
Nearest Neighbour with Bandit Feedback

Anonymous Author(s)
Affiliation
Address
email

Abstract

In this paper we adapt the nearest neighbour rule to the contextual bandit problem.1

Our algorithm handles the fully adversarial setting in which no assumptions at all2

are made about the data-generation process. When combined with a sufficiently3

fast data-structure for (perhaps approximate) adaptive nearest neighbour search,4

such as a navigating net, our algorithm is extremely efficient - having a per trial5

running time polylogarithmic in both the number of trials and actions, and taking6

only quasi-linear space. We give generic regret bounds for our algorithm and7

further analyse them in a semi-stochastic setting. A side result of this paper is8

that, when applied to the online classification problem with stochastic labels, our9

algorithm can have sublinear regret whilst only finding a single nearest neighbour10

per trial - in stark contrast to the k-nearest neighbours algorithm.11

1 Introduction12

In this paper we adapt the classic nearest neighbour rule to the contextual bandit problem and develop13

an extremely efficient algorithm. The problem proceeds in trials, where on trial t: (1) a context xt is14

revealed to us, (2) we must select an action at, and (3) the loss ℓt,at
∈ [0, 1] of action at on trial t is15

revealed to us. We assume that the contexts are points in a metric space and the distance between two16

contexts represents their similarity. A policy is a mapping from contexts to actions and the inductive17

bias of our algorithm is towards learning policies that typically map similar contexts to similar actions.18

Our main result has absolutely no assumptions whatsoever about the generation of the context/loss19

sequence and has no restriction on what policies we can compare our algorithm to.20

Our algorithm requires, as a subroutine, a data-structure that performs c-nearest neighbour search.21

This data-structure must be adaptive - in that new contexts can be inserted into it over time. An22

example of such a data-structure is the Navigating net [15] which, given mild conditions on our23

metric and dataset, performs both search and insertion in polylogarithmic time. When utilising a24

data-structure of this speed our algorithm is extremely efficient - with a per-trial time complexity25

polylogarithmic in both the number of trials and actions, and requiring only quasi-linear space.26

As an example we will further analyse the special case of the contextual bandit problem in which the27

context sequence is drawn i.i.d. from a probability distribution over the d-dimensional hypercube,28

whilst the loss vectors can still be arbitrary. In this case, for any policy y with a finite-volume decision29

boundary, our algorithm achieves sub-linear regret w.r.t. y without the need to know any parameters.30

A side result of this paper is that, when applied to the online classification task with stochastic labels,31

our algorithm can achieve sublinear regret whilst only finding one nearest neighbour per trial: in stark32

contrast to the k-nearest neighbour algorithm. Our algorithm can hence be viewed also as a potentially33

faster alternative to k-nearest neighbours when faced with the online classification problem.34

In the course of this paper we develop some novel algorithmic techniques, including a new algorith-35

mic framework CANPROP and efficient algorithms for searching in trees, which may find further36

application.37

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

We now describe related works. The bandit problem [17] was first introduced in [22] but was38

originally studied in the stochastic setting in which all losses are drawn i.i.d. at random [16], [1],39

[2]. However, our world is very often not i.i.d. stochastic. The work of [3] introduced the seminal40

EXP3 algorithm which handled the case in which the losses were selected arbitrarily. This work also41

introduced the EXP4 algorithm for contextual bandits. In general this algorithm is exponential time42

but in some situations can be implemented in polynomial time - such as their EXP3.S algorithm,43

which was a bandit version of the classic FIXEDSHARE algorithm [13]. In [11] the EXP3.S setting44

was greatly generalised to the situation in which the contexts where vertices of a graph. They utilised45

the methodology of [7], [14] and [12] in order to develop extremely efficient algorithms. Although46

inspiring this work, these algorithms cannot be utilised in our situation as they inherently require47

the set of queried contexts to be known a-priori. In the stochastic case another class of contextual48

bandit problems are linear bandits [18], [4] in which the contexts are mappings from the actions49

into Rd. Here the queried contexts need not be known in advance but the losses must be drawn i.i.d.50

from a distribution that has mean linear in the respective context. The k nearest neighbour algorithm51

was first analysed in [5]. The work [21] utilised the k nearest neighbour methodology and the works52

[8] and [16] to handle a stochastic contextual bandit problem. However, their setting is extremely53

more restricted than ours. In particular, the context/loss pairs must be drawn i.i.d. at random and the54

probability distribution they are sampled from must obey certain strict conditions. In addition, on55

each trial the contexts seen so far must be ordered in increasing distance from the current context56

and operations must be performed on this sequence, making their algorithm exponentially slower57

than ours. Our algorithm utilises the works of [19] and [6] as subroutines. It should be noted that the58

later work, which was based on [20], was improved on in [10] - we leave it as an open problem as to59

whether we can utilise their work in our algorithm.60

2 Notation61

Let N be the set of natural numbers not including 0. Given a natural number m ∈ N we define62

[m] := {j ∈ N | j ≤ m}. Given a predicate p we define JpK := 1 if p is true and JpK := 0 otherwise.63

We define log(·) and ln(·) to be the logarithms with base 2 and e respectively. Given sets A and B64

we denote by BA the set of all functions f : A → B and by 2A the set of all subsets of A.65

All trees in this paper are considered rooted. Given a tree J we denote its root by r(J), its vertex set66

by J , its leaves by J ⋆, and its internal vertices by J †. Given a vertex v in a tree J we denote its67

parent by ↑J (v) and the subtree of all its descendants by ⇓J (v). Given an internal node v in a (full)68

binary tree J we denote its left and right children by ◁J (v) and ▷J (v) respectively. Internal nodes69

v in a (full) ternary tree J have an additional child ▽J (v) called the centre child. Given vertices70

v and v′ in a tree J we denote by ΓJ (v, v′) the least common ancestor of v and v′: i.e. the vertex71

of maximum depth which is an ancestor of both v and v′. We will drop the subscript J in all these72

functions when unambiguous. Given a tree J , a subtree of J is a tree whose edge set is a subset of73

that of J .74

Given a probability distribution µ we write x ∼ µ to signify that x is a random element drawn from µ.75

Given, in addition, some m ∈ N, we define µm to be the probability distribution over sets formed by76

drawing m elements i.i.d. with replacment from distribution µ. With a slight overloading of notation77

we denote the uniform distribution over [0, 1] also by [0, 1].78

3 Problem and Result79

3.1 The Contextual Bandit Problem80

We consider the following game between Learner (us) and Nature (our adversary). We haveK actions81

and a metric space (C,∆) where C is a (possibly infinite) set of contexts and for all x, x′ ∈ C we have82

that ∆(x, x′) is the distance from x to x′. Learning proceeds in T trials. A-priori Nature chooses a83

sequence of contexts X = {xt | t ∈ [T]} ⊆ C and a sequence of loss vectors {ℓt | t ∈ [T]} ⊆ [0, 1]K ,84

but does not reveal them to Learner. On the t-th trial the following happens:85

1. Nature reveals xt to Learner.86

2. Learner chooses some action at ∈ [K].87

3. Nature reveals ℓt,at
to Learner.88

2

A policy is a function from C into [K]. i.e. a policy associates each possible context with an action.89

Given a policy y : C → [K] we define the y-regret of Learner as:90

R(y) :=
∑
t∈[T]

ℓt,at
−
∑
t∈[T]

ℓt,y(xt)

which is the difference between the total cumulative loss suffered by Learner and that which Learner91

would have suffered if it had instead chosen at equal to y(xt) for all trials t.92

3.2 The (k) Nearest Neighbour Classifier93

We now digress from the contextual bandit problem in order to study the nearest neighbour methodol-94

ogy. The nearest neighbour classifier is a method to solve the following supervised learning problem.95

We assume that there exists an unknown function y : C → [K]. We are given a finite set S ⊆ C along96

with the restriction of y onto S . We are then asked to predict the value of y(x) for some given x ∈ C.97

The nearest neighbour classifier works by first finding the nearest neighbour x̂ of x, defined as:98

x̂ := argminx′∈S ∆(x, x′) ,

and then choosing y(x̂) as its prediction of y(x). In many important metric spaces the time taken to99

find such a nearest neighbour is in Θ(|S|). This fact has lead to the idea of instead using y(x̃) as our100

prediction, where x̃ ∈ S is an arbitrary c-nearest neighbour which is defined as satisfying:101

∆(x, x̃) ≤ cmin
x′∈S

∆(x, x′) .

By utilising special data-structures the time complexity of finding, for any fixed c > 1, such a102

c-nearest neighbour is, for many metric spaces, only polylogarithmic in |S|.103

Given a probability distribution µ over C, some c ≥ 1 and some m ∈ N we define the generalisation104

error as:105

gm(µ, y, c) := PS∼µm,x∼µ

[
∃ z ∈ S :

(
∆(x, z) ≤ cmin

x′∈S
∆(x, x′)

)
∧ y(z) ̸= y(x)

]
which is the probability that it is possible for the nearest neighbour classifier to make a mistake on a106

context drawn from µ when S is formed by drawing m contexts i.i.d. from µ.107

We will now bound this quantity when in euclidean space. We first make the following definitions.108

For any δ > 0 define the δ-margin of y by:109

M(y, δ) := {x ∈ C | ∃x′ ∈ C : ∆(x, x′) ≤ δ ∧ y(x) ̸= y(x′)} (1)
which is the set of contexts that are at distance no more than δ from the decision boundary of y. The110

volume (w.r.t. µ) of the decision boundary is then given by:111

α(y, µ) := lim
δ→0

µ(M(y, δ))

δ
. (2)

When in euclidean space the following theorem bounds the generalisation error:112

Theorem 3.1. Given C := [0, 1]d and ∆ is the euclidean metric then for any y : C → [K] , c ≥ 1 ,113

ϵ > 0 , and probability distribution µ such that the probability density of µ is always at least ϵ , we114

have:115

gm(µ, y, c) ∈ Õ
(
c α(y, µ) (ϵm)−1/d

)
.

So far we have only considered deterministic functions y : C → [K] with decision boundaries of finite116

volume. But what happens if instead we have that y(x) is drawn from some probability distribution117

dependent on x (which is itself drawn from µ). Here, the Bayes optimal classifier is defined as that118

which always predicts y∗(x) := argmaxa∈[K] P[y(x) = a|x] as the label of x. In general, even if119

gm(µ, y∗, c) ∈ o(1), the probability of making a mistake with the nearest neighbour classifier does120

not approach that of the Bayes optimal classifier as m → ∞. In order to converge optimally, the121

k-nearest neighbour classifier was introduced. In this algorithm, when given a context x ∈ C, the k122

nearest neighbours to x are found and the predicted value of y(x) is decided by majority vote. In123

order to converge optimally we need that k →∞ as m→∞.124

A remarkable side-result of this paper is that, given gm(µ, y∗, c) ∈ O(m−p) for some p > 0, our125

algorithm can be applied to learning this situation online whilst only finding one nearest neighbour126

per trial. Since the additional overhead of our algorithm is so small it can be significantly faster than127

k-nearest neighbours. We strongly suspect that we don’t need the condition on gm(µ, y∗, c) if we are128

working in a bounded subset of euclidean space and P[y(x) = a|x] is Lipschitz.129

3

3.3 Adaptive Nearest Neighbour Search130

Our algorithm will require a data-structure for performing adaptive nearest neighbour search. This131

problem is as follows. We maintain a finite set S ⊆ C. At any point in time we must either (1)132

insert a new context into the set S and update the data-structure, or (2) given a context, utilise the133

data-structure to find a c-nearest neighbour in the set S.134

We are especially interested in data-structures that can do both operations in a time polylogarithmic135

in |S|. An example of such a data-structure is the navigating net [15] which has time complexity136

Õ(ln(|S|)) given that c > 1, the set |S| is of bounded doubling dimension (w.r.t. ∆) and has aspect137

ratio (ratio between the largest and smallest distances between contexts in S) polynomial in |S|, as is138

the case in many applications and can be enforced by quantisation when working in a bounded subset139

of euclidean space. We note that the Õ hides a constant factor that is exponential in the doubling140

dimension of S. In high-dimensional applications our dataset will often lie on a low-dimensional141

manifold so this factor should be small.142

3.4 Our Results143

We now turn back to the contextual bandit problem and give our main results.144

Theorem 3.2. Consider the contextual bandit problem defined in Section 3.1. Suppose that for all145

trials t > 1 we are given, in addition to xt, a context n(xt) which satisfies:146

n(xt) ∈ {xs | s ∈ [t− 1]} .

Our algorithm CBNN takes a single parameter ρ > 0 and, for all policies y : C → [K] simultane-147

ously, obtains an expected y-regret bounded by:148

E[R(y)] ∈ Õ
((

ρ+
Φ(y)

ρ

)√
KT

)
where:149

Φ(y) := 1 +
∑

t∈[T]\{1}

Jy(xt) ̸= y(n(xt))K

and the expectation is taken over the randomisation of the algorithm. CBNN needs no initialisation150

time and has a per-trial time complexity of:151

O(ln(T)2 ln(K)) .

