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Abstract

In many applications of machine learning, a large number of variables are consid-
ered. Motivated by machine learning of interacting particle systems, we consider
the situation when the number of input variables goes to infinity. First, we continue
the recent investigation of the mean field limit of kernels and their reproducing
kernel Hilbert spaces, completing the existing theory. Next, we provide results
relevant for approximation with such kernels in the mean field limit, including
a representer theorem. Finally, we use these kernels in the context of statistical
learning in the mean field limit, focusing on Support Vector Machines. In particu-
lar, we show mean field convergence of empirical and infinite-sample solutions as
well as the convergence of the corresponding risks. On the one hand, our results
establish rigorous mean field limits in the context of kernel methods, providing
new theoretical tools and insights for large-scale problems. On the other hand, our
setting corresponds to a new form of limit of learning problems, which seems to
have not been investigated yet in the statistical learning theory literature.

1 Introduction

Models with many variables play an important role in many fields of mathematical and physical
sciences. In this context, going to the limit of infinitely many variables is an important analysis and
modeling approach. Interacting particle systems are a classic example; these are usually modeled as
dynamical systems describing the temporal evolution of many interacting objects. In physics, such
systems were first investigated in the context of gas dynamics, cf. [1]. Since even small volumes
of gases typically contain an enormous number of molecules, a microscopic modeling approach
quickly becomes infeasible and one considers the evolution of densities instead [2]. In the past
decades, interacting particle systems arising from many different domains have been considered, for
example, animal movement (inter alia swarms of birds, schools of fish, colonies of microorganisms)
[3, 4], social and political dynamics [5, 6], crowd modeling and control (pedestrian movement,
gathering at large events like football games or concerts) [7–9], swarms of robots [10–12] or vehicular
traffic (in particular, traffic jams) [13]. There is now a vast literature on such applications, and
we refer to the surveys [14–16] as starting points. A prototypical example of such a system is
given by ẋi =

1
M

∑M
j=1 ϕ(xi, xj)(xj − xi), for i = 1, . . . ,M , where M ∈ N+ particles or agents

are modelled by their state xi ∈ Rd, i = 1, . . . ,M , evolving according to some interaction rule
ϕ : Rd × Rd → R. Typical questions then concern the long-term behavior of such systems, in
particular, emergent phenomena like consensus or alignment [17]. While first-principles modeling
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has been very successful for interacting particle systems in physical domains, using this approach to
model the interaction rules in complex domains like social and opinion dynamics, pedestrian and
animal movement or vehicular traffic, can be problematic. Therefore, learning interaction rules from
data has been recently intensively investigated, for example, in the pioneering works [18, 19]. The
data consists typically of (sampled) trajectories of the particle states, potentially with measurement
noise, and the goal is to learn a good approximation of the interaction rule ϕ.

Our work is motivated by a related problem. Frequently, the state of such a complex multiagent system
can be easily measured or estimated, e.g., by video recordings or image snapshots for bird swarms or
schools of fish, and microscopy recordings for microorganism colonies; aerial imaging for human
crowds (e.g., via quadcopters); and polling and social media analysis for opinion dynamics. However,
some interesting features of the whole system might be more difficult to measure. For example, how
a swarm of birds or a school of fish will react to an external stimulus (like an approaching predator),
given the current state of the population. Such a reaction could be a change of density or spread of the
population, or a change in mean velocity. Another example is given by features of a society in opinion
dynamics (average happiness, aggression potential, susceptibility to adversarial interventions), given
the current "opinion state". Measuring such features can be difficult, for example, due to a required
intervention. Formally, such a feature is a functional FM : (Rd)M → R of the current state of the
system, and since the state is often easy to measure, it would be useful to have an explicit mapping
from state to feature of interest. However, since first principles modeling is unlikely to be successful
in the domains considered here, it is promising to learn such a mapping from data. We can formalize
this as a standard supervised learning task: The data set consists of D[M ]

N = ((x⃗1, y1), . . . , (x⃗N , yN )),
where x⃗n ∈ (Rd)M are snapshot measurements of the particle states (corresponding to the input of
the functional) and yn ∈ R is the value of the functional of interest, potentially with measurement
noise, at snapshot state x⃗n. Let us assume an additive noise model, i.e., yn = FM (x⃗n) + ϵn for
n = 1, . . . , N , where ϵ1, . . . , ϵN ∈ R are noise variables. This is now a regression problem that
could be solved, for example, using a Support Vector Machine (SVM) [20]. Note that for this we
need a kernel kM : (Rd)M × (Rd)M → R on (Rd)M .

Similarly to classical physical examples like gas dynamics, the case of a large number of particles
is also relevant in modern complex interacting particle systems. Since this poses computational
and modeling challenges, it can be advantageous to go also here to a kinetic level and model the
evolution of the particle distribution instead of every individual particle. It is well-established how
to derive a kinetic partial differential equation from ordinary differential equations systems on the
particle level, for example, using the Boltzmann equation or via a mean field limit, cf. [17] for
an overview in the context of multi-agent systems. Formally, instead of trajectories of particle
states of the form [0, T ] ∋ t 7→ x⃗(t) ∈ (Rd)M , we then have trajectories of probability measures
[0, T ] ∋ t 7→ µ(t) ∈ P(Rd). This immediately raises the question of whether the learning setup
outlined above also allows a corresponding kinetic limit. More precisely, let K ⊆ Rd be compact and
assume that all particles remain confined to this compactum, i.e., xi(t) ∈ K for all i = 1, . . . ,M
and all t ∈ [0, T ] under the microscopic dynamics.1 If the underlying dynamics have a mean field
limit, then it is reasonable to assume that the finite-input functionals FM : KM → R converge also in
mean field to some F : P(K) → R for M → ∞, see Section 2 for a precise definition of this notion.
In turn, we can now formulate a corresponding learning problem on the mean field level: A data set
is then given by DN = ((µ1, y1), . . . , (µN , yN )), where µn ∈ P(K) are snapshots of the particle
state distribution over time and yn ∈ R are again potentially noisy measurements of the functional.
Assuming an additive noise model, this corresponds to yn = F (µn) + ϵn, n = 1, . . . , N . If we
want to use an SVM on the kinetic level, we need a kernel k : P(K)× P(K) → R on probability
distributions. There are several options available for this, see e.g. [21]. However, assuming that all
ingredients of the learning problem arise as a mean field limit, this naturally leads to the question
of whether a mean field limit of kernels exists, and what this means for the relation of the learning
problems on the finite-input and kinetic level. In [22], this reasoning has motivated the introduction
and investigation of the mean field limit of kernels. In the present work, we extend the theory of
these kernels and investigate them in the context of statistical learning theory. In particular, since in
practice one would use the mean field kernels on microscopic data with large, but finite M , we need
convergence results of the various objects appearing in statistical learning with kernels. Exactly such
results are provided in Section 4.

1This means the dynamics on the level of individual particles.
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Finally, we would like to stress that the technical developments here are independent of the motivation
outlined above, in that they apply to mean field limits of functions and kernels that do not necessarily
arise form the dynamics of interacting particle systems.

Contributions Our contributions cover three closely related aspects. 1) We extend and complete the
theory of mean field limit kernels and their RKHSs (Section 2). In Theorem 2.3, we precisely describe
the relationship between the RKHS of the finite-input kernels and the RKHS of the mean field kernel,
completing the results from [22]. In particular, this allows us to interpret the latter RKHS as the mean
field limit of the former RKHSs. Furthermore, in Lemma 2.4 and 2.5, we provide inequalities for
the corresponding RKHS norms, which are necessary for Γ-convergence arguments. 2) We provide
results relevant for approximation with mean field limit kernels (Section 3). With Proposition 3.1, we
give a first result on the approximation power of mean field limit kernels, and in Theorem 3.3 we can
also provide a representer theorem for these kernels. For its proof, we use a Γ-convergence argument,
which is to the best of our knowledge the first time this technique has been used in the context of
kernel methods. 3) We investigate the mean field limit of kernels in the context of statistical learning
theory (Section 4). We first establish an appropriate mean field limit setup for statistical learning
problems, based on a slightly stronger mean field limit existence result than available so far, cf.
Proposition 2.1. To the best of our knowledge, this is a new form of a limit for learning problems. In
this setup, we then provide existence, uniqueness, and representer theorems for empirical and (using
an apparently new notion of mean field convergence of probability distributions) infinite-sample
solutions of SVMs, cf. Proposition 4.3 and 4.5. Finally, under a uniformity assumption, we can also
establish convergence of the minimal risks in Proposition 4.7.

Our developments are relevant from two different perspectives: on the one hand, they constitute
a theoretical proof-of-concept that the mean field limit can be “pulled through” the (kernel-based)
statistical learning theory setup. In particular, this demonstrates that rigorous theoretical results can
be transferred through the mean field limit, similar to works in the context of control of interacting
particle systems, see e.g. [23]. On the other hand, our setup appears to be a new variant of a large-
number-of-variables limit in the context of machine learning, complementing established settings
like infinite-width neural networks [24].

Due to space constraints, all proofs and some additional technical results have been placed in the
supplementary material.

2 Kernels and their RKHSs in the mean field limit

Setup and preliminaries Let (X, dX) be a compact metric space and denote by P(X) the set
of Borel probability measures on X . We endow P(X) with the topology of weak convergence
of probability measures. Recall that for µn, µ ∈ P(X), we say that µn → µ weakly if for all
bounded and continuous f : X → R (since X is compact, this is equivalent to f continuous) we have
limn→∞

∫
X
ϕ(x)dµn(x) →

∫
X
ϕ(x)dµ(x). The topology of weak convergence can be metrized by

the Kantorowich-Rubinstein metric dKR, defined by

dKR(µ1, µ2) = sup

{∫
X

ϕ(x)d(µ1 − µ2)(x) | ϕ : X → R is 1-Lipschitz
}
.

Note that since X is compact and hence separable, the Kantorowich-Rubinstein metric is equal to the 1-
Wasserstein metric here. Furthermore, P(X) is compact in this topology. For M ∈ N+ and x⃗ ∈ XM ,
denote the i-th component of x⃗ by xi, and define the empirical measure for x⃗ by µ̂[x⃗] = 1

M

∑M
i=1 δxi

,
where δx denotes the Dirac measure centered at x ∈ X . The empirical measures are dense in P(X)
w.r.t. the Kantorowich-Rubinstein metric. Additionally, define d2KR : P(X)2 × P(X)2 → R≥0

by d2KR((µ1, µ
′
1), (µ2, µ

′
2)) = dKR(µ1, µ2) + dKR(µ

′
1, µ

′
2), and note that (P(X)2, d2KR) is a compact

metric space. Moreover, denote the set of permutations on {1, . . . ,M} by SM , and for a tuple
x⃗ ∈ XM and permutation σ ∈ SM define σx⃗ = (xσ(1), . . . , xσ(M)). Finally, we recall some
well-known definitions and results from the theory of reproducing kernel Hilbert spaces, following
[20, Chapter 4]. For an arbitrary set X ̸= ∅ and a Hilbert space (H, ⟨·, ·⟩H) of functions on X , we
say that a map k : X × X → R is a reproducing kernel for H if 1) k(·, x) ∈ H for all x ∈ X ;
2) for all x ∈ X and f ∈ H we have f(x) = ⟨f, k(·, x)⟩H . Note that if a reproducing kernel
exists, it is unique. If such a Hilbert space has a reproducing kernel, we call H a reproducing kernel
Hilbert space (RKHS) and k its (reproducing) kernel. It is well-known that a reproducing kernel is
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symmetric and positive semidefinite, and that every symmetric and positive semidefinite function has
a unique RKHS for which it is the reproducing kernel. For brevity, if k is symmetric and positive
semidefinite, or equivalently, if it is the reproducing kernel of an RKHS, we call k simply a kernel,
and denote by (Hk, ⟨·, ·⟩k) its unique associated RKHS. Define also Hpre

k = span{k(·, x) | x ∈ X},
then for f =

∑N
n=1 αnk(·, xn) ∈ Hpre

k and g =
∑M

m=1 βmk(·, ym) ∈ Hpre
k we have ⟨f, g⟩k =∑N

n=1

∑M
m=1 αnβmk(ym, xn), and Hpre

k is dense in Hk.

The mean field limit of functions and kernels Given fM : XM → R, M ∈ N+, and f : P(X) →
R, we say that fM converges in mean field to f and that f is the (or a) mean field limit of fM , if
limM→∞ supx⃗∈XM |fM (x⃗)− f(µ̂[x⃗])| = 0. In this case, we write fM

P1−→ f . Let now (Y, dY ) be
another metric space and fM : XM × Y → R, M ∈ N+, and f : P(X)× Y → R, then we say that
fM converges in mean field to f and that f is the (or a) mean field limit of fM , if for all compact
K ⊆ Y we have

lim
M→∞

sup
x⃗∈XM ,y∈K

|fM (x⃗, y)− f(µ̂[x⃗], y)| = 0. (1)

and also write fM
P1−→ f . The following existence results for mean field limits is slightly more

general than what is available in the literature, and it is essentially a direct generalization of [25,
Theorem 2.1], in the form of [26, Lemma 1.2].

Proposition 2.1. Let (X, dX) be a compact metric space and (Z, dZ) a metric space that has a
countable basis (Un)n such that Ūn is compact for all n ∈ N. Let fM : XM × Z → R, M ∈ N+,
be a sequence of functions fulfilling the following conditions: 1) (Symmetry in x⃗)2 For all M ∈ N+,
x⃗ ∈ XM , z ∈ Z and permutations σ ∈ SM , we have fM (σx⃗, z) = fM (x⃗, z); 2) (Uniform
boundedness) There exists Bf ∈ R≥0 and a function b : Z → R≥0 such that ∀M ∈ N+, x⃗ ∈
XM , z ∈ z : |fM (x⃗, z)| ≤ Bf+b(z); 3) (Uniform Lipschitz continuity) There exists some Lf ∈ R>0

such that for all M ∈ N+, x⃗1, x⃗2 ∈ XM , z1, z2 ∈ Z we have |fM (x⃗1, z1) − fM (x⃗2, z2)| ≤
Lf (dKR(µ̂[x⃗1], µ̂[x⃗2]) + dZ(z1, z2)).

