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Abstract

In this paper we adapt the nearest neighbour rule to the contextual bandit problem.
Our algorithm handles the fully adversarial setting in which no assumptions at all
are made about the data-generation process. When combined with a sufficiently
fast data-structure for (perhaps approximate) adaptive nearest neighbour search,
such as a navigating net, our algorithm is extremely efficient - having a per trial
running time polylogarithmic in both the number of trials and actions, and taking
only quasi-linear space. We give generic regret bounds for our algorithm and
further analyse them when applied to the stochastic bandit problem in euclidean
space. We note that our algorithm can also be applied to the online classification
problem.

1 Introduction

In this paper we adapt the classic nearest neighbour rule to the contextual bandit problem and develop
an extremely efficient algorithm. The problem proceeds in trials, where on trial t: (1) a context xt is
revealed to us, (2) we must select an action at, and (3) the loss ℓt,at

∈ [0, 1] of action at on trial t is
revealed to us. We assume that the contexts are points in a metric space and the distance between two
contexts represents their similarity. A policy is a mapping from contexts to actions and the inductive
bias of our algorithm is towards learning policies that typically map similar contexts to similar actions.
Our main result has absolutely no assumptions whatsoever about the generation of the context/loss
sequence and has no restriction on what policies we can compare our algorithm to.

Our algorithm requires, as a subroutine, a data-structure that performs c-nearest neighbour search.
This data-structure must be adaptive - in that new contexts can be inserted into it over time. An
example of such a data-structure is the Navigating net [17] which, given mild conditions on our
metric and dataset, performs both search and insertion in polylogarithmic time. When utilising a
data-structure of this speed our algorithm is extremely efficient - with a per-trial time complexity
polylogarithmic in both the number of trials and actions, and requiring only quasi-linear space.

As an example we will apply our methodology to the special case of the contextual bandit problem
in which the context sequence is drawn i.i.d. from a probability distribution over the d-dimensional
hypercube. In this case, for any policy ŷ with a finite-volume decision boundary, our algorithm
achieves Õ

(
α̂T d/(d+1)K1/(d+1)

)
regret w.r.t. ŷ, where α̂ measures the magnitude of what is

essentially the part of the decision boundary of ŷ that lies in the support of the probability distribution.

In the course of this paper we develop some novel algorithmic techniques, including a new algorith-
mic framework CANPROP and efficient algorithms for searching in trees, which may find further
application.

We now describe related works. The bandit problem [20] was first introduced in [28] but was
originally studied in the stochastic setting in which all losses are drawn i.i.d. at random [18], [1],
[3]. However, our world is very often not i.i.d. stochastic. The work of [4] introduced the seminal
EXP3 algorithm which handled the case in which the losses were selected arbitrarily. This work also
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introduced the EXP4 algorithm for contextual bandits. In general this algorithm is exponential time
but in some situations can be implemented in polynomial time - such as their EXP3.S algorithm,
which was a bandit version of the classic FIXEDSHARE algorithm [14]. In [12] the EXP3.S setting
was greatly generalised to the situation in which the contexts where vertices of a graph. They utilised
the methodology of [8], [16] and [13] in order to develop extremely efficient algorithms. Although
inspiring this work, these algorithms cannot be utilised in our situation as they inherently require
the set of queried contexts to be known a-priori. In the stochastic case another class of contextual
bandit problems are linear bandits [21], [5] in which the contexts are mappings from the actions
into Rd. Here the queried contexts need not be known in advance but the losses must be drawn i.i.d.
from a distribution that has mean linear in the respective context. The k nearest neighbour algorithm
was first analysed in [6]. The work [26] utilised the k nearest neighbour methodology and the works
[9] and [18] to handle a stochastic contextual bandit problem. However, their setting is extremely
more restricted than ours. In particular, the context/loss pairs must be drawn i.i.d. at random and the
probability distribution they are sampled from must obey certain strict conditions. In addition, on
each trial the contexts seen so far must be ordered in increasing distance from the current context
and operations must be performed on this sequence, making their algorithm exponentially slower
than ours. Our algorithm utilises the works of [22] and [7] as subroutines. It should be noted that the
later work, which was based on [23], was improved on in [11] - we leave it as an open problem as to
whether we can utilise their work in our algorithm.

Algorithms for contextual bandits in metric spaces have been studied in [15, 19, 24, 25, 27, 29, 30,
31, 2, 26] but as far as we know ours is the first work to give a non-trivial bound for our problem
in general (with no additional assumptions). As far as we are aware our above example bound for
the fully stochastic case in euclidean space (with finite decision boundary) is also novel - the works
[30, 24, 26] scale as Õ(T (d+1)/(d+2)) in general (and [24, 26] also require additional assumptions).
As far as we are aware we are also the first work, stochastic or otherwise, to give a regret scaling as
Õ(T 1/2) when the contexts are drawn from well-separated clusters (i.e. there is a positive distance
between all pairs of clusters) in a finite-dimensional metric space, and the comparator policy is
constant on each cluster (we do, however, conjecture that in the stochastic case [26] can obtain such a
regret scaling here - but, as stated above, it is exponentially slower).

2 Notation

Let N be the set of natural numbers not including 0. Given a natural number m ∈ N we define
[m] := {j ∈ N | j ≤ m}. Given a predicate p we define JpK := 1 if p is true and JpK := 0 otherwise.
We define log(·) and ln(·) to be the logarithms with base 2 and e respectively. Given sets A and B
we denote by BA the set of all functions f : A → B and by 2A the set of all subsets of A. We write
x ∼ [0, 1] to mean that the value x is drawn from the uniform distribution on [0, 1].

All trees in this paper are considered rooted. Given a tree J we denote its root by r(J ), its vertex set
by J , its leaves by J ⋆, and its internal vertices by J †. Given a vertex v in a tree J we denote its
parent by ↑J (v) and the subtree of all its descendants by ⇓J (v). Given an internal node v in a (full)
binary tree J we denote its left and right children by ◁J (v) and ▷J (v) respectively. Internal nodes
v in a (full) ternary tree J have an additional child ▽J (v) called the centre child. Given vertices
v and v′ in a tree J we denote by ΓJ (v, v′) the least common ancestor of v and v′: i.e. the vertex
of maximum depth which is an ancestor of both v and v′. We will drop the subscript J in all these
functions when unambiguous. Given a tree J , a subtree of J is a tree whose edge set is a subset of
that of J .

3 Results

3.1 The General Result

We consider the following game between Learner (us) and Nature (our adversary). We call this game
the similarity bandit problem. We have K actions. Learning proceeds in T trials. A-priori Nature
chooses a sequence ⟨n(t) | t ∈ [T ] \ {1}⟩ where for all t ∈ [T ] \ {1} we have n(t) ∈ [t− 1]. A-priori
Nature also chooses a sequence of loss vectors ⟨ℓt | t ∈ [T ]⟩ ⊆ [0, 1]K , but does not reveal them to
Learner. On the t-th trial the following happens:
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1. If t > 1 then Nature reveals n(t) to Learner.
2. Learner chooses some action at ∈ [K].
3. Nature reveals ℓt,at

to Learner.

Intuitively, given a trial t ∈ [T ] \ {1}, n(t) is a similar trial to t. Our inductive bias is that if an action
a ∈ [K] is good for trial t then it is likely that a will also be good for the similar trial n(t). We will
measure our performance with respect to any policy y, where a policy is defined as a vector in [K]T .
Specifically, we wish to minimise the y-regret, which is defined as the difference between the total
cumulative loss suffered by Learner and that which Learner would have suffered if it had instead
chosen at equal to yt for all trials t. Formally, this quantity is defined as follows:
Definition 3.1. Given a policy y ∈ [K]T we define the y-regret of Learner as:

R(y) :=
∑
t∈[T ]

ℓt,at
−
∑
t∈[T ]

ℓt,yt
.

The following quantity quantifies how much a policy agrees with our inductive bias.
Definition 3.2. Given a policy y ∈ [K]T we define the complexity of y by:

Φ(y) := 1 +
∑

t∈[T ]\{1}

Jyt ̸= yn(t)K .

We now state our main result:
Theorem 3.3. Consider the similarity bandit problem described above. Our algorithm CBNN takes
a single parameter ρ > 0 and, for all policies y ∈ [K]T simultaneously, obtains an expected y-regret
bounded by:

E[R(y)] ∈ Õ
((

ρ+
Φ(y)

ρ

)√
KT

)
where the expectation is taken over the randomisation of the algorithm. CBNN needs no initialisation
time and has a per-trial time complexity of:

O(ln(T )2 ln(K)) .

3.2 Bandits in a Metric Space

We consider the following game between Learner (us) and Nature (our adversary). We call this game
the metric bandit problem. We have K actions and a metric space (C,∆) where C is a (possibly
infinite) set of contexts and for all x, x′ ∈ C we have that ∆(x, x′) is the distance from x to x′.
We assume that Learner does not necessarily know (C,∆) a-priori but has access to an oracle for
computing ∆(x, x′) for any x, x′ ∈ C. Learning proceeds in T trials. A-priori Nature chooses a
sequence of contexts ⟨xt | t ∈ [T ]⟩ ⊆ C and a sequence of loss vectors ⟨ℓt | t ∈ [T ]⟩ ⊆ [0, 1]K , but
does not reveal them to Learner. On the t-th trial the following happens:

1. Nature reveals xt to Learner.
2. Learner chooses some action at ∈ [K].
3. Nature reveals ℓt,at to Learner.

Here, our inductive bias is that if an action a ∈ [K] is good for a context x ∈ C then it is likely also
good for contexts that are near to x with respect to the metric ∆. Our algorithm for this problem will
be based on the concept of a c-nearest neighbour which is defined as follows.
Definition 3.4. Given some c ≥ 1, a finite set S ⊆ C, and a context x ∈ C we have that some x̂ ∈ S
is a c-nearest neighbour of x in the set S if and only if:

∆(x, x̂) ≤ cmin
x′∈S

∆(x, x′) .

In order to utilise CBNN for this problem we need a data-structure for adaptive nearest neighbour
search. This problem is as follows. We maintain a finite set S ⊆ C. At any point in time we must
either:
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• Insert a new context x ∈ C into the set S and update the data-structure.

• Given a context x ∈ C , utilise the data-structure to find a c-nearest neighbour of x in the set
S.

An efficient example of such a data-structure is the navigating net [17].

We can now reduce the metric bandit problem to the similarity bandit problem as follows. On any
trial t ∈ [T ] \ {1} choose x̂t to be a c-nearest neighbour of xt in the set {xt′ | t′ ∈ [t − 1]}. Then
choose n(t) ∈ [t− 1] such that xn(t) = x̂t.

We will utilise the following definition in order to bound the complexity of policies when n(·) is
chosen in this way.

Definition 3.5. Given a function ŷ : C → [K] and a set X ⊆ C then for all x ∈ C define:

γ(x, ŷ,X ) := min{∆(x, x′) | x′ ∈ X ∧ ŷ(x′) ̸= ŷ(x)} .

We can now bound the complexity of policies as follows, noting that by Theorem 3.3 this leads
directly to a regret bound.

Theorem 3.6. Assume we have a sequence ⟨xt | t ∈ [T ]⟩ ⊆ C and a function ŷ : C → [K]. Define
X := {xt | t ∈ [T ]} and for all t ∈ [T ] define yt := ŷ(xt). Assume that for all t ∈ [T ] \ {1} we
have that xn(t) is a c-nearest neighbour of xt in the set {xt′ | t′ ∈ [t− 1]}. Then Φ(y) is no greater
than the minimum cardinality of any set S ⊆ C in which for all x′ ∈ X there exists x ∈ S with
∆(x, x′) < γ(x, ŷ,X )/3c.

A strength of our algorithm is that it can be combined with binning algorithms, where the contexts
xt are partitioned into sets called bins and, for each bin, all contexts in that bin are replaced by a
single context called the centre of the bin. The advantage of binning is that γ(x, ŷ,X ) can increase,
so that by Theorem 3.6 we may have that Φ(y) decreases. However, when a context xt is binned (i.e.
replaced by its bin centre) its label ŷ(xt) can change, increasing the final regret by O(1). In Section
3.3 we give an example of the utilisation of binning.

3.3 Stochastic Bandits in Euclidean Space

As an example we now consider the utilisation of the above algorithms for the problem of stochastic
bandits in [0, 1]d for some arbitrary d ∈ N which we view as a constant in our bounds. Here we will
only focus on what happens in the limit T →∞. We focus on stochastic bandits for simplicity, but
the same methodology can be used to study the limiting behaviour of adversarial bandits. In this
problem we have an unknown probability density µ̃ : [0, 1]d × [0, 1]K → R. We have T trials. On
trial t the following happens:

1. Nature draws (zt, ℓt) from µ̃.

2. Nature reveals zt to Learner.

3. Learner chooses some action at ∈ [K].

4. Nature reveals ℓt,at
to Learner.

To aid us in this problem we will first quantise the contexts zt to a grid. Note that this is an example
of binning. The grid is defined as follows:

Definition 3.7. Given q ∈ N define Gdq to be the set of vectors in [0, 1]d in which each component is
an integer multiple of 1/q.