We note that, although n can be any valid function, we are particularly interested in the case that152

n(xt) is a c-nearest neighbour of xt. i.e. that we have:153

∆(xt, n(xt)) ≤ c min
s∈[t−1]

∆(xt, xs) . (3)

In this case finding n(xt) typically requires only Õ(ln(T)) time per trial when using a navigating154

net or other fast data-structure for adaptive nearest neighbour search, as explained in Section 3.3.155

Furthermore, the quantity Φ(y) can now be bounded in a way that is dependent only on the set of156

queried contexts X and not their order. This bound is given in the following theorem.157

Theorem 3.3. Suppose we have a policy y : C → [K]. For any context x ∈ C we define γ(x, y) :=158

max{δ ≥ 0 | x /∈M(y, δ)} which is the distance of x from the decision boundary of y. Then when159

Equation (3) is satisfied we have that Φ(y) is no greater than the minimum cardinality of any set160

S ⊆ C in which for all t ∈ [T] there exists x ∈ S with ∆(x, xt) < γ(x, y)/3c.161

A direct corollary of this theorem is that for all δ > 0 we have that:162

Φ(y) ≤ Nδ(X) + |X ∩M(4cδ, y)|

where Nδ(X) is the (external) covering number of X with radius δ, and |X ∩ M(4cδ, y)| is the163

number of contexts in X lying within distance 4cδ of the decision boundary.164

It will be common in applications that the set X of observed contexts will come from a finite set165

of seperated clusters and there will be a good policy y which, on any such cluster, is constant on166

that cluster. Theorem 3.3 then implies that, as long as the inter-cluster distances are positive and the167

4

clusters have finite covering numbers (which is guaranteed in many metric spaces), then Φ(y) will be168

bounded independent of T and hence, by Theorem 3.2, the y-regret of CBNN will scale like Õ(
√
T),169

whatever the value of ρ.170

However, it will not always be the case that the dataset splits into such clusters. We shall investigate171

what happens when this is not the case by restricting ourselves to the situation in which the contexts172

{xt | t ∈ [T]} are drawn i.i.d. from a probability distribution µ. Here we have, by linearity of173

expectation, that:174

E[Φ(y)] ≤ 1 +
∑
t∈[T]

gt(µ, y, c) .

When in euclidean space, theorems 3.1 and 3.2 then lead to the following theorem:175

Theorem 3.4. Consider the contextual bandit problem defined in Section 3.1. Suppose that C =176

[0, 1]d, ∆ is the euclidean metric, and the contexts are drawn i.i.d. at random from a probability177

distribution µ with density always at least ϵ > 0. Note that the loss vectors can be arbitrary. Set ρ178

equal to T−(d−1)/dc−1/2. Then when Equation (3) is satisfied we have, for all policies y : C → [K]179

simultaneously, that the y-regret of CBNN is bounded by:180

E[R(y)] ∈ Õ
(
(ϵ−1/dα(y, µ) + 1)c1/2K1/2T (2d−1)/(2d)

)
where α(y, µ) is the volume (w.r.t. µ) of the decision boundary of y as defined in equations (1) and181

(2). The existence of such an ϵ can be relaxed (with an effect on the bound) but we assume it for182

simplicity.183

Note that, given the decision boundary of y is of finite volume, the expected regret is guaranteed to184

be sub-linear in T . This implies that the per-trial performance of CBNN approaches that of always185

selecting at = y(xt). We note that if T is unknown or infinite (i.e. learning never stops) then a186

simple doubling trick can be used to make the algorithm parameter-free (with no knowledge of µ).187

The fact that, in this non-separated case, the regret scales like Õ(T (2d−1)/(2d)) is a facet of the well188

known curse of dimensionality and is the price we pay for being able to learn from such a vast class of189

policies. We note that in many high-dimensional applications the set X will lie on a low-dimensional190

manifold so that the curse of dimensionality will be significantly reduced.191

4 The Algorithm192

In this section we describe our algorithm CBNN and give the pseudocode for the novel subroutines.193

In appendices C to E we give a more detailed description of how CBNN works, and prove that it194

obtains its bounds.195

To give the reader intuition, in Appendix B we describe our initial idea - an algorithm, based on EXP4196

[3] and Belief propagation [20], which attains our regret bound but is exponentially slower - taking a197

per-trial time of Θ̃(KT).198

4.1 Cancellation Propagation199

In this subsection we describe a novel algorithmic framework CANPROP for designing contextual200

bandit algorithms with a running time logarithmic in K. It is inspired by EXP3 [3], specialist algo-201

rithms [7] and online decision-tree pruning algorithms [9] but is certainly not a simple combination202

of these works. CBNN will be an efficient implementation of an instance of CANPROP. Although in203

general CANPROP requires a-priori knowledge of the set X := {xt | t ∈ [T]}, CBNN is designed in204

a way that, crucially, does not need this set to be known.205

We assume, without loss of generality, that K and T are integer powers of two. CANPROP, which206

takes a parameter η > 0, works on a full, balanced binary tree B with leaves B⋆ = [K]. On every207

trial t each pair (v,S) ∈ B × 2X has a weight wt(v,S) ∈ [0, 1]. These weights induce a function208

θt : B → [0, 1] defined by:209

θt(v) :=
∑
S∈2X

Jxt ∈ SKwt(v,S) .

On each trial t a root-to-leaf path {zt,j | j ∈ [log(K)] ∪ {0}} is sampled such that, given zt,j , we210

have that zt,(j+1) is sampled from {◁(zt,j), ▷(zt,j)} with probability proportional to the value of θt211

5

when applied to each of these vertices. The action at is then chosen equal to zt,log(K). Once the loss212

has been observed we climb back up the root-to-leaf path, updating the function wt to wt+1.213

CANPROP (at trial t) is given in Algorithm 1. We note that if wt+1(v,S) is not set in the pseudocode214

then it is defined to be equal to wt(v,S).215

Algorithm 1 CANPROP at trial t

1: vt,0 ← r(B)
2: for j = 0, 1, · · · , (log(K)− 1) do
3: for v ∈ {◁(vt,j), ▷(vt,j)} do
4: θt(v)←

∑
S∈2X Jxt ∈ SKwt(v,S)

5: end for
6: zt,j ← θt(◁(vt,j)) + θt(▷(vt,j))
7: for v ∈ {◁(vt,j), ▷(vt,j)} do
8: πt(v)← θt(v)/zt,j
9: end for

10: ζt,j ∼ [0, 1]
11: if ζt,j ≤ πt(◁(vt,j)) then
12: vt,j+1 ← ◁(vt,j)
13: else
14: vt,j+1 ← ▷(vt,j)
15: end if
16: end for

17: at ← vt,log(K)

18: π̃t ←
∏

j∈[log(K)] πt(vt,j)

19: ψt,log(K) ← exp(−ηℓt,at/π̃t)
20: for j = log(K), (log(K)− 1), · · · , 1 do
21: ψt,(j−1) ← 1− (1− ψt,j)πt(vt,j)
22: ψ′

t,j ← ψt,j/ψt,j−1

23: if vt,j = ◁(vt,j−1) then
24: ṽt,j ← ▷(vt,j−1)
25: else
26: ṽt,j ← ◁(vt,j−1)
27: end if
28: for S ∈ 2X : xt ∈ S do
29: wt+1(vt,j ,S)← wt(vt,j ,S)ψ′

t,j

30: wt+1(ṽt,j ,S)← wt(ṽt,j ,S)/ψt,j−1

31: end for
32: end for

In Appendix C we give a general regret bound for CANPROP. For CBNN we set η :=216

ρ
√
ln(K) ln(T)/KT and for all (v,S) ∈ B × 2X set:217

w1(v,S) :=
1

4 log(T)

∑
i∈[log(T)]

∏
x∈X\{x1}

(
σ(x,S)2

i

T
+ (1− σ(x,S))

(
1− 2i

T

))
(4)

where σ(x,S) := JJx ∈ SK ̸= Jn(x) ∈ SKK. This choice gives us the regret bound in Theorem 3.2.218

We note that CBNN will be implemented in such a way that X and n need not be known a-priori.219

4.2 Ternary Search Trees220

As we shall see, CBNN works by storing a binary treeA(v) at each vertex v ∈ B. In order to perform221

efficient operations on these trees we will utilise the rebalancing data-structure defined in [19] which222

here we shall call a ternary search tree (TST) due to the fact that it is a generalisation of the classic223

binary search tree and, as we shall show, has searching applications. However, as for binary search224

trees, the applications of TSTs are more than just searching: we shall also utilise them for online225

belief propagation.226

We now define what is meant by a TST. Suppose we have a full binary tree J . A TST of J is a227

full ternary tree D which satisfies the following. The vertex set of D is partitioned into two sets D◦228

and D• where each vertex s ∈ D is associated with a vertex µ(s) ∈ J and every s ∈ D• is also229

associated with a vertex µ′(s) ∈ ⇓(µ(s))†. In addition, each internal vertex s ∈ D† is associated with230

a vertex ξ(s) ∈ J . For all u ∈ J there exists an unique leaf ΥD(u) ∈ D⋆ in which µ(ΥD(u)) = u.231

For completeness we now describe the rules that a TSTD of J must satisfy. We have that r(D) ∈ D◦232

and µ(r(D)) := r(J). Each vertex s ∈ D represents a subtree Ĵ (s) of J . If s ∈ D◦ then233

Ĵ (s) := ⇓(µ(s)) and otherwise Ĵ (s) is the set of descendants of µ(s) which are not proper234

descendants of µ′(s). Given that s ∈ D† this subtree is split at the vertex ξ(s) where if s ∈ D• we235

have that ξ(s) lies on the path from µ(s) to µ′(s). The children of s are then defined so that Ĵ (◁(s)) =236

Ĵ (s)∩⇓(◁(ξ(s))) and Ĵ (▷(s)) = Ĵ (s)∩⇓(▷(ξ(s))) and Ĵ (▽(s)) = Ĵ (s)\ (Ĵ (◁(s))∪Ĵ (▷(s))).237

i.e. ξ(s) partitions the subtree Ĵ (s) into the subtrees Ĵ (◁(s)), Ĵ (▷(s)), and Ĵ (▽(s)). This process238

continues recursively until |Ĵ (s)| = 1 in which case s is a leaf of D.239

6

For all binary trees J in our algorithm we shall maintain a TSTH(J) of J with height O(ln(|J |)).240

Such trees J are dynamic in that on any trial it is possible that two vertices, u and u′, are added to241

the tree J such that u′ is inserted between a non-root vertex of J and its parent, and u is designated242

as a child of u′. We define the subroutine REBALANCE(H(J), u) as one which rebalances the TST243

H(J) after this insertion, so that the height of H(J) always remains in O(ln(|J |)). The work of244

[19] describes how this subroutine can be implemented in a time of O(ln(|J |)) and we refer the245

reader to this work for details (noting that they use different notation).246

4.3 Contractions247

At any trial t the contexts in {xs | s ∈ [t]} naturally form a tree by designating n(xs) as the parent248

of xs. However, to utilise the TST data-structure we must only have binary trees. Hence, we will249

work with a (dynamic) full binary tree Z which, on trial t, is a binarisation of the above tree. The250

relationship between these two trees is given by a map γ : Zt → {xs | s ∈ [t]} where Zt is the tree251

Z on trial t. For all x ∈ {xs | s ∈ [t]} we will always have an unique leaf γ̃(x) ∈ Z⋆
t in which252

γ(γ̃(x)) = x. We also maintain a balanced TSTH(Z) of Z .253

Algorithm 2 gives the subroutine GROWt which updates Z at the start of trial t. Note that GROWt254

also defines a function d : Z → N such that d(u) is the number of times the function n must be255

applied to γ(u) to reach x1.256

Algorithm 2 GROWt which works on Z
1: u← γ̃(n(xt))
2: u∗ ← ↑(u)
3: u′ ← NEWVERTEX
4: u′′ ← NEWVERTEX
5: γ(u′)← n(xt)
6: γ(u′′)← xt
7: γ̃(xt)← u′′

8: if u = ◁(u∗) then
9: ◁(u∗)← u′

10: else
11: ▷(u∗)← u′

12: end if
13: ◁(u′)← u′′

14: ▷(u′)← u
15: d(u′)← d(u)
16: d(u′′)← d(u) + 1
17: REBALANCE(H(Z), u′′)

A contraction (of Z) is defined as a full binary tree J in which the following holds. (1) The257

vertices of J are a subset of those of Z . (2) r(J) = r(Z). (3) Given a vertex u ∈ J we have258

◁J (u) ∈ ⇓Z(◁Z(u)) and ▷J (u) ∈ ⇓Z(▷Z(u)). (4) Any leaf of J is a leaf of Z .259

CBNN will maintain, on every vertex v ∈ B, a contraction A(v) as well as a TSTH(A(v)) of A(v).260

Given J is one of these contractions, we also maintain, for all i, i′ ∈ {0, 1} , all u ∈ J and all261

j ∈ [log(T)], a value τi,i′(J , u, j) ∈ R+. Technically these quantities, which depend on the above262

function d, define a sequence of bayesian networks on J which is explained in Appendix D.3. For263

all i ∈ {0, 1} and all u ∈ J we also maintain a value κi(J , u) initialised equal to 1.264

On each of our contractions J we will define, on trial t, a subroutine INSERTt(J) that simply265

modifies J so that γ̃(xt) is added to its leaves. This subroutine is only called on certain trials t.266

Specifically, it is called on the contraction A(v) only when v is involved in CANPROP on trial t.267

Although the effect of this subroutine is simple to describe, its polylogarithmic-time implementation is268

quite complex. A function that is used many times during this subroutine is ν : Z ×Z → {◀, ▶,▲}269

in which ν(u, u′) is equal to ◀, ▶,▲ if u′ is contained in ⇓Z(◁Z(u)), in ⇓Z(▷Z(u)) or in neither,270

respectively. Algorithm 3 shows how to compute this function. Now that we have a subroutine for271

computing ν we can turn to the pseudocode for the subroutine INSERTt(J) in Algorithm 4. In the272

appendix we give a full description of how and why this subroutine works.273

4.4 Online Belief Propagation274

In this subsection we utilise the work of [6] in order to be able to efficiently compute the function θt275

that appears in CANPROP.276

7

Algorithm 3 Computing ν(u, u′) for u, u′ ∈ Z
1: E ← H(Z)
2: if u = u′ then
3: return ▲
4: end if
5: s̃← ΥE(u)
6: s̃′ ← ΥE(u

′)
7: s∗ ← ΓE(s̃, s̃

′)
8: for s ∈ {◁(s∗),▽(s∗), ▷(s∗)} do
9: if s̃ ∈ ⇓(s) then

10: ŝ← s
11: end if
12: if s̃′ ∈ ⇓(s) then
13: ŝ′ ← s
14: end if
15: end for
16: if ŝ ̸= ▽(s∗) then
17: return ▲
18: end if
19: if ξ(s∗) = u ∧ ŝ′ = ◁(s∗) then