Then there exists a subsequence (fMℓ
)ℓ and a continuous function f : P(X) × Z → R such that

fMℓ

P1−→ f for ℓ → ∞. Furthermore, f is Lf -Lipschitz continuous and there exists BF ∈ R≥0 such
that for all µ ∈ P(X), z ∈ Z we have |f(µ, z)| ≤ BF + b(z).

We now turn to the mean field limit of kernels as introduced in [22]: Given kM : XM ×XM → R
and k : P(X) × P(X) → R, we say that kM converges in mean field to k and that k is the (or a)
mean field limit of kM , if

lim
M→∞

sup
x⃗,x⃗′∈XM

|kM (x⃗, x⃗′)− k(µ̂[x⃗], µ̂[x⃗′])| = 0. (2)

In this case we write kM
P1−→ k.

For convenience, we recall [22, Theorem 2.1], which ensures the existence of a mean field limit of a
sequence of kernels.

Proposition 2.2. Let kM : XM × XM → R be a sequence of kernels fulfilling the following
conditions. 1) (Symmetry in x⃗) For all M ∈ N+, x⃗, x⃗′ ∈ XM and permutations σ ∈ SM we
have kM (σx⃗, x⃗′) = kM (x⃗, x⃗′); 2) (Uniform boundedness) There exists Ck ∈ R≥0 such that ∀M ∈
N+, x⃗, x⃗

′ ∈ XM : |kM (x⃗, x⃗′)| ≤ Ck; 3) (Uniform Lipschitz continuity) There exists some Lk ∈
R>0 such that for all M ∈ N+, x⃗1, x⃗

′
1, x⃗2, x⃗

′
2 ∈ XM we have |kM (x⃗1, x⃗

′
1) − kM (x⃗2, x⃗

′
2)| ≤

Lkd
2
KR [(µ̂[x⃗1], µ̂[x⃗

′
1]), (µ̂[x⃗2], µ̂[x⃗

′
2])].

Then there exists a subsequence (kMℓ
)ℓ and a continuous kernel k : P(X)×P(X) → R such that

kMℓ

P1−→ k, and k is also bounded by Ck.

Let kM : XM ×XM → R be a given sequence of kernels fulfilling the conditions of Proposition 2.2.
Then there exists a subsequence (kMℓ

)ℓ converging in mean field to a kernel k : P(X)×P(X) → R.

2As is well-known, cf. [26, Remark 1.1.3], this condition is actually implied by the next condition. However,
as usual in the kinetic theory literature, we kept this condition for emphasis.
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kM k

HM Hk

MFL of kM

M→∞

MFL of fM∈HM

M→∞

Figure 1: The kernel k arises as the mean field limit (MFL) of the kernels kM (Proposition 2.2).
Every uniformly norm-bounded sequence fM ∈ HM , M ∈ N+, has an MFL in Hk, and every
function f ∈ Hk arises as such an MFL (Theorem 2.3). Based on [22, Figure 1].

From now on, we only consider this subsequence and denote it again by (kM )M , i.e., kM
P1−→ k.

Unless noted otherwise, every time we need a further subsequence, we will make this explicit.3

The RKHS of the mean field limit kernel Denote by HM := HkM
the (unique) RKHS corre-

sponding to kernel kM and denote by Hk the unique RKHS of k. For basic properties of these objects
as well as classes of suitable kernels we refer to [22].

We clarify the relation between HMand Hk in the next result.
Theorem 2.3. 1) For every f ∈ Hk, there exists a sequence fM ∈ HM , M ∈ N+, such that
fM

P1−→ f . 2) Let fM ∈ HM be sequence such that there exists B ∈ R≥0 with ∥fM∥M ≤ B for all

M ∈ N+. Then there exists a subsequence (fMℓ
)ℓ and f ∈ Hk with fMℓ

P1−→ f and ∥f∥k ≤ B.

In other words, on the one hand, every RKHS function from Hkarises as a mean field limit of RKHS
functions from HM .On the other hand, every uniformly norm-bounded sequence of RKHS functions
(fM )M has a mean field limit in Hk.

Note that the preceding result is considerably stronger than the corresponding results in [22]: In
contrast to [22, Theorem 4.4] we do not need to go to another subsequence in the first item, and
we ensure that the mean field limit f is contained in Hk (and norm-bounded by the same uniform
bound), which was missing from Corollary 4.3 in the same reference.

The relation between the kernels kM and their RKHSs HM , and the mean field limit kernel k and
its RKHS Hk is illustrated as a commutative diagram in Figure 1. In order to arrive at the mean
field RKHS Hk, on the one hand, we consider the mean field limit k of the kM , and then form the
corresponding RKHS Hk. This is essentially the content of Proposition 2.2. On the other hand, we
can first go from the kernel kM to the associated unique RKHS HM (for each M ∈ N+). Theorem
2.3 then says that Hk can be interpreted as a mean field limit of the RKHSs HM , since every function
in Hk arises as a mean field limit of a sequence of functions from the HM , and every uniformly
norm-bounded sequence of such functions has a mean field limit that is in Hk.

Next, we state two technical results that will play an important role in the following developments,
and which might be of independent interest. They describe lim inf and lim sup inequalities required
for Γ-convergence arguments used later on.

Lemma 2.4. Let fM ∈ HM , M ∈ N+, and f ∈ Hk such that fM
P1−→ f , then

∥f∥k ≤ lim inf
M→∞

∥fM∥M . (3)

Lemma 2.5. Let f ∈ Hk. Then there exist fM ∈ HM , M ∈ N+, such that
limM→∞ supx⃗∈XM |fM (x⃗)− f(µ̂[x⃗])| = 0, and

lim sup
M→∞

∥fM∥M ≤ ∥f∥k. (4)

3 Approximation with kernels in the mean field limit

Kernel-based machine learning methods use in general an RKHS as the hypothesis space, and learning
often reduces to a search or optimization problem over this function space. For this reason, it is

3It is customary in the kinetic theory literature to switch to such a subsequence. However, for some results
that are about to follow, it is important that no further switch to a subsequence happens, hence we need to be
more explicit in these cases.
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important to investigate the approximation properties of a given kernel and its associated RKHS as
well as to ensure that the learning problem over an RKHS (which is in general an infinite-dimensional
object) can be tackled with finite computations.

The next result asserts that, under a uniformity condition, the approximation power of the finite-input
kernels kM is inherited by the mean field limit kernel.
Proposition 3.1. For M ∈ N+, let FM be the set of symmetric functions that are continuous
w.r.t. (x⃗, x⃗′) 7→ dKR(µ̂[x⃗], µ̂[x⃗

′]). Let F ⊆ C0(P(X),R) such that for all f ∈ F and ϵ > 0

there exist B ∈ R≥0 and sequences fM ∈ FM , f̂M ∈ HM , M ∈ N+, such that 1) fM
P1−→ f 2)

∥fM − f̂M∥∞ ≤ ϵ for all M ∈ N+ 3) ∥f̂M∥M ≤ B for all M ∈ N+. Then for all f ∈ F and ϵ > 0,
there exists f̂ ∈ Hk with ∥f − f̂∥∞ ≤ ϵ.

Intuitively, the set F consists of all continuous functions on P(X) that arise as a mean field limit of
functions which can be uniformly approximated by uniformly norm-bounded RKHS functions. The
result then states (to use a somewhat imprecise terminology) that the RKHS Hk is dense in F . We
can interpret this as an appropriate mean field variant of the universality property of kernels: a kernel
on a compact metric space is called universal if its associated RKHS is dense w.r.t. the supremum
norm in the space of continuous functions, and many common kernels are universal, cf. e.g. [20,
Section 4.6]. In our setting, ideally universality of the finite-input kernels kM is inherited by the mean
field limit kernel k. However, since the mean field limit can be interpreted as a form of smoothing
limit, some uniformity requirements should be expected. Proposition 3.1 provides exactly such a
condition.
Remark 3.2. In Proposition 3.1, the set F is a subvectorspace of C0(P(X),R). Furthermore, if the
P1-convergence in the definition of F is uniform, then F is closed.

Since kM and k are kernels, we have the usual representer theorem for their corresponding RKHSs,
cf. e.g. [27]. A natural question is then whether we have mean field convergence of the minimizers
and their representation. This is clarified by the next result.

Theorem 3.3. Let N ∈ N+, µ1, . . . , µN ∈ P(X) and for n = 1, . . . , N let x⃗[M ]
n ∈ XM , M ∈ N+,

such that µ̂[x⃗[M ]
n ]

dKR−→ µn for M → ∞. Let L : RN → R≥0 be continuous and strictly convex and
λ > 0. For each M ∈ N+ consider the problem

min
f∈HM

L(f(x⃗
[M ]
1 ), . . . , f(x⃗

[M ]
N )) + λ∥f∥M , (5)

as well as the problem
min
f∈Hk

L(f(µ1), . . . , f(µN )) + λ∥f∥k. (6)

Then for each M ∈ N+ problem (5) has a unique solution f∗
M , which is of the form f∗

M =∑N
n=1 α

[M ]
n kM (·, x⃗[M ]

n ) ∈ HM , with α
[M ]
1 , . . . , α

[M ]
N ∈ R, and problem (6) has a unique solution

f∗, which is of the form f∗ =
∑N

n=1 αnk(·, µn) ∈ Hk, with α1, . . . , αN ∈ R. Furthermore, there

exists a subsequence (f∗
Mℓ

)ℓ such that f∗
Mℓ

P1−→ f∗ and

L(f∗
Mℓ

(x⃗
[Mℓ]
1 ), . . . , f∗

Mℓ
(x⃗

[Mℓ]
N )) + λ∥f∗

Mℓ
∥Mℓ

→ L(f∗(µ1), . . . , f
∗(µN )) + λ∥f∗∥k. (7)

for ℓ → ∞.

The main point of this result is the convergence of the minimizers, which we will establish using a
Γ-convergence argument. This approach seems to have been introduced by [28, 18, 29] originally in
the context of multi-agent systems.
Remark 3.4. An inspection of the proof reveals that in Theorem 3.3 we can replace the term λ∥ · ∥M
and λ∥ · ∥k by Ω(∥ · ∥M ) and Ω(∥ · ∥k), where Ω : R≥0 → R≥0 is a nonnegative, strictly increasing
and continuous function.

4 Support Vector Machines with mean field limit kernels

We now turn to the mean field limit of kernels in the context of statistical learning theory, focusing
on SVMs. We first briefly recall the standard setup of statistical learning theory, and formulate an
appropriate mean field limit thereof. We then investigate empirical and infinite-sample solutions of
SVMs and their mean field limits, as well as the convergence of the corresponding risks.
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Statistical learning theory setup We now introduce the standard setup of statistical learning
theory, following mostly [20, Chapters 2 and 5]. Let X ≠ ∅ (associated with some σ-algebra) and
∅ ≠ Y ⊆ R closed (associated with the corresponding Borel σ-algebra). A loss function is in this
setting a measurable function ℓ : X × Y × R → R≥0. Let P be a probability distribution on X × Y
and f : X → R a measurable function, then the risk of f w.r.t. P and loss function ℓ is defined by

Rℓ,P (f) =

∫
X×Y

ℓ(x, y, f(x))dP.

Note that this is always well-defined since (x, y) 7→ ℓ(x, y, f(x)) is a measurable and nonnegative
function. For a set H ⊆ RX of measurable functions we also define the minimal risk over H by

RH∗
ℓ,P = inf

f∈H
Rℓ,P (f).

If H is a normed vector space, we additionally define the regularized risk of f ∈ H and the minimal
regularized risk over H by

Rℓ,P,λ(f) = Rℓ,P (f) + λ∥f∥2H , RH∗
ℓ,P,λ = inf

f∈H
Rℓ,P,λ(f),

where λ ∈ R>0 is the regularization parameter. A data set of size N ∈ N+ is a tuple DN =
((x1, y1), . . . , (xN , yN )) ∈ (X × Y )N and for a function f : X → R we define its empirical risk by

Rℓ,DN
(f) =

1

N

N∑
n=1

ℓ(xn, yn, f(xn)).

If H is a normed vector space and f ∈ H , we define additionally the regularized empirical risk and
the minimal regularized empirical risk over H by

Rℓ,DN ,λ(f) = Rℓ,DN
(f) + λ∥f∥2H , RH∗

ℓ,DN ,λ = inf
f∈H

Rℓ,DN ,λ(f),

where λ ∈ R>0 is again the regularization parameter. Note that the notation for the empirical risks
is consistent with the risk w.r.t. a probability distribution P , if we identify a data set DN by the
corresponding empirical distribution 1

N

∑N
n=1 δ(xn,yn).

In the following, H will be a RKHS and a minimizer (assuming existence and uniqueness) of RH∗
ℓ,P,λ

will be called an infinite-sample support vector machine (SVM). Similarly, RH∗
ℓ,DN ,λ will be called

the empirical solution of the SVM w.r.t. the data set DN . Note that this is the common terminology
in statistical learning theory, cf. [20], and corresponds to (empirical) risk minization with Tikhonov
regularization.

