∣RH
M

(1)
m

∗

ℓ
M

(1)
m

,P [M
(1)
m ],λ1

−RHk∗
ℓ,P,λ1

∣∣∣∣∣ ≤ ϵ1
3
.

We now set M1 = M
(1)
m1 and get that672 ∣∣∣RHM1

∗
ℓM1

,P [M1] −RHk∗
ℓ,P

∣∣∣ ≤
∣∣∣∣∣∣R

H
M

(1)
m1

∗

ℓ
M

(1)
m1

,P
[M

(1)
m1

]
−R

H
M

(1)
m1

∗

ℓ
M

(1)
m1

,P
[M

(1)
m1

]
,λ1

∣∣∣∣∣∣+
∣∣∣∣∣∣R

H
M

(1)
m1

∗

ℓ
M

(1)
m1

,P
[M

(1)
m1

]
,λ1

−RHk∗
ℓ,P,λ1

∣∣∣∣∣∣
+
∣∣∣RHk∗

ℓ,P,λ1
−RHk∗

ℓ,P

∣∣∣
≤ A

[M(1)
m ]

2 (λ1) +
ϵ1
3

+A2(λ1)

≤ ϵ1.

We can now repeat the argument from above inductively: Suppose we have constructed our sub-673

sequence up to n ∈ N+, i.e., M1, . . . ,Mn. Choose λ′ ∈ R>0 such that A2(λ) ≤ ϵn+1

3 for674
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all 0 < λ ≤ λ′ (exists due to continuity), and λ′′ ∈ R>0 such that for all M ∈ N+ we have675

A
[M ]
2 (λ) ≤ ϵn+1

3 for all 0 < λ ≤ λ′′ (using Assumption 4.6). Define now λn+1 = min{λ′, λ′′},676

and observe that λn+1 > 0. Proposition 4.5 ensures the existence of a strictly increasing sequence677 (
M

(n+1)
m

)
m

such that678

R
H

M
(n+1)
m

∗

ℓ
M

(n+1)
m

,P [M
(n+1)
m ],λn+1

→ RHk∗
ℓ,P,λn+1

for m → ∞. Choose mn+1 such that for all m ≥ mn+1 we have679 ∣∣∣∣∣RH
M

(n+1)
m

∗

ℓ
M

(n+1)
m

,P [M
(n+1)
m ],λn+1

−RHk∗
ℓ,P,λn+1

∣∣∣∣∣ ≤ ϵn+1

3
.

Define now Mn+1 = max{Mn + 1,M
(n+1)
mn+1 }, then we get680

∣∣∣∣RHMn+1
∗

ℓMn+1
,P [Mn+1] −RHk∗

ℓ,P

∣∣∣∣ ≤
∣∣∣∣∣∣∣R

H
M

(n+1)
mn+1

∗

ℓ
M

(n+1)
mn+1

,P
[M

(n+1)
mn+1

]
−R

H
M

(n+1)
mn+1

∗

ℓ
M

(n+1)
mn+1

,P
[M

(n+1)
mn+1

]
,λn+1

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣R
H

M
(n+1)
mn+1

∗

ℓ
M

(n+1)
mn+1

,P
[M

(n+1)
mn+1

]
,λn+1

−RHk∗
ℓ,P,λn+1

∣∣∣∣∣∣∣
+

∣∣∣RHk∗
ℓ,P,λn+1

−RHk∗
ℓ,P

∣∣∣
≤ A

M(n+1)
mn+1

2 (λn+1) +
ϵn+1

3
+A2(λn+1)

≤ ϵn+1.