20: return ◀
21: else if ξ(s∗) = u ∧ ŝ′ = ▷(s∗) then
22: return ▶
23: end if
24: s← ŝ
25: while TRUE do
26: if s ∈ E◦ then
27: return ▲
28: else if u = ξ(s) ∧ ◁(s) ∈ E• then
29: return ◀
30: else if u = ξ(s) ∧ ▷(s) ∈ E• then
31: return ▶
32: end if
33: for s′ ∈ {◁(s),▽(s), ▷(s)} do
34: if s̃ ∈ ⇓(s′) then
35: s← s′

36: end if
37: end for
38: end while

Algorithm 4 The operation INSERTt(J) on a contraction J of Z at trial t

1: E ← H(Z)
2: D ← H(J)
3: s← r(D)
4: ut ← γ̃(xt)
5: while s ∈ D† do
6: if ν(ξ(s), ut) =◀ then
7: s← ◁(s)
8: else if ν(ξ(s), ut) =▶ then
9: s← ▷(s)

10: else if ν(ξ(s), ut) = ▲ then
11: s← ▽(s)
12: end if
13: end while
14: û← µ(s)
15: s← r(E)
16: while s ∈ E† do
17: if ν(ξ(s), ut) = ν(ξ(s), û) then
18: if ν(ξ(s), ut) =◀ then
19: s← ◁(s)
20: else if ν(ξ(s), ut) =▶ then
21: s← ▷(s)
22: else if ν(ξ(s), ut) = ▲ then
23: s← ▽(s)
24: end if
25: else
26: s← ▽(s)
27: end if
28: end while

29: u∗ ← µ(s)
30: u′ ← ↑J (û)
31: if û = ◁J (u′) then
32: ◁J (u′)← u∗

33: else
34: ▷J (u′)← u∗

35: end if
36: if ν(u∗, û) =◀ then
37: ◁J (u∗)← û
38: ▷J (u∗)← ut
39: else
40: ▷J (u∗)← û
41: ◁J (u∗)← ut
42: end if
43: for i ∈ {0, 1} do
44: κi(J , u∗)← 1
45: κi(J , ut)← 1
46: end for
47: for (j, i, i′) ∈ [log(T)]× {0, 1} × {0, 1} do
48: for u ∈ {u∗, û, ut} do
49: δ(u)← d(u)− d(↑J (u))
50: if i = i′ then
51: τi,i′(J , u, j)← 1−ϕδ(u)(2j/T)
52: else
53: τi,i′(J , u, j)← ϕδ(u)(2

j/T)
54: end if
55: end for
56: end for
57: REBALANCE(H(J), ut)

8

Given a vertex u in one of our contractions J we define F(J , u) := {f ∈ {0, 1}J | f(u) = 1} and277

then for all j ∈ [log(T)] define:278

Λ(J , u, j) :=
∏

f∈F(J ,u)

∏
u′∈J\{r(J)}

τf(↑J (u′)),f(u′)(J , u′, j)κf(u′)(J , u′) .

As stated in the previous subsection, when a vertex v ∈ B becomes involved in CANPROP on trial t,279

CBNN will add γ̃(xt) to the leaves of A(v) via the operation INSERTt(A(v)). In the appendix we280

shall show that for each such v we then have:281

θt(v) =
1

4 log(T)

∑
j∈[log(T)]

Λ(A(v), γ̃(xt), j) .

We now outline how to compute this efficiently, deferring a full description for Appendix E.3. First282

note that for all contractions J and all (j, u) ∈ [log(T)]× J we have that Λ(J , u, j) is of the exact283

form to be solved by the classic Belief propagation algorithm [20]. The work of [6] shows how to284

compute this term in logarithmic time by maintaining a data-structure based on a balanced TST of J -285

in our case the TSTH(J). Whenever, for some i ∈ {0, 1} and u′ ∈ J , the value κi(J , u′) changes,286

the data-structure is updated in logarithmic time.287

We shall maintain, for each contraction J , a set of log(T) such data-structures - one for each288

value of j. We define the subroutine EVIDENCE(J , u′) as that which updates all these data-289

structures after κi(J , u′) changes. We also make sure that the data-structures are updated whenever290

REBALANCE(H(J), ·) is called. We then define the subroutine MARGINAL(J , u) as that which291

computes Λ(J , u, j) for each j ∈ [log(T)], and then sums the results and divides by 4 log(T). Hence,292

the output of MARGINAL(A(v), γ̃(xt)) is equal to θt(v).293

4.5 CBNN294

Now that we have defined all our subroutines we give, in Algorithm 5, the algorithm CBNN which is295

an efficient implementation of CANPROP with initial weighting given in Equation (4).296

Algorithm 5 CBNN at trial t

1: GROWt

2: ut ← γ̃(xt)
3: vt,0 ← r(B)
4: for j = 0, 1, · · · , (log(K)− 1) do
5: for v ∈ {◁(vt,j), ▷(vt,j)} do
6: INSERTt(A(v))
7: θt(v)← MARGINAL(A(v), ut)
8: end for
9: zt,j ← θt(◁(vt,j)) + θt(▷(vt,j))

10: for v ∈ {◁(vt,j), ▷(vt,j)} do
11: πt(v)← θt(v)/zt,j
12: end for
13: ζt,j ∼ [0, 1]
14: if ζt,j ≤ πt(◁(vt,j)) then
15: vt,j+1 ← ◁(vt,j)
16: else
17: vt,j+1 ← ▷(vt,j)

18: end if
19: end for
20: at ← vt,log(K)

21: π̃t ←
∏

j∈[log(K)] πt(vt,j)

22: ψt,log(K) ← exp(−ηℓt,at/π̃t)
23: for j = log(K), (log(K)− 1), · · · , 1 do
24: ψt,(j−1) ← 1− (1− ψt,j)πt(vt,j)
25: if vt,j = ◁(vt,j−1) then
26: ṽt,j ← ▷(vt,j−1)
27: else
28: ṽt,j ← ◁(vt,j−1)
29: end if
30: κ1(A(vt,j), ut)← ψt,j/ψt,j−1

31: κ1(A(ṽt,j), ut)← 1/ψt,j−1

32: EVIDENCE(A(vt,j), ut)
33: EVIDENCE(A(ṽt,j), ut)
34: end for

5 Conclusion297

In this paper we introduced the use of the nearest neighbour methodology for the fully adversarial298

contextual bandit problem when the contexts are selected from a metric space. We developed an299

extremely efficient algorithm CBNN. We gave a regret bound for CBNN and, as an example, further300

analysed it in the case in which the contexts (but not necessarily the losses) are drawn i.i.d. from a301

distribution on a multi-dimensional hypercube: where CBNN requires no knowledge of parameters.302

9

References303

[1] R. Agrawal. Sample mean based index policies by o(log n) regret for the multi-armed bandit304

problem. Advances in Applied Probability, 27:1054 – 1078, 1995.305

[2] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem.306

Machine Learning, 47:235–256, 2002.307

[3] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed bandit308

problem. SIAM J. Comput., 32:48–77, 2002.309

[4] W. Chu, L. Li, L. Reyzin, and R. E. Schapire. Contextual bandits with linear payoff functions.310

In International Conference on Artificial Intelligence and Statistics, 2011.311

[5] T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory,312

13:21–27, 1967.313

[6] A. L. Delcher, A. J. Grove, S. Kasif, and J. Pearl. Logarithmic-time updates and queries in314

probabilistic networks. J. Artif. Intell. Res., 4:37–59, 1995.315

[7] Y. Freund, R. E. Schapire, Y. Singer, and M. K. Warmuth. Using and combining predictors that316

specialize. In Symposium on the Theory of Computing, 1997.317

[8] A. Garivier and O. Cappé. The kl-ucb algorithm for bounded stochastic bandits and beyond. In318

Annual Conference Computational Learning Theory, 2011.319

[9] D. P. Helmbold and R. E. Schapire. Predicting nearly as well as the best pruning of a decision320

tree. Machine Learning, 27:51–68, 1995.321

[10] M. Herbster, S. Pasteris, and F. Vitale. Online sum-product computation over trees. In NIPS,322

2012.323

[11] M. Herbster, S. Pasteris, F. Vitale, and M. Pontil. A gang of adversarial bandits. In Neural324

Information Processing Systems, 2021.325

[12] M. Herbster and J. Robinson. Online prediction of switching graph labelings with cluster326

specialists. In Neural Information Processing Systems, 2018.327

[13] M. Herbster and M. K. Warmuth. Tracking the best expert. Machine Learning, 32:151–178,328

1995.329

[14] W. M. Koolen, D. Adamskiy, and M. K. Warmuth. Putting bayes to sleep. In NIPS, 2012.330

[15] R. Krauthgamer and J. R. Lee. Navigating nets: simple algorithms for proximity search. In331

ACM-SIAM Symposium on Discrete Algorithms, 2004.332

[16] T. L. Lai and H. E. Robbins. Asymptotically efficient adaptive allocation rules. Advances in333

Applied Mathematics, 6:4–22, 1985.334

[17] T. Lattimore and C. Szepesvári. Bandit algorithms. 2020.335

[18] L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to personalized336

news article recommendation. In The Web Conference, 2010.337

[19] K. Matsuzaki and A. Morihata. Mathematical engineering technical reports balanced ternary-tree338

representation of binary trees and balancing algorithms. 2008.339

[20] J. Pearl. Reverend bayes on inference engines: A distributed hierarchical approach. Probabilistic340

and Causal Inference, 1982.341

[21] H. W. J. Reeve, J. C. Mellor, and G. Brown. The k-nearest neighbour ucb algorithm for342

multi-armed bandits with covariates. ArXiv, abs/1803.00316, 2018.343

[22] H. E. Robbins. Some aspects of the sequential design of experiments. Bulletin of the American344

Mathematical Society, 58:527–535, 1952.345

10

A Guide to the Appendices346

To give the reader some intuition behind CBNN we present, in Appendix B, our initial idea: an347

algorithm which obtains the regret bound of CBNN but is exponentially slower. We then give a348

detailed description of CBNN in appendices C to E. Specifically, in Appendix C we describe our349

novel algorithmic framework CANPROP. In Appendix D we describe contractions and bayesian350

networks on them, showing how CANPROP can be implemented with them. Finally, in Appendix E351

we describe TSTs and how they are used to perform our required operations efficiently. In Appendix352

F we prove, in order, all of the theorems stated in this paper.353

B The Initial Idea354

Here we describe our initial idea - an algorithm, based on EXP4 [3] and Belief propagation [20],355

which attains the regret bound of CBNN but is exponentially slower - taking a per-trial time of356

Θ̃(KT). Since this section is only to give intuition, and the results are surpassed by CBNN, we do357

not prove the statements made in this section.358

To begin with we assume a-priori knowledge of the set X := {xt | t ∈ [T]} and function n but the359

final algorithm will not need this knowledge. Without loss of generality assume that T is an integer360

power of two.361

The algorithm is based on EXP4 [3] which we now describe. On every trial t we maintain a weighting362

ŵt : [K]X → [0, 1]. We are free to choose any ŵ1 satisfying:363 ∑
y∈[K]X

ŵ1(y) = 1 .

On each trial t the following happens:364

1. xt is revealed365

2. For all a ∈ [K] set pt,a ←
∑

y∈[K]X Jy(xt) = aKŵt(y)366

3. Set at ← a with probability proportional to pt,a367

4. Receive ℓt,at368

5. For all a ∈ [K] set ℓ̂t,a ← Ja = atKℓt,at
∥pt∥1/pt,at

369

6. For all y ∈ [K]X set ŵt+1(y)← ŵt(y) exp(−ηℓ̂t,y(xt))370

It is a classic result [3] that, for any policy y : X → [K], the expected y-regret of EXP4 is bounded371

by:372

E[R(y)] ≤ ηKT

2
− ln(ŵ1(y))

η
.

If i ∈ [log(T)] is such that 2i ≤ Φ(y) ≤ 2i+1 then:373

ln

((
2i

T (K − 1)

)Φ(y)(
1− 2i

T

)(T−1−Φ(y))
)
∈ O

(
ln

(
KT

|Φ(y)|

)
Φ(y)

)
so setting:374

η := ρ

√
1

KT

and:375

ŵ1(y) :=
1

K log(T)

∑
i∈[log(T)]

(
2i

T (K − 1)

)Φ(y)(
1− 2i

T

)(T−1−Φ(y))

gives us our desired regret bound.376

However, we have two issues - the algorithm takes exponential time and the set X and function377

n need to be known a-priori. We will hence discuss how to bring the time complexity down to378

11

Θ̃(KT) and with no a-priori knowledge. To do this first define, for all i ∈ [log(T)], the function379

τ̂i : [K]× [K]→ [0, 1] by:380

τ̂i(a, a
′) := Ja ̸= a′K

2i

T (K − 1)
+ Ja = a′K

(
1− 2i

T

)
Note then that for all y ∈ [K]X we have:381

ŵ1(y) ∝
∑

i∈[log(T)]

 ∏
s∈[T]\{1}

τ̂i(y(xs), y(n(xs)))

so that for all trials t:382

ŵt(y) ∝
∑

i∈[log(T)]

 ∏
s∈[T]\{1}

τ̂i(y(xs), y(n(xs)))

 ∏
s∈[T]

exp(−Js < tKηℓ̂s,y(xs))

and hence for all a ∈ [K] we have:383

pt,a ∝
∑

i∈[log(T)]

∑
y∈[K]X

Jy(xt) = aK

 ∏
s∈[T]\{1}

τ̂i(y(xs), y(n(xs)))

 ∏
s∈[T]

exp(−Js < tKηℓ̂s,y(xs))

For all s ∈ [t] and a ∈ [K] define:384

ϕ′t(xs, a) := Js < tK exp(−ηℓ̂s,a) + Js = tK

A crucial insight is that:385

∑
y∈[K]X

Jy(xt) = aK

 ∏
s∈[T]\{1}

τ̂i(y(xs), y(n(xs)))