On each trial t we will first quantise the vector zt by defining xt to be its nearest neighbour (w.r.t. the
euclidean metric) in Gdq , where q := (T/K)1/(d+1). Note that this can be done in constant time per
trial. As in Section 3.2 we then use CBNN to solve the problem by defining n(t) such that xn(t) is a
c-nearest neighbour (w.r.t. the euclidean metric) of xt in the set {xt′ | t′ ∈ [t− 1]}. We consider c as
a constant in our bounds.

As before, we will compare our cumulative loss to that of a policy that follows a function ŷ : [0, 1]d →
[K]. Our regret bound will be based on the following quantities:
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Definition 3.8. Let µ be the marginal of µ̃ with respect to its first argument and let ∆ be the euclidean
metric on [0, 1]d. For all ϵ > 0 define:

E(µ, ϵ) := {x ∈ [0, 1]d | ∃x′ ∈ [0, 1]d : µ(x′) ̸= 0 ∧ ∆(x, x′) ≤ ϵ}

which is the set of contexts that are within distance ϵ of the support of µ. Given ŷ : [0, 1]d → [K] we
make the following definitions. For any δ > 0 define:

M(ŷ, µ, ϵ, δ) := {x ∈ [0, 1]d | ∃x′ ∈ E(µ, ϵ) : ∆(x, x′) ≤ δ ∧ ŷ(x) ̸= ŷ(x′)}

which is the set of contexts that are at distance no more than δ from the intersection of the decision
boundary of ŷ and E(µ, ϵ). We then define:

α(ŷ, µ) := lim
ϵ→0

lim
δ→0

1

δ

∫
x∈M(ŷ,µ,ϵ,δ)

1 ; α̃(ŷ, µ) := lim
ϵ→0

lim
δ→0

1

δ

∫
x∈M(ŷ,µ,ϵ,δ)

µ(x)

which are essentially the volumes of the part of the decision boundary of ŷ that lies in the support of
µ, with respect to the uniform density and the density µ respectively.

With these definitions in hand we now present our regret bound, which utilises Theorem 3.6 in its
proof:

Theorem 3.9. Let q := ⌈(T/K)1/(d+1)⌉. For all t ∈ [T ] let xt be the nearest neighbour of zt in
the set Gdq . For all t ∈ [T ] \ {1} let n(t) be such that xn(t) is a c-nearest neighbour of xt in the
set {xt′ | t′ ∈ [t − 1]}. Given some ŷ : [0, 1]d → [K] let yt := ŷ(zt) for all t ∈ [T ]. Then when
ρ := q

d−1
2 CBNN gives us:

E[R(y)] ∈ Õ
(
(1 + α(ŷ, µ) + α̃(ŷ, µ))T

d
d+1K

1
d+1

)
as T →∞.

We note that varying q and ρ in Theorem 3.9 will allow us to trade off the values 1, α(ŷ, µ) and
α̃(ŷ, µ) in different ways.

4 The Algorithm

In this section we describe our algorithm CBNN, for solving the similarity bandit problem, and give
the pseudocode for the novel subroutines. In the appendix we give a more detailed description of how
CBNN works and prove our theorems.

Instead of working directly with trial numbers we create a sequence of distinct nodes ⟨xt | t ∈ [T ]⟩
and define, for all t ∈ [T ] \ {1}, the node n(xt) := xn(t). Let X := {xt | t ∈ [T ]}. We can now
represent policies as functions from X into [K]. Hence, given some y : X → [K] , we define the
y-regret and the complexity of y as:

R(y) :=
∑
t∈[T ]

ℓt,at
−
∑
t∈[T ]

ℓt,y(xt) ; Φ(y) := 1 +
∑

x∈X\{x1}

Jy(x) ̸= y(n(x))K

respectively.

4.1 A Simple but Inefficient Algorithm

To give the reader intuition we first describe our initial idea - a simple algorithm which attains
our desired regret bound but is exponentially slower - taking a per-trial time of Θ̃(KT ). The
algorithm is based on EXP4 [4] which we now describe. On every trial t we maintain a weighting
ŵt : [K]X → [0, 1]. We are free to choose the initial weighting ŵ1 to be any probability distribution.
On each trial t the following happens:

1. For all a ∈ [K] set pt,a ←
∑

y∈[K]X Jy(xt) = aKŵt(y) .

2. Set at ← a with probability proportional to pt,a .
3. Receive ℓt,at

.
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4. For all a ∈ [K] set ℓ̂t,a ← Ja = atKℓt,at∥pt∥1/pt,at .

5. For all y ∈ [K]X set ŵt+1(y)← ŵt(y) exp(−ηℓ̂t,y(xt)) .

For us we choose, for all y : X → [K] , an initial weight of:

ŵ1(y) := (1/K)(T (K − 1))−Φ(y) (1− 1/T )
(T−1−Φ(y))

.

Of course, we don’t know Φ(y) a-priori, and hence we cannot implement EXP4 explicitly (and it
would take exponential time even if we did know Φ(y) a-priori). Our crucial insight is the following.
For any t ∈ [T ] let Xt := {xt′ | t′ ∈ [t]} and for any y : X → [K] let yt be the restriction of y onto
Xt. Then for any t ∈ [T ] and for any y′ : Xt → [K] we have:∑

y∈[K]X : yt=y′

ŵ1(y) ∝
∏

x∈Xt\{x1}

(
Jy′(n(x)) ̸= y′(x)K

T (K − 1)
+ Jy′(n(x)) = y′(x)K

(
1− 1

T

))
. (1)

Note that, for all t ∈ [T ] and a ∈ [K] , we can write pt,a as follows:

pt,a =
∑

y∈[K]X

Jy(xt) = aKŵ1(y)
∏

t′∈[t−1]

exp(−ηℓ̂t,y(xt))

=
∑

y′∈[K]Xt

Jy′(xt) = aK

 ∏
t′∈[t−1]

exp(−ηℓ̂t,y′(xt))

 ∑
y∈[K]X : yt=y′

ŵ1(y) .

By substituting in Equation (1) we have now brought pt,a into a form that can be solved via Belief
propagation [23] over the tree with vertex set Xt and in which, for all t′ ∈ [t] \ {1} , the parent of xt′
is n(xt′).

It is well known that for any y : X → [K] , EXP4 attains a y-regret of at most ln(ŵ1(y))/η+ηKT/2.
By setting η := ρ/

√
KT and noting our choice of ŵ1 we obtain our desired regret bound.

4.2 Cancellation Propagation

In the remainder of this section we describe our algorithm CBNN, which is based on the same idea
as the simple algorithm of Section 4.1.

In this subsection we describe a novel algorithmic framework CANPROP for designing contextual
bandit algorithms with a running time logarithmic in K. It is inspired by EXP3 [4], specialist algo-
rithms [8] and online decision-tree pruning algorithms [10] but is certainly not a simple combination
of these works. CBNN will be an efficient implementation of an instance of CANPROP. Although in
general CANPROP requires a-priori knowledge, CBNN is designed in a way that, crucially, does not
need it to be known.

We assume, without loss of generality, that K and T are integer powers of two. CANPROP, which
takes a parameter η > 0, works on a full, balanced binary tree B with leaves B⋆ = [K]. On every
trial t each pair (v,S) ∈ B × 2X has a weight wt(v,S) ∈ [0, 1]. These weights induce a function
θt : B → [0, 1] defined by:

θt(v) :=
∑
S∈2X

Jxt ∈ SKwt(v,S) .

On each trial t a root-to-leaf path {vt,j | j ∈ [log(K)] ∪ {0}} is sampled such that vt,0 := r(B) and ,
given vt,j , we have that vt,(j+1) is sampled from {◁(vt,j), ▷(vt,j)} with probability proportional to
the value of θt when applied to each of these vertices. The action at is then chosen equal to vt,log(K).
Once the loss has been observed we climb back up the root-to-leaf path, updating the function wt to
wt+1.

CANPROP (at trial t) is given in Algorithm 1. We note that if wt+1(v,S) is not set in the pseudocode
then it is defined to be equal to wt(v,S).
In Appendix B we give a general regret bound for CANPROP. For CBNN we set:

η := ρ
√

ln(K) ln(T )/KT
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Algorithm 1 CANPROP at trial t

1: vt,0 ← r(B)
2: for j = 0, 1, · · · , (log(K)− 1) do
3: for v ∈ {◁(vt,j), ▷(vt,j)} do
4: θt(v)←

∑
S∈2X Jxt ∈ SKwt(v,S)

5: end for
6: zt,j ← θt(◁(vt,j)) + θt(▷(vt,j))
7: for v ∈ {◁(vt,j), ▷(vt,j)} do
8: πt(v)← θt(v)/zt,j
9: end for

10: ζt,j ∼ [0, 1]
11: if ζt,j ≤ πt(◁(vt,j)) then
12: vt,j+1 ← ◁(vt,j)
13: else
14: vt,j+1 ← ▷(vt,j)
15: end if
16: end for

17: at ← vt,log(K)

18: π̃t ←
∏

j∈[log(K)] πt(vt,j)

19: ψt,log(K) ← exp(−ηℓt,at
/π̃t)

20: for j = log(K), (log(K)− 1), · · · , 1 do
21: ψt,(j−1) ← 1− (1− ψt,j)πt(vt,j)
22: ψ′

t,j ← ψt,j/ψt,j−1

23: if vt,j = ◁(vt,j−1) then
24: ṽt,j ← ▷(vt,j−1)
25: else
26: ṽt,j ← ◁(vt,j−1)
27: end if
28: for S ∈ 2X : xt ∈ S do
29: wt+1(vt,j ,S)← wt(vt,j ,S)ψ′

t,j

30: wt+1(ṽt,j ,S)← wt(ṽt,j ,S)/ψt,j−1

31: end for
32: end for

and for all (v,S) ∈ B × 2X we set:

w1(v,S) :=
1

4

∏
x∈X\{x1}

(
σ(x,S) 1

T
+ (1− σ(x,S))

(
1− 1

T

))
(2)

where:
σ(x,S) := JJx ∈ SK ̸= Jn(x) ∈ SKK.

This choice gives us the regret bound in Theorem 3.3. We note that CBNN will be implemented in
such a way that n need not be known a-priori.

4.3 Ternary Search Trees

As we shall see, CBNN works by storing a binary treeA(v) at each vertex v ∈ B. In order to perform
efficient operations on these trees we will utilise the rebalancing data-structure defined in [22] which
here we shall call a ternary search tree (TST) due to the fact that it is a generalisation of the classic
binary search tree and, as we shall show, has searching applications. However, as for binary search
trees, the applications of TSTs are more than just searching: we shall also utilise them for online
belief propagation.

We now define what is meant by a TST. Suppose we have a full binary tree J . A TST of J is a
full ternary tree D which satisfies the following. The vertex set of D is partitioned into two sets D◦

and D• where each vertex s ∈ D is associated with a vertex µ(s) ∈ J and every s ∈ D• is also
associated with a vertex µ′(s) ∈ ⇓(µ(s))†. In addition, each internal vertex s ∈ D† is associated with
a vertex ξ(s) ∈ J . For all u ∈ J there exists an unique leaf ΥD(u) ∈ D⋆ in which µ(ΥD(u)) = u.

Essentially, each vertex s ∈ D corresponds to a subtree Ĵ (s) of J where Ĵ (r(D)) = J . Such a
vertex s is a leaf of D if and only if |Ĵ (s)| = 1. For each internal vertex s ∈ D† the subtree Ĵ (s)
is split at the vertex ξ(s) into the subtrees Ĵ (◁(s)), Ĵ (▽(s)), and Ĵ (▷(s)) corresponding to the
children of s. The process continues recursively.

