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Reproducibility Statement

We provide our source codes to ensure the reproducibility of our experimental results. Below we
summarize several critical aspects w.r.t the reproducible results:

• Datasets. The datasets we used are all publicly accessible, which is introduced in Ap-
pendix E.1. For long-tailed subsets, we strictly follows previous work [29] on CIFAR-100-
LT to avoid the bias attribute to the sampling randomness. On ImageNet-LT and Places-LT,
we employ the widely-used data split first introduced in [44].

• Source code. Our code is available at https://github.com/MediaBrain-SJTU/Geometric-
Harmonization.

• Environment. All the experiments are conducted on NVIDIA GeForce RTX 3090 with
Python 3.7 and Pytorch 1.7.

A Additional Discussions of Related Works

A.1 Supervised Long-tailed Learning

As the explorations on the classifier learning [29, 70] are orthogonal to the self-supervised learn-
ing paradigms, we mainly focus on the representation learning in supervised long-tailed recogni-
tion. The pioneering work [29] first explores representation and classifier learning with a disen-
tangling mechanisms and shows the merits of instance-balanced sampling strategy on the repre-
sentation learning stage. Subsequently, Yang and Xu [68] points out the negative impact of label
information and proposes to improve the representation learning with semi-supervised learning and
self-supervised learning. This motivates a stream of research works diving into the representation
learning. Supervised contrastive learning [30, 13] is leveraged with rebalanced sampling or pro-
totypical learning design to pursue a more balanced representation space. Li et al. [37] explicitly
regularizes the class centers to a maximum separation structure with similar drives to the balanced
feature space.
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A.2 Contrastive Learning is Still Vulnerable to Long-tailed Distribution

The prior works [30, 41] point out that contrastive learning can extract more balanced features
compared with the supervised learning paradigm. However, several subsequent works [28, 77] em-
pirically observes that contrastive learning is still vulnerable to the long-tailed distribution, which
motivates their model-pruning strategy [28] and memorization-oriented augmentation [77] to rebal-
ance the representation learning. In this paper, we delve into the intrinsic limitation of the contrastive
learning method in the long-tailed context, i.e, approaching sample-level uniformity to deteriorate
the embedding space.

A.3 Unsupervised Clustering

Deep Cluster [6] applies K-Means clustering to generate pseudo-labels for the unlabeled data, which
are then iteratively leveraged as the supervised signal to train a classifier. SeLa [1] first casts the
pseudo-label generation as an optimal transport problem and leverages a uniform prior to guide the
clustering. SwAV [7] adopts mini-batch clustering instead of dataset-level clustering, enhancing
the practical applicability of the optimal transport-based clustering method. Subsequently, Li et al.
[36] combines clustering and contrastive learning objectives in an Expectation-Maximization frame-
work, recursively updating the data features towards their corresponding class prototypes. In this
paper, we propose a novel Geometric Harmonization method that is capable to cope with long-tailed
distribution, the uniqueness can be summarized in the following aspects: (1) Geometric Uniform
Structure. The pioneering works [1, 7] mainly resort to a learnable classifier to perform cluster-
ing, which can easily be distorted in the long-tailed scenarios [17]. Built on the geometric uniform
structure, our method is capable to provide high-quality clustering results with clear geometric in-
terpretations. (2) Flexible Class Prior. The class prior in [1, 7] is assumed to be uniform among
the previous attempts. When moving to the long-tailed case, this assumption will strengthen the
undesired sample-level uniformity. In contrast, our methods can potentially cope with any distribu-
tion with the automatic surrogate label allocation. (3) Theoretical Guarantee. GH is theoretically
grounded to achieve the category-level uniformity in the long-tailed scenarios, which has never been
studied in previous methods.

A.4 Taxonomy of Self-supervised Long-tailed Methods

We summarize the detailed taxonomy of self-supervised long-tailed methods in Algorithm 1.

Table 9: Taxonomy of self-supervised long-tailed methods.

Method Aspect Description

Focal [40] Sample Reweighting Hard example mining
rwSAM [41] Optimization Surface Data-dependent sharpness-aware minimization
SDCLR [28] Model Pruning Model pruning and self-contrast
DnC [59] Model Capacity Multi-expert ensemble
BCL [77] Data Augmentation Memorization-guided augmentation
GH Loss Limitation Geometric harmonization

B Discussions of Geometric Uniform Structure (Definition 3.1)

B.1 Simplex Equiangular Tight Frame (K ≤ d)

Neural collapse [47] describes a phenomenon that with the training, the geometric centroid of rep-
resentation progressively collapses to the optimal classifier parameter w.r.t. each category. The
collection of these points builds a special geometric structure, termed as Simplex Equiangular Tight
Frame (ETF). Some study that shares the similar spirit is also explored regarding the maximum
separation structure [31]. We present its formal definition as follows.
Definition B.1. A Simplex ETF is a collection of points in Rd specified by the columns of the
matrix:

METF =

√
K

K − 1
U(IK −

1

K
1K1

T
K), (6)
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where IK ∈ RK×K is the identity matrix and 1K is the K-dimensional ones vector. U ∈ Rd×K

is the patial orthogonal matrix such that U⊤U = IK and it satisfys d ≥ K. All vectors in a
Simplex ETF have the same pair-wise angle, i.e., METF

i METF
j = − 1

K−1 , 1 ≤ i ̸= j ≤ K. The
pioneering work [67] shows Simplex ETF as a linear classifier combined with neural networks is
robust to class-imbalanced learning in the supervised setting. On the opposite, our motivation is
to make self-supervised learning robust to the class-imbalance data, which requires the pursuit in
the embedding space intrinsically switching from the sample-level uniformity to the category-level
uniformity. The Simplex ETF is a tool to measure the gap between the category-level uniformity and
the sample-level uniformity, which is then transformed as the supervision feedback to the training.

B.2 Alternative Uniform Structure (K > d)

For Simplex ETF, there is a hard dimension constraint in Eq. (6), i.e., K ≤ d. However, if this
constraint violates, we do not have such a structure in the hyperspherical space. Alternatively,
we can conduct the gradient descent to find an approximation of the maximum separation vertices
applied into GH. This refers to minimising the following loss function as demonstrated in [37].