 ∏
s∈[T]

exp(−Js < tKηℓ̂s,y(xs))

is equal to:386 ∑
y∈[K]Xt

Jy(xt) = aKϕ′t(x1, y(x1))
∏

s∈[t]\{1}

τ̂s(y(xs), y(n(xs)))ϕ
′
t(xs, y(xs)) (5)

which is why the algorithm needs only know {xs | s ∈ [t]} and {n(xs) | s ∈ [t] \ {1}}. On trial t we387

construct a tree with vertex set {xs | s ∈ [t]} which is rooted at x1 and is such that for all s ∈ [t]\{1}388

we have that n(xs) is the parent of xs. We note that computing the quantity in Equation (5) for all389

a ∈ [K] can be done in a time of Θ(Kt) by Belief propagation [20] on this tree. Hence we have that390

pt can be computed in a time of Θ(Kt log(T)) without a-priori knowledge of X and n.391

C Cancellation Propagation392

We now turn to the description and analysis of our algorithm CBNN, starting with our novel393

algorithmic framework CANPROP.394

C.1 The General CANPROP Algorithm395

Let X := {xt | t ∈ [T]}. Note that we do not know X a-priori but for now let’s assume we do. We396

now introduce a general algorithmic framework CANPROP for handling contextual bandit problems397

with a per-trial time logarithmic in K. Without loss of generality assume that K is an integer power398

of two. Let B be a full, balanced, oriented binary tree whose leaves are the set of actions [K]. Let399

B′ := B \ {r(B)}. CANPROP takes a parameter η ∈ R+ called the learning rate. On each trial t400

CANPROP maintains a function:401

wt : B′ × 2X → [0, 1]

The function w1 is free to be defined how one likes, as long as it satisfies the constraint that for all402

internal vertices v ∈ B† we have:403 ∑
S∈2X

(w1(◁(v),S) + w1(▷(v),S)) = 1

12

We now describe how CANPROP acts on trial t. For all v ∈ B′ we define:404

θt(v) :=
∑
S∈2X

Jxt ∈ SKwt(v,S)

and for all v ∈ B† we define:405

πt(◁(v)) :=
θt(◁(v))

θt(◁(v)) + θt(▷(v))
; πt(▷(v)) :=

θt(▷(v))

θt(◁(v)) + θt(▷(v))

As we shall see CANPROP needs only compute these values for O(ln(K)) vertices v. CANPROP406

samples a root-to-leaf path {vt,j | j ∈ [log(K)] ∪ {0}} as follows. vt,0 is defined equal to r(B). For407

all j ∈ [log(K) − 1] ∪ {0}, once vt,j has been sampled we sample vt,(j+1) from the probability408

distribution defined by:409

P[vt,(j+1) = v] := J↑(v) = vt,jKπt(v) ∀v ∈ B′

noting that vt,(j+1) is a child of vt,j . We define:410

Pt := {vt,j | j ∈ [log(K)] ∪ {0}}
CANPROP then selects:411

at := vt,log(K)

and then receives the loss ℓt,at
. The function wt is then updated to wt+1 as follows. Firstly we define,412

wt+1(v,S) := wt(v,S) ∀(v,S) ∈ {v′ ∈ B′ | ↑(v′) /∈ Pt} × 2X

We then define:413

ψt,log(K) := exp

(
−ηℓt,at∏

j∈[log(K)] πt(vt,j)

)
Once we have defined ψt,j for some j ∈ [log(K)] we then define:414

ψt,(j−1) := 1− (1− ψt,j)πt(vt,j)
415

βt(v) :=
Jv ∈ PtKψt,j + Jv /∈ PtK

ψt,(j−1)
∀v ∈ {◁(vt,(j−1)), ▷(vt,(j−1))}

416

wt+1(v,S) := (Jxt ∈ SKβt(v) + Jxt /∈ SK)wt(v,S) ∀(v,S) ∈ {◁(vt,(j−1)), ▷(vt,(j−1))} × 2X

The regret bound of CANPROP is given by the following theorem.417

Theorem C.1. Suppose we have a function y : X → [K]. For all v ∈ B define:418

Q(v) := {x ∈ X | y(x) ∈ ⇓(v)}
Then the expected y-regret of CANPROP is bounded by:419

E[R(y)] ≤ ηKT

2
− 1

η

∑
v∈B′

JQ(v) ̸= ∅K ln(w1(v,Q(v)))

C.2 Our Parameter Tuning420

We now describe and analyse the initial weighting w1 that we will use. Without loss of generality421

assume T is an integer power of two. Define X ′ := X \ {x1}. For all (x,S) ∈ X ′ × 2X define:422

σ(x,S) := JJx ∈ SK ̸= Jn(x) ∈ SKK
For all (v,S) ∈ B′ × 2X we define:423

w1(v,S) :=
1

4 log(T)

∑
i∈[log(T)]

∏
x∈X ′

(
σ(x,S)2

i

T
+ (1− σ(x,S))

(
1− 2i

T

))
Given our parameter ρ we choose our learning rate as:424

η := ρ

√
ln(K) ln(T)

KT
Given this initial weighting and learning rate, Theorem C.1 implies the following regret bound.425

Theorem C.2. Given w1 and η are defined as above, then for any policy y : C → [K] the expected426

y-regret of CANPROP is bounded by:427

E[R(y)] ∈ O
((

ρ+
Φ(y)

ρ

)√
ln(K) ln(T)KT

)

13

D Binarisation and Implementation with Contractions428

D.1 A Sequence of Binary Trees429

For any trial t we have a natural tree-structure on the set {xt′ | t′ ∈ [t]} formed by making n(xt′) the430

parent of xt′ for all t′ ∈ [t]\{1}. However, in order to utilise the methodology of [19] we need to work431

with binary trees. Hence, we now inductively define a sequence of binary trees {Zt | t ∈ [T] \ {1}}432

where the vertices of Zt are a subset of those of Zt+1. We also define a function γ : ZT → X . This433

function γ has the property that for any t ∈ [T] and for any distinct leaves u, u′ ∈ Z⋆
t we have that434

γ(u) ̸= γ(u′) , and that:435

{γ(u) | u ∈ Z⋆
t } = {xt′ | t′ ∈ [t]}

We define Z2 to contain three vertices {r(Z2), ◁(r(Z2)), ▷(r(Z2))} where:436

γ(r(Z2)) := γ(◁(r(Z2)) := x1 and γ(▷(r(Z2)) := x2
Now consider a trial t ∈ [T]. We have that Zt+1 is constructed from Zt via the following algorithm437

GROWt+1:438

1. Let u be the unique leaf in Z⋆
t in which γ(u) = n(xt+1) and let u∗ := ↑(u).439

2. Create two new vertices u′ and u′′.440

3. Set γ(u′)← n(xt+1) and γ(u′′)← xt+1.441

4. If u = ◁(u∗) then set ◁(u∗)← u′. Else set ▷(u∗)← u′.442

5. Set ◁(u′)← u′′ and ▷(u′)← u443

We also define a function d : ZT → N∪ {0} as follows. Define d′(x1) := 0 and for all t ∈ [T] \ {1}444

inductively define d′(xt) := d′(n(xt)) + 1. Finally define d(u) := d′(γ(u)) for all u ∈ ZT . Since445

for all t ∈ [T] we have that the vertices of Zt are a subset of those of ZT we have that d also defines446

a function over Zt for all t ∈ [T].447

For all t ∈ [T] we define ut to be the unique leaf of Zt for which γ(ut) = xt.448

D.2 Contractions449

Our efficient implementation of CANPROP will have a data-structure at every vertex v ∈ B′. However,450

to achieve polylogarithmic time per trial we can only update a polylogarithmic number of these451

data-structures per trial. This necessitates the use of contractions of our trees {Zt | t ∈ [T] \ {1}}452

which are defined as follows. A contraction of a full binary treeQ is another full binary tree J which453

satisfies the following:454

• The vertices of J are a subset of those of Q.455

• r(J) = r(Q)456

• Given an internal vertex u ∈ J † we have ◁J (u) ∈ ⇓Q(◁Q(u)) and ▷J (u) ∈ ⇓Q(▷Q(u))457

• Any leaf of J is a leaf of Q.458

Note that any contraction of Zt is also a contraction of Zt+1 and hence, by induction, a contraction459

of Zt′ for all t′ ≥ t. Given a trial t and a contraction J of Zt−1 we now define the operation460

INSERTt(J) which acts on J by the following algorithm:461

1. Let û be the unique vertex in J \ r(J) such that ut lies in the maximal spanning tree of Zt462

with ↑J (û) and û as leaves.463

2. Let u∗ := ΓZt
(ut, û) .464

3. Add the vertices u∗ and ut to the tree J .465

4. Let u′ := ↑J (û).466

5. If û = ◁J (u′) then set ◁J (u′)← u∗. Else set ▷J (u′)← u∗.467

6. If û ∈ ⇓Zt
(◁Zt

(u∗)) then set ◁J (u∗) ← û and ▷J (u∗) ← ut. Else set ▷J (u∗) ← û and468

◁J (u∗)← ut469

Later in this paper we will show how this operation can be done in polylogarithmic time. Note that470

after the operation we have that J is a contraction of Zt and ut has been added to it’s leaves. From471

now on when we use the term contraction we mean any contraction of ZT .472

14

D.3 Contraction-Based Bayesian Networks473

Here we shall define a bayesian network over any contraction J and show how it can be utilised to474

compute certain quantities required by CANPROP. This bayesian network takes a parameter ϵ ∈ [0, 1].475

First define the quantity ϕ0(ϵ) := 0 and for all j ∈ N ∪ {0} inductively define:476

ϕj+1(ϵ) := (1− ϵ)ϕj(ϵ) + ϵ(1− ϕj(ϵ))

The algorithm must compute these quantities for various values of ϵ. However, for all t ∈ [T] we477

have that ϕt(ϵ) doesn’t have to be computed until trial t so computing these quantities is constant478

time per trial (for each value of ϵ). Given a contraction J , a value ϵ ∈ [0, 1] , a vertex u ∈ J \ r(J)479

and indices i, i′ ∈ {0, 1} define:480

τ̃i,i′(J , u, ϵ) := Ji ̸= i′Kϕ(d(u)−d(↑J (u)))(ϵ) + Ji = i′K(1− ϕ(d(u)−d(↑J (u)))(ϵ))

which defines the transition matrix from ↑J (u) to u in a bayesian network. We shall now show481

how belief propagation over such bayesian networks can be used to compute the quantities we need482

in CANPROP. Suppose we have a contraction J , a value ϵ ∈ [0, 1] and a function λ : J ⋆ → R+.483

This function λ induces a function λ′ : X → R+ defined as follows. Given x ∈ X , if there exists a484

leaf u ∈ J ⋆ with γ(u) = x then λ′(x) = λ(u). Otherwise λ′(x) = 1. We then define a weighting485

w̃(λ, ϵ, ·) : 2X → R+ such that for all S ∈ 2X we have:486

w̃(λ, ϵ,S) :=

(∏
x∈S

λ′(x)

)(∏
x∈X ′

(σ(x,S)ϵ+ (1− σ(x,S))(1− ϵ))

)
For the CANPROP algorithm we will need to compute487 ∑

S∈2X

Jγ(û) ∈ SKw̃(λ, ϵ,S) (6)

for some leaf û ∈ J ⋆. We shall now show how we can compute this quantity via belief propagation488

on the bayesian network. In particular we shall construct a quantity Λ̃(J , λ, ϵ, u) equal to the quantity489

in Equation (6). To do this first define the function λ∗ : J → R+ so that for all u ∈ J ⋆ we have490

λ∗(u) = λ(u) and for all u ∈ J † we have λ∗(u) = 1. For all vertices u ∈ J and all indices491

i ∈ {0, 1} define:492

κ̃i(λ, u) := Ji = 0K + Ji = 1Kλ∗(u)
For all û ∈ J define:493

F(J , û) := {f ∈ {0, 1}J | f(û) = 1}
and then define:494

Λ̃(J , λ, ϵ, û) :=
∑

f∈F(J ,û)

∏
u∈J\r(J)

τ̃f(↑J (u)),f(u)(J , u, ϵ)κ̃f(u)(λ, u)

The equality of this quantity and that given in Equation (6) is given by the following theorem.495

Theorem D.1. Given a contraction J , a function λ : J ⋆ → R+, some ϵ ∈ [0, 1] and some leaf496

û ∈ J ⋆ we have:497

Λ̃(J , λ, ϵ, û) =
∑
S∈2X

Jγ(û) ∈ SKw̃(λ, ϵ,S)

Note that Λ̃(J , λ, ϵ, û) is of the exact form to be solved via belief propagation over J . However,498

belief propagation is still too slow (taking Θ(|J |) time) - we will remedy this later.499

D.4 Cancelation Propogation with Contractions500

We now describe how to implement CANPROP with contractions. For each v ∈ B′ we maintain a501

contraction A(v) and a function ζ(v, ·) : A(v)⋆ → R+. We initialise with A(v) identical to Z2 and502

ζ(v, u) = 1 for both leaves u ∈ Z⋆
2 . Via induction over t we will have that at the start of each trial t503

we have, for all sets S ∈ 2X , that:504

wt(v,S) =
1

4 log(T)

∑
i∈[log(T)]

w̃(ζ(v, ·), 2i/T,S) (7)

15

On trial t we do as follows. First we update Zt−1 to Zt using the algorithm GROWt. We will perform505

the necessary modifications to our contractions as we sample the path Pt. In particular we first506

set vt,0 ← r(B) and then for each j ∈ [log(K) − 1] ∪ {0} in turn we do as follows. For each507

v ∈ {◁(vt,j), ▷(vt,j)} run INSERTt(A(v)) and set ζ(v, ut) ← 1. Since ζ(v, ut) = 1 Equation (7)508

still holds and hence, by Theorem D.1, we have:509

θt(v) =
1

4 log(T)

∑
i∈[log(T)]