For completeness we now describe the rules that a TSTD of J must satisfy. We have that r(D) ∈ D◦

and µ(r(D)) := r(J ). Each vertex s ∈ D represents a subtree Ĵ (s) of J . If s ∈ D◦ then
Ĵ (s) := ⇓(µ(s)) and otherwise Ĵ (s) is the set of all descendants of µ(s) which are not proper
descendants of µ′(s). Given that s ∈ D† this subtree is split at the vertex ξ(s) where if s ∈ D• we
have that ξ(s) lies on the path from µ(s) to µ′(s). The children of s are then defined so that Ĵ (◁(s)) =
Ĵ (s)∩⇓(◁(ξ(s))) and Ĵ (▷(s)) = Ĵ (s)∩⇓(▷(ξ(s))) and Ĵ (▽(s)) = Ĵ (s)\ (Ĵ (◁(s))∪Ĵ (▷(s))).
i.e. ξ(s) partitions the subtree Ĵ (s) into the subtrees Ĵ (◁(s)), Ĵ (▷(s)), and Ĵ (▽(s)). This process
continues recursively until |Ĵ (s)| = 1 in which case s is a leaf of D.
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For all binary trees J in our algorithm we shall maintain a TSTH(J ) of J with height O(ln(|J |)).
Such trees J are dynamic in that on any trial it is possible that two vertices, u and u′, are added to
the tree J such that u′ is inserted between a non-root vertex of J and its parent, and u is designated
as a child of u′. We define the subroutine REBALANCE(H(J ), u) as one which rebalances the TST
H(J ) after this insertion, so that the height of H(J ) always remains in O(ln(|J |)). The work of
[22] describes how this subroutine can be implemented in a time of O(ln(|J |)) and we refer the
reader to this work for details (noting that they use different notation).

4.4 Contractions

Define the quantity ϕ0 := 0 and for all j ∈ N ∪ {0} inductively define:

ϕj+1 :=

(
1− 1

T

)
ϕj +

1

T
(1− ϕj) .

At any trial t the contexts in {xs | s ∈ [t]} naturally form a tree by designating n(xs) as the parent
of xs. However, to utilise the TST data-structure we must only have binary trees. Hence, we will
work with a (dynamic) full binary tree Z which, on trial t, is a binarisation of the above tree. The
relationship between these two trees is given by a map γ : Zt → {xs | s ∈ [t]} where Zt is the tree
Z on trial t. For all x ∈ {xs | s ∈ [t]} we will always have an unique leaf γ̃(x) ∈ Z⋆

t in which
γ(γ̃(x)) = x. We also maintain a balanced TSTH(Z) of Z .

Algorithm 2 gives the subroutine GROWt which updates Z at the start of trial t. Note that GROWt

also defines a function d : Z → N such that d(u) is the number of times the function n must be
applied to γ(u) to reach x1.

Algorithm 2 GROWt which works on Z
1: u← γ̃(n(xt))
2: u∗ ← ↑(u)
3: u′ ← NEWVERTEX
4: u′′ ← NEWVERTEX
5: γ(u′)← n(xt)
6: γ(u′′)← xt
7: γ̃(xt)← u′′

8: if u = ◁(u∗) then
9: ◁(u∗)← u′

10: else
11: ▷(u∗)← u′

12: end if
13: ◁(u′)← u′′

14: ▷(u′)← u
15: d(u′)← d(u)
16: d(u′′)← d(u) + 1
17: REBALANCE(H(Z), u′′)

A contraction (of Z) is defined as a full binary tree J in which the following holds. (1) The
vertices of J are a subset of those of Z . (2) r(J ) = r(Z). (3) Given a vertex u ∈ J we have
◁J (u) ∈ ⇓Z(◁Z(u)) and ▷J (u) ∈ ⇓Z(▷Z(u)). (4) Any leaf of J is a leaf of Z .

CBNN will maintain, on every vertex v ∈ B, a contraction A(v) as well as a TST H(A(v)) of
A(v). Given J is one of these contractions, we also maintain, for all i, i′ ∈ {0, 1} and all u ∈ J , a
value τi,i′(J , u) ∈ R+. Technically these quantities, which depend on the above function d, define a
bayesian network on J which is explained in Appendix C.3. For all i ∈ {0, 1} and all u ∈ J we
also maintain a value κi(J , u) initialised equal to 1.

On each of our contractions J we will define, on trial t, a subroutine INSERTt(J ) that simply
modifies J so that γ̃(xt) is added to its leaves. This subroutine is only called on certain trials t.
Specifically, it is called on the contraction A(v) only when v is involved in CANPROP on trial t.
Although the effect of this subroutine is simple to describe, its polylogarithmic-time implementation is
quite complex. A function that is used many times during this subroutine is ν : Z ×Z → {◀, ▶,▲}
in which ν(u, u′) is equal to ◀, ▶ or ▲ if u′ is contained in ⇓Z(◁Z(u)), in ⇓Z(▷Z(u)) or in neither,
respectively. Algorithm 3 shows how to compute this function. Now that we have a subroutine for
computing ν we can turn to the pseudocode for the subroutine INSERTt(J ) in Algorithm 4. In the
appendix we give a full description of how and why this subroutine works.
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Algorithm 3 Computing ν(u, u′) for u, u′ ∈ Z
1: E ← H(Z)
2: if u = u′ then
3: return ▲
4: end if
5: s̃← ΥE(u)
6: s̃′ ← ΥE(u

′)
7: s∗ ← ΓE(s̃, s̃

′)
8: for s ∈ {◁(s∗),▽(s∗), ▷(s∗)} do
9: if s̃ ∈ ⇓(s) then

10: ŝ← s
11: end if
12: if s̃′ ∈ ⇓(s) then
13: ŝ′ ← s
14: end if
15: end for
16: if ŝ ̸= ▽(s∗) then
17: return ▲
18: end if
19: if ξ(s∗) = u ∧ ŝ′ = ◁(s∗) then

20: return ◀
21: else if ξ(s∗) = u ∧ ŝ′ = ▷(s∗) then
22: return ▶
23: end if
24: s← ŝ
25: while TRUE do
26: if s ∈ E◦ then
27: return ▲
28: else if u = ξ(s) ∧ ◁(s) ∈ E• then
29: return ◀
30: else if u = ξ(s) ∧ ▷(s) ∈ E• then
31: return ▶
32: end if
33: for s′ ∈ {◁(s),▽(s), ▷(s)} do
34: if s̃ ∈ ⇓(s′) then
35: s← s′

36: end if
37: end for
38: end while

Algorithm 4 The operation INSERTt(J ) on a contraction J of Z at trial t

1: E ← H(Z)
2: D ← H(J )
3: s← r(D)
4: ut ← γ̃(xt)
5: while s ∈ D† do
6: if ν(ξ(s), ut) =◀ then
7: s← ◁(s)
8: else if ν(ξ(s), ut) =▶ then
9: s← ▷(s)

10: else if ν(ξ(s), ut) = ▲ then
11: s← ▽(s)
12: end if
13: end while
14: û← µ(s)
15: s← r(E)
16: while s ∈ E† do
17: if ν(ξ(s), ut) = ν(ξ(s), û) then
18: if ν(ξ(s), ut) =◀ then
19: s← ◁(s)
20: else if ν(ξ(s), ut) =▶ then
21: s← ▷(s)
22: else if ν(ξ(s), ut) = ▲ then
23: s← ▽(s)
24: end if
25: else
26: s← ▽(s)
27: end if
28: end while

29: u∗ ← µ(s)
30: u′ ← ↑J (û)
31: if û = ◁J (u′) then
32: ◁J (u′)← u∗

33: else
34: ▷J (u′)← u∗

35: end if
36: if ν(u∗, û) =◀ then
37: ◁J (u∗)← û
38: ▷J (u∗)← ut
39: else
40: ▷J (u∗)← û
41: ◁J (u∗)← ut
42: end if
43: for i ∈ {0, 1} do
44: κi(J , u∗)← 1
45: κi(J , ut)← 1
46: end for
47: for u ∈ {u∗, û, ut} do
48: δ(u)← d(u)− d(↑J (u))
49: end for
50: for (i, i′) ∈ {0, 1} × {0, 1} do
51: if i = i′ then
52: τi,i′(J , u)← 1− ϕδ(u)
53: else
54: τi,i′(J , u)← ϕδ(u)
55: end if
56: end for
57: REBALANCE(H(J ), ut)
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4.5 Online Belief Propagation

In this subsection we utilise the work of [7] in order to be able to efficiently compute the function θt
that appears in CANPROP.

Given a vertex u in one of our contractions J we define F(J , u) := {f ∈ {0, 1}J | f(u) = 1} and
then define:

Λ(J , u) :=
∑

f∈F(J ,u)

∏
u′∈J\{r(J )}

τf(↑J (u′)),f(u′)(J , u′)κf(u′)(J , u′) .

As stated in the previous subsection, when a vertex v ∈ B becomes involved in CANPROP on trial t,
CBNN will add γ̃(xt) to the leaves of A(v) via the operation INSERTt(A(v)). In the appendix we
shall show that for each such v we then have:

θt(v) = Λ(A(v), γ̃(xt))/4 .
We now outline how to compute this efficiently, deferring a full description for Appendix D.3. First
note that for all contractions J and all u ∈ J we have that Λ(J , u) is of the exact form to be solved
by the classic Belief propagation algorithm [23]. The work of [7] shows how to compute this term in
logarithmic time by maintaining a data-structure based on a balanced TST of J - in our case the TST
H(J ). Whenever, for some i ∈ {0, 1} and u′ ∈ J , the value κi(J , u′) changes, the data-structure is
updated in logarithmic time. We define the subroutine EVIDENCE(J , u′) as that which updates this
data-structure after κi(J , u′) changes. We also make sure that the data-structure is updated whenever
REBALANCE(H(J ), ·) is called. We then define the subroutine MARGINAL(J , u) as that which
computes Λ(J , u)/4. Hence, the output of MARGINAL(A(v), γ̃(xt)) is equal to θt(v).

4.6 CBNN

Now that we have defined all our subroutines we give, in Algorithm 5, the algorithm CBNN which is
an efficient implementation of CANPROP with initial weighting given in Equation (2).

Algorithm 5 CBNN at trial t

1: GROWt

2: ut ← γ̃(xt)
3: vt,0 ← r(B)
4: for j = 0, 1, · · · , (log(K)− 1) do
5: for v ∈ {◁(vt,j), ▷(vt,j)} do
6: INSERTt(A(v))
7: θt(v)← MARGINAL(A(v), ut)
8: end for
9: zt,j ← θt(◁(vt,j)) + θt(▷(vt,j))

10: for v ∈ {◁(vt,j), ▷(vt,j)} do
11: πt(v)← θt(v)/zt,j
12: end for
13: ζt,j ∼ [0, 1]
14: if ζt,j ≤ πt(◁(vt,j)) then
15: vt,j+1 ← ◁(vt,j)
16: else
17: vt,j+1 ← ▷(vt,j)

18: end if
19: end for
20: at ← vt,log(K)

21: π̃t ←
∏

j∈[log(K)] πt(vt,j)

22: ψt,log(K) ← exp(−ηℓt,at
/π̃t)

23: for j = log(K), (log(K)− 1), · · · , 1 do
24: ψt,(j−1) ← 1− (1− ψt,j)πt(vt,j)
25: if vt,j = ◁(vt,j−1) then
26: ṽt,j ← ▷(vt,j−1)
27: else
28: ṽt,j ← ◁(vt,j−1)
29: end if
30: κ1(A(vt,j), ut)← ψt,j/ψt,j−1

31: κ1(A(ṽt,j), ut)← 1/ψt,j−1

32: EVIDENCE(A(vt,j), ut)
33: EVIDENCE(A(ṽt,j), ut)
34: end for
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A Introduction to the Appendix

We now turn to the full description and analysis of our algorithm CBNN. In Appendix B we describe
our novel algorithmic framework CANPROP. In Appendix C we describe contractions and bayesian
networks on them, showing how CANPROP can be implemented with them. Finally, in Appendix D
we describe TSTs and how they are used to perform our required operations efficiently. In Appendix
E we prove, in order, all of the theorems stated in this paper.

Recall that we created a sequence of distinct nodes ⟨xt | t ∈ [T ]⟩ and defined, for all t ∈ [T ]\{1}, the
node n(xt) := xn(t). Let X := {xt | t ∈ [T ]}. Given some y : X → [K] , we defined the y-regret
and the complexity of y as:

R(y) :=
∑
t∈[T ]

ℓt,at
−
∑
t∈[T ]

ℓt,y(xt) ; Φ(y) := 1 +
∑

x∈X\{x1}

Jy(x) ̸= y(n(x))K

respectively.

B Cancellation Propagation

B.1 The General CANPROP Algorithm

We now introduce a general algorithmic framework CANPROP for handling contextual bandit
problems with a per-trial time logarithmic in K. Without loss of generality assume that K is
an integer power of two. Let B be a full, balanced binary tree whose leaves are the set of actions [K].
Let B′ := B \ {r(B)}. CANPROP takes a parameter η ∈ R+ called the learning rate. On each trial t
CANPROP maintains a function:

wt : B′ × 2X → [0, 1] .

The function w1 is free to be defined how one likes, as long as it satisfies the constraint that for all
internal vertices v ∈ B† we have:∑

S∈2X

(w1(◁(v),S) + w1(▷(v),S)) = 1 .