LAP = log

K∑
i=1

K∑
j=1

eM̃i·M̃j/τu , s.t.
K∑
i=1

M̃i = 0 and ∀i ∈ K ∥M̃i∥ = 1, (7)

where the loss term penalizes the pairwise similarity of different vertices [62].

B.3 Choosing Implementations According to the Dimensional Constraints

As mentioned above, computing the geometric uniform structure M becomes much harder in the
regime of the limited dimension (K > d) regarding the hypersphere space [19]. To mitigate this
issue, we provide both analytical and approximate solutions for adapting to different application
scenarios. Concretely, we choose Simplex ETF (Definition B.1) when K ≤ d or the approximated
alternatives (Eq. (7)) otherwise. More experimental results can be referred to Appendix F.12.

C Theoretical Proofs and Discussions

C.1 Warmup

We begin by introducing the following lower bound [64] for analyzing the InfoNCE loss.

Lemma C.1. (Lower bound for InfoNCE loss). Assume the labels are one-hot and consis-
tent between positive samples: ∀x,x+ ∈ p(x,x+), p(y|x) = p(y|x+). Let Lµ

CE(f) =

Ep(x,y)

[
− log

exp(f(x)⊤µy)∑K
i=1 exp(f(x)⊤µi)

]
denote the mean CE loss. For ∀f ∈ F , the contrastive learn-

ing risk LInfoNCE(f,x,x
+) can be bounded by the classification risk Lµ

CE(f,x),

LInfoNCE(f) ≥ Lµ
CE(f)−

√
Var (f(x)|y)−O

(
J− 1

2

)
+ log

(
J

L

)
(8)

where
√

Var (f(x)|y) denotes the conditional intra-class variance

Ep(y)

[
Ep(x|y)∥f(x)− Ep(x|y)f(x)∥2

]
, O

(
J− 1

2

)
denotes the Monte Carlo sampling error

with J samples and log
(
J
L

)
is a constant.

Proof. Let p(x,x+,y) denote the joint distribution x,x+ with the label y, y = 1, . . . , L. Denote
the negative sample collections as {x−

i }Ji=1. According to above assumption on label consistency
between positive pairs, we have x+ and x with the same label y. Denote µy the class means of
class y in the embedding space. Then we have the following lower bounds of the InfoNCE loss,
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LNCE(f) = −Ep(x,x+)f(x)
⊤f(x+) + Ep(x)Ep(x−

i )
log

J∑
i=1

exp(f(x)⊤f(x−
i ))

=− Ep(x,x+)f(x)
⊤f(x+) + Ep(x)Ep(x−

i )
log

1

J

J∑
i=1

exp(f(x)⊤f(x−
i )) + log J

(1)

≥ − Ep(x,x+)f(x)
⊤f(x+) + Ep(x) log

1

J
E
p(x−

i )

J∑
i=1

exp(f(x)⊤f(x−
i ))−A(J) + log J

=− Ep(x,x+)f(x)
⊤f(x+) + Ep(x) logEp(x−) exp(f(x)

⊤f(x−))−A(J) + log J

=− Ep(x,x+,y)f(x)
⊤f(x+) + Ep(x) logEp(y−)Ep(x−|y−) exp(f(x)

⊤f(x−))−A(J) + log J

(2)

≥ − Ep(x,x+,y)f(x)
⊤f(x+) + Ep(x) logEp(y−) exp(Ep(x−|y−)

[
f(x)⊤f(x−)

]
)−A(J) + log J

=− Ep(x,x+,y)f(x)
⊤(µy + f(x+)− µy) + Ep(x) logEp(y−) exp(Ep(x−|y−)

[
f(x)⊤f(x−)

]
)−A(J) + log J

=− Ep(x,x+,y)[f(x)
⊤µy + f(x)⊤(f(x+)− µy)] + Ep(x) logEp(y−) exp(f(x)

⊤µy−)−A(J) + log J

(3)

≥ − Ep(x,x+,y)

[
f(x)⊤µy + ∥(f(x+)− µy)∥

]
+ Ep(x) logEp(y−) exp(f(x)

⊤µy−)−A(J) + log J

(4)

≥ − Ep(x,y)f(x)
⊤µy −

√
Ep(x,y)∥f(x)− µy∥2 + Ep(x) logEp(y−) exp(f(x)

⊤µy−)−A(J) + log J

=− Ep(x,y)f(x)
⊤µy −

√
Var(f(x) | y) + Ep(x) log

1

L

L∑
k=1

exp(f(x)⊤µk)−A(J) + log J

=Ep(x,y)

[
− f(x)⊤µy + log

L∑
k=1

exp(f(x)⊤µk)
]
−

√
Var(f(x) | y)−A(J) + log(J/L)

=Lµ
CE(f)−

√
Var(f(x) | y)−A(J) + log(J/L),

where (1) follows Lemma C.2; (2) follows the Jensen’s inequality for the convex function exp(·); (3) follows
the hyperspherical distribution f(x) ∈ Sm−1, we have

f(x)⊤(f(x+)− µy) ≤
(

f(x+)− µy

∥f(x+)− µy∥

)⊤

(f(x+)− µy) = ∥f(x+)− µy∥; (9)

and (4) follows the Cauchy–Schwarz inequality and the fact that as p(x,x+) = p(x+,x) holds, x,x+ have
the same marginal distribution.

In the above proof, the approximation error of the Monte Carlo estimate [64] can be referred to the
following lemma.
Lemma C.2. (Upper bound of the approximation error by Monte Carlo estimate) For LSE :=
logEp(z) exp(f(x)

⊤g(z)), we denote its (biased) Monte Carlo estimate with J random samples
zi ∼ p(z), i = 1, . . . , J as L̂SEJ = log 1

J

∑J
i=1 exp(f(x)

⊤g(zi)). Then the approximation error
A(J) can be upper bounded in expectation as

A(J) := Ep(x,zi)|L̂SE(J)− LSE| ≤ O(J−1/2). (10)

We can see that the approximation error converges to zero in the order of 1/J−1/2.