The resulting sequence (Mn)n fulfills then681

RHMn∗
ℓMn ,P [Mn] → RHk∗

ℓ,P

for n → ∞.682

B Additional technical results683

In this section we state and prove two technical results that play an important role in the proofs of the684

main results.685

B.1 A characterization of RKHS functions686

Here we recall the following characterization of RKHS functions from [3, Section I.4]. Let X ̸= ∅ be687

arbitrary. For k : X × X → R symmetric and positive semidefinite and some f ∈ RX as well as688

N ∈ N+, x⃗ ∈ XN , α⃗ ∈ RN define689

E(x⃗, α⃗, f) =
N∑

n=1

αnf(xn)

W(x⃗, α⃗, k) =

√√√√ N∑
i,j=1

αiαjk(xj , xi),

where we might omit some arguments if they are clear. Furthermore, define690

D(x⃗, α⃗, f, k) =


E(x⃗,α⃗,f)
W(x⃗,α⃗,k) if E(x⃗, α⃗, f) ̸= 0,W(x⃗, α⃗, k) ̸= 0

0 if E(x⃗, α⃗, f) = W(x⃗, α⃗, k) = 0

∞ if E(x⃗, α⃗, f) ̸= 0,W(x⃗, α⃗, k) = 0
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and691

N (f, k) = sup
(x⃗,α⃗)∈XN×RN

N∈N+

D(x⃗, α⃗, f, k).

We collect now some simple facts that will be used repeatedly.692

Let x⃗ ∈ XN , α⃗ ∈ RN , N ∈ N+, be arbitrary, and define693

f =

N∑
n=1

αnk(·, xn) ∈ Hpre
k .

1. By construction, W(x⃗, α⃗, k) ∈ R≥0 (recall that k is positive semidefinite).694

2. Since f ∈ Hpre
k , its RKHS norm has an explicit form and we find695

∥f∥k =

√√√√ N∑
i,j=1

αiαjk(xj , xi) = W(x⃗, α⃗, k).

This also implies that f ≡ 0 if and only if W(x⃗, α⃗, k) = 0.696

3. If W(x⃗, α⃗, k) > 0, then697

D(x⃗, α⃗, f, k) =
E(x⃗, α⃗, f)
W(x⃗, α⃗, k)

=

∑N
i=1 αif(xi)√∑N

i,j=1 αiαjk(xj , xi)

=

∑N
i,j=1 αiαjk(xj , xi)√∑N
i,j=1 αiαjk(xj , xi)

=
W(x⃗, α⃗, k)2

W(x⃗, α⃗, k)
= W(x⃗, α⃗, k).

We can now state the characterization result.698

Theorem B.1. Let k : X × X → R be a kernel and f ∈ RX . Then f ∈ Hk if and only if699

N (f, k) < ∞. If f ∈ Hk, then ∥f∥k = N (f, k).700

For convenience, we provide a full self-contained proof of this result.701

Proof. Step 1 First, we show that for f ∈ Hk, we have ∥f∥k = N (f, k).702

N (f, k) ≤ ∥f∥k: Let N ∈ N+ and (x⃗, α⃗) ∈ XN × RN be arbitrary. Observe that703

E(x⃗, α⃗, f) =
N∑

n=1

αnf(xn)

=

N∑
n=1

αn⟨f, k(·, xn)⟩k

= ⟨f,
N∑

n=1

αnk(·, xn)⟩k

≤ ∥f∥k

∥∥∥∥∥
N∑

n=1

αnk(·, xn)

∥∥∥∥∥
k

= ∥f∥kW(x⃗, α⃗, k).

If W(x⃗, α⃗, k) = ∥
∑N

n=1 αnk(·, xn)∥k = 0, then
∑N

n=1 αnk(·, xn) = 0Hk
, hence E(x⃗, α⃗, f) =704

⟨f, 0Hk
⟩k = 0 and by definition D(x⃗, α⃗, f, k) = 0 ≤ ∥f∥k.705
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If W(x⃗, α⃗, k) > 0, we can rearrange to get706

E(x⃗, α⃗, f)
W(x⃗, α⃗, k)

= D(x⃗, α⃗, f, k) ≤ ∥f∥k.