Λ̃(A(v), ζ(v, ·), 2i/T, ut)

where ζ(v, ·) is the function that maps each u ∈ A(v) to ζ(v, u). After θt(v) has been computed for510

both v ∈ {◁(vt,j), ▷(vt,j)} we can now sample vt,j+1.511

Once we have selected the action at we then update the functions {ζ(v, ·) | ↑B(v) ∈ Pt} by setting512

ζ(v, ut)← βt(v) for all v ∈ B′ with ↑B(v) ∈ Pt. It is clear now that Equation (7) holds inductively.513

D.5 Notational Relationship to the Main Body514

We now point out how the notation in this section relates to that of the main body. In particular we515

have, for all v ∈ B′ , all u ∈ A(v) , all j ∈ [log(T)] and all i, i′ ∈ {0, 1}, that:516

• τi,i′(A(v), u, j) = τ̃i,i′(A(v), u, 2j/T)517

• κi(A(v), u) = κ̃i(ζ(v, ·), u)518

• Λ(A(v), u, j) = Λ̃(A(v), ζ(v, ·), 2j/T, u)519

E Utilising Ternary Search Trees520

There are now only two things left to do in order to achieve polylogarithmic time per trial - to make521

an efficient online implementation of the INSERTt(·) operation and an efficient online algorithm to522

perform belief propagation over our contractions. In order to do this we will utilise the methodology523

of [19] which we now describe. However, we do not give the full details of the rebalancing technique524

and refer the reader to [19] for these details.525

E.1 Ternary Search Trees526

In this section we will consider a full binary tree J . A (full) ternary tree D is a rooted tree in which527

each internal vertex s ∈ D† has three children denoted by ◁(s), ▽(s), ▷(s) and called the left, centre,528

and right children respectively. We now define what it means for a ternary tree D to be a ternary529

search tree (TST) of J . Firstly, the vertex set of D is partitioned into two sets D◦ and D•. Every530

vertex s ∈ D is associated with a vertex µ(s) ∈ J and every s ∈ D• is also associated with a vertex531

µ′(s) ∈ ⇓J (µ(s))†. The root r(D) of D is contained in D◦ and µ(r(D)) := r(J). Each internal532

vertex s ∈ D† is associated with a vertex ξ(s) ∈ J . If s ∈ D◦ then ξ(s) ∈ ⇓(µ(s))† and if s ∈ D•533

then ξ(s) lies on the path (in J) from µ(s) to ↑(µ′(s)). For all s ∈ D† we have:534

• ▽(s) ∈ D• , µ(▽(s)) := µ(s) and µ′(▽(s)) := ξ(s).535

• ◁(s) satisfies:536

– If s ∈ D◦ then ◁(s) ∈ D◦ and µ(◁(s)) := ◁(ξ(s)).537

– If s ∈ D• and µ′(s) ∈ ⇓(▷(ξ(s))) then ◁(s) ∈ D◦ and µ(◁(s)) := ◁(ξ(s))538

– Else ◁(s) ∈ D• , µ(◁(s)) := ◁(ξ(s)) and µ′(◁(s)) := µ′(s)539

• ▷(s) satisfies:540

– If s ∈ D◦ then ▷(s) ∈ D◦ and µ(▷(s)) := ▷(ξ(s)).541

– If s ∈ D• and µ′(s) ∈ ⇓(◁(ξ(s))) then ▷(s) ∈ D◦ and µ(▷(s)) := ▷(ξ(s))542

– Else ▷(s) ∈ D• , µ(▷(s)) := ▷(ξ(s)) and µ′(▷(s)) := µ′(s)543

Finally, for each leaf s ∈ D⋆ we have:544

• If s ∈ D◦ then µ(s) is a leaf of J .545

16

• If s ∈ D• then there exists u ∈ J † such that µ(s) = µ′(s) = u.546

Intuitively each vertex s ∈ D is associated with a subtree Ĵ (s) of J . If s ∈ D◦ then Ĵ (s) := ⇓(µ(s))547

and if s ∈ D• then Ĵ (s) is the subtree of descendants of µ(s) which are not proper descendants548

of µ′(s). For every s ∈ D such that Ĵ (s) contains only a single vertex, we have that s is a leaf of549

D. Otherwise s is an internal vertex of D and its children are as follows. We say that Ĵ (s) is split550

at the vertex ξ(s) ∈ Ĵ (s)†. If s ∈ D• we require that ξ(s) is on the path in J from µ(s) to µ′(s).551

The action of splitting Ĵ (s) at ξ(s) partitions Ĵ (s) into the subtrees Ĵ (◁(s)), Ĵ (▽(s)) and Ĵ (▷(s))552

defined as follows:553

• Ĵ (◁(s)) := ⇓(◁(ξ(s))) ∩ Ĵ (s)554

• Ĵ (▷(s)) := ⇓(▷(ξ(s))) ∩ Ĵ (s)555

• Ĵ (▽(s)) := Ĵ (s) \ (Ĵ (◁(s)) ∪ Ĵ (▷(s)))556

Utilising the methodology of [19] we will maintain TSTs of Zt (at each trial t) and the trees in557

{A(v) | v ∈ B′}, each with height O(ln(T)). Note that these trees are dynamic, in that vertices are558

inserted into them over time. [19] shows how, after such an insertion, the corresponding TST can be559

rebalanced so that its height is still in O(ln(T)). This rebalancing is performed via a sequence of560

O(ln(T)) tree rotations, which generalise the concept of tree rotations in binary search trees.561

E.2 Searching562

In this section we show how we can use our TSTs to implement the operation INSERTt(J) on any563

trial t and contraction J of Zt−1. To do this we need to perform the following two search operations:564

1. Find the unique vertex û ∈ J \ r(J) such that ut lies in the maximal spanning tree of Zt565

with ↑J (û) and û as leaves.566

2. Find u∗ := ΓZt
(ut, û)567

To perform these tasks in polylogarithmic time we will utilise TSTs E andD of Zt and J respectively.568

Both the searching tasks utilise a function ν : Z2
t → {▲, ◀, ▶} defined, for all u, u′ ∈ Zt as follows.569

If u′ ∈ ⇓Zt
(◁(u)) or u′ ∈ ⇓Zt

(▷(u)) then ν(u, u′) :=◀ or ν(u, u′) :=▶ respectively. Otherwise570

ν(u, u′) := ▲. This can be computed as follows. If u = u′ then ν(u, u′) := ▲. Otherwise let s̃ and571

s̃′ be the unique leaves of E such that µ(s̃) = u and µ(s̃′) = u′. Let s∗ := ΓE(s̃, s̃
′) and let ŝ and572

ŝ′ be the children of s∗ which are ancestors of s̃ and s̃′ respectively. If ŝ ̸= ▽(s∗) then we have573

ν(u, u′) = ▲. If ξ(s∗) = u then we have ν(u, u′) =◀ or ν(u, u′) =▶ if ŝ′ = ◁(s∗) or ŝ′ = ▷(s∗)574

respectively. If ŝ = ▽(s∗) and ξ(s∗) ̸= u then we perform the following process. Start with s575

equal to ŝ. At any point in the process we do as follows. If s ∈ E◦ then the process terminates576

with ν(u, u′) := ▲. If s ∈ E• and u = ξ(s) then the process terminates with ν(u, u′) =◀ or577

ν(u, u′) =▶ if ◁(s) ∈ E• or ▷(s) ∈ E• respectively. If s ∈ E• and u ̸= ξ(s) then we reset s as equal578

to the child of s which is an ancestor of s̃ and continue the process.579

The vertex û can be found as follows. We construct a root-to-leaf path in D such that, given a vertex580

s in the path, the next vertex in the path is ◁(s), ▷(s) or ▽(s) if ν(ξ(s), ut) is equal to ◀, ▶ or ▲581

respectively. Given that s′ is the leaf of D that is in this path we have û = µ(s′).582

The vertex u∗ can then be found as follows. We construct a root-to-leaf path in E such that, given a583

vertex s in the path, the next vertex in the path is found as follows. If ν(ξ(s), ut) = ν(ξ(s), û) then584

given ν(ξ(s), ut) is equal to ◀, ▶ or ▲, the next vertex is equal to ◁(s), ▷(s) or ▽(s) respectively.585

Otherwise, the next vertex is ▽(s). Given that s′ is the leaf of E that is in this path we have u∗ = µ(s′).586

The fact that these algorithms find the correct vertices is given in the following theorem:587

Theorem E.1. The above algorithms are correct.588

E.3 Belief Propagation589

Here we utilise the methodology of [6] in order to efficiently compute the function Λ̃ that appears590

in the CANPROP implementation. i.e. given a contraction J , a function λ : J ⋆ → R+, some591

17

ϵ ∈ [0, 1] and some leaf û ∈ J ⋆ we need to compute Λ̃(J , λ, ϵ, û). For brevity let us define, for all592

i, i′ ∈ {0, 1}, and all vertices u ∈ J \ {r(J)} , the quantities:593

τ̂i,i′(u) := τ̃i,i′(J , u, ϵ) ; κ̂i(u) := κ̃i(λ, u)

For simplicity of presentation we will utilise a tree J ′ which is defined as identical to J except with594

a single vertex added as the parent of r(J). For all i, i′ ∈ {0, 1} we define κ̂i(r(J ′)) := 1 and595

τ̂i,i′(r(J)) = Ji = i′K. For all u ∈ J we will define ↑(u) := ↑J ′(u)596

We will utilise a TST D of J by maintaining potentials on the vertices of D defined as follows. First,597

for any vertex s ∈ D define the subtree Ĵ (s) of J to be equal to ⇓J (µ(s)) if s ∈ D◦ and equal598

to the maximal subtree with µ(s) and µ′(s) as leaves if s ∈ D•. For all s ∈ D◦ and i ∈ {0, 1} we599

define:600

Ψi(s) :=
∑

f∈{0,1}Ĵ (s)∪{↑(µ(s))}

Jf(↑(µ(s))) = iK
∏

u∈Ĵ (s)

τ̂f(↑(u)),f(u)(u)κ̂f(u)(u)

and for all s ∈ D• and i, i′ ∈ {0, 1} we define:601

Ωi,i′(s) :=
∑

f∈{0,1}Ĵ (s)∪{↑(µ(s))}

Jf(↑(µ(s))) = iKJf(µ′(s)) = i′K
∏

u∈Ĵ (s)

τ̂f(↑(u)),f(u)(u)κ̂f(u)(u)

We have the following recurrence relations for these potentials. Suppose we have an internal vertex602

s ∈ D† and i, i′ ∈ {0, 1}. If s ∈ D◦ we have:603

Ψi(s) =
∑

i′′∈{0,1}

Ωi,i′′(▽(s))Ψi′′(◁(s))Ψi′′(▷(s))

If, instead, s ∈ D• then, by letting s′ := ◁(s), s′′ := ▷(s) if ◁(s) ∈ D• and s′ := ▷(s), s′′ := ◁(s)604

otherwise, we have:605

Ωi,i′(s) =
∑

i′′∈{0,1}

Ωi,i′′(▽(s))Ωi′′,i′(s
′)Ψi′′(s

′′)

If, on a trial t, we perform the operation INSERTt(J) or change the value of λ(ut) these recurrence606

relations can be used to update the potentials (in conjunction with the tree rotations) in logarithmic607

time.608

Now that we have defined our potentials we will show how to use them to compute Λ̃(J , λ, ϵ, û)609

in logarithmic time. To do this we recursively define the following quantities for i ∈ {0, 1}. Let610

ωi(r(D)) := 1. Given an internal vertex s ∈ D◦ we define:611

ωi(▽(s)) := ωi(s) ; ω′
i(▽(s)) := Ψi(◁(s))Ψi(▷(s))

612

ωi(◁(s)) := Ψi(▷(s))
∑

i′∈{0,1}

ωi′(s)Ωi′,i(s) ; ωi(▷(s)) := Ψi(◁(s))
∑

i′∈{0,1}

ωi′(s)Ωi′,i(s)

Given an internal vertex s ∈ D• define s′ := ◁(s), s′′ := ▷(s) if ◁(s) ∈ D• and s′ := ▷(s),613

s′′ := ◁(s) otherwise. Then:614

ωi(▽(s)) := ωi(s) ; ω′
i(▽(s)) := Ψi(s

′′)
∑

i′∈{0,1}

Ωi,i′(s
′)ω′

i′(s)

615

ωi(s
′) :=

∑
i′∈{0,1}

ωi′(s)Ωi′,i(s)Ψi(s
′′) ; ω′

i(s
′) := ω′

i(s)

616

ωi(s
′′) :=

∑
i′,i′′∈{0,1}

ωi′(s)Ωi′,i(▽(s))ω
′
i′′(s)Ωi,i′′(s

′)

For s ∈ D◦, ω′
i(s) is not required and hence is arbitrary. We inductively compute the values617

{ωi(s), ω
′
i(s) | i ∈ {0, 1}} for all s in the path from r(D) to the unique leaf ŝ ∈ D⋆ in which618

µ(ŝ) = û. We then have Λ̃(J , λ, ϵ, û) = ω1(ŝ).619

Since this is known methodology we do not include a proof in this paper and direct the reader to [6].620

18

F Proofs621

F.1 Theorem 3.1622

For brevity we write α instead of α(y, µ). Choose some δ > 0. Let E := C \M(y, δ). Let X be a623

set of m contexts drawn i.i.d. at random from µ. Now consider some x drawn from µ and let x̂ be a624

c-nearest neighbour of x in X .625

Suppose that x ∈ E . Let A be the ball of radius δ/c centred at x. We have that:626

µ(A) ≥ ϵλ
(
δ

c

)d

where λ is a constant dependent on d. This means that for any x′ drawn from µ we have that:627

P[x′ /∈ A] ≤ 1− λϵ
(
δ

c

)d

≤ exp

(
−λϵ

(
δ

c

)d
)

Suppose that:628

m ≥ − ln(αδ)