Now we analyze the conditions of Lemma C.1 to strictly achieve its lower bound. In the proof of
Lemma C.1, we have four inequality cases and discuss each one as follows:

(1) According to Lemma C.2, we can have the approximation error converges to zero (A(J) → 0)
as the sample population increases to the positive infinity (J → +∞). Considering the substantial
data amount with regard to the benchmark datasets nowadays, we assume J is large enough and the
approximation error can achieve zeros, i.e., A(J) = 0.

(2) follows the Jensen’s inequality as

Ep(x) logEp(y−)Ep(x−|y−) exp(f(x)
⊤f(x−)) ≥ Ep(x) logEp(y−) exp(Ep(x−|y−)

[
f(x)⊤f(x−)

]
).

(11)

20



The equality requires the exp(·) term as a constant:

Ep(x)Ep(x−) exp(f(x)
⊤f(x−)) ≡ C(2) (12)

(3) The inequality follows

f(x)⊤(f(x+)− µy) ≤
(

f(x+)− µy

∥f(x+)− µy∥

)⊤

(f(x+)− µy) = ∥f(x+)− µy∥; (13)

where the equality requires f(x) has the same direction with f(x+)− µy . Considering the case

Ep(x,x+,y)

[
f(x+)− µy

]
≡ 0, (14)

we should have Ep(x,x+,y)

[
f(x)⊤(f(x+)− µy)

]
≡ 0, so the inequality can be simply eliminated

from the proof.

(4) Similar in (3), we can simply remove the term ∥(f(x+) − µy)∥ in
Ep(x,x+,y)

[
f(x)⊤µy + ∥(f(x+)− µy)∥

]
when Ep(x,x+,y) [f(x

+)− µy] ≡ 0.

Note that, Equation (14) requires that all the positive samples approach the class means, i.e., ∀x+ ∼
p(x+), f(x+) = µy . We then give the following lemma at the state of category-level uniformity.

Lemma C.3. When it satisfies the category-level uniformity (Definition 3.3) defined on the geometric
uniform structure J (Definition 3.1) with dimension K = L, assume A(J) = 0, for ∀f ∈ F , the
lower bound (Lemma C.1) is achieved as

LInfoNCE(f) = Lµ
CE(f) + log

(
J

L

)
(15)

Proof. According to category-level uniformity (Definition 3.3), we should have

Ep(x)f(x) ≡ Ep(x+)f(x
+) ≡ µy,

Ep(x)Ep(x−) exp(f(x)
⊤f(x−)) ≡ C

(16)

where the second term is derived from f(x)⊤f(x−) = M⊤
i ·Mj = C, i ̸= j in Definition 3.3. Note

that, the category-level uniformity holds on the joint embedding p(x,x+) of contrastive learning in
our setup.

In the proof of Lemma C.1, (1) holds as we assume M is large enough and A(J) = 0, (2) holds
according to Equation (16), (3)(4) holds as Ep(x+) [f(x

+)− µy] ≡ 0. As above mentioned, the
intra-class variance term

√
Var (fθ(x)|y) is eliminated. We then have the desired results with

Equation (15).

C.2 Proof of Theorem 3.4

Proof. On the basis of Lemma C.3, we can derive our overall loss L as follows,

L(fθ,x) = LInfoNCE(fθ,x,x
+) + LGH(fθ,x, q̂)

= Lµ
CE(fθ,x) + LGH(fθ,x, q̂) + log

(
J

L

)
(17)

Now we focus on analyzing the minimization of the first and the second term as log
(
J
L

)
is a constant.

Here, we assume the temperature γGH for generating surrogate labels is small enough, so that we
can obtain the discrete geometric labels q̂ in one-hot probabilities.

For simplicity, we denote the assigned labels as t for all the data points in class k, which are con-
sistent as the samples converge to the class means according to Equation (16). Let L̂(fθ,x) =
Lµ
CE(fθ,xk,y) + LGH(fθ,xk, t), we define the optimization problem regarding class k as:

21



min L̂(fθ,xk) = minLµ
CE(fθ,xk) + LGH(fθ,xk, t)

s.t. ∥fθ(xk,i)∥2 = 1, ∀i = 1, 2, . . . , nk

(18)

We can then derive

L̂(fθ,xk) = Lµ
CE(fθ,xk) + LGH(fθ,xk, t)

= − 1

nk

nk∑
i=1

log
exp

(
fθ(xk,i)

⊤ · µy/γCL

)∑K
j=1 exp (fθ(xk,i)⊤ · µj/γCL)

− 1

nk

nk∑
i=1

log
exp

(
fθ(xk,i)

⊤ ·Mt/γGH

)∑K
j=1 exp (fθ(xk,i)⊤ ·Mj/γGH)

= − log
exp

(
µ⊤

k · µk/γCL

)∑K
j=1 exp

(
µ⊤

k · µj/γCL

) − log
exp

(
µ⊤

k ·Mt/γGH

)∑K
j=1 exp

(
µ⊤

k ·Mj/γGH

)
(19)

According to Equation (16), the constraints of Equation (18) are equivalent with ∥µk∥2 = 1. We
can have the Lagrange function as:

L̃ = − log
exp

(
µ⊤

k · µk/γCL

)∑K
j=1 exp

(
µ⊤

k · µj/γCL

) − log
exp

(
µ⊤

k ·Mt/γGH

)∑K
j=1 exp

(
µ⊤

k ·Mj/γGH

) + ηk(∥µk∥2 − 1) (20)

where ηk is the Lagrange multiplier.

