BioMassters: A Benchmark Dataset for Forest
Biomass Estimation using Multi-modal Satellite
Time-series

1 Appendix A: Top-performing models details

1.1 U-TAE Model details

We adapted U-TAE Model [1]. We consider input as an image time sequence
X, organized into a four-dimensional tensor of shape T'x C x H x W, with T
the length of the sequence, C' the number of channels, and H x W the spatial
extent.
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Figure 1: U-TAE Model Architecture (edited from [1])

Spatio-Temporal Encoding The model encodes a sequence X in three steps:
(a) each image in the sequence is embedded simultaneously and independently
by a shared multi-level spatial convolutional encoder, (b) a temporal attention
encoder collapses the temporal dimension of the resulting sequence of feature
maps into a single map for each level, (c) a spatial convolutional decoder pro-
duces a single feature map with the same resolution as the input images, see
Figure. 1.



The adapted model has two major differences then the U-TAE Model [1].
(a) Spatial Encoding: Unlike [1] we do not use group normalization in encoder
because we do not see any improvements over batch normalization. (b) Tem-
poral Encoding : Unlike [1] we use a simplified attention-based scheme without
grouping strategy which processes the temporal dimension at each feature map
resolution. For each resolution map, we apply shared attention weights inde-
pendently at each pixel of e, the feature map sequence at the level resolution
I. This generates a temporal attention mask a' for each pixel. The masks a’ at
level [ of the encoder are then used as weights to aggregate e! on the temporal
dimension resulting f* map:

T
= a0, (1)
t=1
with ® term-wise multiplication with channel broadcasting.

Training details We take tf_efficientnetv2_1_in21kencoder from timm
framework. The inputs to the encoder are 15-band (C' = 15) images with a
resolution of W x H = 256 x 256 from joint Sentinel-1 and Sentinel-2 satellite
missions. The encoder is shared for all T = 12 months. We directly optimize
RMSE loss for 900 epochs using AdamW optimizer with learning rate 1073
and CosineAnnelingLR scheduler. We don’t compute loss for high AGB val-
ues over 400. We use vertical flips, rotations, and random month dropout as
augmentations. Month dropout removes images.

1.2 Swin UNETR Model details

Data Preprocessing The 0.1st and 99.9th percentiles are obtained as the
lower and upper bound of inliers of each feature and AGB. Outliers are replaced
by lower or upper limitations. The missing features of a specific month or
modality (Sentinel-1 and Sentinel-2) are substituted by a zero array. Features
are normalized using the Z-score method, and AGB is rescaled to range [0, 1].
After that, for each training sample, 4 Sentinel-1 features and 11 Sentinel-2
features of 12 months are concatenated to 4D tensor in shape [15, 12, 256, 256],
AGB is in shape [1, 256, 256] as training target.

Model and Losses The adapted Swin UNEet TRansformer (Swin UNETR)
is applied as the spatial-temporal regression model. The original Swin UNETR
is designed for semantic segmentation of 3D medical images [2]. It has a UNet-
based architecture with Swin Transformer V1 [3] as an encoder to extract multi-
scale features using self-attention in an efficient shifted window partitioning
scheme. We replace the attention layer of V1 block with the attention proposed
in Swin Transformer V2 [4] to improve the training stability.

The adapted Swin UNETR contains a 4-stage encoder to learn multi-scale
features from input, and then a 5-stage decoder upsamples feature maps to
the same spatial-temporal size as input. Feature maps are averaged on the
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Figure 2: Swin UNETR model architecture

time channel and fed into the output head to generate AGB prediction. We
apply mean absolute error as the reconstruction loss Ly, to measure content
consistency between AGB ground truth I and prediction I; as

Lyec = %Z(Iz - jz) (2)

where n is the number of pixels in AGBM.

In addition, structure similarity loss L, is used in training to produce
more visually pleasing AGBM predictions. Structure similarity comprehensively
measures the differences between images in brightness, contrast, and structure,
and it correlates more with human perception of image quality. L is calcu-
lated as

Lysim =1 —SSIM(I,I) (3)

where SSIM is implemented as [5].
The total loss Lyotq; is the weighted combination of L,.. and Lgsim where
A1 is the weight of L., Ag is the weight of Lggip,-

Ltotal = >\1Lrec + >\2Lssim (4)

Training details The adapted Swin UNETR is trained for 100 epochs us-
ing AdamW optimizer with constant betas (0.9, 0.99) and weight decay 0.01.
The learning rate increases linearly from 0.0 to 0.001 in the first 10 epochs,
then it anneals in a cosine schedule to 0.0 in the last 90 epochs. The batch
size is set to 4 to take full advantage of GPU A100-40G. In each training step,
Volumentations-3D [6] carries out the 3D data augmentation on features and
AGB targets, including vertical flipping, horizontal flipping and randomly ro-
tating in 90 degrees with the probability of 0.1 for each operation. In the loss
function, A; is set to 1.0, and As is set to 0.2. The training samples are split



into 5 folds to train 5 models. For each testing sample, the average of 5 outputs
is the final AGB prediction.

1.3 UNET++ Model details

Data Preprocessing Sentinel-1 (S1) and Sentinel-2 (S2) imagery were pre-
processed into six cloud-free median composites (Table 1) to reduce data dimen-
sionality while preserving the maximum amount of information. S1 imagery was
reduced to seasonal median composites and then stacked. Similarly, S2 imagery
was first cloud masked using a 50% threshold of the cloud probability layer, and
then also reduced to seasonal median composites and stacked. For two com-
posites (i.e. 2SI and 4ST) multiple vegetation (e.g. NDVI for S2) and spectral
indices (e.g. VV/VH ratio for S1) were also generated.

Training Details The data consisting of 8692 stacked images were divided
into the train (98.9%, n=8596) and validation (1.1%, n=96) datasets. This was
done in a stratified manner by binning AGB values into four 25th-percentile bins.
S1, S2, and AGBD images were also standardized using mean and standard
deviation calculated on the train set. Then 15 models were trained using a
UNet++ architecture in combination with various encoders and attention blocks
(e.g. scse) and median composites (Figure 1). The pre-trained on imagenet
dataset models were further trained with multiple augmentations (e.g. flips
and rotations), batch size of 32, AdamW optimizer with 0.001 initial learning
rate, weight decay of 0.0001, and a ReduceLROnPlateau scheduler. UNet+-+
models were optimized using a Huber loss to reduce the effect of outliers in the
data for 200 epochs. To improve the performance of each UNet++ model they
were further fine-tuned (after freezing pre-trained encoder weights and removing
augmentations) for another 100 epochs. For each UNet++ model, the average of
the two best predictions was used for further ensembling and evaluation using a
root-mean-square error (RMSE). The ensemble of all 15 models using a weighted
average was used for the final evaluation of the test set (n=2773). The training
of the ensemble model took approximately 360 hours (i.e. 24 hours/model) on
a single NVIDIA GeForce RTX 3090 (24 GB VRAM).
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