λϵ

(c
δ

)d
Note that if there exists x′′ ∈ X with x′′ ∈ A then ∆(x, x̂) ≤ δ so that y(x) = y(x̂). The above629

equations then give us:630

P[y(x) ̸= y(x̂) |x ∈ E] ≤ exp

(
−mλϵ

(
δ

c

)d
)
≤ αδ

We then have that:631

P[y(x) ̸= y(x̂)] ≤ αδ + µ(M(δ)) ∈ O(αδ)
Since:632

δ ∈ Õ(c(ϵm)−1/d)

we now have:633

P[y(x) ̸= y(x̂)] ∈ Õ
(
cα(ϵm)−1/d

)
F.2 Theorem 3.2634

This theorem is proved in appendices C to E and the theorems therein.635

F.3 Theorem 3.3636

Choose a set S ⊆ C in which for all t ∈ [T] there exists x ∈ S with ∆(x, xt) < γ(x, y)/3c. For all637

trials t let St be the set of all contexts x ∈ S in which there exists s ∈ [t] with ∆(x, xs) < γ(x, y)/3c.638

Now consider a trial t in which y(xt) ̸= y(n(xt)) and choose x ∈ S with ∆(x, xt) < γ(x, y)/3c.639

Assume, for contradiction, that x ∈ St−1. Then there exists s ∈ [t− 1] with ∆(x, xs) < γ(x, y)/3c640

so that by the triangle inequality we have:641

∆(xt, xs) ≤ ∆(x, xs) + ∆(x, xt) < 2γ(x, y)/3c

which implies that ∆(xt, n(xt)) < 2γ(x, y)/3. By the triangle inequality we then have that:642

∆(x, n(xt)) ≤ ∆(xt, n(xt)) + ∆(x, xt) < 2γ(x, y)/3 + γ(x, y)/3c ≤ 3γ(x, y)/3 = γ(x, y)

Since ∆(x, xt) < γ(x, y) we have y(x) = y(xt) and hence that y(x) ̸= y(n(xt)). But this643

contradicts the fact that ∆(x, n(xt)) < γ(x, y).644

We have hence shown that x /∈ St−1. Since x ∈ St we then have that |St| ≥ |St−1|. This implies645

that:646

Φ(y) =
∑
t∈[T]

Jy(xt) ̸= y(n(xt))K ≤ |ST | ≤ |S|

as required.647

19

F.4 Theorem 3.4648

By linearity of expectation we have:649

E[Φ(y)] ≤ 1 +
∑
t∈[T]

gt(µ, y, c)

and from Theorem 3.1 we have:650

gt(µ, y, c) ∈ O
(
cα(y, µ)(ϵt)−1/d

)
so that:651

E[Φ(y)] ∈ O
(
cα(y, µ)ϵ−1/dT (d−1)/d ln(T)

)
By setting:652

ρ := T (d−1)/(2d)c1/2

we then have:653

ρ+
E[Φ(y)]

ρ
∈ O

(
c1/2(1 + α(y, µ)ϵ−1/d)T (d−1)/(2d) ln(T)

)
so that by Theorem 3.2 we have:654

E[R(y)] ∈ Õ
(
c1/2(1 + α(y, µ)ϵ−1/d)K1/2T (2d−1)/(2d)

)
F.5 Theorem C.1655

For every trial t ∈ [T] define:656

∆t := −
∑
v∈B′

JQ(v) ̸= ∅K ln(wt(v,Q(v)))

Choose some arbitrary trial t ∈ [T]. From here until we say otherwise all probabilities and expecta-657

tions (i.e. whenever we use P[·] or E[·]) are implicitly conditional on the state of the algorithm at the658

start of trial t. Note first that we have:659

∆t −∆t+1 =
∑
v∈B′

JQ(v) ̸= ∅K ln
(
wt+1(v,Q(v))
wt(v,Q(v))

)
(8)

For all j ∈ [log(K)] ∪ {0} let γt,j be the ancestor (in B) of y(xt) at depth j. Note that for all660

v ∈ X \ {γt,j | j ∈ [log(K)] ∪ {0}} we have y(xt) /∈ ⇓(v) so that xt /∈ Q(v) and hence, directly661

from the CANPROP algorithm, we have wt+1(v,Q(v)) = wt(v,Q(v)). By Equation (8) and the fact662

that Q(v) ̸= ∅ for all ancestors v of y(xt) this implies that:663

∆t −∆t+1 =
∑

j∈[log(K)]

ln

(
wt+1(γt,j ,Q(γt,j))
wt(γt,j ,Q(γt,j))

)
(9)

For all j ∈ [log(K)] define:664

λt,j := ln

(
wt+1(γt,j ,Q(γt,j))
wt(γt,j ,Q(γt,j))

)
and:665

ϵt,j := E[ln(ψt,j) | γt,j ∈ Pt]

Now choose some arbitrary j ∈ [log(K)]. If γt,(j−1) ∈ Pt then γt,(j−1) = vt,(j−1) so ↑(γt,j) =666

vt,(j−1) and hence, since xt ∈ Q(γt,j), we have λt,j = ln(βt(γt,j)). By definition of βt(γt,j) this667

means that:668

E[λt,j | γt,j ∈ Pt , γt,(j−1) ∈ Pt] = ϵt,j − E[ln(ψt,(j−1)) | γt,j ∈ Pt , γt,(j−1) ∈ Pt]

and that:669

E[λt,j | γt,j /∈ Pt , γt,(j−1) ∈ Pt] = −E[ln(ψt,(j−1)) | γt,j /∈ Pt , γt,(j−1) ∈ Pt]

20

Multiplying these two equations by P[γt,j ∈ Pt | γt,(j−1) ∈ Pt] and P[γt,j /∈ Pt | γt,(j−1) ∈ Pt]670

respectively, and summing them together, then gives us:671

E[λt,j | γt,(j−1) ∈ Pt] = P[γt,j ∈ Pt | γt,(j−1) ∈ Pt]ϵt,j − E[ln(ψt,(j−1) | γt,(j−1) ∈ Pt]

Since P[γt,j ∈ Pt | γt,(j−1) ∈ Pt] = πt(γt,j) we then have:672

E[λt,j | γt,(j−1) ∈ Pt] = πt(γt,j)ϵt,j − ϵt,(j−1) (10)

If, on the other hand, γt,(j−1) /∈ Pt then ↑(γt,j) /∈ Pt so λt,j = 0. This means that:673

E[λt,j] = P[γt,(j−1) ∈ Pt]E[λt,j | γt,(j−1) ∈ Pt] (11)

Since the probability that γt,(j−1) ∈ Pt is equal to
∏

j′∈[j−1] πt(γt,j′) we then have, by combining674

equations (10) and (11), that:675

E[λt,j] = ϵt,j
∏

j′∈[j]

πt(γt,j′)− ϵt,(j−1)

∏
j′∈[j−1]

πt(γt,j′)

By substituting into Equation (9) (after taking expectations) we then have that:676

E[∆t −∆t+1] = −ϵt,0 + ϵt,log(K)

∏
j∈[log(K)]

πt(γt,j)

= −E[ln(ψt,0)] + E[ln(ψt,log(K)) | at = γt,log(K)]
∏

j∈[log(K)]

πt(γt,j) (12)

Note that if at = γt,log(K) then γt,j = vt,j for all j ∈ [log(K)]. By definition of ψt,log(K) and the677

fact that γt,log(K) = y(xt), Equation (12) then gives us:678

E[∆t −∆t+1] = −E[ln(ψt,0)]− ηℓt,y(xt) (13)

For all (v, a) ∈ B × [K] define:679

pt,a(v) = P[at = a | v ∈ Pt]

noting that this is non-zero only when a ∈ ⇓(v). Suppose we have some v ∈ B \ {r(B)} and some680

a ∈ ⇓(v) ∩ [K]. Then, since P[at = a | v /∈ Pt] = 0, we have:681

pt,a(↑(v)) = P[at = a | ↑(v) ∈ Pt] = P[at = a | v ∈ Pt]P[v ∈ Pt | ↑(v) ∈ Pt] = πt(v)pt,a(v)

Since pt,a(v) = 0 whenever a /∈ ⇓(v), this implies that for all (v, a) ∈ B† × [K] we have:682

pt,a(v) = πt(◁(v))pt,a(◁(v)) + πt(▷(v))pt,a(▷(v)) (14)

For all a ∈ [K] define:683

ℓ̂t,a =
Jat = aKℓt,a
P[at = a]

We now take the inductive hypothesis that for all j ∈ [log(K)] ∪ {0} we have:684

ψt,j =
∑

a∈[K]

pt,a(vt,j) exp(−ηℓ̂t,a)

and prove this via reverse induction (i.e. from j = log(K) to j = 0). Note that given a′ := at we685

have P[at = a′] =
∏

j∈[log(K)] πt(vt,j) and hence:686

ψt,log(K) = exp(−ηℓ̂t,at)

so the inductive hypothesis holds for j = log(K). Now suppose that we have some j′ ∈ [log(K)] and687

that the inductive hypothesis holds for j = j′. We shall now show that it holds also for j = j′−1. Let688

v′ be the child of vt,(j′−1) that is not equal to vt,j′ . Note that at /∈ ⇓(v′) and hence exp(−ηℓ̂t,a) = 1689

for all a ∈ ⇓(v′) (i.e. whenever pt,a(v′) ̸= 0) which implies:690 ∑
a∈[K]

pt,a(v
′) exp(−ηℓ̂t,a) = 1 (15)

21

For all a ∈ [K], Equation (14) gives us:691

pt,a(vt,(j′−1)) exp(−ηℓ̂t,a) = πt(v
′)pt,a(v

′) exp(−ηℓ̂t,a) + πt(vt,j′)pt,a(vt,j′) exp(−ηℓ̂t,a)

Substituting Equation (15) and the inductive hypothesis into this equation (when summed over all692

a ∈ [K]) then gives us:693 ∑
a∈[K]

pt,a(vt,(j′−1)) exp(−ηℓ̂t,a) = πt(v
′) + πt(vt,j′)ψt,j′

Since πt(v′) + πt(vt,j′) = 1 we have, direct from the algorithm, that πt(v′) + πt(vt,j′)ψt,j′ =694

ψt,(j′−1) so the inductive hypothesis holds for j = j′ − 1. We have hence shown that the inductive695

hypothesis holds for all j ∈ [log(K)]∪ {0} and in particular for j = 0. Since pt,a(vt,0) = P[at = a]696

we then have:697

ψt,0 =
∑

a∈[K]

P[at = a] exp(−ηℓ̂t,a) (16)

Since exp(−z) ≤ 1− z + z2/2 for all z ∈ R+ we have, from Equation (16), that:698

ψt,0 ≤
∑

a∈[K]

P[at = a]

(
1− ηℓ̂t,a +

η2ℓ̂t,a
2

)
= 1−η

∑
a∈[K]

P[at = a]ℓ̂t,a+
η2

2

∑
a∈[K]

P[at = a]ℓ̂2t,a

so since ln(1 + z) ≤ z for all z ∈ R we have:699

ln(ψt,0) ≤ −η
∑

a∈[K]

P[at = a]ℓ̂t,a +
η2

2

∑
a∈[K]

P[at = a]ℓ̂2t,a (17)

Noting that P[at = a]ℓ̂t,a = Jat = aKℓt,a for all a ∈ [K], we have:700

E

 ∑
a∈[K]

P[at = a]ℓ̂t,a

 = E[ℓt,at]

and:701

E

 ∑
a∈[K]

P[at = a]ℓ̂2t,a

 = E

 ∑
a∈[K]

Jat = aKℓ̂2t,a
P[at = a]

 =
∑

a∈[K]

ℓ̂2t,a ≤ K

Substituting these equations into Equation (17) (after taking expectations) gives us:702

E[ln(ψt,0)] ≤ −ηE[ℓt,at
] + η2K/2

which, upon substitution into Equation (13) gives us:703

E[∆t −∆t+1] ≥ η(E[ℓt,at
]− ℓt,y(xt))− η

2K/2 (18)

Note that this equation implies that the same equation also holds when the expectation is not implicitly704

conditional on the state of the algorithm at the start of trial t. Hence, we now drop the assumption that705

the expectation is conditional on the state of the algorithm at the start of trial t. Summing Equation706

(18) over all trials t ∈ [T] and then rearranging gives us:707

E[R(y)] ≤ 1

η
(E[∆1]− E[∆T+1]) +

ηKT

2
(19)

Now consider a trial t. For all v ∈ B† let:708

Vt(v) :=
∑
S∈2X

Jxt ∈ SKwt+1(◁(v),S) +
∑
S∈2X

Jxt ∈ SKwt+1(▷(v),S)

Now take any j ∈ [log(K)− 1] ∪ {0} and let v := vt,j . Note that:709

Vt(v) = βt(◁(v))θt(◁(v)) + βt(▷(v))θt(▷(v))

so that by definition of πt(◁(v)) and πt(▷(v)) we have:710

Vt(v) = (θt(◁(v)) + θt(▷(v)))(πt(◁(v))βt(◁(v)) + πt(▷(v))βt(▷(v)))

22

Without loss of generality assume that ◁(v) ∈ Pt. Then the above equation implies that:711

Vt(v) = (θt(◁(v)) + θt(▷(v)))
πt(◁(v))ψt,j+1 + πt(▷(v))

ψt,j

so by definition of ψt,j we have:712

Vt(v) = (θt(◁(v)) + θt(▷(v))) =
∑
S∈2X

Jxt ∈ SKwt(◁(v),S) +
∑
S∈2X

Jxt ∈ SKwt(▷(v),S)

Note that this equation trivially holds for all v ∈ B† \ Pt and hence holds for all v ∈ B†. Since713

for all such v and all S with xt /∈ S we have wt+1(◁(v),S) = wt(◁(v),S) and wt+1(▷(v),S) =714

wt(▷(v),S) we then have:715 ∑
S∈2X

wt+1(◁(v),S) +
∑
S∈2X

wt+1(▷(v),S) =
∑
S∈2X

wt(◁(v),S) +
∑
S∈2X

wt(▷(v),S)

so, by induction on t we have, for all t ∈ [T + 1], that:716 ∑
S∈2X

wt(◁(v),S) +
∑
S∈2X

wt(▷(v),S) = 1

Hence, for all v ∈ B \ r(B) and S ∈ 2X , we have wt(v,S) ∈ [0, 1]. We have now shown that717