We consider its gradient with respect to µk as:

∂L̃
∂µk

=
1

γCL

−(1−mk) · µk +

K∑
i ̸=k

mi · µi

+
1

γGH

−(1− nk) ·Mt +

K∑
i ̸=t

ni ·Mi

+ (
1

γCL
+ 2ηk)µk

=
1

γCL

K∑
i ̸=k

mi(µi − µk) +
1

γGH

K∑
i ̸=t

ni(Mi −Mt) + (
1

γCL
+ 2ηk)µk

(21)

where mi =
exp(µ⊤

k ·µi/γCL)∑K
j=1 exp(µ⊤

k ·µj/γCL)
, ni =

exp(µ⊤
k ·Mi/γGH)∑K

j=1 exp(µ⊤
k ·Mj/γGH)

.

When it satisfies the category-level uniformity (Definition 3.3) defined on the geometric uniform
classifier M (Definition 3.1), we can obtain µk = Mk.

Multiplying Mj over the gradients (j ̸= k, j ̸= t):

∂L̃
∂µk

·Mj =
1

γCL

∑
i ̸=k

mi(µi ·Mj − µk ·Mj) +
1

γGH

∑
i̸=t

ni(Mi ·Mj −Mt ·Mj) + (
1

γCL
+ 2ηk)µk ·Mj

=
1

γCL

∑
i ̸=k

mi(Mi ·Mj −Mk ·Mj) +
1

γGH

∑
i ̸=t

ni(Mi ·Mj −Mt ·Mj) + (
1

γCL
+ 2ηk)Mk ·Mj

= (mj + nj)(1− C) + (
1

γCL
+ 2ηk)C

(22)

where C is defined in Definition 3.1. We can have the probabilities mj , nj as

mj = nj =
1

1 + (K − 1) exp (C − 1)
, j ̸= k (23)

Let ηk = C−1
C+(L−1)C exp(C−1) −

1
2γCL

, we can have ∂L̃
∂µk
·Mj = 0. With Mj ̸= 0, we should have

∂L̃
∂µk

= 0. Similarly applying to other classes, we can have ∂L̃
∂x = 0.
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Eventually, we can obtain the minimizer L̂∗(fθ,x) as:

L∗(fθ,x) = −
K∑

k=1

2πy
l log

(
1

1 + (K − 1) exp(C − 1)

)
+ log

(
J

L

)
(24)

C.3 Proof of Lemma 3.2

Proof. Assume the samples follow the uniform distribution n1 = n2 = · · · = nLH
= nH ,

nLH+1 = nLH+2 = · · · = nL = nT in head and tail classes respectively. Assume the imbal-
ance ratio nH

nT
→ +∞ and the dimenson satisfies K ≥ L. As proof in [17], we can have

limµi − µj = 0L, ∀LH ≤ i ≤ j ≤ L,

when the cross-entropy loss achieves the minimizer. Then we can have the lower
bound (Lemma C.1) of LInfoNCE achieves minimum when the above equation holds, i.e., minor-
ity class means collapse to an identical vector.

C.4 Discussions of Lemma 3.2

Intrinsically, Lemma 3.2 is an extreme analysis to characterize the trend under the increasing im-
balanced ratios between the majority classes and the minority classes. The staged-wise imbalancing
condition is to reach the final compact form about the minority collapse, and more practical long-
tailed distribution only reaches the intermediate deduction with much understanding effort, which
is even not solved in the current theoretical analysis in supervised long-tailed learning [17]. The
NH

Nt
→ +∞ binds with the lim in the equation is for extreme analysis, but is not for the practical

requirement.

C.5 Applicability of Theorem 3.4

Our theorem and analyses are specific to contrastive learning. In terms of other non-contrastive
SSL methods, we empirically show the superiority of our method on long-tailed data distribution in
Table 7. Although it might not be straightforward to extend the theory to non-contrastive SSL meth-
ods, an explanation about the consistent superiority is that some non-contrastive methods still exhibit
similar representation disparity with their contrastive counterpart, and our proposed method can sim-
ilarly reallocate the geometric distribution to counteract the distorted embedding space. Specially,
the recent study [18] theoretically and emprically explore the equivalence between contrastive and
non-contrastive criterion, which may shed light on the intrinsic mechanism of how our GH benefits
non-contrastive paradigm.

D Algorithms

D.1 Algorithm of Surrogate Label Allocation

We summarize surrogate label allocation in Algorithm 1.

D.2 Algorithm of Geometric Harmonization

We summarize the complete procedure of our GH method in Algorithm 2.
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Algorithm 1 Surrogate Label Allocation.
Input: geometric cost matrix exp(λ logQ) with Q = [q1, . . . , qN ], marginal distribution constraint
π, Sinkhorn regularization coefficient λ, Sinkhorn iteration step Es

Output: Surrogate label matrix Q̂

1: Set scaling vectors u← 1
K · 1K ,v ← 1

N · 1N .
2: Set distribution constraints r ← 1

N · 1N , c← π.
3: for iteration i = 0, 1, . . . , Es do
4: u← log c− log ((exp(λ logQ)) · exp(v)).
5: v ← log r − log

(
(exp(λ logQ))

⊤ · exp(u)
)

.
6: end for
7: return Q̂ = N · diag(u) exp(λ logQ)diag(v)

Algorithm 2 Our proposed GH.
Input: datasetD, number of epochs E, number of warm-up epochs Ew, geometric uniform classifier
M, a self-supervised learning method A
Output: pretrained model parameter θE
Initialize: model parameter θ0

1: Warm up model θ for Ew epochs according to A.
2: for epoch e = Ew, Ew + 1, . . . , E do
3: Compute the geometric predictions Q for input samples.
4: Compute the surrogate class prior π on training dataset D.
5: for mini-batch k = 1, 2, . . . , B do
6: Obtain the surrogate label Q̂ by Algorithm 1.
7: Compute LCL according to A and the proposed LGH according to Equation (4).
8: Uptate model θ by minimizing LCL + LGH.
9: end for

10: end for

E Supplementary Experimental Setups

E.1 Dataset Statistics

We conduct experiments on three benchmark datasets for long-tailed learning, including CIFAR-
100-LT [5], ImageNet-LT [44] and Places-LT [44]. For small-scale datasets, we adopt the widely-
used CIFAR-100-LT with the imbalanced factor of 100, 50 and 10 [5].