Statistical learning theory setup in the mean field limit Let now ∅ ̸= Y ⊆ R be compact and
ℓM : XM × Y × R → R≥0, M ∈ N, such that 1) ℓM (σx⃗, y, t) = ℓM (x⃗, y, t) for all x⃗ ∈ XM ,
σ ∈ SM , y ∈ Y , t ∈ R; 2) there exists Cℓ ∈ R≥0 and a nondecreasing function b : R≥0 → R≥0

with |ℓM (x⃗, y, t)| ≤ Cℓ+ b(|t|) for all M ∈ N and x⃗ ∈ XM , y ∈ Y, t ∈ R; 3) there exists Lℓ ∈ R≥0

with

|ℓM (x⃗1, y1, t1)− ℓM (x⃗2, y2, t2)| ≤ Lℓ(dKR(µ̂[x⃗1], µ̂[x⃗2]) + |y1 − y2|+ |t1 − t2|)
for all x⃗1, x2 ∈ XM , y1, y′1 ∈ Y, t1, t2 ∈ R. In particular, all ℓM are measurable (assuming the Borel
σ-algebra on XM ) and hence are loss functions on XM × Y . Proposition 2.1 ensures the existence
of a subsequence (ℓMm)m and an Lℓ-Lipschitz continuous function ℓ : P(X)× Y × R → R with

lim
M→∞

sup
x⃗∈XMm

y∈Y,t∈K

|ℓMm
(x⃗, y, t)− ℓ(µ̂[x⃗], y, t)| = 0 (8)

for all compact K ⊆ R, and we write again ℓMm

P1−→ ℓ. For readability, from now on we switch to
this subsequence. Furthermore, we also get from Proposition 2.1 that there exists some CL ∈ R≥0

such that |ℓ(µ, y, t)| ≤ CL + b(|t|) for all µ ∈ P(X), y ∈ Y, t ∈ R.
Remark 4.1. Note that, for Proposition 2.1 to apply, it is enough to assume in item 2) above the
existence of a function b : R → R≥0 with |ℓM (x⃗, y, t)| ≤ Cℓ + b(|t|). However, we chose the
slightly stronger condition that b is nondecreasing, since then ℓM is a Nemitskii loss according to [20,
Definition 2.16]. Since the function with constant value Cℓ is actually PM -integrable, this means that
ℓM is even a PM -integrable Nemitskii loss according to [20]. A similar remark then applies to ℓ.
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Lemma 4.2. The function ℓ is nonnegative. Furthermore, if all ℓM are convex loss functions [20,
Definition 2.12], i.e., if for all M ∈ N+, x⃗ ∈ XM , y ∈ Y, t1, t2 ∈ R and λ ∈ (0, 1) we have

ℓM (x⃗, y, λt1 + (1− λ)t2) ≤ λℓM (x⃗, y, t1) + (1− λ)ℓM (x⃗, y, t2), (9)
then so is ℓ.

Empirical SVM solutions Given data sets D[M ]
N =

(
(x⃗

[M ]
1 , y

[M ]
1 ), . . . , (x⃗

[M ]
N , y

[M ]
N )

)
for all M ∈

N+ with x⃗
[M ]
n ∈ XM , y[M ]

n ∈ Y , and DN = ((µ1, y1), . . . , (µN , yN )) with µn ∈ P(X) and

yn ∈ Y , we write D
[M ]
N

P1−→ DN if µ̂[x⃗[M ]
n ]

dKR−→ µn and y
[M ]
n → yn (where M → ∞) for all

n = 1, . . . , N . We can interpret this as mean field convergence of the data sets.

Furthermore, consider the empirical risk of hypothesis fM ∈ HM (and f ∈ Hk) on data set D[M ]
N

(and DN )

R
ℓM ,D

[M]
N

(fM ) =
1

N

N∑
n=1

ℓM (x⃗[M ]
n , y[M ]

n , fM (x⃗[M ]
n )), Rℓ,DN

(f) =
1

N

N∑
n=1

ℓ(µn, yn, f(µn)),

and the corresponding regularized risk

R
ℓM ,D

[M]
N ,λ

(fM ) =
1

N

N∑
n=1

ℓM (x⃗[M ]
n , y[M ]

n , fM (x⃗[M ]
n )) + λ∥fM∥2M

Rℓ,DN ,λ(f) =
1

N

N∑
n=1

ℓ(µn, yn, f(µn)) + λ∥f∥2k,

where λ ∈ R>0 is the regularization parameter.

Proposition 4.3. Let λ > 0, assume that all ℓM are convex and let D[M ]
N , DN be finite data sets

with D
[M ]
N

P1−→ DN . Then for all M ∈ N+, HM ∋ fM 7→ R
ℓM ,D

[M]
N ,λ

(fM ) has a unique minimizer
f∗
M,λ ∈ HM and Hk ∋ f 7→ Rℓ,DN ,λ(f) has a unique minimizer f∗

λ ∈ Hk. Furthermore, for all

M ∈ N+ there exist α[M ]
n ∈ R, n = 1, . . . , N , such that f∗

M,λ =
∑N

n=1 α
[M ]
n kM (·, x⃗[M ]

n ), and
there exist α1, . . . , αN ∈ R such that f∗

λ =
∑N

n=1 αnk(·, µn). Finally, there exists a subsequence

(f∗
Mm,λ)m such that f∗

Mm,λ
P1−→ f∗

λ and R
ℓMm ,D

[Mm]
N ,λ

(f∗
Mm,λ) → Rℓ,DN ,λ(f

∗
λ) for m → ∞.

Convergence of distributions and infinite-sample SVMs in the mean field limit We now turn
to the question of mean field limits of distributions and the associated learning problems and SVM
solutions. Let (P [M ])M be a sequence of distributions, where P [M ] is a probability distribution on
XM × Y , and let P be a probability distribution on P(X)× Y . We say that P [M ] converges in mean

field to P and write P [M ] P1−→ P , if for all continuous (w.r.t. the product topology on P(X)× Y )
and bounded 4 f we have∫

XM×Y

f(µ̂[x⃗], y)dP [M ](x⃗, y) →
∫
P(X)×Y

f(µ, y)dP (µ, y). (10)

This convergence notion of probability distributions (on different input spaces) appears to be not
standard, but it is a natural concept in the present context. Essentially, it is weak (also called narrow)
convergence of probability distributions adapated to our setting.

Consider now data sets D[M ]
N , DN , with D

[M ]
N

P1−→ DN , then we also have convergence in mean field
of the datasets, interpreted as empirical distributions: let f ∈ C0(P(X)× Y,R) be bounded, then∫

XM×Y

f(µ̂[x⃗], y)dD
[M ]
N (x⃗, y) =

1

N

N∑
n=1

f(µ̂[x⃗[M ]
n ], y[M ]

n )

M→∞−−−−→ 1

N

N∑
n=1

f(µn, yn) =

∫
P(X)×Y

f(µ, y)dDN (µ, y).

4Of course, since Y is compact, all continuous f are bounded in our present setting.
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This shows that the mean field convergence of probability distributions as defined here is a direct
generalization of the natural notion of mean field convergence of data sets.

Finally, consider the risk of hypothesis fM ∈ HM and f ∈ Hk w.r.t. the distribution P [M ] and P ,
respectively,

RℓM ,P [M](fM ) =

∫
XM×Y

ℓM (x⃗, y, fM (x⃗))dP [M ](x⃗, y)

Rℓ,P (f) =

∫
P(X)×Y

ℓ(µ, y, f(µ))dP (µ, y),

as well as the minimal risks

RHM∗
ℓM ,P [M] = inf

fM∈HM

RℓM ,P [M](fM ) RHk∗
ℓ,P = inf

f∈Hk

Rℓ,P (f).

Our first result ensures that mean field convergence of distributions P [M ], loss functions ℓM and data
sets D[M ]

N ensures the convergence of the corresponding risks of the empirical SVM solutions.

Lemma 4.4. Consider the situation and notation of Proposition 4.3 and assume that P [M ] P1−→ P .
We then have RℓMm ,P [Mm](f∗

Mm,λ) → Rℓ,P (f
∗
λ) for m → ∞.

Next, we investigate the mean field convergence of infinite-sample SVM solutions and their associated
risks. Define for λ ∈ R≥0 (and all M ∈ N+) the regularized risk of fM ∈ HM and f ∈ Hk,
respectively, by

RℓM ,P [M],λ(fM ) = RℓM ,P [M](fM ) + λ∥fM∥2M , Rℓ,P,λ(f) = Rℓ,P (f) + λ∥f∥2k,

and the corresponding minimal risks by

RHM∗
ℓM ,P [M],λ

= inf
fM∈HM

RℓM ,P [M],λ(fM ), RHk∗
ℓ,P,λ = inf

f∈Hk

Rℓ,P,λ(f).

Proposition 4.5.5 Let λ > 0, assume that all ℓM are convex loss functions and let P [M ] and P

be probability distributions on XM × Y and P(X) × Y , respectively, with P [M ] P1−→ P . Then
for all M ∈ N+, HM ∋ fM 7→ RℓM ,P [M],λ(fM ) has a unique minimizer f∗

M,λ ∈ HM and
Hk ∋ f 7→ Rℓ,P,λ(f) has a unique minimizer f∗

λ ∈ Hk. Furthermore, there exists a subsequence

(f∗
Mm,λ)m such that f∗

Mm,λ
P1−→ f∗

λ and RℓMm ,P [Mm],λ(f
∗
Mm,λ) → Rℓ,P,λ(f

∗
λ) for m → ∞. In

particular, RHMm∗
ℓMm ,P [Mm],λ

→ RHk∗
ℓ,P,λ.

Finally, we would like to show that RHM∗
ℓM ,P [M] → RHk∗

ℓ,P for P [M ] P1−→ P . Up to a subsequence, this is
established under Assumption 4.6. Define the approximation error functions, cf. [20, Definition 5.14],
by

A
[M ]
2 (λ) = inf

f∈HM

RℓM ,P [M],λ(f)−RHM∗
ℓM ,P [M] A2(λ) = inf

f∈Hk

Rℓ,P,λ(f)−RHk∗
ℓ,P ,

where M ∈ N+ and λ ∈ R≥0. Note that (for all M ∈ N+) A[M ]
2 , A2 : R≥0 → R≥0 are increas-

ing, concave and continuous, and A
[M ]
2 , A2(0) = 0, cf. [20, Lemma 5.15]. We need essentially

equicontinuity of (A[M ]
2 )M in 0, which is formalized in the following assumption.

Assumption 4.6. For all ϵ > 0 there exists λϵ > 0 such that for all 0 < λ ≤ λϵ and M ∈ N+ we
have A

[M ]
2 (λ) ≤ ϵ.

Proposition 4.7. Assume that all ℓM are convex loss functions, let P [M ] and P be probability
distributions on XM × Y and P(X)× Y , respectively, with P [M ] P1−→ P . If Assumption 4.6 holds,
there exists a strictly increasing sequence (Mm)m with RHMm∗

ℓMm ,P [Mm] → RHk∗
ℓ,P for m → ∞.

5Note that Proposition 4.3 is actually a corollary of this result. However, since the former result is independent
of the notion of mean field convergence of probability distributions, we stated and proved it separately.
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5 Conclusion

We investigated the mean field limit of kernels and their RKHSs, as well as the mean field limit of
statistical learning problems solved with SVMs. In particular, we managed to complete the basic
theory of mean field kernels as started in [22]. Additionally, we investigated their approximation
capabilities by providing a first approximation result and a variant of the representer theorem for
mean field kernels. Finally, we introduced a corresponding mean field limit of statistical learning
problems and provided convergence results for SVMs using mean field kernels. In contrast to other
settings involving a large number of variables, for example, infinite-width neural networks, here we
considered the case of an increasing number of inputs. This work opens many directions for future
investigation. For example, it would be interesting to remove or weaken Assumption 4.6 for a result
like Proposition 4.7. Another relevant direction is to find approximation results that are stronger than
Proposition 3.1. Finally, it would be interesting to investigate whether statistical guarantees, like
consistency or learning rates, for the finite-input learning problems can be transferred to the mean
field level.

Acknowledgments and Disclosure of Funding

We would like to thank Noel Brindise, Pierre-François Massiani and Alexander von Rohr for very
detailed and helpful comments on the manuscript, and the anonymous reviewers for their detailed
and helpful comments. This work is funded in part under the Excellence Strategy of the Federal
Government and the Länder (G:(DE-82)EXS-SF-SFDdM035), which the authors gratefully acknowl-
edge. The authors further thank the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) for the financial support through 320021702/GRK2326, 333849990/IRTG-2379, B04,
B05, and B06 of 442047500/SFB1481, HE5386/18-1,19-2,22-1,23-1,25-1.

References
[1] Carlo Cercignani. Rarefied gas dynamics: from basic concepts to actual calculations, volume 21 of

Cambridge Texts in Applied Mathematics. Cambridge university press, 2000.

[2] Carlo Cercignani, Reinhard Illner, and Mario Pulvirenti. The mathematical theory of dilute gases, volume
106 of Applied Mathematical Sciences. Springer Science & Business Media, 1994.

[3] Michele Ballerini, Nicola Cabibbo, Raphael Candelier, Andrea Cavagna, Evaristo Cisbani, Irene Giardina,
Vivien Lecomte, Alberto Orlandi, Giorgio Parisi, Andrea Procaccini, et al. Interaction ruling animal
collective behavior depends on topological rather than metric distance: Evidence from a field study.
Proceedings of the national academy of sciences, 105(4):1232–1237, 2008.

[4] Yael Katz, Kolbjørn Tunstrøm, Christos C Ioannou, Cristián Huepe, and Iain D Couzin. Inferring the
structure and dynamics of interactions in schooling fish. Proceedings of the National Academy of Sciences,
108(46):18720–18725, 2011.

[5] Giuseppe Toscani. Kinetic models of opinion formation. Communications in mathematical sciences, 4(3):
481–496, 2006.

[6] Claudio Castellano, Santo Fortunato, and Vittorio Loreto. Statistical physics of social dynamics. Reviews
of modern physics, 81(2):591, 2009.

[7] John RG Dyer, Anders Johansson, Dirk Helbing, Iain D Couzin, and Jens Krause. Leadership, consensus
decision making and collective behaviour in humans. Philosophical Transactions of the Royal Society B:
Biological Sciences, 364(1518):781–789, 2009.

[8] Emiliano Cristiani, Benedetto Piccoli, and Andrea Tosin. Multiscale modeling of pedestrian dynamics,
volume 12 of Modeling, Simulation and Applications. Springer, 2014.

[9] Giacomo Albi, Mattia Bongini, Emiliano Cristiani, and Dante Kalise. Invisible control of self-organizing
agents leaving unknown environments. SIAM Journal on Applied Mathematics, 76(4):1683–1710, 2016.

[10] Andrés A Peters, Richard H Middleton, and Oliver Mason. Leader tracking in homogeneous vehicle
platoons with broadcast delays. Automatica, 50(1):64–74, 2014.

[11] Kwang-Kyo Oh, Myoung-Chul Park, and Hyo-Sung Ahn. A survey of multi-agent formation control.
Automatica, 53:424–440, 2015.