Since (x⃗, α⃗) was arbitrary, we find that N (x⃗, α⃗, f, k) ≤ ∥f∥k.707

N (f, k) ≥ ∥f∥k: Let ϵ > 0 and choose fϵ =
∑N

n=1 αnk(·, xn) ∈ Hpre
k such that ∥f − fϵ∥k < ϵ.708

If W(x⃗, α⃗, k) = ∥fϵ∥k = 0, then fϵ = 0Hk
and hence E(x⃗, α⃗, f) = ⟨f, fϵ⟩k = ⟨f, 0Hk

⟩k = 0. By709

definition, this then shows710

D(x⃗, α⃗, f) = 0 = ∥fϵ∥k ≥ ∥f∥k − ϵ.

Before we continue, note that for all f1, f2 ∈ Hk we have711

|E(x⃗, α⃗, f1)− E(x⃗, α⃗, f2)| =

∣∣∣∣∣
N∑

n=1

αn(f1(xn)− f2(xn))

∣∣∣∣∣
=

∣∣∣∣∣
N∑

n=1

αn⟨f1 − f2, k(·, xn)⟩k

∣∣∣∣∣
=

∣∣∣∣∣⟨f1 − f2,

N∑
n=1

αnk(·, xn)⟩k

∣∣∣∣∣
≤ ∥f1 − f2∥k∥fϵ∥k.

Assume now that W(x⃗, α⃗, k) > 0, then we get712

D(x⃗, α⃗, f, k) =
E(x⃗, α⃗, f)
W(x⃗, α⃗, k)

≥ E(x⃗, α⃗, fϵ)
W(x⃗, α⃗, k)

− ∥f − fϵ∥k∥fϵ∥k
W(x⃗, α⃗, k)

≥ E(x⃗, α⃗, fϵ)
W(x⃗, α⃗, k)

− ϵ∥fϵ∥k
W(x⃗, α⃗, k)

= W(x⃗, α⃗, k)− ϵ

= ∥fϵ∥k − ϵ

≥ ∥f∥k − 2ϵ

Altogether, by definition of N (f, k), we get that713

N (f, k) ≥ D(x⃗, α⃗, f, k) ≥ ∥f∥k − 2ϵ.

Since ϵ > 0 was arbitrary, we find that N (f, k) ≥ ∥f∥k.714

Step 2 Let f ∈ RX be arbitrary. We show that if N (f, k) < ∞, then715

ℓf : Hpre
k → R

N∑
n=1

αnk(·, xn) 7→
N∑

n=1

αnf(xn)

is a well-defined, linear and continuous (w.r.t. ∥ · ∥k) map.716

To establish the well-posedness, let (x⃗, α⃗) ∈ XN × RN and (y⃗, β⃗) ∈ XM × RM such that717

N∑
n=1

αnk(·, xn) =

M∑
m=1

βmk(·, ym) ∈ Hpre
k .

This implies that718
N∑

n=1

αnk(·, xn) +

M∑
m=1

(−βm)k(·, ym) = 0Hk
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and hence W((x⃗, y⃗), (α⃗,−β⃗), k) = ∥
∑N

n=1 αnk(·, xn) +
∑M

m=1(−βm)k(·, ym)∥k = 0. Assume719

now that720
N∑

n=1

αnf(xn) ̸=
m∑

m=1

βmf(xm),

then we get that721

N∑
n=1

αnf(xn) +

m∑
m=1

(−βm)f(xm) = E((x⃗, y⃗), (α⃗,−β⃗), f) ̸= 0

which by definition implies that D((x⃗, y⃗), (α⃗,−β⃗), f, k) = ∞ and therefore N (f, k) = ∞, a722

contradiction.723

The linearity is then clear. Finally, to show the continuity, let Hpre
k ∋ f0 =

∑N
n=1 αnk(·, xn) be724

arbitrary and set x⃗ = (x1 · · · xN ), α⃗ = (α1 · · · αN ), then725

|ℓf (f0)| =

∣∣∣∣∣
N∑

n=1

αnf(xn)

∣∣∣∣∣
= |E(x⃗, α⃗, f)|
≤ N (f, k)W(x⃗, α⃗, k)