In Table 10, we summarize the benchmark datasets used in this paper. Long-tailed versions of
CIFAR-100 [34, 16] are constructed following the exponential distribution. For large-scale datasets,
ImageNet-LT [44] has 115.8K images with 1000 categories, ranging from 1,280 to 5 in terms of
class cardinality and Places-LT [44] contains 62,500 images with 365 categories, with the sample
number per category ranging from 4,980 to 5. The large-scale datasets follow Pareto distribution.

As for fine-grained group partitions, we divide each dataset to Many/Medium/Few according to the
class cardinality. Concretely, we choose that the largest 34 classes for Many group, the medium
33 classes for Medium group and the smallest 33 classes for Few group on CIFAR-100-LT. On
ImageNet-LT and Places-LT, we define Many group with class number over 100, Medium group
with 20-100 samples, Few group as under 20 samples [44].

E.2 Linear probing statistics on the large-scale dataset

The 100-shot evaluation follows the setting in previous works [28, 77]. As shown in Table 11, full-
shot evaluation requires 10x - 30x the amount of data compared with the pre-training dataset, which
might not be very practical. In contrast, the scale of 100-shot data is consistent with the pre-training
dataset. We also present full-shot evaluation in Appendix F.13.
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Table 10: Statistics of the benchmark long-tailed datasets. Exp represents exponential distribution.

Dataset # Class Type Imbalanced Ratio # Train data # Test data

CIFAR-100-LT-R100 100 Exp 100 10847 10000
CIFAR-100-LT-R50 100 Exp 50 12608 10000
CIFAR-100-LT-R10 100 Exp 10 19573 10000

ImageNet-LT 1000 Pareto 256 115846 50000

Places-LT 365 Pareto 996 62500 36500

Table 11: Statistics of linear probing on the large-scale dataset.

Dataset # Class # Training data # 100-shot data # full-shot data # Test data

ImageNet-LT 1000 115,846 100,000 1,261,167 50,000
Places-LT 365 62,500 36,500 1,803,460 36,500

E.3 Implementation Details

Toy Experiments. We use a 2-Layer ReLU network with 20 hidden units and 2 output units for
visualization. For Figure 1, the SimCLR algorithm [9] is adopted in the warm-up stage with proper
Gaussian noise as augmentation. After the warm-up stage, we train GH according to Equation (4).
We use the orthogonal classifier [(1,1),(-1,1),(-1,-1),(1,-1)] as the geometric uniform structure. For
Figure 6, only the SimCLR algorithm is adopted for representation learning.

More Experimental Setup for Main Results. (SimCLR, Focal, SDCLR, DnC, BCL) In our experi-
ments, we defaultly set the contrastive learning temperature γCL as 0.2 and the smoothing coefficient
β as 0.999 for training stability. For updating the marginal distribution constraint π, we compute
every 20 epochs on CIFAR-100-LT due to the small data size. On ImageNet-LT and Places-LT, we
compute π every training epoch. Following previous work [28, 77], we adopt a 2-layer MLP as the
projector with 128 output dimension. For default data augmentations of contrastive learning, random
crop ranging from [0.1, 1], random horizontal flip, color jitter with probability as 0.8 and strength
as 0.4 are adopted on CIFAR-100-LT. Random crop ranging from [0.08, 1], random horizontal flip,
color jitter with probability as 0.8 and strength as 0.4 and the gaussian blur with probability as 0.5
are adopted on ImageNet-LT and Places-LT.

Linear Probing Evaluation. We follow Zhou et al. [77] to conduct Adam optimizer for 500 epochs
based on batch size 128, weight decay factor 5 × 10−6 and the learning rate decaying from 10−2

to 10−6. For few-shot evaluation on ImageNet-LT and Places-LT, we use the same subsampled
100-shot subsets proposed in [77].

E.4 Focal Loss

Focal loss [40] is discussed and compared in [28, 77] in the context of self-supervised long-tailed
learning. Specifically, we use the term inside log(·) of SimCLR loss as the likelihood to replace the
probabilistic term of the supervised Focal loss and obtain the self-supervised Focal loss as:

Lfocal = −
1

|D|
∑
x∈D

(1− p)γF log(p), p =
exp

(
f(x)⊤f(x+)/γF

)∑
x−∈X−

b ∪{x+} exp (f(x)
⊤f(x−)/γF)

where γF is a temperature factor and Xb denotes the negative sample set. We defaultly set γF as 2
in all experiments.

E.5 Toy Experiments on Various Imbalanced Ratios

In Figure 6, we provide a concrete visualization on a 2-D toy dataset that the sample-level uniformity
of the contrastive learning loss leads to the more space invasion of head classes and space collapse
of tail classes with increasing the imbalance ratios. According to the results, we can observe that the
head classes gradually occupy the embedding space as the imbalanced ratios increase. This further
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demonstrates the importance of designing robust self-supervised learning method to counteract the
distorted embedding space in the long-tailed context.

(a) R=1(Balanced) (b) R=4

(c) R=16 (d) R=64

Figure 6: Visualization of the embedding space learnt by vanilla contrastive learning loss on the 2-D
imbalanced synthetic dataset with different imbalanced ratios (1,4,16,64). As the ratio increases,
head classes gradually occupy the embedding space with the collapse of the tail classes.

F Additional Experimental Results and Further Analysis

F.1 Error Bars for the Main Results

In this part, we present main results with error bars calculated over 5 trials.

Table 12: Linear probing results (average accuracy, %) over 5 trials on CIFAR-LT with different
imbalanced ratios (100,50,10), ImageNet-LT and Places-LT.