10



[12] Young-Pil Choi, Dante Kalise, Jan Peszek, and Andrés A Peters. A collisionless singular Cucker–Smale
model with decentralized formation control. SIAM Journal on Applied Dynamical Systems, 18(4):1954–
1981, 2019.

[13] Andrea Tosin and Mattia Zanella. Kinetic-controlled hydrodynamics for traffic models with driver-assist
vehicles. Multiscale Modeling & Simulation, 17(2):716–749, 2019.

[14] Giovanni Naldi, Lorenzo Pareschi, and Giuseppe Toscani. Mathematical modeling of collective behavior
in socio-economic and life sciences. Springer Science & Business Media, 2010.

[15] Tamás Vicsek and Anna Zafeiris. Collective motion. Physics reports, 517(3-4):71–140, 2012.

[16] Xiaoqian Gong, Michael Herty, Benedetto Piccoli, and Giuseppe Visconti. Crowd dynamics: Modeling
and control of multiagent systems. Annual Review of Control, Robotics, and Autonomous Systems, 6, 2022.

[17] José A Carrillo, Massimo Fornasier, Giuseppe Toscani, and Francesco Vecil. Particle, kinetic, and
hydrodynamic models of swarming. Mathematical modeling of collective behavior in socio-economic and
life sciences, pages 297–336, 2010.

[18] Mattia Bongini, Massimo Fornasier, Markus Hansen, and Mauro Maggioni. Inferring interaction rules
from observations of evolutive systems i: The variational approach. Mathematical Models and Methods in
Applied Sciences, 27(05):909–951, 2017.

[19] Fei Lu, Ming Zhong, Sui Tang, and Mauro Maggioni. Nonparametric inference of interaction laws
in systems of agents from trajectory data. Proceedings of the National Academy of Sciences, 116(29):
14424–14433, 2019.

[20] Ingo Steinwart and Andreas Christmann. Support vector machines. Springer Science & Business Media,
2008.

[21] Andreas Christmann and Ingo Steinwart. Universal kernels on non-standard input spaces. Advances in
neural information processing systems, 23, 2010.

[22] Christian Fiedler, Michael Herty, Michael Rom, Chiara Segala, and Sebastian Trimpe. Reproducing kernel
H|ilbert spaces in the mean field limit. Kinetic and Related Models, 16(6):850–870, 2023. ISSN 1937-5093.

[23] Michael Herty and Mattia Zanella. Performance bounds for the mean-field limit of constrained dynamics.
Discrete & Continuous Dynamical Systems, 37(4):2023, 2017.

[24] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On exact
computation with an infinitely wide neural net. Advances in neural information processing systems, 32,
2019.

[25] Pierre Cardaliaguet. Notes on mean field games. Technical report, 2010.

[26] René Carmona and François Delarue. Probabilistic theory of mean field games with applications I-II.
Springer, 2018.

[27] Bernhard Schölkopf, Ralf Herbrich, and Alex J Smola. A generalized representer theorem. In International
conference on computational learning theory, pages 416–426. Springer, 2001.

[28] Massimo Fornasier and Francesco Solombrino. Mean-field optimal control. ESAIM: Control, Optimisation
and Calculus of Variations, 20(4):1123–1152, 2014.

[29] Massimo Fornasier, Stefano Lisini, Carlo Orrieri, and Giuseppe Savaré. Mean-field optimal control as
gamma-limit of finite agent controls. European Journal of Applied Mathematics, 30(6):1153–1186, 2019.

[30] Serge Lang. Real and functional analysis, volume 142. Springer Science & Business Media, 2012.

[31] Marc Atteia. Hilbertian kernels and spline functions. Elsevier, 1992.

[32] Gianni Dal Maso. An introduction to Γ-convergence, volume 8 of Progress in Nonlinear Differential
Equations and Their Applications. Springer Science & Business Media, 2012.

[33] Mattia Bongini. Sparse optimal control of multiagent systems. PhD thesis, Technische Universität München,
2016.

11



Supplementary Material

A Proofs

In this section of the supplementary material, we provide detailed proofs for all results in the main
text.

A.1 Proofs for Section 2

We start with Proposition 2.1, whose proof is based on [26, Lemma 1.2].

Proof. of Proposition 2.1 For M ∈ N+ define the McShane extension FM : P(X)× Z → R by

FM (µ, z) = inf
x⃗∈XM

fM (x⃗, z) + LfdKR(µ̂[x⃗], µ).

Observe that FM is well-defined (i.e., R-valued) since fM (·, z) and LfdKR(µ̂[·], µ) are bounded for
every z ∈ Z (since fM and dKR(µ̂[·], µ) are continuous and P(X) is compact, hence bounded).

Step 1 FM extends fM , i.e., for all M ∈ N+, x⃗ ∈ XM and z ∈ Z we have FM (µ̂[x⃗], z) = fM (x⃗, z).
To show this, let x⃗ ∈ XM and z ∈ Z be arbitrary and observe that by definition

FM (µ̂[x⃗], z) = inf
x⃗′∈XM

fM (x⃗′, z)+LfdKR(µ̂[x⃗
′], µ̂[x⃗]) ≤ fM (x⃗, z)+LfdKR(µ̂[x⃗], µ̂[x⃗]) = fM (x⃗, z).

If FM (µ̂[x⃗], z) < fM (x⃗, z), then there exists some x⃗′ ∈ XM such that

fM (x⃗′, z) + LfdKR(µ̂[x⃗
′], µ̂[x⃗]) < fM (x⃗, z),

but this means that

LfdKR(µ̂[x⃗
′], µ̂[x⃗]) < fM (x⃗, z)− fM (x⃗′, z) ≤ |fM (x⃗, z)− fM (x⃗′, z)|,

contradicting the Lf -Lipschitz continuity of fM .

Step 2 All FM are Lf -continuous: Let M ∈ N+, µi ∈ P(X) and zi ∈ Z, i = 1, 2, be arbitrary.
Since XM is compact and fM (·, z) and LfdKR(µ̂[·], µi), i = 1, 2, are continuous, the infimum in
the definition of FM is actually attained. Let x⃗2 ∈ XM such that FM (µ2, z2) = fM (x⃗2, z2) +
LfdKR(µ̂[x⃗2], µ2), then we have

FM (µ1, z1) ≤ fM (x⃗2, z1) + LfdKR(µ̂[x⃗2], µ1)

= fM (x⃗2, z1) + LfdKR(µ̂[x⃗2], µ2)− LfdKR(µ̂[x⃗2], µ2) + LfdKR(µ̂[x⃗2], µ1)

≤ fM (x⃗2, z2) + LfdKR(µ̂[x⃗2], µ2) + LfdZ(z1, z2)− LfdKR(µ̂[x⃗2], µ2)

+ LfdKR(µ̂[x⃗2], µ1)

≤ FM (µ2, z2) + LfdZ(z1, z2)− LfdKR(µ̂[x⃗2], µ2) + LfdKR(µ1, µ2)

+ LfdKR(µ̂[x⃗2], µ2)

= FM (µ2, z2) + Lf (dKR(µ1, µ2) + dZ(z1, z2)),

where we used the definition of FM in the first inequality, the Lipschitz continuity of fM (w.r.t.
the second argument) for the second inequality, and then the fact that x⃗2 attains the infimum in the
definition of FM (µ2, z2) and the triangle inequality for dKR. Interchanging the roles of µ1, z1 and
µ2, z2 then establishes the claim.

Step 3 There exists BF ∈ R≥0 such that for all M ∈ N+, µ ∈ P(X) and z ∈ Z we have
|FM (µ, z)| ≤ BF + h(z): Let DP(X) be the diameter of P(X) (which is finite since P(X) is
compact), then for all M ∈ N+ and x⃗ ∈ XM , z ∈ Z, µ ∈ P(X) we have

−(Bf + LfDP(X) + b(z)) ≤ fM (x⃗, z) + LfdKR(µ̂[x⃗], µ) ≤ Bf + LfDP(X) + b(z),

therefore |FM (µ, z)| ≤ Bf + LfDP(X) + b(z), showing the claim with BF = Bf + LfDP(X).

Step 4 Summarizing, (FM )M is a sequence of Lf -Lipschitz continuous and hence equicontinuous
functions such that for all µ ∈ P(X) and z ∈ Z, the set {FM (µ, z) | M ∈ N+} is relatively compact
(since it is a bounded subset of R). We can now use a variant of the Arzela-Ascoli theorem, cf. [30,
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Corollary III.3.3]. From the assumption on Z, we can find a sequence (Vn)n of open subsets of Z
such that all V̄n are compact, V̄n ⊆ Vn+1 and we have

⋃
n Vn = Z. Then (FM |V̄n

)M is a sequence
of functions that fulfills the conditions of the Arzela-Ascoli theorem (since P(X)×Kn is compact),
so there exists a subsequence (F

M
(n)
ℓ

|V̄n
)ℓ that converges uniformly to a continuous function on

P(X)× V̄n. Denote the diagonal subsequence of all these subsequences by (FMℓ
)ℓ, then there exists

a continuous f : P(X)× Z → R such that (FMℓ
)ℓ converges uniformly on compact subsets to f .

Since P(X) is compact, this means that for all compact K ⊆ Z

lim
ℓ

sup
µ∈P(X)
z∈K

|FMℓ
(µ, z)− f(µ, z)| = 0.

This also implies that for all µ ∈ P(X) and z ∈ Z we have |f(µ, z)| ≤ BF + b(z).

Furthermore, f is also Lf -Lipschitz continuous: Let µi ∈ P(X), zi ∈ Z, i = 1, 2, and ϵ > 0 be
arbitrary. Let K ⊆ Z be compact with z1, z2 ∈ K and choose ℓ ∈ N+ such that

sup
µ∈P(X)
z∈K

|FMℓ
(µ, z)− f(µ, z)| ≤ ϵ

2
.

We then have

|f(µ1, z1)− f(µ2, z2)| ≤ |f(µ1, z1)− FMℓ
(µ1, z1)|+ |FMℓ

(µ1, z1)− FMℓ
(µ2, z2)|

+ |FMℓ
(µ2, z2)− f(µ2, z2)|

≤ Lf (dKR(µ1, µ2) + dZ(z1, z2)) + ϵ,

and since ϵ > 0 was arbitrary, the claim follows.

Step 5 For ℓ ∈ N+ and x⃗ ∈ XMℓ , z ∈ Z we have

|fMℓ
(x⃗, z)− f(µ̂[x⃗], z)| = |FMℓ

(µ̂[x⃗], z)− f(µ̂[x⃗], z)|
since FMℓ

extends fMℓ
, and hence

sup
x⃗∈XMℓ

z∈K

|fMℓ
(x⃗, z)− f(µ̂[x⃗], z)| → 0.

Next, we provide the proofs for the Γ-lim inf and Γ-lim sup results.

Proof. of Lemma 2.4 Assume the statement is not true, i.e., ∥f∥k > lim infM→∞ ∥fM∥M . This
means that there exists a subsequence Mℓ and C ∈ R≥0 such that ∥f∥k > limℓ ∥fMℓ

∥Mℓ
= C. Note

that this implies that ∥f∥k > 0.

Let ϵ1, ϵ2 > 0 and α > 1, β ∈ (0, 1) be arbitrary. From Theorem B.1, there exists (µ⃗, α⃗) ∈
P(X)N × RN such that

D(µ⃗, α⃗, f, k) + ϵ1 ≥ ∥f∥k,
and w.l.o.g. we can assume that ϵ1 > 0 is small enough so that D(µ⃗, α⃗, f, k) > 0. The latter implies
that E(µ⃗, α⃗, f), W(µ⃗, α⃗, k) > 0, so defining

ϵα =
α− 1

α
E(µ⃗, α⃗, f)

ϵβ = (1/β − 1)W(µ⃗, α⃗, k)

we get ϵα, ϵβ > 0. For each n = 1, . . . , N , choose x⃗[M ]
n ∈ XM such that x⃗[M ]

n
dKR−→ µn for M → ∞.

Choose now L1 ∈ N such that for all ℓ ≥ L1 we get

|E(X⃗ [Mℓ], α⃗, fMℓ
)− E(µ⃗, α⃗, f)| ≤ ϵα

|W(X⃗ [Mℓ], α⃗, kMℓ
)−W(µ⃗, α⃗, k)| ≤ ϵβ .

(cf. also the proof of Theorem 2.3) and W(X⃗ [Mℓ], α⃗, k[Mℓ]) > 0. We then get

E(µ⃗, α⃗, f) ≤ αE(X⃗ [Mℓ], α⃗, fMℓ
)

W(µ⃗, α⃗, k) ≥ βW(X⃗ [Mℓ], α⃗, k[Mℓ]),
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so altogether
E(µ⃗, α⃗, f)
W(µ⃗, α⃗, k)

≤ αE(X⃗ [Mℓ], α⃗, fMℓ
)

βW(X⃗ [Mℓ], α⃗, k[Mℓ])
.

Using Theorem B.1 again leads to

αE(X⃗ [Mℓ], α⃗, fM )

βW(X⃗ [Mℓ], α⃗, k[Mℓ])
= D(X⃗ [Mℓ], α⃗, fMℓ

, k[Mℓ]) ≤ ∥fMℓ
∥Mℓ

.

Finally, let L2 such that for all ℓ ≥ L2 we have ∥fMℓ
∥Mℓ

≤ C + ϵ2. For ℓ ≥ L1, L2 we then get

C < ∥f∥k ≤ D(µ⃗, α⃗, f, k) + ϵ1

=
E(µ⃗, α⃗, f)
W(µ⃗, α⃗, k)

+ ϵ1

≤ αE(X⃗ [Mℓ], α⃗, fMℓ
)

βW(X⃗ [Mℓ], α⃗, k[Mℓ])
+ ϵ1

≤ α

β
∥fMℓ

∥Mℓ
+ ϵ1

≤ α

β
C +

α

β
ϵ2 + ϵ1.

Since ϵ1, ϵ2 > 0 and α > 1, β ∈ (0, 1) were arbitrary, this implies that

C < ∥f∥k ≤ C,

a contradiction.

Proof. of Lemma 2.5 Let f ∈ Hk be arbitrary and choose (ϵn)n ⊆ R>0 with ϵn ↘ 0.