We now describe how CANPROP acts on trial t. For all v ∈ B′ we define:

θt(v) :=
∑
S∈2X

Jxt ∈ SKwt(v,S)

and for all v ∈ B† we define:

πt(◁(v)) :=
θt(◁(v))

θt(◁(v)) + θt(▷(v))
; πt(▷(v)) :=

θt(▷(v))

θt(◁(v)) + θt(▷(v))
.

As we shall see CANPROP needs only compute these values for O(ln(K)) vertices v. CANPROP
samples a root-to-leaf path {vt,j | j ∈ [log(K)] ∪ {0}} as follows. vt,0 is defined equal to r(B). For
all j ∈ [log(K) − 1] ∪ {0}, once vt,j has been sampled we sample vt,(j+1) from the probability
distribution defined by:

P[vt,(j+1) = v] := J↑(v) = vt,jKπt(v) ∀v ∈ B′

noting that vt,(j+1) is a child of vt,j . We define:

Pt := {vt,j | j ∈ [log(K)] ∪ {0}} .

CANPROP then selects:
at := vt,log(K)

and then receives the loss ℓt,at . The function wt is then updated to wt+1 as follows. Firstly we define,

wt+1(v,S) := wt(v,S) ∀(v,S) ∈ {v′ ∈ B′ | ↑(v′) /∈ Pt} × 2X .

We then define:

ψt,log(K) := exp

(
−ηℓt,at∏

j∈[log(K)] πt(vt,j)

)
.
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Once we have defined ψt,j for some j ∈ [log(K)] we then define:

ψt,(j−1) := 1− (1− ψt,j)πt(vt,j)

βt(v) :=
Jv ∈ PtKψt,j + Jv /∈ PtK

ψt,(j−1)
∀v ∈ {◁(vt,(j−1)), ▷(vt,(j−1))}

wt+1(v,S) := (Jxt ∈ SKβt(v) + Jxt /∈ SK)wt(v,S) ∀(v,S) ∈ {◁(vt,(j−1)), ▷(vt,(j−1))} × 2X .

The regret bound of CANPROP is given by the following theorem.
Theorem B.1. Suppose we have a function y : X → [K]. For all v ∈ B define:

Q(y, v) := {x ∈ X | y(x) ∈ ⇓(v)} .

Then the expected y-regret of CANPROP is bounded by:

E[R(y)] ≤ ηKT

2
− 1

η

∑
v∈B′

JQ(y, v) ̸= ∅K ln(w1(v,Q(y, v))) .

B.2 Our Parameter Tuning

We now describe and analyse the initial weighting w1 and the learning rate η that we will use. Define
X ′ := X \ {x1}. For all (x,S) ∈ X ′ × 2X define:

σ(x,S) := JJx ∈ SK ̸= Jn(x) ∈ SKK .

For all (v,S) ∈ B′ × 2X we define:

w1(v,S) :=
1

4

∏
x∈X ′

(
σ(x,S) 1

T
+ (1− σ(x,S))

(
1− 1

T

))
.

Given our parameter ρ we choose our learning rate as:

η := ρ

√
ln(K) ln(T )

KT
.

Given this initial weighting and learning rate, Theorem B.1 implies the following regret bound.
Theorem B.2. Given w1 and η are defined as above, then for any y : X → [K] the expected y-regret
of CANPROP is bounded by:

E[R(y)] ∈ O
((

ρ+
Φ(y)

ρ

)√
ln(K) ln(T )KT

)
.

C Implementation with Contractions

C.1 A Sequence of Binary Trees

For any trial t we have a natural tree-structure on the set {xt′ | t′ ∈ [t]} formed by making n(xt′) the
parent of xt′ for all t′ ∈ [t]\{1}. However, in order to utilise the methodology of [22] we need to work
with binary trees. Hence, we now inductively define a sequence of binary trees ⟨Zt | t ∈ [T ] \ {1}⟩
where the vertices of Zt are a subset of those of Zt+1. We also define a function γ : ZT → X . This
function γ has the property that for any t ∈ [T ] and for any distinct leaves u, u′ ∈ Z⋆

t we have that
γ(u) ̸= γ(u′) , and that:

{γ(u′′) | u′′ ∈ Z⋆
t } = {xt′ | t′ ∈ [t]} .

We define Z2 to contain three vertices {r(Z2), ◁(r(Z2)), ▷(r(Z2))} where:

γ(r(Z2)) := γ(◁(r(Z2)) := x1 ; γ(▷(r(Z2)) := x2 .

Now consider a trial t ∈ [T ]. We have that Zt+1 is constructed from Zt via the following algorithm
GROWt+1:

1. Let u be the unique leaf in Z⋆
t in which γ(u) = n(xt+1) and let u∗ := ↑(u).
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2. Create two new vertices u′ and u′′.

3. Set γ(u′)← n(xt+1) and γ(u′′)← xt+1.

4. If u = ◁(u∗) then set ◁(u∗)← u′. Else set ▷(u∗)← u′.

5. Set ◁(u′)← u′′ and ▷(u′)← u.

We also define a function d : ZT → N∪ {0} as follows. Define d′(x1) := 0 and for all t ∈ [T ] \ {1}
inductively define d′(xt) := d′(n(xt)) + 1. Finally define d(u) := d′(γ(u)) for all u ∈ ZT . Since
for all t ∈ [T ] we have that the vertices of Zt are a subset of those of ZT we have that d also defines
a function over Zt for all t ∈ [T ].

For all t ∈ [T ] we define ut to be the unique leaf of Zt for which γ(ut) = xt.

C.2 Contractions

Our efficient implementation of CANPROP will have a data-structure at every vertex v ∈ B′. However,
to achieve polylogarithmic time per trial we can only update a polylogarithmic number of these
data-structures per trial. This necessitates the use of contractions of our trees {Zt | t ∈ [T ] \ {1}}
which are defined as follows. A contraction of a full binary treeQ is another full binary tree J which
satisfies the following:

• The vertices of J are a subset of those of Q.

• r(J ) = r(Q).
• Given an internal vertex u ∈ J † we have ◁J (u) ∈ ⇓Q(◁Q(u)) and ▷J (u) ∈ ⇓Q(▷Q(u)).
• Any leaf of J is a leaf of Q.

Note that any contraction of Zt is also a contraction of Zt+1 and hence, by induction, a contraction
of Zt′ for all t′ ≥ t. Given a trial t and a contraction J of Zt−1 we now define the operation
INSERTt(J ) which acts on J by the following algorithm:

1. Let û be the unique vertex in J \ {r(J )} such that ut is in the maximal subtree of Zt with
û and ↑J (û) as leaves.

2. Let u∗ := ΓZt(ut, û) .

3. Add the vertices u∗ and ut to the tree J .

4. Let u′ := ↑J (û).

5. If û = ◁J (u′) then set ◁J (u′)← u∗. Else set ▷J (u′)← u∗.

6. If û ∈ ⇓Zt(◁Zt(u
∗)) then set ◁J (u∗) ← û and ▷J (u∗) ← ut. Else set ▷J (u∗) ← û and

◁J (u∗)← ut.

Later in this paper we will show how this operation can be done in polylogarithmic time. Note that
after the operation we have that J is a contraction of Zt and ut has been added to it’s leaves. From
now on when we use the term contraction we mean any contraction of ZT .

C.3 Contraction-Based Bayesian Networks

Here we shall define a bayesian network over any contraction J and show how it can be utilised
to compute certain quantities required by CANPROP. First define the quantity ϕ0 := 0 and for all
j ∈ N ∪ {0} inductively define:

ϕj+1 :=

(
1− 1

T

)
ϕj +

1

T
(1− ϕj) .

The algorithm must compute these quantities for all j ∈ [T ]. However, for all t ∈ [T ] we have that
ϕt doesn’t have to be computed until trial t so computing these quantities is constant time per trial.
Given a contraction J , a vertex u ∈ J \ r(J ) and indices i, i′ ∈ {0, 1} define:

τi,i′(J , u) := Ji ̸= i′Kϕ(d(u)−d(↑J (u))) + Ji = i′K
(
1− ϕ(d(u)−d(↑J (u)))

)
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which defines the transition matrix from ↑J (u) to u in a bayesian network over J . We shall now
show how belief propagation over such bayesian networks can be used to compute the quantities we
need in CANPROP. Suppose we have a contraction J and a function λ : J ⋆ → R+. This function λ
induces a function λ′ : X → R+ defined as follows. Given x ∈ X , if there exists a leaf u ∈ J ⋆ with
γ(u) = x then λ′(x) = λ(u). Otherwise λ′(x) = 1. For all S ∈ 2X define:

w̃(J , λ,S) :=

(∏
x∈S

λ′(x)

)( ∏
x∈X ′

(
σ(x,S) 1

T
+ (1− σ(x,S))

(
1− 1

T

)))
.

For the CANPROP algorithm we will need to compute∑
S∈2X

Jγ(û) ∈ SKw̃(J , λ,S) (3)

for some leaf û ∈ J ⋆ and some function λ : J ⋆ → R+. We shall now show how we can compute this
quantity via belief propagation on the bayesian network. In particular, we shall construct a quantity
Λ̃(J , λ, u) equal to the quantity in Equation (3). To do this, first define the function λ∗ : J → R+

so that for all u ∈ J ⋆ we have λ∗(u) = λ(u) and for all u ∈ J † we have λ∗(u) = 1. For all vertices
u ∈ J and all indices i ∈ {0, 1} define:

κ̃i(J , λ, u) := Ji = 0K + Ji = 1Kλ∗(u) .

For all û ∈ J define:
F(J , û) := {f ∈ {0, 1}J | f(û) = 1}

and then define:

Λ̃(J , λ, û) :=
∑

f∈F(J ,û)

∏
u∈J\r(J )

τf(↑J (u)),f(u)(J , u)κ̃f(u)(J , λ, u) .

The equality of this quantity and that given in Equation (3) is given by the following theorem.

Theorem C.1. Given a contraction J , a function λ : J ⋆ → R+ and some leaf û ∈ J ⋆ we have:

Λ̃(J , λ, û) =
∑
S∈2X

Jγ(û) ∈ SKw̃(J , λ,S) .

Note that Λ̃(J , λ, û) is of the exact form to be solved via belief propagation over J . However, belief
propagation is too slow (taking Θ(|J |) time) - we will remedy this later.

C.4 Cancelation Propagation with Contractions

We now describe how to implement CANPROP with contractions. For each v ∈ B′ we maintain a
contraction A(v) and a function λv : A(v)⋆ → R+. We initialise with A(v) identical to Z2 and
λv(u) = 1 for both leaves u ∈ Z⋆

2 . Via induction over t we will have that at the start of each trial t
we have, for all sets S ∈ 2X , that:

wt(v,S) = w̃(A(v), λv,S)/4 . (4)

On trial t we do as follows. First we update Zt−1 to Zt using the algorithm GROWt. We will perform
the necessary modifications to our contractions as we sample the path Pt. In particular, we first
set vt,0 := r(B) and then for each j ∈ [log(K) − 1] ∪ {0} in turn we do as follows. For each
v ∈ {◁(vt,j), ▷(vt,j)} run INSERTt(A(v)) and set λv(ut)← 1. Since λv(ut) = 1 Equation (4) still
holds and hence, by Theorem C.1, we have:

θt(v) = Λ̃(A(v), λv, ut)/4 .

After θt(v) has been computed for both v ∈ {◁(vt,j), ▷(vt,j)} we can now sample vt,j+1.

Once we have selected the action at we then update the functions {λv | ↑B(v) ∈ Pt} by setting
λv(ut)← βt(v) for all v ∈ B′ with ↑B(v) ∈ Pt. It is clear now that Equation (4) holds inductively.
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C.5 Notational Relationship to the Main Body

We now point out how the notation in this section relates to that of the main body. In particular, we
have, for all v ∈ B′ , all u ∈ A(v) and all i, i′ ∈ {0, 1}, that:

• κi(A(v), u) = κ̃i(A(v), λv, u).
• Λ(A(v), u) = Λ̃(A(v), λv, u).

We note that the function λv does not explicity appear in our pseudocode since it can be inferred
from κi(A(v), ·).

D Utilising Ternary Search Trees

There are now only two things left to do in order to achieve polylogarithmic time per trial - to make
an efficient online implementation of the INSERTt(·) operation and an efficient online algorithm to
perform belief propagation over our contractions. In order to do this we will utilise the methodology
of [22] which we now describe. However, we do not give the full details of the rebalancing technique
and refer the reader to [22] for these details (noting that [22] uses different notation).