CIFAR-LT-R100 CIFAR-LT-R50 CIFAR-LT-R10 ImageNet-LT Places-LT

SimCLR 50.72±0.26 52.24±0.31 55.67±0.44 36.65±0.16 33.61±0.12
+GH 53.96±0.23 55.42±0.22 57.36±0.39 38.28±0.13 34.33±0.10

Focal 51.04±0.27 52.22±0.38 56.23±0.45 37.49±0.11 33.65±0.14
+GH 53.92±0.19 55.06±0.28 58.05±0.28 38.92±0.14 34.42±0.17

SDCLR 52.87±0.22 53.87±0.21 55.44±0.25 36.25±0.18 33.99±0.14
+GH 54.81±0.26 55.34±0.28 56.97±0.34 38.53±0.14 34.70±0.10

DnC 52.52±0.32 53.21±0.35 57.59±0.36 37.23±0.21 33.90±0.18
+GH 54.88±0.23 56.33±0.31 58.94±0.25 38.67±0.19 34.52±0.23

BCL 56.45±0.40 57.18±0.26 59.12±0.28 38.33±0.10 34.76±0.15
+GH 57.65±0.33 59.00±0.33 60.34±0.29 39.95±0.15 35.32±0.17

F.2 Convergence of the Surrogate Label Allocation

In Table 13, we provide the experiments to verify the convergence of the Sinkhorn-Knopp algorithm,
which adopts the criterion as the stopping reference.

We define the criterion e = sum(|u./u′−1|) as the relative changes of one scaling vectors u, where
u′ represents the vector in the latest iteration. Then, the algorithm converges as the criterion e→ 0.
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Table 13: The value of e during the convergence of surrogate label allocation on CIFAR-LT-R100.

Iter 0 10 20 30 50 70 100 150

e 67.89 4.28 0.53 0.076 0.0054 0.0005 2.08×10−5 3.58×10−7

As shown in Table 13, we can see that the criterion diminishes rapidly. Let e < 10−6 represent the
indicator of the convergence, we further obtain the averaging convergence iterations as 141 ± 45
(statistics under 1000 runs). In practice, we set the default Sinkhorn iterations as 300 to guarantee
the convergence, as detailed in Section 4.1.

F.3 Empirical Comparison with More Baselines

In Table 14, we conduct a range of experiments to compare PMSN[35] and TS [2] with our proposed
GH on CIFAR-LT with different imbalanced ratios.

Table 14: Linear probing accuracy of more SSL-LT baselines on CIFAR-100-LT with different
imbalanced ratios.

Method Many Med Few Avg

C
IF

A
R

-R
10

0 SimCLR 54.97 49.39 47.67 50.72
SimCLR+TS 55.53 50.33 50.06 52.01

PMSN 55.62 52.12 49.85 52.56
SimCLR+GH 57.38 52.27 52.12 53.96

SimCLR+TS+GH 57.44 52.76 51.79 54.03

C
IF

A
R

-R
50 SimCLR 56.00 50.48 50.12 52.24

SimCLR+TS 56.44 52.58 51.91 53.67
PMSN 56.76 52.52 53.09 54.15

SimCLR+GH 58.88 53.00 54.27 55.42
SimCLR+TS+GH 58.47 54.61 54.70 55.95

C
IF

A
R

-R
10 SimCLR 57.85 55.06 54.03 55.67

SimCLR+TS 58.26 56.24 54.97 56.51
PMSN 56.91 54.61 55.67 55.74

SimCLR+GH 59.26 56.91 55.85 57.36
SimCLR+TS+GH 59.44 57.15 56.48 57.71

From the results, we can see that the proposed method consistently outperforms PMSN[35] and
TS [2] across different imbalanced ratios on CIFAR-LT. Besides, we can observe that combining
GH and TS [2] consistently improves the performance of contrastive learning on CIFAR-LT.

F.4 Empirical Comparison with K-Means Algorithm

K-means algorithm [22] tends to generate clusters with relatively uniform sizes, which will affect the
cluster performance under the class-imbalanced scenarios [38]. To gain more insights, we conduct
empirical comparisons using K-means as the clustering algorithm and evaluate the NMI score with
ground-truth labels and the linear probing accuracy on CIFAR-LT-R100.

Table 15: Linear probing accuracy and NMI score on CIFAR-100-LT-R100.

Method Accuracy NMI score

SimCLR 50.72 0.28
+K-means 51.44 0.35
+GH 53.96 0.50

From the results, we can see that K-means generates undesired assignments with lower NMI score
and achieves unsatisfying performance compared with our GH. This observation is consistent with
previous studies [38].
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F.5 Compatibility on the Class-Balanced Data

In Table 16, we present the results on the balanced dataset CIFAR-100 across different methods.

Table 16: Linear probing on class-balanced CIFAR-100. We report Accuracy(%) for comparison.

Method SimCLR +GH Focal +GH SDCLR +GH DnC +GH BCL +GH

Accuracy 66.75 66.41 66.42 66.79 65.46 66.17 67.78 67.57 69.16 69.33

From the results, we can see that GH shows comparable performance with the baseline methods
when the data distribution is balanced. According to the neural collapse theory [49], well-trained
neural networks can inherently produce the category-level uniformity on class-balanced data. As
expected, our GH will degenerate to the vanilla SSL baselines as the geometric labels can easily be
aligned with the latent ground-truth labels. The empirical findings are also consistent with recent
explorations [31] in supervised learning context. Besides, the minor decrease in performance could
potentially be attributed to some random factors during training or the negligible effect of GH loss
as it might not reach an absolute zero value.

F.6 Computational Cost

In Table 17, we present the mini-batch training time of different baseline methods on CIFAR-100-
LT, ImageNet-LT and Places-LT.

Table 17: The time cost (seconds) of mini-batch training on CIFAR-100-LT, ImageNet-LT and
Places-LT.

Dataset SimCLR +GH Focal +GH SDCLR +GH DnC +GH BCL +GH

CIFAR-LT 0.38 0.41 0.37 0.40 0.42 0.47 0.39 0.41 0.38 0.41
ImageNet-LT 0.76 0.79 0.75 0.77 0.94 1.01 0.76 0.79 0.76 0.78

Places-LT 0.72 0.75 0.76 0.78 1.00 1.05 0.72 0.76 0.72 0.75

In our runs, the proposed GH only incurs a minor computational overhead on CIFAR-100-LT,
ImageNet-LT and Places-LT, respectively, which is relatively lightweight compared to the total com-
putational cost of the contrastive baselines. This indicates the great potential of GH to collaborate
with more SSL methods to acquire the robustness on data imbalance in a low-cost manner.