Step 1 For each n ∈ N choose

f pre
n =

Ln∑
ℓ=1

α
(n)
ℓ k(·, µ(n)

ℓ ) ∈ Hpre
k ,

where α
(n)
1 , . . . , α

(n)
Ln

∈ R and µ
(n)
1 , . . . , µ

(n)
Ln

∈ P(X), with

∥f − f pre
n ∥k ≤ ϵn

3
√
Ck

and ∥f pre
n ∥k ≤ ∥f∥k. To see that such a sequence of functions exists, choose some sequence

(f̄n)n ∈ Hpre
k with f̄n =

∑L̄n

ℓ=1 ᾱ
(n)
ℓ k(·, µ̄(n)

ℓ ), where ᾱ
(n)
ℓ ∈ R, µ̄(n)

ℓ ∈ P(X), with f̄n
∥·∥k−→ f

(exists since Hpre
k is dense in Hk). Define now for n ∈ N

H̄n = span{k(·, µ̄(m)
ℓ ) | m = 1, . . . , n, ℓ = 1, . . . , L̄m}

and f̂n = PH̄n
f , where PH̄n

is the orthogonal projection onto H̄n. Then H̄n ⊆ Hpre
k , ∥f̂n∥k =

∥PH̄n
f∥k ≤ ∥f∥k and ∥f − f̂n∥k ≤ ∥f − f̄n∥k → 0 (since f̂n = PH̄n

f is the orthogonal projection

of f onto H̄n and f̄n ∈ H̄n), hence f̂n
∥·∥k−→ f . We can now choose (f pre

n )n as a subsequence of
(f̂n)n.

Next, for all n ∈ N and ℓ = 1, . . . , Ln choose x⃗
(n,ℓ)
M ∈ XM with µ̂[x⃗

(n,ℓ)
M ]

dKR−→ µ
(n)
ℓ for M → ∞.

Furthermore, for all n ∈ N choose Mn ∈ N such that for all M ≥ Mn and ℓ = 1, . . . , Ln we have

dKR(µ̂[x⃗
(n,ℓ)
M ], µ

(n)
ℓ ) ≤ min

 ϵn

3
(
1 + Lk

∑Ln

ℓ′=1 |α
(n)
ℓ′ |

) , ϵ2n

2
(
1 + 2Lk

∑Ln

i,j=1 |α
(n)
i ||α(n)

j |
)


and

sup
x⃗,x⃗′∈XM

|kM (x⃗, x⃗′)− k(µ̂[x⃗], µ̂[x⃗′])| ≤ min

 ϵn

3
(
1 +

∑Ln

ℓ′=1 |α
(n)
ℓ′ |

) , ϵ2n

2
(
1 +

∑Ln

i,j=1 |α
(n)
i ||α(n)

j |
)
 .
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W.l.o.g. we can assume that (Mn)n is strictly increasing. For M ∈ N, let n(M) be the largest integer
such that Mn(M) ≤ M and define

f̂ pre
M =

Ln(M)∑
ℓ=1

α
(n(M))
ℓ k(·, µ̂[x⃗(n(M),ℓ)

M ]) ∈ Hpre
k

fM =

Ln(M)∑
ℓ=1

α
(n(M))
ℓ kM (·, x⃗(n(M),ℓ)

M ) ∈ Hpre
M .

Step 2 We now show that fM
P1−→ f . For this, let ϵ > 0 be arbitrary and nϵ ∈ N such that ϵn ≤ ϵ.

Let now M ≥ Mnϵ
(note that this implies that n(M) ≥ nϵ and hence ϵn(M) ≤ ϵn) and x⃗ ∈ XM ,

then we have

|f(µ̂[x⃗])− fM (x⃗)| ≤ |f(µ̂[x⃗])− fn(M)(µ̂[x⃗])|︸ ︷︷ ︸
=I

+ |fn(M)(µ̂[x⃗])− f̂ pre
M (µ̂[x⃗])|︸ ︷︷ ︸

=II

+ |f̂ pre
M (µ̂[x⃗])− fM (x⃗)|︸ ︷︷ ︸

=III

We continue with

I = |f(µ̂[x⃗])− fn(M)(µ̂[x⃗])|
= |⟨f − fn(M), k(·, µ̂[x⃗])⟩k|
≤ ∥f − fn(M)∥k∥k(·, µ̂[x⃗])∥k
= ∥f − fn(M)∥k

√
k(µ̂[x⃗], µ̂[x⃗])

≤
ϵn(M)

3
√
Ck

√
Ck

where we first used the reproducing property of k, then Cauchy-Schwarz, again the reproducing
property of k, and finally the choice fn(M) and the boundedness of k.

Next,

II = |fn(M)(µ̂[x⃗])− f̂ pre
M (µ̂[x⃗])|

=

∣∣∣∣∣∣
Ln(M)∑
ℓ=1

α
(n(M))
ℓ k(·, µ(n(M))

ℓ )−
Ln(M)∑
ℓ=1

α
(n(M))
ℓ k(·, µ̂[x⃗(n(M),ℓ)

M ])

∣∣∣∣∣∣
≤

Ln(M)∑
ℓ=1

∣∣∣α(n(M))
ℓ

∣∣∣ |k(·, µ(n(M))
ℓ )− k(·, µ̂[x⃗(n(M),ℓ)

M ])|

≤ Lk

Ln(M)∑
ℓ=1

∣∣∣α(n(M))
ℓ

∣∣∣ dKR(µ̂[x⃗
(n(M),ℓ)
M ], µ

(n(M))
ℓ )

≤
ϵn(M)

3
,

where we used the triangle inequality, the Lipschitz continuity of k, and then the choice of the
sequence (Mn)n.

Finally,

III = |f̂ pre
M (µ̂[x⃗])− fM (x⃗)|

=

∣∣∣∣∣∣
Ln(M)∑
ℓ=1

α
(n(M))
ℓ k(·, µ̂[x⃗(n(M),ℓ)

M ])−
Ln(M)∑
ℓ=1

α
(n(M))
ℓ kM (·, x⃗(n(M),ℓ)

M )

∣∣∣∣∣∣
≤

Ln(M)∑
ℓ=1

∣∣∣α(n(M))
ℓ

∣∣∣ |k(·, µ̂[x⃗(n(M),ℓ)
M ])− kM (·, x⃗(n(M),ℓ)

M )|

≤
ϵn(M)

3
,
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where the triangle inequality has been used in the first step and then again the choice of the sequence
(Mn)n.

Altogether,
|f(µ̂[x⃗])− fM (x⃗)| ≤ I + II + III

≤
ϵn(M)

3
+

ϵn(M)

3
+

ϵn(M)

3
≤ ϵ,

establishing fM
P1−→ f .

Step 3 We now show lim supM→∞ ∥fM∥M ≤ ∥f∥k. Let ϵ > 0 be arbitrary and nϵ ∈ N such that
ϵn ≤ ϵ and let M ≥ Mnϵ

. We have

∥fM∥2M =

Ln(M)∑
ℓ,ℓ′=1

α
(n(M))
ℓ α

(n(M))
ℓ′ kM (x⃗

(n(M),ℓ′)
M , x⃗

(n(M),ℓ′)
M )

≤
Ln(M)∑
ℓ,ℓ′=1

α
(n(M))
ℓ α

(n(M))
ℓ′ k(µ

(n(M))
ℓ′ , µ

(n(M))
ℓ ) + |R1|+ |R2|

= ∥f pre
n(M)∥

2
k +R1 +R2

≤ ∥f∥2k +R1 +R2.

with remainder terms

R1 =

Ln(M)∑
ℓ,ℓ′=1

α
(n(M))
ℓ α

(n(M))

ℓ′ kM (x⃗
(n(M),ℓ′)
M , x⃗

(n(M),ℓ′)
M )−

Ln(M)∑
ℓ,ℓ′=1

α
(n(M))
ℓ α

(n(M))

ℓ′ k(µ̂[x⃗
(n(M),ℓ′)
M ], µ̂[x⃗

(n(M),ℓ′)
M ])

R2 =

Ln(M)∑
ℓ,ℓ′=1

α
(n(M))
ℓ α

(n(M))

ℓ′ k(µ̂[x⃗
(n(M),ℓ′)
M ], µ̂[x⃗

(n(M),ℓ′)
M ])−

Ln(M)∑
ℓ,ℓ′=1

α
(n(M))
ℓ α

(n(M))

ℓ′ k(µ
(n(M))

ℓ′ , µ
(n(M))
ℓ )

We now bound these terms, so that

R1 =

∣∣∣∣∣∣
Ln(M)∑
ℓ,ℓ′=1

α
(n(M))
ℓ α

(n(M))

ℓ′ kM (x⃗
(n(M),ℓ′)
M , x⃗

(n(M),ℓ′)
M )−

Ln(M)∑
ℓ,ℓ′=1

α
(n(M))
ℓ α

(n(M))

ℓ′ k(µ̂[x⃗
(n(M),ℓ′)
M ], µ̂[x⃗

(n(M),ℓ′)
M ])

∣∣∣∣∣∣
≤

Ln(M)∑
ℓ,ℓ′=1

|α(n(M))
ℓ ||α(n(M))

ℓ′ ||kM (x⃗
(n(M),ℓ′)
M , x⃗

(n(M),ℓ′)
M )− k(µ̂[x⃗

(n(M),ℓ′)
M ], µ̂[x⃗

(n(M),ℓ′)
M ])|

≤
ϵ2n(M)

2
,

and

R2 =

∣∣∣∣∣∣
Ln(M)∑
ℓ,ℓ′=1

α
(n(M))
ℓ α

(n(M))

ℓ′ k(µ̂[x⃗
(n(M),ℓ′)
M ], µ̂[x⃗

(n(M),ℓ′)
M ])−

Ln(M)∑
ℓ,ℓ′=1

α
(n(M))
ℓ α

(n(M))

ℓ′ k(µ
(n(M))

ℓ′ , µ
(n(M))
ℓ )

∣∣∣∣∣∣
≤

Ln(M)∑
ℓ,ℓ′=1

|α(n(M))
ℓ ||α(n(M))

ℓ′ ||k(µ̂[x⃗(n(M),ℓ′)
M ], µ̂[x⃗

(n(M),ℓ′)
M ])− k(µ

(n(M))

ℓ′ , µ
(n(M))
ℓ )|

≤ Lk

Ln(M)∑
ℓ,ℓ′=1

|α(n(M))
ℓ ||α(n(M))

ℓ′ |
(
dKR(µ̂[x⃗

(n(M),ℓ)
M ], µ

(n(M))
ℓ ) + dKR(µ̂[x⃗

(n(M),ℓ′)
M ], µ

(n(M))

ℓ′ )
)

≤
ϵ2n(M)

2
.

Altogether,
∥fM∥2M ≤ ∥f∥2k + |R1|+ |R2|

≤ ∥f∥2k +
ϵ2n(M)

2
+

ϵ2n(M)

2

≤ ∥f∥2k + ϵ2,
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so ∥fM∥M ≤ ∥f∥k + ϵ for all M ≥ Mnϵ , and since ϵ > 0 was arbitrary, we finally get
lim supM→∞ ∥fM∥M ≤ ∥f∥k.

Finally, we can now provide the proof for the central Theorem 2.3.

Proof. of Theorem 2.3 The first statement is part of Lemma 2.5. Let us turn to the second statement:
The existence of the subsequence (fMℓ

)ℓ and the continuous function f : P(X) → R with fMℓ

P1−→ f
was shown in [22, Corollary 4.3], so we only have to ensure that f ∈ Hk with ∥f∥k ≤ B. For this,
we use the characterization of RKHS functions from Theorem B.1. In particular, we will utilize the
notation introduced there.

Step 1 Let (µ⃗, α⃗) ∈ P(X)N × RN . We show that if W(µ⃗, α⃗, k) = 0, then E(µ⃗, α⃗, f) = 0.

Assume that W(µ⃗, α⃗, k) = 0. If B = 0, then fM ≡ 0 and fMℓ

P1−→ f implies that f ≡ 0, so the
claim is clear in this case. Assume now B > 0, let ϵ > 0 be arbitary and for n = 1, . . . , N , choose
sequences x⃗

[M ]
n ∈ XM such that x⃗[M ]

n
dKR−→ µn for M → ∞. For convenience, define X⃗ [M ] =(

x⃗
[M ]
1 · · · x⃗

[M ]
N

)
. Choose now ℓϵ ∈ N such that for all M ≥ Mℓϵ we get W(X⃗ [M ], α⃗, kM ) ≤

ϵ/B. This is possible since kM
P1−→ k together with the continuity of kM and k as well as x⃗[M ]

n
dKR−→

µn for M → ∞ and all n = 1, . . . , N implies that W(X⃗ [M ], α⃗, kM ) → W(µ⃗, α⃗, k) = 0. Let now
ℓ ≥ ℓϵ be arbitrary and observe that fM ∈ HM implies N (fM , kM ) < ∞ according to Theorem
B.1, so in particular D(X⃗ [Mℓ], α⃗, fMℓ

, kMℓ
) < ∞.

If W(X⃗ [Mℓ], α⃗, kMℓ
) = 0, then we get that E(X⃗ [Mℓ], α⃗, fMℓ

) = 0 ≤ ϵ since
D(X⃗ [Mℓ], α⃗, fMℓ

, kMℓ
) < ∞, which implies by definition that E(X⃗ [Mℓ], α⃗, fMℓ

) = 0.

If W(X⃗ [Mℓ], α⃗, kMℓ
) > 0, then we have

E(X⃗ [Mℓ], α⃗, fMℓ
)

W(X⃗ [Mℓ], α⃗, kMℓ
)
= D(X⃗ [Mℓ], α⃗, fMℓ

, kMℓ
) ≤ N (fMℓ

, kMℓ
) = ∥fMℓ

∥Mℓ
≤ B,

which implies
E(X⃗ [Mℓ], α⃗, fMℓ

) ≤ BW(X⃗ [Mℓ], α⃗, kMℓ
) ≤ ϵ.