= N (f, k)∥f0∥k.
Since N (f, k) is finite and independent of f0, and ℓf is a linear map, this shows the continuity of ℓf .726

Step 3 Let f ∈ RX such that N (f, k) < ∞. Since according to Step 2 ℓf is a linear and continuous727

map on Hpre
k and the latter is dense in Hk, there exists a unique linear and continuous extension728

ℓ̄f : Hk → R of ℓf . Furthermore, from the Riesz Representation Theorem there exists a unique729

f̂ ∈ Hk with ℓ̄f = ⟨·, f̂⟩k. For all x ∈ X we then get730

f̂(x) = ⟨f̂ , k(·, x)⟩k
= ⟨k(·, x), f̂⟩k
= ℓ̄f (k(·, x))
= ℓf (k(·, x))
= f(x),

hence f = f̂ ∈ Hk.731

B.2 A Γ-convergence argument732

We use repeatedly the concept of Γ-convergence, see for example [16]. For convenience, in this733

section we summarize the well-known and standard main argument, roughly following [5, Chapter 5].734

Definition B.2. Let FM : HM → R ∪ {∞} and F : Hk → R ∪ {∞}. We say that FM Γ-converges735

to F and write FM
Γ−→ F , if736

1. For all sequences (fM )M , fM ∈ HM , with fM
P1−→ f for some f ∈ Hk, we have737

F (f) ≤ lim inf
M

FM (fM ).

2. For all f ∈ Hk there exists a sequence (fM )M with fM ∈ HM such that fM
P1−→ f and738

F (f) ≥ lim sup
M

FM (fM ).

The sequence in the second item is commonly called a recovery sequence (for f ).739

Proposition B.3. Let FM
Γ−→ F and f∗

M ∈ argminf∈HM
FM (f) for all M ∈ N (in particular, all740

the minima are attained). If there exists B ∈ R≥0 such that ∥f∗
M∥M ≤ B for all M ∈ N, then there741

exists a subsequence (f∗
Mℓ

)ℓ and f∗ ∈ Hk such that f∗
Mℓ

P1−→ f∗. Furthermore, FMℓ
(f∗

Mℓ
) → F (f∗).742
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Proof. From Theorem 2.3 we get the existence of (f∗
Mℓ

)ℓ and f∗ ∈ Hk, and that f∗
Mℓ

P1−→ f∗. Let743

f ∈ Hk be arbitrary and let (fM )M be a recovery sequence for f . We then have744

F (f) ≥ lim sup
M

FM (fM )

≥ lim sup
Mℓ

FMℓ
(fMℓ

)

≥ lim inf
Mℓ

FMℓ
(fMℓ

)

≥ lim inf
Mℓ

FMℓ
(f∗

Mℓ
)

≥ F (f∗),

where we used the lim sup-inequality of Γ-convergence in the first step, standard properties of745

lim sup and lim inf in the second and third step, the fact that f∗
Mℓ

is a minimizer of FMℓ
in the fourth746

step, and finally the lim inf-inequality of Γ-convergence. Since f ∈ Hk was arbitrary, this shows that747

f∗ is a minimizer of F .748

Furthermore, let (fM )M be a recovery sequence for f∗, then749

F (f∗) ≥ lim sup
M

FM (fM )

≥ lim sup
ℓ

FMℓ
(fMℓ

)

≥ lim sup
ℓ

FMℓ
(f∗

Mℓ
),

where we used the lim sup-inequality in the first step, an elementary property of lim sup in the750

second step, and finally that f∗
Mℓ

is a minimizer of FMℓ
. Since f∗

Mℓ

P1−→ f∗, the lim inf-inequality of751

Γ-convergence implies that752

F (f∗) ≤ lim inf
ℓ

FMℓ
(f∗

Mℓ
),

so we find that753

lim sup
ℓ

FMℓ
(f∗

Mℓ
) ≤ F (f∗) ≤ lim inf

ℓ
FMℓ

(f∗
Mℓ

),

establishing that FMℓ
(f∗

Mℓ
) → F (f∗).754
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