F.7 Ablations on Hyper-parameters

In this part, we present ablation studies w.r.t. temperature γGH, regularization coefficient λ and
Sinkhorn iteration Es on CIFAR-LT.
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Figure 7: Ablations of temperature γGH, coefficient λ and Sinkhorn iteration Es on CIFAR-LT.

F.8 Ablations on the Training Epoch

In Table 18, we present the comparison between SimCLR and SimCLR+GH on CIFAR-LT-R100
under different training epochs.
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Table 18: Linear probing results on CIFAR-LT-R100 with different training epochs.

epoch 200 500 1000 1500 2000

SimCLR 49.53 50.32 50.72 50.84 50.27
+GH 50.89 54.00 53.96 53.95 53.91

According to the table, we can see that both methods appropriately reach the saturated performance
when the training epochs are larger than 500. To guarantee the converged performance, we thus set
the default training epochs as 1000.

F.9 Ablations on the Batch Size

To explore the effect of the training batch size, we conduct the experiments with different batch size
on CIFAR-LT-R100 as follows.

Table 19: Linear probing results on CIFAR-LT-R100 w.r.t the methods with different batch size.

Batch size 128 256 512 768 1024

SimCLR 50.14 51.08 50.72 50.25 50.07
+GH 52.72 53.43 53.96 53.95 53.18

Table 20: Linear probing results on ImageNet-LT w.r.t the methods with different batch size.

Batch size 256 384 512 768

SimCLR 36.65 36.97 37.85 38.04
+GH 38.28 39.22 41.06 41.34

From the results, we can see that our GH consistently outperforms the baseline SimCLR. It is worth
noting that our method still provides siginificant improvements when the batch size is small (e.g.
2.6% with batch size as 128 on CIFAR-LT), which reflects the robustness of the proposed GH in
terms of small batch sizes. Besides, we observe that the performance drops when reducing the batch
size for both baseline method and our GH on CIFAR-LT and ImageNet-LT, as shown in Table 19.
This can potentially be attributed to the higher probability of encountering situations where certain
classes are missing under smaller batch size. Intuitively, it might easily generate biased estimation
when there is no support for a certain class in the mini-batch. Then, the cluster quality might be
affected by the probability of encountering missing class, which potentially correlates the important
factor, i.e., batch size.

F.10 Ablations on Geometric Uniform Structure

In Table 21, we conduct experiments with the geometric uniform structure as the projector on top
of the baseline contrastive learning methods. As can be seen, if geometric uniform structure alone
is used to balance the representation learning, the improvement is minor and sometimes degrades.
This is because the direct estimation from the geometric uniform structure is noisy during training
when the representation is not ideally distributed.

Table 21: Ablations of the geometric uniform structure on CIFAR-100-LT with different imbalanced
ratios (100, 50, 10).

Method CIFAR-LT-R100 CIFAR-LT-R50 CIFAR-LT-R10

SimCLR 50.72 52.24 55.67
+GUS 51.10 51.99 55.56
+GH 53.96 55.42 57.36
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F.11 Ablations on the Momentum Hyper-parameter

In our proposed GH, the hyper-parameter β controls the smoothing degree on the historical statistics
regarding the dynamically estimated surrogate label distribution π. We conduct empirical compari-
son with different β to validate the stability of our method, as depicted in Figure 8. From the results,
we can see that our GH can achieve consistent performance at the most cases. To guarantee the
performance, we thus set the default hyper-parameter β as 0.999.
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Figure 8: Linear probing w.r.t hyper-parameter β on CIFAR-LT-R100.

F.12 Implementations of Geometric Uniform Structure

In Figure 9, we empirically compare the results of analytical geometric uniform structure (Simplex
ETF) with those of proxy variants. We thus conduct the sensitivity analysis w.r.t a smaller span
of K, ranging from 30 to 220. From the results, we observe that the comparable performance is
achieved in both geometric structures. This indicates that our method is effective to two forms of
the geometric structure, relaxing the hard dimensional constraints in the analytical solution. It is
also worth noting that our method’s efficacy remains unaffected by the dimension of the geometric
uniform structure when appropriately choosing the dimension, highlighting its ease of application.
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Figure 9: Linear probing performance w.r.t. the dimension K of the geometric uniform structure M
on CIFAR-LT-R100. Analytical or approximate solution are applied according to the dimensional
constraints. More details can be referred to Appendix B.

F.13 Full-shot Evaluation on Large-scale Dataset

Here we provide 100-shot evaluation and full-shot evaluation on ImageNet-LT, as shown in Table 22.
We observe that the performance improvements and representation balancedness (Std) are consistent
with both evaluations, indicating the rationality of the 100-shot evaluation.

F.14 Comprehensive Evaluation on More Real-world Scenarios

To further validate the generalization of the proposed method, we conduct more comprehensive com-
parisons on various datasets with distinct characteristics and tasks, and conduct more experiments
as follows:
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Table 22: Full-shot linear evaluation and 100-shot evaluation on ImageNet-LT.

Evaluation Method Many Medium Few Std Avg

100-shot SimCLR 41.69 33.96 31.82 5.19 36.65
+GH 41.53 36.35 35.84 3.15 38.28

Full-shot SimCLR 42.86 35.17 33.13 5.13 37.86
+GH 44.11 38.59 37.87 3.41 40.62

• Marine-tree dataset [3]: This dataset is a large-scale dataset for marine organism classifica-
tion. It contains more than 160K images divided into 60 classes with the number of images
per class ranging from 14 to 16761.

• IMDB-WIKI-DIR dataset [69]: IMDB-WIKI-DIR (age) dataset is subsampled from
IMDB-WIKI dataset [51] to construct the deep imbalanced regression benchmark. It con-
tains 202.5K images with the number of images per bin varied between 1 and 7149.