D.1 Ternary Search Trees

In this section we will consider a full binary tree J . A (full) ternary tree D is a rooted tree in which
each internal vertex s ∈ D† has three children denoted by ◁(s), ▽(s), ▷(s) and called the left, centre,
and right children respectively. We now define what it means for a ternary tree D to be a ternary
search tree (TST) of J . Firstly, the vertex set of D is partitioned into two sets D◦ and D•. Every
vertex s ∈ D is associated with a vertex µ(s) ∈ J and every s ∈ D• is also associated with a vertex
µ′(s) ∈ ⇓J (µ(s))†. The root r(D) is contained in D◦ and µ(r(D)) := r(J ). Each internal vertex
s ∈ D† is associated with a vertex ξ(s) ∈ J . If s ∈ D◦ then ξ(s) ∈ ⇓(µ(s))† and if s ∈ D• then
ξ(s) lies on the path (in J ) from µ(s) to ↑(µ′(s)). For all s ∈ D† we have:

• ▽(s) ∈ D• , µ(▽(s)) := µ(s) and µ′(▽(s)) := ξ(s).
• ◁(s) satisfies:

– If s ∈ D◦ then ◁(s) ∈ D◦ and µ(◁(s)) := ◁(ξ(s)).
– If s ∈ D• and µ′(s) ∈ ⇓(▷(ξ(s))) then ◁(s) ∈ D◦ and µ(◁(s)) := ◁(ξ(s)).
– Else ◁(s) ∈ D• , µ(◁(s)) := ◁(ξ(s)) and µ′(◁(s)) := µ′(s).

• ▷(s) satisfies:
– If s ∈ D◦ then ▷(s) ∈ D◦ and µ(▷(s)) := ▷(ξ(s)).
– If s ∈ D• and µ′(s) ∈ ⇓(◁(ξ(s))) then ▷(s) ∈ D◦ and µ(▷(s)) := ▷(ξ(s)).
– Else ▷(s) ∈ D• , µ(▷(s)) := ▷(ξ(s)) and µ′(▷(s)) := µ′(s).

Finally, for each leaf s ∈ D⋆ we have:

• If s ∈ D◦ then µ(s) is a leaf of J .

• If s ∈ D• then there exists u ∈ J † such that µ(s) = µ′(s) = u.

Intuitively, each vertex s ∈ D is associated with a subtree Ĵ (s) ofJ . If s ∈ D◦ then Ĵ (s) := ⇓(µ(s))
and if s ∈ D• then Ĵ (s) is the subtree of all descendants of µ(s) which are not proper descendants
of µ′(s). For every s ∈ D such that Ĵ (s) contains only a single vertex, we have that s is a leaf of
D. Otherwise s is an internal vertex of D and its children are as follows. We say that Ĵ (s) is split
at the vertex ξ(s) ∈ Ĵ (s)†. If s ∈ D• we require that ξ(s) is on the path in J from µ(s) to µ′(s).
The action of splitting Ĵ (s) at ξ(s) partitions Ĵ (s) into the subtrees Ĵ (◁(s)), Ĵ (▽(s)) and Ĵ (▷(s))
defined as follows:

• Ĵ (◁(s)) := ⇓(◁(ξ(s))) ∩ Ĵ (s).
• Ĵ (▷(s)) := ⇓(▷(ξ(s))) ∩ Ĵ (s).
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• Ĵ (▽(s)) := Ĵ (s) \ (Ĵ (◁(s)) ∪ Ĵ (▷(s))).

Utilising the methodology of [22] we will maintain TSTs of Zt (at each trial t) and the trees in
{A(v) | v ∈ B′}, each with height O(ln(T )). Note that these trees are dynamic, in that vertices are
inserted into them over time. [22] shows how, after such an insertion, the corresponding TST can be
rebalanced, in time O(ln(T )), so that its height is still in O(ln(T )). This rebalancing is performed
via a sequence of O(ln(T )) tree rotations, which generalise the concept of tree rotations in binary
search trees.

D.2 Searching

In this section we show how we can use our TSTs to implement the operation INSERTt(J ) on any
trial t and contraction J of Zt−1. To do this we need to perform the following two search operations:

1. Find the unique vertex û ∈ J \ {r(J )} such that ut is in the maximal subtree of Zt with û
and ↑J (û) as leaves.

2. Find u∗ := ΓZt
(ut, û).

To perform these tasks in polylogarithmic time we will utilise TSTs E andD of Zt and J respectively.
Both the searching tasks utilise a function ν : Z2

t → {▲, ◀, ▶} defined, for all u, u′ ∈ Zt as follows.
If u′ ∈ ⇓Zt

(◁(u)) or u′ ∈ ⇓Zt
(▷(u)) then ν(u, u′) :=◀ or ν(u, u′) :=▶ respectively. Otherwise

ν(u, u′) := ▲. This can be computed as follows. If u = u′ then ν(u, u′) := ▲. Otherwise let s̃ and
s̃′ be the unique leaves of E such that µ(s̃) = u and µ(s̃′) = u′. Let s∗ := ΓE(s̃, s̃

′) and let ŝ and
ŝ′ be the children of s∗ which are ancestors of s̃ and s̃′ respectively. If ŝ ̸= ▽(s∗) then we have
ν(u, u′) = ▲. If ξ(s∗) = u then we have ν(u, u′) =◀ or ν(u, u′) =▶ if ŝ′ = ◁(s∗) or ŝ′ = ▷(s∗)
respectively. If ŝ = ▽(s∗) and ξ(s∗) ̸= u then we perform the following process. Start with s
equal to ŝ. At any point in the process we do as follows. If s ∈ E◦ then the process terminates
with ν(u, u′) := ▲. If s ∈ E• and u = ξ(s) then the process terminates with ν(u, u′) =◀ or
ν(u, u′) =▶ if ◁(s) ∈ E• or ▷(s) ∈ E• respectively. If s ∈ E• and u ̸= ξ(s) then we reset s as equal
to the child of s which is an ancestor of s̃ and continue the process.

The vertex û can be found as follows. We construct a root-to-leaf path in D such that, given a vertex
s in the path, the next vertex in the path is ◁(s), ▷(s) or ▽(s) if ν(ξ(s), ut) is equal to ◀, ▶ or ▲
respectively. Given that s′ is the leaf of D that is in this path we have û = µ(s′).

The vertex u∗ can then be found as follows. We construct a root-to-leaf path in E such that, given a
vertex s in the path, the next vertex in the path is found as follows. If ν(ξ(s), ut) = ν(ξ(s), û) then
given ν(ξ(s), ut) is equal to ◀, ▶ or ▲, the next vertex is equal to ◁(s), ▷(s) or ▽(s) respectively.
Otherwise, the next vertex is ▽(s). Given that s′ is the leaf of E that is in this path we have u∗ = µ(s′).

The fact that these algorithms find the correct vertices is given in the following theorem:
Theorem D.1. The above algorithms are correct.

D.3 Belief Propagation

Here we utilise the methodology of [7] in order to efficiently compute the function Λ̃ that appears
in the CANPROP implementation. i.e. given a contraction J , a function λ : J ⋆ → R+ and some
leaf û ∈ J ⋆ we need to compute Λ̃(J , λ, û). For brevity let us define, for all i, i′ ∈ {0, 1}, and all
vertices u ∈ J \ {r(J )} , the quantities:

τ̂i,i′(u) := τi,i′(J , u) ; κ̂i(u) := κ̃i(J , λ, u) .
For simplicity of presentation we will utilise a tree J ′ which is defined as identical to J except with
a single vertex added as the parent of r(J ). For all i, i′ ∈ {0, 1} we define κ̂i(r(J ′)) := 1 and
τ̂i,i′(r(J )) = Ji = i′K. For all u ∈ J we will define ↑(u) := ↑J ′(u)

We will utilise a TST D of J by maintaining potentials on the vertices of D defined as follows. First,
as in Section D.1, for any vertex s ∈ D we define the subtree Ĵ (s) of J to be equal to ⇓J (µ(s)) if
s ∈ D◦ and equal to the subtree in J of all descendants of µ(s) which are not proper descendants of
µ′(s) if s ∈ D•. For all s ∈ D◦ and i ∈ {0, 1} we define:

Ψi(s) :=
∑

f∈{0,1}Ĵ (s)∪{↑(µ(s))}

Jf(↑(µ(s))) = iK
∏

u∈Ĵ (s)

τ̂f(↑(u)),f(u)(u)κ̂f(u)(u)
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and for all s ∈ D• and i, i′ ∈ {0, 1} we define:

Ωi,i′(s) :=
∑

f∈{0,1}Ĵ (s)∪{↑(µ(s))}

Jf(↑(µ(s))) = iKJf(µ′(s)) = i′K
∏

u∈Ĵ (s)

τ̂f(↑(u)),f(u)(u)κ̂f(u)(u) .

We have the following recurrence relations for these potentials. Suppose we have an internal vertex
s ∈ D† and i, i′ ∈ {0, 1}. If s ∈ D◦ we have:

Ψi(s) =
∑

i′′∈{0,1}

Ωi,i′′(▽(s))Ψi′′(◁(s))Ψi′′(▷(s)) .

If, instead, s ∈ D• then, by letting s′ := ◁(s), s′′ := ▷(s) if ◁(s) ∈ D• and s′ := ▷(s), s′′ := ◁(s)
otherwise, we have:

Ωi,i′(s) =
∑

i′′∈{0,1}

Ωi,i′′(▽(s))Ωi′′,i′(s
′)Ψi′′(s

′′) .

If, on a trial t, we perform the operation INSERTt(J ) or change the value of λ(ut) these recurrence
relations can be used (in conjunction with the tree rotations) to update the potentials in logarithmic
time.

Now that we have defined our potentials we will show how to use them to compute Λ̃(J , λ, û)
in logarithmic time. To do this we recursively define the following quantities for i ∈ {0, 1}. Let
ωi(r(D)) := 1. Given an internal vertex s ∈ D◦ we define:

ωi(▽(s)) := ωi(s) ; ω′
i(▽(s)) := Ψi(◁(s))Ψi(▷(s))

ωi(◁(s)) := Ψi(▷(s))
∑

i′∈{0,1}

ωi′(s)Ωi′,i(▽(s)) ; ωi(▷(s)) := Ψi(◁(s))
∑

i′∈{0,1}

ωi′(s)Ωi′,i(▽(s)) .

Given an internal vertex s ∈ D• define s′ := ◁(s), s′′ := ▷(s) if ◁(s) ∈ D• and s′ := ▷(s),
s′′ := ◁(s) otherwise. Then:

ωi(▽(s)) := ωi(s) ; ω′
i(▽(s)) := Ψi(s

′′)
∑

i′∈{0,1}

Ωi,i′(s
′)ω′

i′(s)

ωi(s
′) :=

∑
i′∈{0,1}

ωi′(s)Ωi′,i(s)Ψi(s
′′) ; ω′

i(s
′) := ω′

i(s)

ωi(s
′′) :=

∑
i′,i′′∈{0,1}

ωi′(s)Ωi′,i(▽(s))ω
′
i′′(s)Ωi,i′′(s

′) .

For s ∈ D◦, ω′
i(s) is not required and hence is arbitrary. We inductively compute the values

{ωi(s), ω
′
i(s) | i ∈ {0, 1}} for all s in the path from r(D) to the unique leaf ŝ ∈ D⋆ in which

µ(ŝ) = û. We then have Λ̃(J , λ, û) = ω1(ŝ).

Since this is known methodology we do not include a proof in this paper and direct the reader to [7].

E Proofs

E.1 Theorem 3.3

This theorem is proved in appendices B to D and the theorems therein.

E.2 Theorem 3.6

For all x ∈ C define γ̂(x) := γ(x, ŷ,X ).
Choose a set S ⊆ C in which for all t ∈ [T ] there exists x ∈ S with ∆(x, xt) < γ̂(x)/3c. For all
trials t let St be the set of all contexts x ∈ S in which there exists s ∈ [t] with ∆(x, xs) < γ̂(x)/3c.

Now consider a trial t ∈ [T ] \ {1} in which ŷ(xt) ̸= ŷ(xn(t)) and choose x ∈ S with ∆(x, xt) <
γ̂(x)/3c.
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Assume, for contradiction, that x ∈ St−1. Then there exists s ∈ [t− 1] with ∆(x, xs) < γ̂(x)/3c so
that by the triangle inequality we have:

∆(xt, xs) ≤ ∆(x, xs) + ∆(x, xt) < 2γ̂(x)/3c

which implies that ∆(xt, xn(t)) < 2γ̂(x)/3. By the triangle inequality we then have that:

∆(x, xn(t)) ≤ ∆(xt, xn(t)) + ∆(x, xt) < 2γ̂(x)/3 + γ̂(x)/3c ≤ 3γ̂(x)/3 = γ̂(x)

Since ∆(x, xt) < γ̂(x) we have y(x) = y(xt) and hence that y(x) ̸= y(xn(t)). But this contradicts
the fact that ∆(x, xn(t)) < γ̂(x).