Since fMℓ

P1−→ f together with the continuity of fM and f as well as x⃗
[M ]
n

dKR−→ µn implies that
E(X⃗ [Mℓ], α⃗, fMℓ

) → E(µ⃗, α⃗, f), we get that E(µ⃗, α⃗, f) ≤ ϵ, and since ϵ > 0 was arbitrary we arrive
at E(µ⃗, α⃗, f) ≤ 0.

Assume now that E(µ⃗, α⃗, f) < 0. This implies that there exist δ > 0 and ℓδ ∈ N such that for all ℓ ≥
ℓδ we have E(X⃗ [Mℓ], α⃗, fMℓ

) ≤ −δ < 0, since E(X⃗ [Mℓ], α⃗, fMℓ
) → E(µ⃗, α⃗, f). Let ℓ ≥ ℓδ , then we

get that E(X⃗ [Mℓ],−α⃗, fMℓ
) ≥ δ > 0 and we have W(X⃗ [Mℓ],−α⃗, kMℓ

) = W(X⃗ [Mℓ], α⃗, kMℓ
) > 0.

We can then continue with

δ

W(X⃗ [Mℓ], α⃗, kMℓ
)
≤ E(X⃗ [Mℓ],−α⃗, fMℓ

)

W(X⃗ [Mℓ],−α⃗, kMℓ
)

≤ D(X⃗ [Mℓ],−α⃗, fMℓ
, kMℓ

)

≤ N (fMℓ
, kMℓ

)

= ∥fMℓ
∥Mℓ

≤ B,

which implies that W(X⃗ [Mℓ],−α⃗, kMℓ
) = W(X⃗ [Mℓ], α⃗, kMℓ

) ≥ δ/B. But since
W(X⃗ [Mℓ], α⃗, kMℓ

) → W(µ⃗, α⃗, k), this implies that W(µ⃗, α⃗, k) ≥ δ/B > 0, a contradiction. Alto-
gether, E(µ⃗, α⃗, f) = 0.

Step 2 Let (µ⃗, α⃗) ∈ P(X)N × RN . If W(µ⃗, α⃗, k) > 0 and E(µ⃗, α⃗, f) > 0, then

E(µ⃗, α⃗, f)
W(µ⃗, α⃗, k)

≤ B.
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To show this, let α > 1 and β ∈ (0, 1) be arbitrary. Define

ϵα =
α− 1

α
E(µ⃗, α⃗, f)

ϵβ = (1/β − 1)W(µ⃗, α⃗, k)

and observe that ϵα, ϵβ > 0. Furthermore, for all n = 1, . . . , N choose a sequence x⃗[M ]
n ∈ XM such

that x⃗[M ]
n

dKR−→ µn for M → ∞, and define X⃗ [M ] =
(
x⃗
[M ]
1 · · · x⃗

[M ]
N

)
. Choose ℓϵ ∈ N+ such that

for all ℓ ≥ ℓϵ we have
|E(X⃗ [Mℓ], α⃗, fMℓ

)− E(µ⃗, α⃗, f)| ≤ ϵα

|W(X⃗ [Mℓ], α⃗, kMℓ
)−W(µ⃗, α⃗, k)| ≤ ϵβ

and W(X⃗ [Mℓ], α⃗, kMℓ
) > 0. Such an ℓϵ exists because kM

P1−→ k together with the continuity of kM
and k as well as the convergence of x⃗[M ]

n to µn imply that W(X⃗ [Mℓ], α⃗, kMℓ
) → W(µ⃗, α⃗, k), and

fMℓ

P1−→ f together with the continuity of fM and f imply that E(X⃗ [Mℓ], α⃗, fMℓ
) → E(µ⃗, α⃗, f).

Let now ℓ ≥ ℓϵ be arbitrary. By definition of ϵα we get αϵα ≤ (α− 1)E(µ⃗, α⃗, f), which in turn leads
to

ϵα ≤ ϵα − αϵα + (α− 1)E(µ⃗, α⃗, f)
= −(α− 1)ϵα + (α− 1)E(µ⃗, α⃗, f)
= (α− 1)(E(µ⃗, α⃗, f)− ϵα)

≤ (α− 1)E(X⃗ [Mℓ], α⃗, fMℓ
),

where we used in the last inequality that α − 1 > 0 and by choice of ℓϵ we have E(µ⃗, α⃗, f) ≤
E(X⃗ [Mℓ], α⃗, fMℓ

) + ϵα. We can then continue with

E(µ⃗, α⃗, f) ≤ E(X⃗ [Mℓ], α⃗, fMℓ
) + ϵα

≤ E(X⃗ [Mℓ], α⃗, fMℓ
) + (α− 1)E(X⃗ [Mℓ], α⃗, fMℓ

)

= αE(X⃗ [Mℓ], α⃗, fMℓ
).

Next, by definition of ϵβ and choice of ℓϵ we find that

W(X⃗ [Mℓ], α⃗, kMℓ
) ≤ W(µ⃗, α⃗, k) + ϵβ
= W(µ⃗, α⃗, k) + (1/β − 1)W(µ⃗, α⃗, k)

= (1/β)W(µ⃗, α⃗, k),

hence
1

W(µ⃗, α⃗, k)
≤ 1

βW(X⃗ [Mℓ], α⃗, kMℓ
)
.

Combining these results, we get that for all ℓ ≥ ℓϵ

E(µ⃗, α⃗, f)
W(µ⃗, α⃗, k)

≤ α

β

E(X⃗ [Mℓ], α⃗, fMℓ
)

W(X⃗ [Mℓ], α⃗, kMℓ
)
≤ α

β
N (fMℓ

, kMℓ
) =

α

β
∥fMℓ

∥Mℓ
≤ α

β
B.

Since α > 1 and β ∈ (0, 1) were arbitrary, this shows that
E(µ⃗, α⃗, f)
W(µ⃗, α⃗, k)

≤ B.

Step 3 Let (µ⃗, α⃗) ∈ P(X)N × RN be arbitrary. If W(µ⃗, α⃗, k) = 0, then we get from Step 1 that
E(µ⃗, α⃗, f) = 0 ≤ B. Assume now W(µ⃗, α⃗, k) > 0. If E(µ⃗, α⃗, f) = 0, then again E(µ⃗, α⃗, f) = 0 ≤
B. If E(µ⃗, α⃗, f) > 0, then Step 2 ensures that

E(µ⃗, α⃗, f)
W(µ⃗, α⃗, k)

= D(µ⃗, α⃗, f, k) ≤ B.

Finally, if E(µ⃗, α⃗, f) < 0, then again
E(µ⃗, α⃗, f)
W(µ⃗, α⃗, k)

= D(µ⃗, α⃗, f, k) < 0 ≤ B.

Altogether, we get that D(µ⃗, α⃗, f, k) ≤ B. Since (µ⃗, α⃗) was arbitrary, maximization leads to
N (f, k) ≤ B < ∞, hence f ∈ Hk and ∥f∥k = N (f, k) ≤ B.
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A.2 Proofs for Section 3

In this section we provide the proofs for the results relating to approximation with kernels in the
mean field limit.

Proof. of Proposition 3.1 Let f ∈ F and ϵ > 0 be arbitrary. Let B ∈ R≥0 and fM ∈ FM ,

f̂M ∈ HM , M ∈ N+, such that fM
P1−→ f , ∥fM − f̂M∥ ≤ ϵ

5 and ∥f̂M∥M ≤ B for all M ∈ N+

(exist by definition of F). Theorem 2.3 ensures that there exists a subsequence (fMℓ
)ℓ and f̂ ∈ Hk

with ∥f̂∥k ≤ B such that f̂Mℓ

P1−→ f̂ for ℓ → ∞. Choose now L1 ∈ N+ such that for all ℓ ≥ L1 we
have

sup
x⃗∈XMℓ

|f̂Mℓ
(x⃗)− f̂(µ̂[x⃗])| ≤ ϵ

5

sup
x⃗∈XMℓ

|fMℓ
(x⃗)− f(µ̂[x⃗])| ≤ ϵ

5
.

Let now µ ∈ P(X) be arbitrary and choose a sequence x⃗M ∈ XM with µ̂[x⃗M ]
dKR−→ µ. Finally, let

L2 ∈ N+ such that for all ℓ ≥ L2 we have

|f(µ)− f(µ̂[x⃗Mℓ
])| ≤ ϵ

5

|f̂(µ)− f̂(µ̂[x⃗Mℓ
])| ≤ ϵ

5

(such an L2 exists due to the continuity of f and f̂ ).

We now have for ℓ ≥ max{L1, L2} that

|f(µ)− f̂(µ)| ≤ |f(µ)− f(µ̂[x⃗Mℓ ])|+ |f(µ̂[x⃗Mℓ ])− fMℓ(x⃗Mℓ)|+ |fMℓ(x⃗Mℓ)− f̂Mℓ(x⃗Mℓ)|

+ |f̂Mℓ(x⃗Mℓ)− f̂(µ̂[x⃗Mℓ ])|+ |f̂(µ̂[x⃗Mℓ ])− f̂(µ)|

≤ ϵ

5
+

ϵ

5
+

ϵ

5
+

ϵ

5
+

ϵ

5
= ϵ.

Since µ was arbitrary, the result follows.

Proof. of Remark 3.2 We first show that F is a subvectorspace. Let f, g ∈ F and λ ∈ R, ϵ > 0

be arbitrary. W.l.o.g. we can assume λ ̸= 0. Choose sequences fM , gM ∈ FM , f̂M , ĝM ∈ HM ,
M ∈ N+, and constants Bf , Bg ∈ R≥0 from the definition of F for f , ϵ

2|λ| , and g, ϵ
2 , respectively.

Let M ∈ N+, x⃗ ∈ XM be arbitrary, then

|λfM (x⃗) + g(x⃗)− (λf(µ̂[x⃗])− g(µ̂[x⃗]))| ≤ |λ||fM (x⃗)− f(µ̂[x⃗])|+ |gM (x⃗)− g(µ̂[x⃗])|

together with fM
P1−→ f , gM

P1−→ g shows that λfM + gM
P1−→ λf + g.

Next, we have for all M ∈ N+ that

∥(λfM + gM )− (λf̂M + ĝM )∥∞ ≤ |λ|∥fM − f̂M∥∞ + ∥gM − ĝM∥∞ ≤ |λ| ϵ

2|λ|
+

ϵ

2
= ϵ.

Finally,
∥λf̂M + ĝM∥M ≤ |λ|∥f̂M∥M + ∥ĝM∥M ≤ |λ|Bf +Bg,

establishing that (λf̂M + ĝM )M is uniformly norm-bounded. Altogether, we have that λf + g ∈ F .

We now turn to the second claim. Let (f (n))n ⊆ F such that f (n) → f for some f ∈ C0(P(X),R)
and for all ϵ̄ > 0 there exist f (n)

M ∈ FM , f̂ (n)
M ∈ HM , (ρM )M ⊆ R≥0 and B(n) ∈ R≥0 with

ρM ↘ 0, ∥f (n)
M − f̂

(n)
M ∥∞ ≤ ϵ̄ and ∥f̂ (n)

M ∥M ≤ B(n) for all n,M ∈ N+, and

sup
x⃗∈XM

|f (n)
M (x⃗)− f (n)(µ̂[x⃗])| ≤ ρM
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for all n,M ∈ N+. We now show that f ∈ F . For this, let ϵ > 0 be arbitrary and choose f (n)
M ∈ FM ,

f̂
(n)
M ∈ HM , (ρM )M ⊆ R≥0 and B(n) ∈ R≥0 as above with ϵ̄ = ϵ

4 . Let N ∈ N+ be such that
∥f (m) − f (n)∥∞ ≤ ϵ

4 for all m,n ≥ N (such an N exists since (f (n))n converges in C0(P(X),R)
and hence is a Cauchy sequence). Furthermore, let Mρ ∈ N+ be such that for all M ≥ Mρ we have
ρM ≤ ϵ

4 . Define now fM = f
(M)
M and f̂M = f̂

(M)
M for M = 1, . . . ,Mρ − 1, and fM = f

(M+N)
M ,

f̂M = f̂
(N)
M for M ≥ Mρ.

Step 1 Let M ≥ Mρ and x⃗ ∈ XM be arbitrary. We have

|fM (x⃗)− f(µ̂[x⃗])| = |f (N+M)
M (x⃗)− f(µ̂[x⃗])|

≤ |f (N+M)
M (x⃗)− f (N+M)(µ̂[x⃗])|+ |f (N+M)(µ̂[x⃗])− f(µ̂[x⃗])|

≤ ρM + ∥f (N+M) − f∥∞,

and since the right hand side (which is independent of x⃗) converges to 0 for M → ∞, we get
fM

P1−→ f .

Step 2 For M = 1, . . . ,Mρ we get

∥fM − f̂M∥∞ = ∥f (M)
M − f̂

(M)
M ∥∞ ≤ ϵ̄ ≤ ϵ.

Let now M ≥ Mρ and x⃗ ∈ XM be arbitrary. We have

|fM (x⃗)− f̂M (x⃗)| = |f (M+N)
M (x⃗)− f̂

(N)
M (x⃗)|

≤ |f (M+N)
M (x⃗)− f (N+M)(µ̂[x⃗])|+ |f (N+M)(µ̂[x⃗])− f (N)(µ̂[x⃗])|

+ |f (N)(µ̂[x⃗])− f
(N)
M (x⃗)|+ |f (N)

M (x⃗)− f̂
(N)
M (x⃗)|

≤ sup
x⃗′∈XM

|f (M+N)
M (x⃗′)− f (M+N)(µ̂[x⃗′])|+ ∥f (M+N) − f (N)∥∞

+ sup
x⃗′∈XM

|f (N)(µ̂[x⃗′])− f
(N)
M (x⃗′)|+ ∥f (N)

M − f̂
(N)
M ∥∞

≤ ρM +
ϵ

4
+ ρM + ϵ̄

≤ 4
ϵ

4
= ϵ,

and since x⃗ ∈ XM was arbitrary, we get ∥fM − f̂M∥∞ ≤ ϵ.