• CUB-200 [61] and Aircrafts [45] dataset. Caltech-UCSD Birds 200 (CUB-200) and Air-
crafts dataset are two fine-grained datasets, which contains 11K images with 200 classes
and 10K images with 102 classes, respectively.

Table 23: Linear probing results (average accuracy, %) on Marine-tree dataset.

Marine Many Medium Few Avg

SimCLR 36.05 47.01 48.80 43.95
+GH 35.70 47.14 51.62 44.82

Table 24: Vanilla finetuning results under the metric of mean average error (MAE [69], lower is
better) on IMDB-WIKI-DIR dataset.

IMDB-WIKI-DIR (MAE) Many Medium Few Avg

SimCLR 8.10 18.31 29.99 9.14
+GH 7.77 17.18 29.29 8.75

Table 25: Vanilla finetuning results under the metric of Geometric Mean (GM [69], lower is better)
on IMDB-WIKI-DIR dataset.

IMDB-WIKI-DIR (GM) Many Medium Few Avg

SimCLR 4.87 15.01 26.61 5.43
+GH 4.64 13.49 24.54 5.14

Table 26: Downstream linear probing results (Top1/Top5 accuracy, %) on CUB-200 dataset.

CUB-200 SimCLR +GH Focal +GH SDCLR +GH DnC +GH BCL +GH

TOP1 28.97 29.89 30.13 30.68 28.98 29.63 29.64 30.46 28.46 28.97
TOP5 57.28 57.92 58.01 58.78 57.34 57.95 57.63 58.55 56.92 57.66

Table 27: Downstream linear probing results (Top1/Top5 accuracy, %) on Aircrafts dataset.

Aircrafts SimCLR +GH Focal +GH SDCLR +GH DnC +GH BCL +GH

TOP1 29.82 30.63 31.02 31.74 30.99 31.85 31.18 32.05 32.79 35.88
TOP5 56.14 57.95 57.82 58.99 58.09 59.13 58.11 59.42 60.79 63.34

On large-scale dataset (Marine-tree dataset and IMDB-WIKI-DIR dataset), we adopt the training
schedule similar to ImageNet-LT and Places-LT, except the training epochs reduced from 500 to
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about 200 epochs. Besides, we crop the images with the low resolution (112x112) to speed up the
training. We conduct linear probing on Marine-tree, CUB-200 and Aircrafts dataset. The former is
pretrained with Marine-tree dataset, while the latter is pretrained with ImageNet-LT. As for IMDB-
WIKI-DIR dataset, we pretrain the network for initializing the weights of the downstream supervised
imbalanced regression task. Specially, the geometric mean (GM) is defined for better prediction
fairness [69]. Both the evaluation metrics (MAE, GM) are the smaller the better.

From the results in Tables 23 to 27, we can see that our proposed GH consistently outperforms the
baseline methods for all the metrics (linear probing accuracy, finetuning accuracy, MAE and GM)
on various datasets/settings. This indicates the potential of GH for adapting to a wide range of
real-world data scenarios to counteract the negative impact of the long-tailed distribution.

F.15 More Results on Joint Optimization with Warm-up Strategy

We can potentially adopt warm-up strategy to initialize the weights θ against the degenerate solu-
tions in the joint optimization. In this subsection, we conduct more comprehenvive experiments
on CIFAR-LT-100 with different warm-up epochs to further verify the superiority of the proposed
bi-level optimization.

Table 28: Linear probing results of joint optimization on CIFAR-LT-R100 with different warm-up
epochs.

Epoch 0 10 50 100 200 300 400

Accuracy 50.18 51.14 50.77 50.97 50.44 50.21 50.57

From the results in Table 28, we can see that the warm-up strategy has the potential to improve the
linear probing performance by 1% over the vanilla joint training. However, it seems that this strategy
is sensitive to the proper epochs for warming-up, and the overall performance is not better than the
bi-level optimization.

G Broader Impacts

Learning long-tailed data without annotations is a vital element in the deployment of robust deep
learning systems in the real-world applications [25, 76, 72, 73]. The attribution is that real-world nat-
ural resources inevitably exhibit the long-tailed distribution [50]. The importance of self-supervised
long-tailed learning is further emphasized when extended to a range of safety-critical scenar-
ios [8, 26, 27], including medical intelligence [65, 66, 74], autonomous driving [55–57] and criminal
surveillance, where the data imbalance may lead to the distorted representation. In this paper, we
study a general and practical research problem in representation learning parity for self-supervised
long-tailed learning, considering the intrinsic limitation of conventional contrastive learning that
can not adequately address the over-expansion of the majorities and the passive-collapse of the mi-
norities in the embedding space. Our method regularizes long-tailed learning from a geometric
perspective and motivates more benign representation, which helps improve the downstream gen-
eralization and representation balancedness. Besides, our method has the potential to be applied in
fairness research scenarios [42] where both majority and minority classes (or attributes) are present.
Given the guidance of label information, we can explicitly constrain a consistent embedding space
for each subgroup, thereby promoting category-level uniformity.

Nevertheless, it is important to acknowledge that our method may have negative impact, such as
employment disruption, as our study endeavors to reduce annotation costs by enabling robust self-
supervised learning on hard-to-collect tail data resources. Specially, if self-supervised learning can
extract the tail distribution with sufficient accuracy, the necessity for the human manipulation on the
quality of data distribution will diminish.

H Limitations

Roughly, our design is built upon the intrinsic clustering patterns that can inclusively represent the
information for the downstream tasks. Although we demonstrate the appealing performance in the
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current benchmark, it cannot be always guaranteed in all scenarios. Once such a condition is not
satisfied, namely, clustering only captures the task-irrelevant patterns but ignores the task-relevant
details, the improvement might be limited or even negative. A potential way to overcome this
drawback is using a small auxiliary labeling set to calibrate the clustering dynamic aligned with the
downstream tasks, namely, a semi-supervised paradigm. The methods to encourage learning the
stable features in the area of causal inference can also be borrowed to this problem to alleviate this
dilemma.
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