We have hence shown that x /∈ St−1. Since x ∈ St we then have that |St| ≥ |St−1|. Since |S1| ≥ 1
this implies that:

Φ(y) = 1 +
∑

t∈[T ]\{1}

Jŷ(xt) ̸= ŷ(xn(t))K ≤ |ST | ≤ |S|

as required.

E.3 Theorem 3.9

Let ϵ be such that:

lim
δ→0

1

δ

∫
x∈M(ŷ,µ,2ϵ,δ)

1 ≤ 2α(ŷ, µ) ; lim
δ→0

1

δ

∫
x∈M(ŷ,µ,2ϵ,δ)

µ(x) ≤ 2α̃(ŷ, µ) (5)

Since we are only interested in the behaviour as q → ∞ assume, without loss of generality, that√
d/q < ϵ/3. Choose λ > 0 and λ′ > 0 sufficiently small for this proof to work. For all x ∈ Gdq

let H(x) be the set of points x′ ∈ [0, 1]d such that x is the nearest neighbour (or one of them
if the nearest neighbour is not unique) of x′ in Gdq . Let L be the set of all x ∈ Gdq for which
there exists x′, x′′ ∈ H(x) ∩ E(µ, ϵ) with ŷ(x′) ̸= ŷ(x′′). Note that for all x′ ∈ L we have
H(x′) ⊆M(ŷ, µ, 2ϵ,

√
d/q) so:

q√
d

∫
x∈M(ŷ,µ,2ϵ,

√
d/q)

1 ≥ q√
d

∑
x′∈L

∫
x∈H(x′)

1 =
q√
d
|L|q−d =

1

qd−1
√
d
|L|

By considering the limit of this inequality as q →∞, and noting that d is being treated as a constant,
we then have, by Equation (5), that:

|L| ∈ O(α(ŷ, µ)qd−1) (6)

Now define:

p :=
∑
x′∈L

∫
x∈H(x′)

µ(x)

SinceH(x′) ⊆M(ŷ, µ, 2ϵ,
√
d/q) for all x′ ∈ L , we have:

q√
d
p ≤ q√

d

∫
x∈M(ŷ,µ,2ϵ,

√
d/q)

µ(x)

By considering the limit of this inequality as q →∞, and noting that d is being treated as a constant,
we then have, by Equation (5), that:

p ∈ O(α̃(ŷ, µ)/q) (7)

Let D be the set of all x ∈ Gdq such that there exists x′ ∈ H(x) with µ(x) ̸= 0. Now define
ŷ′ : [0, 1]d → [K] such that for all x ∈ [0, 1]d we have:

• If x ∈ D \ L then ŷ′(x) is the unique a ∈ [K] such that there exists x′ ∈ H(x) with
µ(x′) ̸= 0 and a = ŷ(x′). Note that if there existed more than one such a then we would
have x ∈ L which is a contradiction.

• If x /∈ D \ L then ŷ′(x) = ŷ′(x̂) where x̂ is the nearest neighbour of x in D \ L
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Let A be a finite set of points in Rd such that for all x ∈ Rd with ∆(x, 0) ≤ 1 there exists x′ ∈ A
with ∆(x, x′) < λ. Define:

A′ :=
⋃

i∈[⌈log(qd)⌉]

{2ix/q |x ∈ A}

Note that:
|A′| ∈ O(ln(q)) (8)

We now show that for all x ∈ Rd with 1/q ≤ ∆(x, 0) ≤ d there exists x′′ ∈ A′ with:

∆(x, x′′) < 2∆(x, 0)λ (9)

To show this choose any such x and let i ∈ N be such that 2i−1/q ≤ ∆(x, 0) < 2i/q. By the
assumption on x we have that i ∈ [⌈log(qd)⌉]. Since ∆(xq2−i, 0) < 1 choose x′ ∈ A such that
∆(xq2−i, x′) < λ. Then we have:

∆(x, 2ix′/q) = (2i/q)∆(xq2−i, x′) < (2i/q)λ ≤ 2∆(x, 0)λ

so, since 2ix′/q ∈ A′ , we have proved that Equation (9) is true.

We now let S ′ be a finite set of points in Rd such that for all x ∈ [0, 1]d there exists some x′ ∈ S ′
with ∆(x, x′) < λ′ϵ. Now define:

S := L ∪ S ′ ∪
⋃
x∈L
{x′ + x |x′ ∈ A′}

Let X := {xt | t ∈ [T ]}. Take any x ∈ X . We now show that there exists x† ∈ S with ∆(x, x†) <
γ(x†, ŷ′,X )/3c. We have three cases:

• First consider the case that ∆(x, x′) > ϵ/3. Let x′ be the nearest neighbour of x in [0, 1]d

with ŷ′(x) ̸= ŷ′(x′). Choose x† ∈ S ′ such that ∆(x, x†) < λ′ϵ. Since ∆(x, x†) < ϵ/3 we
must have ŷ′(x†) = ŷ′(x). Let x′′ be the nearest neighbour of x† inX with ŷ′(x′′) ̸= ŷ′(x†).
Since ŷ′(x†) = ŷ′(x) we must have that ŷ′(x′′) ̸= ŷ′(x) so that ∆(x, x′′) > ϵ/3. By the
triangle inequality we then have:

ϵ/3 < ∆(x, x′′) ≤ ∆(x, x†) + ∆(x†, x′′) < λ′ϵ+∆(x†, x′′) = λ′ϵ+ γ(x†, ŷ′,X )

Hence γ(x†, ŷ′,X ) > (1/3− λ′)ϵ so that:

∆(x, x†) < λ′ϵ <
λ′

1/3− λ′
γ(x†, ŷ′,X ) < γ(x†, ŷ′,X )/3c

as required.

• Now consider the case that x ∈ L. In this case we trivially have the result with x† := x.

• Finally consider the case that x /∈ L and ∆(x, x′) ≤ ϵ/3. Let x′ be the nearest neighbour
of x in [0, 1]d with ŷ′(x) ̸= ŷ′(x′). Let x̂ and x̂′ be the nearest neighbours of x and x′ in
D \L respectively. Note that by definition of ŷ′ we have ŷ′(x̂) = ŷ′(x) and ŷ′(x̂′) = ŷ′(x′).
By definition of D we must have x ∈ D, so since x /∈ L we have x̂ = x. Noting that
∆(x′, x̂′) ≤ ∆(x′, x̂) we must then have that ∆(x′, x̂′) ≤ ∆(x′, x) which means, by the
triangle inequality, that ∆(x, x̂′) ≤ 2∆(x, x′). Since x, x̂′ ∈ D choose z ∈ H(x) and
z′ ∈ H(x̂′) such that µ(z), µ(z′) ̸= 0. Since x, x̂′ ∈ D \ L we have:

ŷ(z) = ŷ′(z) = ŷ′(x) ̸= ŷ′(x̂′) = ŷ′(z′) = ŷ(z′)

By the triangle inequality and above we have:

∆(z, z′) ≤ ∆(z, x) + ∆(x, x̂′) + ∆(x̂′, z′) ≤ 2∆(x, x′) +
√
d/q ≤ ϵ (10)

so since µ(z), µ(z′) ̸= 0 we must have that the straight line from z to z′ is entirely contained
in E(µ, ϵ/2). Since ŷ(z) ̸= ŷ(z′) we can then choose some z† in the line from z to z′

that is on the decision boundary of ŷ (i.e. any open set around z† contains some z̃ with
ŷ(z̃) ̸= ŷ(z†)). Since there exists an open set around z† that is entirely contained in E(µ, ϵ)
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we must now have, by definition of L, that there exists ẑ ∈ L such that z† ∈ H(ẑ). By the
triangle inequality and Equation (10) we have:

∆(x, ẑ) ≤ ∆(x, z) + ∆(z, z†) + ∆(z†, ẑ) ≤ ∆(z, z†) +
√
d/q ≤ ∆(z, z′) +

√
d/q

≤ 2∆(x, x′) + 2
√
d/q (11)

Since x ∈ D\Lwe have ŷ′(z̃) = ŷ′(x) for all z̃ ∈ H(x) and hence we must have x′ /∈ H(x)
so that ∆(x, x′) ≥

√
d/(2q). By Equation (11) this means that:

∆(x, x′) ≥ ∆(x, ẑ)/6 (12)

By Equation (9) choose z′′ ∈ A′ such that:

∆(x− ẑ, z′′) < 2∆(x− ẑ, 0)λ (13)

and define x† = ẑ + z′′. Since ẑ ∈ L we have x† ∈ S as required. Note that by equations
(12) and (13) we have:

∆(x, x†) = ∆(x− ẑ, z′′) < 2∆(x, ẑ)λ ≤ 12∆(x, x′)λ (14)

Since 2λ < 1/6 we now have, from equations (12) and (14), that ∆(x, x†) < ∆(x, x′) so
that ŷ′(x) = ŷ′(x†). Let x′′ be the nearest neighbour of x† in X with ŷ′(x′′) ̸= ŷ′(x†).
Since ŷ′(x†) = ŷ′(x) we must have that ŷ′(x′′) ̸= ŷ′(x) so that ∆(x, x′′) ≥ ∆(x, x′). By
the triangle inequality and Equation (14) we then have:

∆(x, x′) ≤ ∆(x, x′′) ≤ ∆(x, x†) + ∆(x†, x′′) < 12∆(x, x′)λ+∆(x†, x′′)

= 12∆(x, x′)λ+ γ(x†, ŷ′,X )

Hence γ(x†, ŷ′,X ) > (1− 12λ)∆(x, x′) so that by Equation (14) we have:

∆(x, x†) < 12∆(x, x′)λ <
12λ

1− 12λ
γ(x†, ŷ′,X ) < γ(x†, ŷ′,X )/3c

as required.

Let y′ ∈ [K]T be such that y′t := ŷ′(xt) for all t ∈ [T ]. We have shown that for all x ∈ X there
exists x† ∈ S with ∆(x, x†) < γ(x†, ŷ′,X )/3c. By equations (6) and (8) we have that:

|S| ∈ O(|L| ln(q)) ⊆ O(α(ŷ, µ)qd−1 ln(q)) ⊆ Õ(α(ŷ, µ)qd−1)

Invoking Theorem 3.6 then gives us:

Φ(y′) ∈ O(α(ŷ, µ)qd−1)

so by Theorem 3.3 we have:

E[R(y′)] ∈ Õ
((

ρ+
Φ(y′)

ρ

)√
KT

)
⊆ Õ

(
(1 + α(ŷ, µ))q

d−1
2

√
KT

)
(15)

We also have:

R(y)−R(y′) =
∑
t∈[T ]

(ℓt,yt
− ℓt,y′

t
) =

∑
t∈[T ]

(ℓt,ŷ(zt) − ℓt,ŷ′(xt)) ≤
∑
t∈[T ]

Jŷ(zt) ̸= ŷ′(xt)K

But ŷ(zt) ̸= ŷ′(xt) implies that xt /∈ D \ L so since xt ∈ D we must have xt ∈ L which happens
with probability p and hence, by Equation (7), we have:

E[R(y)−R(y′)] ≤ pT ∈ O(T α̃(ŷ, µ)/q) (16)

Combining equations (15) and (16) gives us:

E[R(y)] ∈ Õ((1 + α(ŷ, µ))q
d−1
2

√
KT + T α̃(ŷ, µ)/q)

Since q := ⌈(T/K)1/(d+1)⌉ we have now shown that:

E[R(y)] ∈ Õ
(
(1 + α(ŷ, µ) + α̃(ŷ, µ))T

d
d+1K

1
d+1

)
as required.
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E.4 Theorem B.1

For every trial t ∈ [T ] define:

∆t := −
∑
v∈B′

JQ(y, v) ̸= ∅K ln(wt(v,Q(y, v)))

Choose some arbitrary trial t ∈ [T ]. From here until we say otherwise all probabilities and expecta-
tions (i.e. whenever we use P[·] or E[·]) are implicitly conditional on the state of the algorithm at the
start of trial t. Note first that we have:

∆t −∆t+1 =
∑
v∈B′

JQ(y, v) ̸= ∅K ln
(
wt+1(v,Q(y, v))
wt(v,Q(y, v))

)
(17)

For all j ∈ [log(K)] ∪ {0} let γt,j be the ancestor (in B) of y(xt) at depth j. Note that for all
v ∈ X \ {γt,j | j ∈ [log(K)] ∪ {0}} we have y(xt) /∈ ⇓(v) so that xt /∈ Q(y, v) and hence, directly
from the CANPROP algorithm, we have wt+1(v,Q(y, v)) = wt(v,Q(y, v)). By Equation (17) and
the fact that Q(y, v) ̸= ∅ for all ancestors v of y(xt) this implies that:

∆t −∆t+1 =
∑

j∈[log(K)]

ln

(
wt+1(γt,j ,Q(y, γt,j))
wt(γt,j ,Q(y, γt,j))

)
(18)

For all j ∈ [log(K)] define:

λt,j := ln

(
wt+1(γt,j ,Q(y, γt,j))
wt(γt,j ,Q(y, γt,j))

)
and:

ϵt,j := E[ln(ψt,j) | γt,j ∈ Pt]

Now choose some arbitrary j ∈ [log(K)]. If γt,(j−1) ∈ Pt then γt,(j−1) = vt,(j−1) so ↑(γt,j) =
vt,(j−1) and hence, since xt ∈ Q(y, γt,j), we have λt,j = ln(βt(γt,j)). By definition of βt(γt,j) this
means that:

E[λt,j | γt,j ∈ Pt , γt,(j−1) ∈ Pt] = ϵt,j − E[ln(ψt,(j−1)) | γt,j ∈ Pt , γt,(j−1) ∈ Pt]

and that:

E[λt,j | γt,j /∈ Pt , γt,(j−1) ∈ Pt] = −E[ln(ψt,(j−1)) | γt,j /∈ Pt , γt,(j−1) ∈ Pt]

Multiplying these two equations by P[γt,j ∈ Pt | γt,(j−1) ∈ Pt] and P[γt,j /∈ Pt | γt,(j−1) ∈ Pt]
respectively, and summing them together, then gives us:

E[λt,j | γt,(j−1) ∈ Pt] = P[γt,j ∈ Pt | γt,(j−1) ∈ Pt]ϵt,j − E[ln(ψt,(j−1) | γt,(j−1) ∈ Pt]

Since P[γt,j ∈ Pt | γt,(j−1) ∈ Pt] = πt(γt,j) we then have:

E[λt,j | γt,(j−1) ∈ Pt] = πt(γt,j)ϵt,j − ϵt,(j−1) (19)

If, on the other hand, γt,(j−1) /∈ Pt then ↑(γt,j) /∈ Pt so λt,j = 0. This means that:

E[λt,j ] = P[γt,(j−1) ∈ Pt]E[λt,j | γt,(j−1) ∈ Pt] (20)

Since the probability that γt,(j−1) ∈ Pt is equal to
∏

j′∈[j−1] πt(γt,j′) we then have, by combining
equations (19) and (20), that:

E[λt,j ] = ϵt,j
∏

j′∈[j]

πt(γt,j′)− ϵt,(j−1)

∏
j′∈[j−1]

πt(γt,j′)

By substituting into Equation (18) (after taking expectations) we then have that:

E[∆t −∆t+1] = −ϵt,0 + ϵt,log(K)

∏
j∈[log(K)]

πt(γt,j)

= −E[ln(ψt,0)] + E[ln(ψt,log(K)) | at = γt,log(K)]
∏

j∈[log(K)]

πt(γt,j) (21)
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Note that if at = γt,log(K) then γt,j = vt,j for all j ∈ [log(K)]. By definition of ψt,log(K) and the
fact that γt,log(K) = y(xt), Equation (21) then gives us:

E[∆t −∆t+1] = −E[ln(ψt,0)]− ηℓt,y(xt) (22)

For all (v, a) ∈ B × [K] define:

pt,a(v) = P[at = a | v ∈ Pt]

noting that this is non-zero only when a ∈ ⇓(v). Suppose we have some v ∈ B \ {r(B)} and some
a ∈ ⇓(v) ∩ [K]. Then, since P[at = a | v /∈ Pt] = 0, we have:

pt,a(↑(v)) = P[at = a | ↑(v) ∈ Pt] = P[at = a | v ∈ Pt]P[v ∈ Pt | ↑(v) ∈ Pt] = πt(v)pt,a(v)

Since pt,a(v) = 0 whenever a /∈ ⇓(v), this implies that for all (v, a) ∈ B† × [K] we have:

pt,a(v) = πt(◁(v))pt,a(◁(v)) + πt(▷(v))pt,a(▷(v)) (23)

For all a ∈ [K] define:

ℓ̂t,a =
Jat = aKℓt,a
P[at = a]

We now take the inductive hypothesis that for all j ∈ [log(K)] ∪ {0} we have:

ψt,j =
∑

a∈[K]

pt,a(vt,j) exp(−ηℓ̂t,a)

and prove this via reverse induction (i.e. from j = log(K) to j = 0). Note that given a′ := at we
have P[at = a′] =

∏
j∈[log(K)] πt(vt,j) and hence:

ψt,log(K) = exp(−ηℓ̂t,at
)

so the inductive hypothesis holds for j = log(K). Now suppose that we have some j′ ∈ [log(K)] and
that the inductive hypothesis holds for j = j′. We shall now show that it holds also for j = j′−1. Let
v′ be the child of vt,(j′−1) that is not equal to vt,j′ . Note that at /∈ ⇓(v′) and hence exp(−ηℓ̂t,a) = 1
for all a ∈ ⇓(v′) (i.e. whenever pt,a(v′) ̸= 0) which implies:∑

a∈[K]

pt,a(v
′) exp(−ηℓ̂t,a) = 1 (24)

For all a ∈ [K], Equation (23) gives us:

pt,a(vt,(j′−1)) exp(−ηℓ̂t,a) = πt(v
′)pt,a(v

′) exp(−ηℓ̂t,a) + πt(vt,j′)pt,a(vt,j′) exp(−ηℓ̂t,a)
Substituting Equation (24) and the inductive hypothesis into this equation (when summed over all
a ∈ [K]) then gives us:∑

a∈[K]

pt,a(vt,(j′−1)) exp(−ηℓ̂t,a) = πt(v
′) + πt(vt,j′)ψt,j′

Since πt(v′) + πt(vt,j′) = 1 we have, direct from the algorithm, that πt(v′) + πt(vt,j′)ψt,j′ =
ψt,(j′−1) so the inductive hypothesis holds for j = j′ − 1. We have hence shown that the inductive
hypothesis holds for all j ∈ [log(K)]∪ {0} and in particular for j = 0. Since pt,a(vt,0) = P[at = a]
we then have:

ψt,0 =
∑

a∈[K]

P[at = a] exp(−ηℓ̂t,a) (25)

Since exp(−z) ≤ 1− z + z2/2 for all z ∈ R+ we have, from Equation (25), that:

ψt,0 ≤
∑

a∈[K]

P[at = a]

(
1− ηℓ̂t,a +

η2ℓ̂t,a
2

)
= 1−η

∑
a∈[K]

P[at = a]ℓ̂t,a+
η2

2

∑
a∈[K]

P[at = a]ℓ̂2t,a

so since ln(1 + z) ≤ z for all z ∈ R we have:

ln(ψt,0) ≤ −η
∑

a∈[K]

P[at = a]ℓ̂t,a +
η2

2

∑
a∈[K]

P[at = a]ℓ̂2t,a (26)
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Noting that P[at = a]ℓ̂t,a = Jat = aKℓt,a for all a ∈ [K], we have:

E

 ∑
a∈[K]

P[at = a]ℓ̂t,a

 = E[ℓt,at
]

and:

E

 ∑
a∈[K]

P[at = a]ℓ̂2t,a

 = E

 ∑
a∈[K]

Jat = aKℓ2t,a
P[at = a]

 =
∑

a∈[K]

ℓ2t,a ≤ K

Substituting these equations into Equation (26) (after taking expectations) gives us:

E[ln(ψt,0)] ≤ −ηE[ℓt,at
] + η2K/2

which, upon substitution into Equation (22) gives us:

E[∆t −∆t+1] ≥ η(E[ℓt,at
]− ℓt,y(xt))− η

2K/2 (27)

Note that this equation implies that the same equation also holds when the expectation is not implicitly
conditional on the state of the algorithm at the start of trial t. Hence, we now drop the assumption that
the expectation is conditional on the state of the algorithm at the start of trial t. Summing Equation
(27) over all trials t ∈ [T ] and then rearranging gives us:

E[R(y)] ≤ 1

η
(E[∆1]− E[∆T+1]) +

ηKT

2
(28)

Now consider a trial t. For all v ∈ B† let:

Vt(v) :=
∑
S∈2X

Jxt ∈ SKwt+1(◁(v),S) +
∑
S∈2X

Jxt ∈ SKwt+1(▷(v),S)

Now take any j ∈ [log(K)− 1] ∪ {0} and let v := vt,j . Note that:

Vt(v) = βt(◁(v))θt(◁(v)) + βt(▷(v))θt(▷(v))

so that by definition of πt(◁(v)) and πt(▷(v)) we have:

Vt(v) = (θt(◁(v)) + θt(▷(v)))(πt(◁(v))βt(◁(v)) + πt(▷(v))βt(▷(v)))

Without loss of generality assume that ◁(v) ∈ Pt. Then the above equation implies that:

Vt(v) = (θt(◁(v)) + θt(▷(v)))
πt(◁(v))ψt,j+1 + πt(▷(v))

ψt,j

so by definition of ψt,j we have:

Vt(v) = (θt(◁(v)) + θt(▷(v))) =
∑
S∈2X

Jxt ∈ SKwt(◁(v),S) +
∑
S∈2X

Jxt ∈ SKwt(▷(v),S)

Note that this equation trivially holds for all v ∈ B† \ Pt and hence holds for all v ∈ B†. Since
for all such v and all S with xt /∈ S we have wt+1(◁(v),S) = wt(◁(v),S) and wt+1(▷(v),S) =
wt(▷(v),S) we then have:∑

S∈2X

wt+1(◁(v),S) +
∑
S∈2X

wt+1(▷(v),S) =
∑
S∈2X

wt(◁(v),S) +
∑
S∈2X

wt(▷(v),S)

so, by induction on t we have, for all t ∈ [T + 1], that:∑
S∈2X

wt(◁(v),S) +
∑
S∈2X

wt(▷(v),S) = 1

Hence, for all v ∈ B \ r(B) and S ∈ 2X , we have wt(v,S) ∈ [0, 1]. We have now shown that
∆T+1 ≥ 0 so that Equation 28 gives us:

E[R(y)] ≤ 1

η
E[∆1] +

ηKT

2

which, by definition of ∆1, gives us the desired result.
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E.5 Theorem B.2

The fact that the weighting w1 is valid is given by the following lemma:

Lemma E.1. For all v ∈ B† we have:∑
S∈2X

(w1(◁(v),S) + wt(▷(v),S)) = 1

Proof. We will show that for all v ∈ B′ we have:∑
S∈2X

w1(v,S) =
1

2

which directly implies the result. So take some arbitrary v ∈ B′. Define, for all t ∈ [T ], the sets:

X ′
t := {xs | s ∈ [t]} \ {x1} and Ft := {0, 1}X

′
t∪{x1}

and for all x ∈ X ′
t and f ∈ Ft define the quantity:

β(x, f) := Jf(x) ̸= f(n(x))K1/T + Jf(x) = f(n(x))K(1− 1/T )

which is defined since n(x) ∈ X ′
t ∪ {x1}. For all t ∈ [T − 1] we have:

∑
f∈Ft+1

∏
x∈X ′

t+1

β(x, f) =
∑
f∈Ft

 ∏
x∈X ′

t

β(x, f)

 ∑
f(xt+1)∈{0,1}

β(xt+1, f) (29)

Given any f ∈ Ft we have: ∑
f(xt+1)∈{0,1}

β(xt+1, f) = (1− 1/T ) + 1/T = 1

and hence by Equation (29) we have:∑
f∈Ft+1

∏
x∈X ′

t+1

β(x, f) =
∑
f∈Ft

∏
x∈X ′

t

β(x, f)

Since X ′
T = X ′ this implies, by induction, that:∑
f∈FT

∏
x∈X ′

β(x, f) =
∑
f∈F1

∏
x∈X ′

1

β(x, f) =
∑
f∈F1

∏
x∈∅

β(x, f) =
∑
f∈F1

1 = |F1| = 2 (30)

Note that we have a bijection G : FT → 2X defined by:

G(f) := {x ∈ X | f(x) = 1} ∀f ∈ FT

and that for all (f, x) ∈ FT ×X ′ we have:

β(x, f) = σ(x,G(f))/T + (1− σ(x,G(f)))(1− 1/T )

Hence, Equation (30) shows us that:∑
S∈2X

∏
x∈X ′

(
σ(x,S) 1

T
+ (1− σ(x,S))

(
1− 1

T

))
= 2

This implies that: ∑
S∈2X

w1(v,S) =
1

2

which implies the result.
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Now that we have shown that the weighting w1 is valid we can utilise Theorem B.1 to prove our
regret bound. For any set S ∈ 2X define:

ϕ(S) :=
∑
x∈X ′

σ(x,S)

Note that for all v ∈ B† and S ∈ 2X we have:

w1(v,S) =
1

4

(
1

T

)ϕ(S)(
1− 1

T

)T−1−ϕ(S)