∆T+1 ≥ 0 so that Equation 19 gives us:718

E[R(y)] ≤ 1

η
E[∆1] +

ηKT

2

which, by definition of ∆1, gives us the desired result.719

F.6 Theorem C.2720

The fact that the weighting wt is valid is given by the following lemma:721

Lemma F.1. For all v ∈ B† we have:722 ∑
S∈2X

(w1(◁(v),S) + wt(▷(v),S)) = 1

Proof. We will show that for all v ∈ B′ we have:723 ∑
S∈2X

w1(v,S) =
1

2

which directly implies the result. So take some arbitrary v ∈ B′. Define, for all t ∈ [T], the sets:724

X ′
t := {xs | s ∈ [t]} \ {x1} and Ft := {0, 1}X

′
t∪{x1}

and for all x ∈ X ′
t , f ∈ Ft and i ∈ [log(T)], define the quantity:725

βi(x, f) := Jf(x) ̸= f(n(x))K2i/T + Jf(x) = f(n(x))K(1− 2i/T)

which is defined since n(x) ∈ X ′
t ∪ {x1}. Now fix some i ∈ [log(T)]. For all t ∈ [T − 1] we have:726

∑
f∈Ft+1

∏
x∈X ′

t+1

βi(x, f) =
∑
f∈Ft

 ∏
x∈X ′

t

βi(x, f)

 ∑
f(xt+1)∈{0,1}

βi(xt+1, f)

Given any f ∈ Ft we have:727 ∑
f(xt+1)∈{0,1}

βi(xt+1, f) =

(
1− 2i

T

)
+

2i

T
= 1

and hence:728 ∑
f∈Ft+1

∏
x∈X ′

t+1

βi(x, f) =
∑
f∈Ft

∏
x∈X ′

t

βi(x, f)

23

Since X ′
T = X ′ this implies, by induction, that:729 ∑

f∈FT

∏
x∈X ′

βi(x, f) =
∑
f∈F1

∏
x∈X ′

1

βi(x, f) =
∑
f∈F1

∏
x∈∅

βi(x, f) =
∑
f∈F1

1 = |F1| = 2 (20)

Note that we have a bijection G : FT → 2X defined by:730

G(f) := {x ∈ X | f(x) = 1} ∀f ∈ FT

and that for all (i, f, x) ∈ [log(T)]×FT ×X ′ we have:731

βi(x, f) = σ(x,G(f))2i/T + (1− σ(x,G(f)))(1− 2i/T)

Hence, Equation (20) shows us that for all i ∈ [log(T)] we have:732 ∑
S∈2X

∏
x∈X ′

(
σ(x,S)2

i

T
+ (1− σ(x,S))

(
1− 2i

T

))
= 2

This implies that:733 ∑
S∈2X

w1(v,S) =
1

2

which implies the result.734

Now that we have shown that the weighting w1 is valid we can utilise Theorem C.1 to prove our735

regret bound. For any set S ∈ 2X define:736

ϕ(S) :=
∑
x∈X ′

σ(x,S)

For any i ∈ [log(T)] define the function fi : [T − 1]→ R by737

fi(c) :=

(
1− 2i

T

)T−1−c(
2i

T

)c

for all c ∈ [T − 1]. Choose any set S ∈ 2X and define:738

j := min{⌈log(ϕ(S) + 1)⌉ , log(T)− 1}

If ϕ(S) ≥ T/2 then j = log(T)− 1 so 2j/T = 1/2 and hence:739

− ln(fj(ϕ(S))) = (T − 1) ln(2) ≤ 2ϕ(S) ln(2) ∈ O(ϕ(S)) (21)

Now consider the case in which ϕ(S) < T/2. Let h := 2j/T . In this case 2j/T ≤ 1/2 and hence fj740

is monotonic decreasing so since 2j ≥ ϕ(S) we have:741

ln(fj(ϕ(S)) ≥ ln(fj(2
j)) = ln(fj(Th)) ≥ T ((1− h) ln(1− h) + h ln(h)) ≥ −Th ln(e/h)

so since ϕ(S) + 1 ≥ 2j/2 = Th/2 and h ≥ 1/T we have:742

− ln(fj(ϕ(S)) ≤ 2(ϕ(S) + 1) ln(eT) ∈ O((ϕ(S) + 1) ln(T)) (22)

Equations (21) and (22) show us that for all possible values of ϕ(S) we have:743

− ln(fj(ϕ(S)) ∈ O(ln(T)(ϕ(S) + 1))

Noting that for all v ∈ B′ we have w1(v,S) ≥ (1/4 log(T))fj(ϕ(S)) we have now shown that:744

− ln(w1(v,S)) ∈ O(ln(T)(ϕ(S) + 1)) (23)

for all v ∈ B′. As in the statement of Theorem C.1 define, for all v ∈ B, the set:745

Q(v) := {x ∈ X | y(x) ∈ ⇓(v)}

First note that the graph (with vertex set X) formed by linking x to n(x) for every x ∈ X ′ is a tree so746

that Φ(y) ≥ |{y(x) | x ∈ X}| − 1. So since for all v ∈ B′ we have Q(v) ̸= ∅ if and only if v has a747

24

descendent in {y(x) | x ∈ X} and each element of {y(x) | x ∈ X} has log(K) ancestors in B′ we748

have:749 ∑
v∈B′

JQ(v) ̸= ∅K ≤ log(K)|{y(x) | x ∈ X}| ≤ log(K)(Φ(y) + 1) (24)

Now suppose we have some x ∈ X ′. If y(x) = y(n(x)) then for all v ∈ B′ we have x, n(x) ∈ Q(v)750

or x, n(x) /∈ Q(v) and hence σ(x,Q(v)) = 0. On the other hand, if y(x) ̸= y(n(x)) then for any751

v ∈ B′ with σ(x,Q(v)) = 1 we must have that either x ∈ Q(v) or n(x) ∈ Q(v) so v is an ancestor752

of either x or n(x) and hence there can be at most 2 log(K) such v. So in any case we have:753 ∑
v∈B′

σ(x,Q(v)) ≤ Jy(x) ̸= y(n(x))K2 log(K)

Hence we have:754 ∑
v∈B′

ϕ(Q(v)) =
∑
x∈X ′

∑
v∈B′

σ(x,Q(v)) ≤ 2 log(K)Φ(y) (25)

Equation (23) gives us:755

−
∑
v∈B′

JQ(v) ̸= ∅K ln(w1(v,Q(v))) ∈ O

(
ln(T)

∑
v∈B′

ϕ(Q(v)) + ln(T)
∑
v∈B′

JQ(v) ̸= ∅K

)
Substituting in equations (24) and (25) then gives us:756

−
∑
v∈B′

JQ(v) ̸= ∅K ln(w1(v,Q(v))) ∈ O(ln(K) ln(T)Φ(y))

so by Theorem C.1 we have:757

E[R(y)] ∈ O
(
ηKT

2
+

ln(K) ln(T)Φ(y)

η

)
Since η = ρ

√
ln(K) ln(T)/KT we obtain the result.758

F.7 Theorem D.1759

Define λ′ : X → R+ as follows. Given x ∈ X , if there exists a leaf u ∈ J ⋆ with γ(u) = x then760

λ′(x) = λ(u). Otherwise λ′(x) = 1. Given t ∈ [T] define λ̂t : Zt → R+ such that for all u ∈ Zt761

we have that λ̂t(u) := λ′(γ(u)) if u is a leaf of Zt and λ̂t(u) := 1 otherwise. For all t ∈ [T] and762

f : {xt′ | t′ ∈ [t]} → {0, 1} define:763

N (f) := {f ′ ∈ {0, 1}Zt | ∀u ∈ Z⋆
t , f

′(u) = f(γ(u))}
and:764

ŵ(f) :=

 ∏
t′∈[t]:f(xt′)=1

λ′(xt)

 ∏
t′∈[t]\{1}

(Jf(xt) ̸= f(n(xt))Kϵ+ Jf(xt) = f(n(xt))K(1− ϵ))

and:765

ν̂(f) :=
∑

f ′∈N (f)

∏
u∈Zt\r(Zt)

τ̃f ′(↑Zt
(u)),f ′(u)(Zt, u, ϵ)κ̃f ′(u)(λ̂t, u)

We now have the following lemma:766

Lemma F.2. For all t ∈ [T] and f : {xt′ | t′ ∈ [t]} → {0, 1} we have:767

ŵ(f) = ν̂(f)

Proof. We prove by induction on t. Suppose the result holds for t = s (for some s ≥ 2). We now768

show that it holds for t = s + 1 as well. Let f∗ be the restriction of f onto the set {xt′ | t′ ∈ [s]}.769

Let u∗ and u′ be the unique leaves in Z⋆
s+1 of which γ(u′) = n(xs+1) and γ(u∗) = xs+1. By the770

construction of Zs+1 these vertices are siblings. Let u′′ be the parent (in Zs+1) of both u∗ and u′.771

First note that:772

Jf(xs+1) = 0K + Jf(xs+1) = 1Kλ′(xs+1) = κ̃f(xs+1)(λ̂s+1, u
∗) (26)

25

Since, by the construction of Zs+1, we have γ(↑Zs+1
(u∗)) = γ(u′′) = n(xs+1) we also have that773

d(↑Zs+1
(u∗)) = d(u∗)− 1 so that, since ϕ1(ϵ) = ϵ, we have:774

Jf(xs+1) ̸= f(n(xs+1))Kϵ+ Jf(xs+1) = f(n(xs+1))K(1− ϵ) = τ̃f(n(xs+1)),f(xs+1)(Zs+1, u
∗, ϵ)
(27)

Equations (26) and (27) give us:775

ŵ(f) = ŵ(f∗)τ̃f(n(xs+1)),f(xs+1)(Zs+1, u
∗, ϵ)κ̃f(xs+1)(λ̂s+1, u

∗) (28)

Now suppose we have some f ′ ∈ N (f). We have γ(u′′) = γ(u′) and hence d(↑Zs+1
(u′)) =776

d(u′′) = d(u′) so since f ′(u′) = f(n(xs+1)) and ϕ0(ϵ) = 0 we have:777

τ̃f ′(↑Zs+1
(u′)),f ′(u′)(Zs+1, u

′, ϵ) = τ̃f ′(u′′),f ′(u′)(Zs+1, u
′, ϵ) = Jf ′(u′′) = f(n(xs+1))K (29)

Since, by the construction of Zs+1, we have ↑Zs+1
(u′′) = ↑Zs

(u′) and (as above) we have d(u′′) =778

d(u′), we also have:779

τ̃f ′(↑Zs+1
(u′′)),f ′(u′′)(Zs+1, u

′′, ϵ) = τ̃f ′(↑Zs
(u′)),f ′(u′′)(Zs, u

′, ϵ) (30)

Since f ′(u∗) = f(xs+1) and ↑Zs+1
(u∗) = u′′ we have:780

τ̃f ′(↑Zs+1
(u∗)),f ′(u∗)(Zs+1, u

∗, ϵ) = τ̃f ′(u′′),f(xs+1)(Zs+1, u
∗, ϵ) (31)

Now let:781

ζ∗ := τ̃f(n(xs+1)),f(xs+1)(Zs+1, u
∗, ϵ) ; ζ ′ := τ̃f ′(↑Zs

(u′)),f(n(xs+1))(Zs, u
′, ϵ)

Define:782

g(f ′) :=
∏

u∈Zs\r(Zs)

τ̃f ′(↑Zs
(u)),f ′(u)(Zs, u, ϵ)

and:783

g′(f ′) :=
∏

u∈Zs+1\r(Zs+1)

τ̃f ′(↑Zs+1
(u)),f ′(u)(Zs+1, u, ϵ)

Combining equations (29), (30) and (31) gives us:784 ∏
u∈{u∗,u′,u′′}

τ̃f ′(↑Zs+1
(u)),f ′(u)(Zs+1, u, ϵ) = Jf ′(u′′) = f(n(xs+1))Kζ∗ζ ′ (32)

For all u ∈ Zs+1 \ {u∗, u′, u′′} we have ↑Zs+1
(u) = ↑Zs

(u) so that:785

τ̃f ′(↑Zs+1
(u)),f ′(u)(Zs+1, u, ϵ) = τ̃f ′(↑Zs

(u)),f ′(u)(Zs, u, ϵ)

and hence, since f(n(xs+1)) = f ′(u′), we have:786

g′(f ′) =
g(f ′)

ζ ′

∏
u∈{u∗,u′,u′′}

τ̃f ′(↑Zs+1
(u)),f ′(u)(Zs+1, u, ϵ)

Substituting in Equation (32) gives us:787

g′(f ′) = g(f ′)Jf ′(u′′) = f(n(xs+1))Kζ∗ (33)

We have κ̃f ′(u′′)(λ̂s+1, u
′′) = 1 and for all u ∈ Zs we have κ̃f ′(u)(λ̂s+1, u) = κ̃f ′(u)(λ̂s, u).788

Substituting into Equation (33) gives us:789

g′(f ′)
∏

u∈Zs+1

κ̃f ′(u)(λ̂s+1, u) = Jf ′(u′′) = f(n(xs+1))Kκ̃f ′(u∗)(λ̂s+1, u
∗)ζ∗g(f ′)

∏
u∈Zs

κ̃f ′(u)(λ̂s, u)

Summing over all f ′ ∈ N (f) and noting that:790

κ̃f ′(r(Zs+1))(λ̂s+1, r(Zs+1)) = κ̃f ′(r(Zs))(λ̂s, r(Zs)) = 1

gives us:791

ν̂(f) = κ̃f ′(u∗)(λ̂s+1, u
∗)ζ∗ν̂(f∗)