Step 3 For M = 1, . . . ,Mρ − 1 we get by construction that ∥f̂M∥M = ∥f̂ (M)
M ∥M ≤ B(M), and for

M ≥ Mρ we find ∥f̂M∥M = ∥f̂ (N)
M ∥M ≤ B(N). Altogether, we get for M ∈ N+ that

∥f̂M∥M ≤ max{B(1), . . . , B(Mρ−1), B(N)}.
Combining the three steps establishes that f ∈ F .

Finally, here is the proof of the represnter theorem in the mean field limit.

Proof. of Theorem 3.3 The existence and uniqueness of fM and f follows from the well-known
representer theorem (applied to all kM and k).

We now turn to the convergence of the minimizers. For all M ∈ N+ we have

λ∥f∗
M∥M ≤ L(f∗

M (x⃗
[M ]
1 ), . . . , f∗

M (x⃗
[M ]
N )) + λ∥f∥M ≤ L(0, . . . , 0),

i.e., ∥f∗
M∥M ≤ L(0, . . . , 0)/λ. Define

LM : HM → R≥0, f 7→ L(f(x⃗
[M ]
1 ), . . . , f(x⃗

[M ]
N )) + λ∥f∥M

L : Hk → R≥0, f 7→ L(f(µ1), . . . , f(µN )) + λ∥f∥k,

and let fM ∈ HM with fM
P1−→ f for some f ∈ Hk. The continuity of fM , f

and L as well as x⃗
[M ]
n

dKR−→ µn for M → ∞ and all n = 1, . . . , N , imply then that
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limM→∞ L(fM (x⃗
[M ]
1 ), . . . , fM (x⃗

[M ]
N )) = L(f(µ1), . . . , f(µN )). Combining this with Lemma

2.4 leads to
L(f) ≤ lim inf

M→∞
LM (f).

Let now f ∈ Hk be arbitrary and let fM ∈ HM be the sequence from Lemma 2.5. Using the same
arguments as above we find that

lim sup
M→∞

LM (fM ) ≤ ∥f∥k.

We have shown that LM
Γ−→ L and hence Proposition B.3 ensures that there exists a subsequence

(f∗
Mℓ

)ℓ such that f∗
Mℓ

P1−→ f∗ and LMℓ
(f∗

Mℓ
) → L(f∗).

A.3 Proofs for Section 4

Proof. of Lemma 4.2 That ℓ is nonnegative is clear from the proof of Proposition 2.1. Let now
all ℓM be convex and let µ ∈ P(X), y ∈ Y, t1, t2 ∈ R and λ ∈ (0, 1) be arbitrary, and define

I = [min{t1, t2},max{t1, t2}]. Furthermore, let x⃗M ∈ XM with x⃗M
dKR−→ µ for M → ∞ and

ϵ > 0 be arbitrary. Choose now M so large that

|ℓ(µ, y, λt1 + (1− λ)t2)− ℓ(µ̂[x⃗M ], y, λt1 + (1− λ)t2)| ≤
ϵ

6
sup

x⃗∈XM

y′∈Y,t∈I

|ℓM (x⃗, y′, t′)− ℓ(µ̂[x⃗], y′, t′)|

≤ ϵ

6
.

This is possible due to the continuity of ℓ, as well as ℓM
P1−→ ℓ. We then have

ℓ(µ, y, λt1 + (1− λ)t2) ≤ ℓ(µ̂[x⃗], y, λt1 + (1− λ)t2) +
ϵ

6

≤ ℓM (x⃗M , y, λt1 + (1− λ)t2) +
ϵ

3

≤ λℓM (x⃗M , y, t1) + (1− λ)ℓM (x⃗M , y, t2) +
ϵ

3

≤ λℓ(µ̂[x⃗M ], y, t1) + (1− λ)ℓ(µ̂[x⃗M ], y, t2) +
ϵ

3
+ (λ+ 1− λ)

ϵ

6
≤ λℓ(µ, y, t1) + (1− λ)ℓ(µ, y, t2) + ϵ,

and since ϵ > 0 was arbitrary, this establishes
ℓ(µ, y, λt1 + (1− λ)t2) ≤ λℓ(µ, y, t1) + (1− λ)ℓ(µ, y, t2),

i.e., convexity of ℓ.

Proof. of Proposition 4.3 From Lemma 4.2 we get that ℓ is nonnegative and convex. The existence,
uniqueness and the representation formulas follow then from the standard representer theorem, cf.
e.g., [20, Theorem 5.5].

Furthermore, for all M ∈ N+ we have

λ∥f∗
M,λ∥2M ≤ 1

N

N∑
n=1

ℓM (x⃗[M ]
n , y[M ]

n , f∗
M,λ(x⃗

[M ]
n )) + λ∥f∗

M,λ∥2M

≤ R
ℓM ,D

[M]
N ,λ

(0)

≤ NCℓ,

hence ∥f∗
M,λ∥M ≤

√
NCℓ

λ .

Let f ∈ Hk and (fM )M , fM ∈ HM , such that fM
P1−→ f . From D

[M ]
N

P1−→ DN and the continuity

of ℓM , ℓ, together with ℓM
P1−→ ℓ and the boundedness of {y[M ]

n | M ∈ N+, n = 1, . . . , N} ⊆ Y

and {fM (x⃗
[M ]
n ) | M ∈ N+, N = 1, . . . , N} we find that

lim
M

1

N

N∑
n=1

ℓM (x⃗[M ]
n , y[M ]

n , fM (x⃗[M ]
n )) =

1

N

N∑
n=1

ℓ(µn, yn, f(µn)).
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Combining this with Lemma 2.4 and Lemma 2.5 then establishes that R
ℓM ,D

[M]
N ,λ

Γ−→ Rℓ,DN ,λ and
the remaining claims follow from Proposition B.3 and the uniqueness of the minimizers.

Proof. of Lemma 4.4 Let ϵ > 0 be arbitrary. Recall from the proof of Proposition 4.3 that for all

M ∈ N+ we have ∥f∗
M,λ∥M ≤

√
NCℓ

λ , and hence for all x⃗ ∈ XM we have

|f∗
M,λ(x⃗)| ≤ ∥f∗

M,λ∥k∥kM (·, x⃗)∥k

≤
√

NCℓ

λ

√
Ck.

A similar argument applies to f∗
λ ∈ Hk, so we can find a compact set K ⊆ R with

{f∗
M,λ(x⃗

[M ]
n ) | M ∈ N+, n = 1, . . . , N} ∪ {f∗

λ(µn) | n = 1, . . . , N} ⊆ K.

Choose now mϵ ∈ N+ such that for all m ≥ mϵ we have

sup
x⃗∈XMm

y∈Y

|ℓMm
(x⃗, y, f∗

Mm,λ(x⃗))− ℓMm
(x⃗, y, f∗

λ(µ̂[x⃗]))| ≤
ϵ

3

sup
x⃗∈XMm

y∈Y,t∈K

|ℓMm
(x⃗, y, t)− ℓ(µ̂[x⃗], y, t)| ≤ ϵ

3∣∣∣∣∣
∫
XMm×Y

ℓ(µ̂[x⃗], y, f∗
λ(µ̂[x⃗]))dP

[Mm](x⃗, y)−
∫
P(X)×Y

ℓ(µ, y, f∗
λ(µ))d(µ, y)

∣∣∣∣∣ ≤ ϵ

3
.

Such a mϵ exists since f∗
Mm,λ

P1−→ f∗
λ and all ℓMm

are uniformly Lipschitz continuous (first inequal-

ity), ℓMm

P1−→ ℓ and Y and K are compact (second inequality), and P [M ] P1−→ P as well as that
(µ, y) 7→ ℓ(µ, y, f∗

λ(µ)) is continuous and bounded (third inequality). We now have∣∣∣RℓMm ,P [Mm](f∗
Mm,λ)−Rℓ,P (f

∗
λ)
∣∣∣

≤
∣∣∣∣∫

XMm×Y

ℓMm
(x⃗, y, f∗

Mm,λ(x⃗))− ℓMm
(x⃗, y, f∗

λ(µ̂[x⃗]))dP
[Mm](x⃗, y)

∣∣∣∣
+

∣∣∣∣∫
XMm×Y

ℓMm
(x⃗, y, f∗

λ(µ̂[x⃗]))− ℓ(µ̂[x⃗], y, f∗
λ(µ̂[x⃗]))dP

[Mm](x⃗, y)

∣∣∣∣
+

∣∣∣∣∣
∫
XMm×Y

ℓ(µ̂[x⃗], y, f∗
λ(µ̂[x⃗]))dP

[Mm](x⃗, y)−
∫
P(X)×Y

ℓ(µ, y, f∗
λ(µ))d(µ, y)

∣∣∣∣∣
≤

∫
XMm×Y

|ℓMm(x⃗, y, f∗
Mm,λ(x⃗))− ℓMm(x⃗, y, f∗

λ(µ̂[x⃗]))|dP [Mm](x⃗, y)

+

∫
XMm×Y

|ℓMm(x⃗, y, f∗
λ(µ̂[x⃗]))− ℓ(µ̂[x⃗], y, f∗

λ(µ̂[x⃗]))|dP [Mm](x⃗, y)

+
ϵ

3
≤ ϵ,

and since ϵ > 0 was arbitrary, the claim follows.

Proof. of Proposition 4.5 Observe that all kM are bounded measurable kernels, RℓM ,P [M](fM ) < ∞
for all f ∈ HM , ℓM is a convex, P [M ]-integrable Nemitskii loss (cf. Remark 4.1) and hence [20,
Lemma 5.1, Theorem 5.2] guarantee the existence and uniqueness of f∗

M,λ. A completely analogous
argument shows the existence and uniqueness of f∗

λ .

We now show that RℓM ,P [M],λ
Γ−→ Rℓ,P,λ. For the Γ-lim inf-inequality, let fM ∈ HM , f ∈ Hk be

arbitrary with fM
P1−→ f , and let ϵ > 0. Choose Mϵ ∈ N+ so large that for all M ≥ Mϵ∣∣∣∣∫ ℓ(µ̂[x⃗], y, f(µ̂[x⃗])dP [M ](x⃗, y))−

∫
ℓ(µ, y, f(µ))dP (µ, y)

∣∣∣∣ ≤ ϵ

2
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(this is possible since (µ, y) 7→ ℓ(µ, y, f(µ)) is bounded and continuous and P [M ] P1−→ P ) and

|ℓM (x⃗, y, fM (x⃗))− ℓ(µ̂[x⃗], y, f(µ̂[x⃗]))| ≤ ϵ

2

for all x⃗ ∈ XM , y ∈ Y (this is possible due to the same argument used in the proof of Lemma 4.4).
For M ≥ Mϵ we then find

Rℓ,P,λ(f) =

∫
ℓ(µ, y, f(µ))dP (µ, y) + λ∥f∥2k

≤
∫

ℓM (x⃗, y, fM (x⃗))dP [M ](x⃗, y)

+

∣∣∣∣∫ ℓ(µ̂[x⃗], y, f(µ̂[x⃗])dP [M ](x⃗, y))−
∫

ℓ(µ, y, f(µ))dP (µ, y)

∣∣∣∣
+

∣∣∣∣∫ ℓM (x⃗, y, fM (x⃗))− ℓ(µ̂[x⃗], y, f(µ̂[x⃗]))dP [M ](x⃗, y)

∣∣∣∣+ λ∥f∥2k

≤
∫

ℓM (x⃗, y, fM (x⃗))dP [M ](x⃗, y) + λ lim inf
M

∥fM∥2M + ϵ,

where we used Lemma 2.4 in the last inequality.

For the Γ-lim sup-inequality, let f ∈ Hk be arbitrary and let (fM )M be the recovery sequence from
Lemma 2.5. The desired inequality then follows by repeating the arguments from above.

Finally, using exactly the same argument as in the proof of Proposition 4.3 shows that ∥f∗
M,λ∥M ≤√

NCℓ

λ , so we can apply Proposition B.3 and the result follows.

Proof. of Proposition 4.7 Let (ϵn)n ⊆ R>0 with ϵm ↘ 0. We construct a strictly increasing sequence
(Mn)n such that ∣∣∣RHMn∗

ℓMn ,P [Mn] −RHk∗
ℓ,P

∣∣∣ ≤ ϵn

for all n ∈ N+.

We start with n = 1: Since A2(0) = 0 and A2 is continuous in 0, cf. [20, Lemma 5.15], there exists
λ′
1 ∈ R>0 such that A2(λ) ≤ ϵ1

3 for all 0 < λ ≤ λ′
1. From Assumption 4.6 we get λ′′

1 ∈ R>0 such
that for all M ∈ N+ we have A

[M ]
2 (λ) ≤ ϵ1

3 for all 0 < λ ≤ λ′′
1 . Define now λ1 = min{λ′

1, λ
′′
1},

and observe that λ1 > 0. Proposition 4.5 ensures the existence of a strictly increasing sequence
(M

(1)
m )m ⊆ N+ with

R
H

M
(1)
m

∗

ℓ
M

(1)
m

,P [M
(1)
m ],λ1

→ RHk∗
ℓ,P,λ1

for m → ∞. Choose m1 ∈ N+ such that for all m ≥ m1 we have∣∣∣∣∣RH
M

(1)
m

∗

ℓ
M

(1)
m

,P [M
(1)
m ],λ1

−RHk∗
ℓ,P,λ1

∣∣∣∣∣ ≤ ϵ1
3
.

We now set M1 = M
(1)
m1 and get that∣∣∣RHM1

∗
ℓM1

,P [M1] −RHk∗
ℓ,P

∣∣∣ ≤
∣∣∣∣∣∣R

H
M

(1)
m1

∗

ℓ
M

(1)
m1

,P
[M

(1)
m1

]
−R

H
M

(1)
m1

∗

ℓ
M

(1)
m1

,P
[M

(1)
m1

]
,λ1

∣∣∣∣∣∣+
∣∣∣∣∣∣R

H
M

(1)
m1

∗

ℓ
M

(1)
m1

,P
[M

(1)
m1

]
,λ1

−RHk∗
ℓ,P,λ1

∣∣∣∣∣∣
+
∣∣∣RHk∗

ℓ,P,λ1
−RHk∗

ℓ,P

∣∣∣
≤ A

[M(1)
m ]

2 (λ1) +
ϵ1
3

+A2(λ1)

≤ ϵ1.