By the inductive hypothesis we then have:792

ν̂(f) = κ̃f ′(u∗)(λ̂s+1, u
∗)ζ∗ŵ(f∗)

which by Equation (28) is equal to ŵ(f). We have hence shown that if the inductive hypothesis holds793

for t = s then it holds for t = s+ 1 also. An identical argument shows that the inductive hypothesis794

holds for t = 2. We have hence shown that the inductive hypothesis holds for all t ∈ [T] \ {1}.795

26

We now define a bijection G : {0, 1}X → 2X by:796

G(f) := {x ∈ X | f(x) = 1} ∀f ∈ {0, 1}X

Note that for all f : X → {0, 1} and all x ∈ X ′ we have:797

σ(x,G(f))ϵ+ (1− σ(x,G(f)))(1− ϵ) = Jf(x) ̸= f(n(x))Kϵ+ Jf(x) = f(n(x))K(1− ϵ)
and:798 ∏

x∈G(f)

λ′(x) =
∏

t′∈[T]:f(xt′)=1

λ′(xt)

so that:799

w̃(λ, ϵ,G(f)) = ŵ(f)

and hence, by Lemma F.2, we have:800

w̃(λ, ϵ,G(f)) = ν̂(f)

so that:801 ∑
S∈2X

Jγ(û) ∈ SKw̃(λ, ϵ,S) =
∑

f∈{0,1}X

Jf(γ(û)) = 1Kν̂(f) (34)

Since:802 ⋃
{N (f) | f ∈ {0, 1}X , f(γ(û)) = 1} = {f ′ ∈ {0, 1}ZT | f ′(û) = 1}

and all sets in this union are disjoint, the right hand side of Equation (34) is equal to:803 ∑
f ′∈{0,1}ZT

Jf ′(û) = 1K
∏

u∈ZT \r(ZT)

τ̃f ′(↑ZT
(u)),f ′(u)(ZT , u, ϵ)κ̃f ′(u)(λ̂T , u) (35)

Given a vertex u ∈ ZT \ {r(ZT)} define:804

H(u) := ⇓ZT
(u) ∪ {↑ZT

(u)}
and for all f : H(u)→ {0, 1} define:805

ζ̂(u, f) :=
∏

u′∈⇓ZT
(u)

τ̃f(↑ZT
(u′)),f(u′)(ZT , u

′, ϵ)

Lemma F.3. Given a vertex u′ ∈ ZT \ {r(ZT)} and an index i ∈ {0, 1} we have:806 ∑
f∈{0,1}H(u′)

Jf(↑ZT
(u′)) = iKζ̂(u′, f) = 1

Proof. We prove by induction on the height of ⇓ZT
(u′). If this height is equal to zero thenH(u′) =807

{u′, ↑ZT
(u′)} and for all f : H(u)→ {0, 1} we have:808

ζ̂(u′, f) = τ̃f(↑ZT
(u′)),f(u′)(ZT , u

′, ϵ)

Since:809

τ̃i,0(ZT , u
′, ϵ) + τ̃i,1(ZT , u

′, ϵ) = 1 (36)
we immediately have the result for the case that the height of ⇓ZT

(u′) is zero. Now suppose that the810

result holds whenever the height of ⇓ZT
(u′) is equal to j (for some j ∈ N). We will now show that it811

holds whenever the height of ⇓ZT
(u′) is equal to j + 1 which will prove that the result holds always.812

By the inductive hypothesis we have, for all i′ ∈ {0, 1}813 ∑
f∈{0,1}H(◁(u′))

Jf(u′) = i′Kζ̂(◁(u′), f) = 1

and814 ∑
f∈{0,1}H(▷(u′))

Jf(u′) = i′Kζ̂(▷(u′), f) = 1

so:815 ∑
f∈{0,1}H(u′)

Jf(↑ZT
(u′)) = iKJf(u′) = i′Kζ̂(◁(u′), f)ζ̂(▷(u′), f) = 1

and hence:816 ∑
f∈{0,1}H(u′)

Jf(↑ZT
(u′)) = iKJf(u′) = i′Kζ̂(u′, f) = τ̃i,i′(ZT , u, ϵ)

Summing over i′ ∈ {0, 1} and noting Equation (36) then shows us the result holds for this case and817

hence, by induction, holds always.818

27

Given u′, u′′ ∈ ZT with u′′ ∈ ⇓ZT
(u′) we define Ĥ(u′, u′′) to be the maximal subtree of ZT which819

has u′ and u′′ as leaves. Given, in addition, f : Ĥ(u′, u′′)→ {0, 1} we define:820

ζ̃(u′, u′′, f) :=
∏

u∈Ĥ(u′,u′′)\{u′}

τ̃f(↑ZT
(u)),f(u)(ZT , u, ϵ)

and:821

δ(u′, u′′) := d(u′′)− d(u′)
We now have the following lemma.822

Lemma F.4. Given u′, u′′ ∈ ZT with u′′ ∈ ⇓Zt
(u′) \ {u′} and indices i′, i′′ ∈ {0, 1} we have that:823 ∑

f∈{0,1}Ĥ(u′,u′′)

Jf(u′) = i′KJf(u′′) = i′′Kζ̃(u′, u′′, f)

is equal to824

Ji′ ̸= i′′Kϕδ(u′,u′′)(ϵ) + Ji′ = i′′K(1− ϕδ(u′,u′′)(ϵ))

Proof. We prove by induction on the distance from u′ to u′′ in ZT . If this distance is one then we825

have u′ = ↑ZT
(u′′) and Ĥ(u′, u′′) = {u′, u′′} so we have:826 ∑

f∈{0,1}Ĥ(u′,u′′)

Jf(u′) = i′KJf(u′′) = i′′Kζ̃(u′, u′′, f) = τ̃i′,i′′(ZT , u
′′, ϵ)

which immediately implies that the inductive hypothesis holds in this case. Now suppose that the827

inductive hypothesis holds whenever the distance from u′ to u′′ is j. We now consider the case828

that the distance from u′ to u′′ is j + 1. Let u∗ be the child of u′ that lies in Ĥ(u′, u′′). Without829

loss of generality assume that u′′ is a descendant of ◁(u∗). Now choose any i∗ ∈ {0, 1}. Given830

f : Ĥ(u′, u′′)→ {0, 1} let:831

h(i∗, f) = Jf(u′) = i′KJf(u′′) = i′′KJf(u∗) = i∗K

and let f ′ and f ′′ be the restriction of f onto the sets Ĥ(u∗, u′′) andH(▷(u∗)) respectively. Note that832

ζ̃(u′, u′′, f) = τ̃f(u′),f(u∗)(ZT , u
∗, ϵ)ζ̃(u∗, u′′, f ′)ζ̂(▷(u∗), f ′′)

By Lemma F.3 and the inductive hypothesis we then have that the quantity:833 ∑
f∈{0,1}Ĥ(u′,u′′)

h(i∗, f)ζ̃(u′, u′′, f)

is equal to the quantity:834

τ̃i′,i∗(ZT , u
∗, ϵ)(Ji∗ ̸= i′′Kϕδ(u∗,u′′)(ϵ) + Ji∗ = i′′K(1− ϕδ(u∗,u′′)(ϵ)))

Summing over i∗ ∈ {0, 1} gives us the result. We have hence proved the result in general.835

Suppose we have some f : J → {0, 1}. Let:836

ĥ(f) = {f ′ ∈ {0, 1}ZT | ∀u ∈ J , f ′(u) = f(u)}
Given u ∈ J we have that:837

Jf(↑J (u)) ̸= f(u)Kϕδ(↑J (u),u)(ϵ) + Jf(↑J (u)) = f(u)K(1− ϕδ(↑J (u),u)(ϵ))

is equal to τ̃f(↑J (u)),f(u)(J , u, ϵ) and hence Lemma F.4 implies that:838 ∑
f ′∈Ĥ(↑J (u),u)

Jf ′(↑J (u)) = f(↑J (u))KJf ′(u) = f(u)Kζ̃(↑J (u), u, f ′) = τ̃f(↑J (u)),f(u)(J , u, ϵ)

so since, by the definition of a contraction, the edge sets of the subtrees in {Ĥ(↑J (u), u) | u ∈839

J \ {r(J)}} partition the edge set of ZT we have, by definition of ζ̃, that:840 ∑
f ′∈ĥ(f)

∏
u∈ZT \{r(ZT)}

τ̃f ′(↑ZT
(u)),f ′(u)(ZT , u, ϵ) =

∏
u∈J\{r(J)}

τ̃f(↑J (u)),f(u)(J , u, ϵ)

28

Since for all f ′ ∈ ĥ(f) and for all u ∈ ZT \ J we have κ̃f ′(u)(λ̂T , u) = 1 we have now shown that841

the quantity:842 ∑
f ′∈ĥ(f)

∏
u∈ZT \{r(ZT)}

τ̃f ′(↑ZT
(u)),f ′(u)(ZT , u, ϵ)κ̃f ′(u)(λ̂T , u)

is equal to the quantity:843 ∏
u∈J\{r(J)}

τ̃f(↑J (u)),f(u)(J , u, ϵ)κ̃f(u)(λ̂T , u)

Summing over all f ∈ F(J , û) and noting Equations (34) and (35) gives us the result.844

F.8 Theorem E.1845

Lemma F.5. Given u, u′ ∈ Zt the algorithm for computing ν(u, u′) is correct.846

Proof. If u = u′ then the proof is trivial. Otherwise we consider the following cases:847

• Consider first the case that ŝ ̸= ▽(s∗). Without loss of generality assume ŝ = ◁(s∗). Then848

we have u ∈ ⇓(◁(ξ(s∗))) and since ŝ′ ̸= ◁(s∗) we have u′ /∈ ⇓(◁(ξ(s∗))). Hence u′ /∈ ⇓(u)849

so ν(u, u′) = ▲ as required.850

• If u = ξ(s∗) then ŝ = ▽(s∗) so either ŝ′ = ◁(s∗) or ŝ′ = ▷(s∗). In the former case we have851

u′ ∈ ⇓(◁(ξ(s∗))) = ⇓(◁(u)) so that ν(u, u′) =◀ and similarly in the later case we have852

ν(u, u′) =▶ as required.853

• If ŝ = ▽(s∗) and u ̸= ξ(s∗) we invoke the process. Consider the vertex s at any stage in854

the process. By induction we have that if s ∈ E• then u′ ∈ ⇓(µ′(s)). This is because if855

s ∈ E• then µ′(s) is an ancestor of µ′(↑E(s)). This further implies that when s ̸= ŝ we856

have u′ ∈ ⇓(µ′(↑E(s))). Now suppose that s ∈ E◦ and without loss of generality assume857

s = ◁(↑E(s)). Then u ∈ ⇓(◁(ξ(↑E(s)))) and µ′(↑E(s)) ∈ ⇓(▷(ξ(↑E(s)))) so that, since858

u′ ∈ ⇓(µ′(↑E(s))), we have u′ /∈ ⇓(u) and hence ν(u, u′) = ▲ as required. Suppose now859

that s ∈ E• and that u = ξ(s). If ◁(s) ∈ E• then we have µ′(s) ∈ ⇓(◁(ξ(s))) = ⇓(◁(u))860

so that, by above, u′ ∈ ⇓(◁(u)) and hence ν(u, u′) =◀ as required. Similarly, if ▷(s) ∈ E•861

then ν(u, u′) =▶ as required. This completes the proof.862

863

Lemma F.6. The algorithm correctly finds û.864

Proof. By induction on the depth of s we have, for all vertices s in the constructed path, that:865

• If s ∈ D◦ then ut lies in the maximal spanning tree of Zt containing µ(s) and having866

↑J (µ(s)) as a leaf .867

• If s ∈ D• then ut lies in the maximal spanning tree of Zt with ↑J (µ(s)) and µ′(s) as868

leaves.869

Let s′ be the unique leaf of D that is on the constructed path. If s′ ∈ D◦ then µ(s′) is a leaf of J and870

hence also a leaf of Zt. So by above we have that ut lies in the maximal spanning tree of Zt with871

↑J (µ(s′)) and µ(s′) as leaves. If, on the other hand, s′ ∈ D• then since s′ is a leaf of D we have that872

µ(s′) = µ′(s′) and hence, by above, we have that ut lies in the maximal spanning tree of Zt with873

↑J (µ(s′)) and µ(s′) as leaves. In either case we have û = µ(s′) as required.874

Lemma F.7. The algorithm correctly finds u∗.875

Proof. By induction on the depth of s we have, for all vertices s in the constructed path, that:876

• If s ∈ E◦ then ΓZt
(ut, û) lies in ⇓Zt

(µ(s)).877

29

• If s ∈ E• then ΓZt(ut, û) lies in the maximal spanning tree of Zt with µ(s) and µ′(s) as878

leaves.879

Let s′ be the unique leaf of E that is on the constructed path. If s′ ∈ E◦ then µ(s′) is a leaf of Zt and880

hence, by above, ΓZt
(ut, û) = µ(s′) as required. If s ∈ E• then µ(s) = µ′(s) and hence, by above,881

ΓZt
(ut, û) = µ(s′) as required.882

30

	Introduction
	Notation
	Problem and Result
	The Contextual Bandit Problem
	The (k) Nearest Neighbour Classifier
	Adaptive Nearest Neighbour Search
	Our Results

	The Algorithm
	Cancellation Propagation
	Ternary Search Trees
	Contractions
	Online Belief Propagation
	CBNN

	Conclusion
	Guide to the Appendices
	The Initial Idea
	Cancellation Propagation
	The General CanProp Algorithm
	Our Parameter Tuning

	Binarisation and Implementation with Contractions
	A Sequence of Binary Trees
	Contractions
	Contraction-Based Bayesian Networks
	Cancelation Propogation with Contractions
	Notational Relationship to the Main Body

	Utilising Ternary Search Trees
	Ternary Search Trees
	Searching
	Belief Propagation

	Proofs
	Theorem 3.1
	Theorem 3.2
	Theorem 3.3
	Theorem 3.4
	Theorem C.1
	Theorem C.2
	Theorem D.1
	Theorem E.1