We can now repeat the argument from above inductively: Suppose we have constructed our sub-
sequence up to n ∈ N+, i.e., M1, . . . ,Mn. Choose λ′ ∈ R>0 such that A2(λ) ≤ ϵn+1

3 for
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all 0 < λ ≤ λ′ (exists due to continuity), and λ′′ ∈ R>0 such that for all M ∈ N+ we have
A

[M ]
2 (λ) ≤ ϵn+1

3 for all 0 < λ ≤ λ′′ (using Assumption 4.6). Define now λn+1 = min{λ′, λ′′},
and observe that λn+1 > 0. Proposition 4.5 ensures the existence of a strictly increasing sequence(
M

(n+1)
m

)
m

such that

R
H

M
(n+1)
m

∗

ℓ
M

(n+1)
m

,P [M
(n+1)
m ],λn+1

→ RHk∗
ℓ,P,λn+1

for m → ∞. Choose mn+1 such that for all m ≥ mn+1 we have∣∣∣∣∣RH
M

(n+1)
m

∗

ℓ
M

(n+1)
m

,P [M
(n+1)
m ],λn+1

−RHk∗
ℓ,P,λn+1

∣∣∣∣∣ ≤ ϵn+1

3
.

Define now Mn+1 = max{Mn + 1,M
(n+1)
mn+1 }, then we get

∣∣∣∣RHMn+1
∗

ℓMn+1
,P [Mn+1] −RHk∗

ℓ,P

∣∣∣∣ ≤
∣∣∣∣∣∣∣R

H
M

(n+1)
mn+1

∗

ℓ
M

(n+1)
mn+1

,P
[M

(n+1)
mn+1

]
−R

H
M

(n+1)
mn+1

∗

ℓ
M

(n+1)
mn+1

,P
[M

(n+1)
mn+1

]
,λn+1

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣R
H

M
(n+1)
mn+1

∗

ℓ
M

(n+1)
mn+1

,P
[M

(n+1)
mn+1

]
,λn+1

−RHk∗
ℓ,P,λn+1

∣∣∣∣∣∣∣
+

∣∣∣RHk∗
ℓ,P,λn+1

−RHk∗
ℓ,P

∣∣∣
≤ A

M(n+1)
mn+1

2 (λn+1) +
ϵn+1

3
+A2(λn+1)

≤ ϵn+1.

The resulting sequence (Mn)n fulfills then

RHMn∗
ℓMn ,P [Mn] → RHk∗

ℓ,P

for n → ∞.

B Additional technical results

In this section we state and prove two technical results that play an important role in the proofs of the
main results.

B.1 A characterization of RKHS functions

Here we recall the following characterization of RKHS functions from [31, Section I.4]. Let X ̸= ∅
be arbitrary. For k : X × X → R symmetric and positive semidefinite and some f ∈ RX as well as
N ∈ N+, x⃗ ∈ XN , α⃗ ∈ RN define

E(x⃗, α⃗, f) =
N∑

n=1

αnf(xn)

W(x⃗, α⃗, k) =

√√√√ N∑
i,j=1

αiαjk(xj , xi),

where we might omit some arguments if they are clear. Furthermore, define

D(x⃗, α⃗, f, k) =


E(x⃗,α⃗,f)
W(x⃗,α⃗,k) if E(x⃗, α⃗, f) ̸= 0,W(x⃗, α⃗, k) ̸= 0

0 if E(x⃗, α⃗, f) = W(x⃗, α⃗, k) = 0

∞ if E(x⃗, α⃗, f) ̸= 0,W(x⃗, α⃗, k) = 0
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and
N (f, k) = sup

(x⃗,α⃗)∈XN×RN

N∈N+

D(x⃗, α⃗, f, k).

We collect now some simple facts that will be used repeatedly.

Let x⃗ ∈ XN , α⃗ ∈ RN , N ∈ N+, be arbitrary, and define

f =

N∑
n=1

αnk(·, xn) ∈ Hpre
k .

1. By construction, W(x⃗, α⃗, k) ∈ R≥0 (recall that k is positive semidefinite).

2. Since f ∈ Hpre
k , its RKHS norm has an explicit form and we find

∥f∥k =

√√√√ N∑
i,j=1

αiαjk(xj , xi) = W(x⃗, α⃗, k).

This also implies that f ≡ 0 if and only if W(x⃗, α⃗, k) = 0.
3. If W(x⃗, α⃗, k) > 0, then

D(x⃗, α⃗, f, k) =
E(x⃗, α⃗, f)
W(x⃗, α⃗, k)

=

∑N
i=1 αif(xi)√∑N

i,j=1 αiαjk(xj , xi)

=

∑N
i,j=1 αiαjk(xj , xi)√∑N
i,j=1 αiαjk(xj , xi)

=
W(x⃗, α⃗, k)2

W(x⃗, α⃗, k)
= W(x⃗, α⃗, k).

We can now state the characterization result.
Theorem B.1. Let k : X × X → R be a kernel and f ∈ RX . Then f ∈ Hk if and only if
N (f, k) < ∞. If f ∈ Hk, then ∥f∥k = N (f, k).

For convenience, we provide a full self-contained proof of this result.

Proof. Step 1 First, we show that for f ∈ Hk, we have ∥f∥k = N (f, k).

N (f, k) ≤ ∥f∥k: Let N ∈ N+ and (x⃗, α⃗) ∈ XN × RN be arbitrary. Observe that

E(x⃗, α⃗, f) =
N∑

n=1

αnf(xn)

=

N∑
n=1

αn⟨f, k(·, xn)⟩k

= ⟨f,
N∑

n=1

αnk(·, xn)⟩k

≤ ∥f∥k

∥∥∥∥∥
N∑

n=1

αnk(·, xn)

∥∥∥∥∥
k

= ∥f∥kW(x⃗, α⃗, k).

If W(x⃗, α⃗, k) = ∥
∑N

n=1 αnk(·, xn)∥k = 0, then
∑N

n=1 αnk(·, xn) = 0Hk
, hence E(x⃗, α⃗, f) =

⟨f, 0Hk
⟩k = 0 and by definition D(x⃗, α⃗, f, k) = 0 ≤ ∥f∥k.
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If W(x⃗, α⃗, k) > 0, we can rearrange to get

E(x⃗, α⃗, f)
W(x⃗, α⃗, k)

= D(x⃗, α⃗, f, k) ≤ ∥f∥k.

Since (x⃗, α⃗) was arbitrary, we find that N (x⃗, α⃗, f, k) ≤ ∥f∥k.

N (f, k) ≥ ∥f∥k: Let ϵ > 0 and choose fϵ =
∑N

n=1 αnk(·, xn) ∈ Hpre
k such that ∥f − fϵ∥k < ϵ.

If W(x⃗, α⃗, k) = ∥fϵ∥k = 0, then fϵ = 0Hk
and hence E(x⃗, α⃗, f) = ⟨f, fϵ⟩k = ⟨f, 0Hk

⟩k = 0. By
definition, this then shows

D(x⃗, α⃗, f) = 0 = ∥fϵ∥k ≥ ∥f∥k − ϵ.

Before we continue, note that for all f1, f2 ∈ Hk we have

|E(x⃗, α⃗, f1)− E(x⃗, α⃗, f2)| =

∣∣∣∣∣
N∑

n=1

αn(f1(xn)− f2(xn))

∣∣∣∣∣
=

∣∣∣∣∣
N∑

n=1

αn⟨f1 − f2, k(·, xn)⟩k

∣∣∣∣∣
=

∣∣∣∣∣⟨f1 − f2,

N∑
n=1

αnk(·, xn)⟩k

∣∣∣∣∣
≤ ∥f1 − f2∥k∥fϵ∥k.

Assume now that W(x⃗, α⃗, k) > 0, then we get

D(x⃗, α⃗, f, k) =
E(x⃗, α⃗, f)
W(x⃗, α⃗, k)

≥ E(x⃗, α⃗, fϵ)
W(x⃗, α⃗, k)

− ∥f − fϵ∥k∥fϵ∥k
W(x⃗, α⃗, k)

≥ E(x⃗, α⃗, fϵ)
W(x⃗, α⃗, k)

− ϵ∥fϵ∥k
W(x⃗, α⃗, k)

= W(x⃗, α⃗, k)− ϵ

= ∥fϵ∥k − ϵ

≥ ∥f∥k − 2ϵ

Altogether, by definition of N (f, k), we get that

N (f, k) ≥ D(x⃗, α⃗, f, k) ≥ ∥f∥k − 2ϵ.

Since ϵ > 0 was arbitrary, we find that N (f, k) ≥ ∥f∥k.

Step 2 Let f ∈ RX be arbitrary. We show that if N (f, k) < ∞, then

ℓf : Hpre
k → R

N∑
n=1

αnk(·, xn) 7→
N∑

n=1

αnf(xn)

is a well-defined, linear and continuous (w.r.t. ∥ · ∥k) map.

To establish the well-posedness, let (x⃗, α⃗) ∈ XN × RN and (y⃗, β⃗) ∈ XM × RM such that

N∑
n=1

αnk(·, xn) =

M∑
m=1

βmk(·, ym) ∈ Hpre
k .

This implies that
N∑

n=1

αnk(·, xn) +

M∑
m=1

(−βm)k(·, ym) = 0Hk
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and hence W((x⃗, y⃗), (α⃗,−β⃗), k) = ∥
∑N

n=1 αnk(·, xn) +
∑M

m=1(−βm)k(·, ym)∥k = 0. Assume
now that

N∑
n=1

αnf(xn) ̸=
m∑

m=1

βmf(xm),

then we get that
N∑

n=1

αnf(xn) +

m∑
m=1

(−βm)f(xm) = E((x⃗, y⃗), (α⃗,−β⃗), f) ̸= 0

which by definition implies that D((x⃗, y⃗), (α⃗,−β⃗), f, k) = ∞ and therefore N (f, k) = ∞, a
contradiction.

The linearity is then clear. Finally, to show the continuity, let Hpre
k ∋ f0 =

∑N
n=1 αnk(·, xn) be

arbitrary and set x⃗ = (x1 · · · xN ), α⃗ = (α1 · · · αN ), then

|ℓf (f0)| =

∣∣∣∣∣
N∑

n=1

αnf(xn)

∣∣∣∣∣
= |E(x⃗, α⃗, f)|
≤ N (f, k)W(x⃗, α⃗, k)

= N (f, k)∥f0∥k.
Since N (f, k) is finite and independent of f0, and ℓf is a linear map, this shows the continuity of ℓf .

Step 3 Let f ∈ RX such that N (f, k) < ∞. Since according to Step 2 ℓf is a linear and continuous
map on Hpre

k and the latter is dense in Hk, there exists a unique linear and continuous extension
ℓ̄f : Hk → R of ℓf . Furthermore, from the Riesz Representation Theorem there exists a unique
f̂ ∈ Hk with ℓ̄f = ⟨·, f̂⟩k. For all x ∈ X we then get

f̂(x) = ⟨f̂ , k(·, x)⟩k
= ⟨k(·, x), f̂⟩k
= ℓ̄f (k(·, x))
= ℓf (k(·, x))
= f(x),

hence f = f̂ ∈ Hk.

B.2 A Γ-convergence argument

We use repeatedly the concept of Γ-convergence, see for example [32]. For convenience, in this section
we summarize the well-known and standard main argument, roughly following [33, Chapter 5].
Definition B.2. Let FM : HM → R ∪ {∞} and F : Hk → R ∪ {∞}. We say that FM Γ-converges
to F and write FM

Γ−→ F , if

1. For all sequences (fM )M , fM ∈ HM , with fM
P1−→ f for some f ∈ Hk, we have

F (f) ≤ lim inf
M

FM (fM ).

2. For all f ∈ Hk there exists a sequence (fM )M with fM ∈ HM such that fM
P1−→ f and

F (f) ≥ lim sup
M

FM (fM ).

The sequence in the second item is commonly called a recovery sequence (for f ).

Proposition B.3. Let FM
Γ−→ F and f∗

M ∈ argminf∈HM
FM (f) for all M ∈ N (in particular, all

the minima are attained). If there exists B ∈ R≥0 such that ∥f∗
M∥M ≤ B for all M ∈ N, then there

exists a subsequence (f∗
Mℓ

)ℓ and f∗ ∈ Hk such that f∗
Mℓ

P1−→ f∗. Furthermore, FMℓ
(f∗

Mℓ
) → F (f∗).
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Proof. From Theorem 2.3 we get the existence of (f∗
Mℓ

)ℓ and f∗ ∈ Hk, and that f∗
Mℓ

P1−→ f∗. Let
f ∈ Hk be arbitrary and let (fM )M be a recovery sequence for f . We then have

F (f) ≥ lim sup
M

FM (fM )

≥ lim sup
Mℓ

FMℓ
(fMℓ

)

≥ lim inf
Mℓ

FMℓ
(fMℓ

)

≥ lim inf
Mℓ

FMℓ
(f∗

Mℓ
)

≥ F (f∗),

where we used the lim sup-inequality of Γ-convergence in the first step, standard properties of
lim sup and lim inf in the second and third step, the fact that f∗

Mℓ
is a minimizer of FMℓ

in the fourth
step, and finally the lim inf-inequality of Γ-convergence. Since f ∈ Hk was arbitrary, this shows that
f∗ is a minimizer of F .

Furthermore, let (fM )M be a recovery sequence for f∗, then

F (f∗) ≥ lim sup
M

FM (fM )

≥ lim sup
ℓ

FMℓ
(fMℓ

)

≥ lim sup
ℓ

FMℓ
(f∗

Mℓ
),

where we used the lim sup-inequality in the first step, an elementary property of lim sup in the
second step, and finally that f∗

Mℓ
is a minimizer of FMℓ

. Since f∗
Mℓ

P1−→ f∗, the lim inf-inequality of
Γ-convergence implies that

F (f∗) ≤ lim inf
ℓ

FMℓ
(f∗

Mℓ
),

so we find that
lim sup

ℓ
FMℓ

(f∗
Mℓ

) ≤ F (f∗) ≤ lim inf
ℓ

FMℓ
(f∗

Mℓ
),

establishing that FMℓ
(f∗

Mℓ
) → F (f∗).
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