≥ 1

4

(
1

T

)ϕ(S)(
1− 1

T

)T

so since T ln(1− 1/T ) ∈ O(1) we have:

− ln(w1(v,S)) ≤ ln(4) + ϕ(S) ln(T )− T ln(1− 1/T ) ∈ O(ϕ(S) ln(T ) + 1) (31)

As in the statement of Theorem B.1 define, for all v ∈ B, the set:

Q(y, v) := {x ∈ X | y(x) ∈ ⇓(v)}

First note that the graph (with vertex set X ) formed by linking x to n(x) for every x ∈ X ′ is a tree so
that Φ(y) ≥ |{y(x) | x ∈ X}| − 1. So since for all v ∈ B′ we have Q(y, v) ̸= ∅ if and only if v has
a descendent in {y(x) | x ∈ X} and each element of {y(x) | x ∈ X} has log(K) ancestors in B′ we
have: ∑

v∈B′

JQ(y, v) ̸= ∅K ≤ log(K)|{y(x) | x ∈ X}| ≤ log(K)(Φ(y) + 1) (32)

Now suppose we have some x ∈ X ′. If y(x) = y(n(x)) then for all v ∈ B′ we have x, n(x) ∈
Q(y, v) or x, n(x) /∈ Q(y, v) and hence σ(x,Q(y, v)) = 0. On the other hand, if y(x) ̸= y(n(x))
then for any v ∈ B′ with σ(x,Q(y, v)) = 1 we must have that either x ∈ Q(y, v) or n(x) ∈ Q(y, v)
so v is an ancestor of either x or n(x) and hence there can be at most 2 log(K) such v. So in any
case we have: ∑

v∈B′

σ(x,Q(y, v)) ≤ Jy(x) ̸= y(n(x))K2 log(K)

Hence we have: ∑
v∈B′

ϕ(Q(y, v)) =
∑
x∈X ′

∑
v∈B′

σ(x,Q(y, v)) ≤ 2 log(K)Φ(y) (33)

Equation (31) gives us:

−
∑
v∈B′

JQ(y, v) ̸= ∅K ln(w1(v,Q(y, v))) ∈ O

(
ln(T )

∑
v∈B′

ϕ(Q(y, v)) +
∑
v∈B′

JQ(y, v) ̸= ∅K

)
Substituting in equations (32) and (33) then gives us:

−
∑
v∈B′

JQ(y, v) ̸= ∅K ln(w1(v,Q(y, v))) ∈ O(ln(K) ln(T )Φ(y))

so by Theorem B.1 we have:

E[R(y)] ∈ O
(
ηKT

2
+

ln(K) ln(T )Φ(y)

η

)
Since η = ρ

√
ln(K) ln(T )/KT we obtain the result.

E.6 Theorem C.1

Recall our sequence of trees ⟨Zt | t ∈ [T ] \ {1}⟩ noting that each of these trees is a contraction so
that τi,i′(Zt, ·) is defined for all i, i′ ∈ {0, 1}. Let ϵ := 1/T . Define λ′ : X → R+ as follows. Given
x ∈ X , if there exists a leaf u ∈ J ⋆ with γ(u) = x then λ′(x) = λ(u). Otherwise λ′(x) = 1. Given
t ∈ [T ] define λ̂t : Zt → R+ such that for all u ∈ Zt we have that λ̂t(u) := λ′(γ(u)) if u is a leaf
of Zt and λ̂t(u) := 1 otherwise. For all t ∈ [T ] and f : {xt′ | t′ ∈ [t]} → {0, 1} define:

N (f) := {f ′ ∈ {0, 1}Zt | ∀u ∈ Z⋆
t , f

′(u) = f(γ(u))}
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and:

ŵ(f) :=

 ∏
t′∈[t]:f(xt′ )=1

λ′(xt)

 ∏
t′∈[t]\{1}

(Jf(xt) ̸= f(n(xt))Kϵ+ Jf(xt) = f(n(xt))K(1− ϵ))

and:
ν̂(f) :=

∑
f ′∈N (f)

∏
u∈Zt\{r(Zt)}

τf ′(↑Zt
(u)),f ′(u)(Zt, u)κ̃f ′(u)(Zt, λ̂t, u)

We now have the following lemma:
Lemma E.2. For all t ∈ [T ] and f : {xt′ | t′ ∈ [t]} → {0, 1} we have:

ŵ(f) = ν̂(f)

Proof. We prove by induction on t. Suppose the result holds for t = s (for some s ≥ 2). We now
show that it holds for t = s + 1 as well. Let f∗ be the restriction of f onto the set {xt′ | t′ ∈ [s]}.
Let u∗ and u′ be the unique leaves in Z⋆

s+1 of which γ(u′) = n(xs+1) and γ(u∗) = xs+1. By the
construction of Zs+1 these vertices are siblings. Let u′′ be the parent (in Zs+1) of both u∗ and u′.
First note that:

Jf(xs+1) = 0K + Jf(xs+1) = 1Kλ′(xs+1) = κ̃f(xs+1)(Zs+1, λ̂s+1, u
∗) (34)

Since, by the construction of Zs+1, we have γ(↑Zs+1
(u∗)) = γ(u′′) = n(xs+1) we also have that

d(↑Zs+1
(u∗)) = d(u∗)− 1 so that, since ϕ1 = ϵ, we have:

Jf(xs+1) ̸= f(n(xs+1))Kϵ+ Jf(xs+1) = f(n(xs+1))K(1− ϵ) = τf(n(xs+1)),f(xs+1)(Zs+1, u
∗)
(35)

Equations (34) and (35) give us:

ŵ(f) = ŵ(f∗)τf(n(xs+1)),f(xs+1)(Zs+1, u
∗)κ̃f(xs+1)(J , λ̂s+1, u

∗) (36)

Now suppose we have some f ′ ∈ N (f). We have γ(u′′) = γ(u′) and hence d(↑Zs+1
(u′)) =

d(u′′) = d(u′) so since f ′(u′) = f(n(xs+1)) and ϕ0 = 0 we have:

τf ′(↑Zs+1
(u′)),f ′(u′)(Zs+1, u

′) = τf ′(u′′),f ′(u′)(Zs+1, u
′) = Jf ′(u′′) = f(n(xs+1))K (37)

Since, by the construction of Zs+1, we have ↑Zs+1
(u′′) = ↑Zs

(u′) and (as above) we have d(u′′) =
d(u′), we also have:

τf ′(↑Zs+1
(u′′)),f ′(u′′)(Zs+1, u

′′) = τf ′(↑Zs
(u′)),f ′(u′′)(Zs, u

′) (38)

Since f ′(u∗) = f(xs+1) and ↑Zs+1
(u∗) = u′′ we have:

τf ′(↑Zs+1
(u∗)),f ′(u∗)(Zs+1, u

∗) = τf ′(u′′),f(xs+1)(Zs+1, u
∗) (39)

Now let:

ζ∗ := τf(n(xs+1)),f(xs+1)(Zs+1, u
∗) ; ζ ′ := τf ′(↑Zs

(u′)),f(n(xs+1))(Zs, u
′)

Define:
g(f ′) :=

∏
u∈Zs\{r(Zs)}

τf ′(↑Zs
(u)),f ′(u)(Zs, u)

and:
g′(f ′) :=

∏
u∈Zs+1\{r(Zs+1)}

τf ′(↑Zs+1
(u)),f ′(u)(Zs+1, u)

Combining equations (37), (38) and (39) gives us:∏
u∈{u∗,u′,u′′}

τf ′(↑Zs+1
(u)),f ′(u)(Zs+1, u) = Jf ′(u′′) = f(n(xs+1))Kζ∗ζ ′ (40)

For all u ∈ Zs+1 \ {u∗, u′, u′′} we have ↑Zs+1
(u) = ↑Zs

(u) so that:

τf ′(↑Zs+1
(u)),f ′(u)(Zs+1, u) = τf ′(↑Zs

(u)),f ′(u)(Zs, u)
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and hence, since f(n(xs+1)) = f ′(u′), we have:

g′(f ′) =
g(f ′)

ζ ′

∏
u∈{u∗,u′,u′′}

τf ′(↑Zs+1
(u)),f ′(u)(Zs+1, u)

Substituting in Equation (40) gives us:

g′(f ′) = g(f ′)Jf ′(u′′) = f(n(xs+1))Kζ∗ (41)

We have κ̃f ′(u′′)(Zs+1, λ̂s+1, u
′′) = 1 and for all u ∈ Zs we have κ̃f ′(u)(Zs+1, λ̂s+1, u) =

κ̃f ′(u)(Zs, λ̂s, u). Substituting into Equation (41) gives us:

g′(f ′)
∏

u∈Zs+1

κ̃f ′(u)(Zs+1, λ̂s+1, u)

= Jf ′(u′′) = f(n(xs+1))Kκ̃f ′(u∗)(Zs+1, λ̂s+1, u
∗)ζ∗g(f ′)

∏
u∈Zs

κ̃f ′(u)(Zs, λ̂s, u)

Summing over all f ′ ∈ N (f) and noting that f ′(u∗) = f(xs+1) and that:

κ̃f ′(r(Zs+1))(Zs+1, λ̂s+1, r(Zs+1)) = 1 = κ̃f ′(r(Zs))(Zs, λ̂s, r(Zs))

gives us:
ν̂(f) = κ̃f(xs+1)(Zs+1, λ̂s+1, u

∗)ζ∗ν̂(f∗)

By the inductive hypothesis we then have:

ν̂(f) = κ̃f(xs+1)(Zs+1, λ̂s+1, u
∗)ζ∗ŵ(f∗)

which, by Equation (36), is equal to ŵ(f). We have hence shown that if the inductive hypothesis holds
for t = s then it holds for t = s+ 1 also. An identical argument shows that the inductive hypothesis
holds for t = 2. We have hence shown that the inductive hypothesis holds for all t ∈ [T ] \ {1}.

We now define a bijection G : {0, 1}X → 2X by:

G(f) := {x ∈ X | f(x) = 1} ∀f ∈ {0, 1}X

Note that for all f : X → {0, 1} and all x ∈ X \ {x1} we have:

σ(x,G(f))ϵ+ (1− σ(x,G(f)))(1− ϵ) = Jf(x) ̸= f(n(x))Kϵ+ Jf(x) = f(n(x))K(1− ϵ)
and: ∏

x∈G(f)

λ′(x) =
∏

t′∈[T ]:f(xt′ )=1

λ′(xt)

so that:
w̃(J , λ,G(f)) = ŵ(f)

and hence, by Lemma E.2, we have:

w̃(J , λ,G(f)) = ν̂(f)

so that: ∑
S∈2X

Jγ(û) ∈ SKw̃(λ, ϵ,S) =
∑

f∈{0,1}X

Jf(γ(û)) = 1Kν̂(f) (42)

Since: ⋃
{N (f) | f ∈ {0, 1}X , f(γ(û)) = 1} = {f ′ ∈ {0, 1}ZT | f ′(û) = 1}

and all sets in this union are disjoint, the right hand side of Equation (42) is equal to:∑
f ′∈{0,1}ZT

Jf ′(û) = 1K
∏

u∈ZT \{r(ZT )}

τf ′(↑ZT
(u)),f ′(u)(ZT , u)κ̃f ′(u)(ZT , λ̂T , u) (43)

Given a vertex u ∈ ZT \ {r(ZT )} define:

H(u) := ⇓ZT
(u) ∪ {↑ZT

(u)}
and for all f : H(u)→ {0, 1} define:

ζ̂(u, f) :=
∏

u′∈⇓ZT
(u)

τf(↑ZT
(u′)),f(u′)(ZT , u

′)
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Lemma E.3. Given a vertex u′ ∈ ZT \ {r(ZT )} and an index i ∈ {0, 1} we have:∑
f∈{0,1}H(u′)

Jf(↑ZT
(u′)) = iKζ̂(u′, f) = 1

Proof. We prove by induction on the height of ⇓ZT
(u′). If this height is equal to zero thenH(u′) =

{u′, ↑ZT
(u′)} and for all f : H(u)→ {0, 1} we have:

ζ̂(u′, f) = τf(↑ZT
(u′)),f(u′)(ZT , u

′)

Since:
τi,0(ZT , u

′) + τi,1(ZT , u
′) = 1 (44)

we immediately have the result for the case that the height of ⇓ZT
(u′) is zero. Now suppose that the

result holds whenever the height of ⇓ZT
(u′) is equal to j (for some j ∈ N). We will now show that it

holds whenever the height of ⇓ZT
(u′) is equal to j + 1 which will prove that the result holds always.

By the inductive hypothesis we have, for all i′ ∈ {0, 1} , that:∑
f∈{0,1}H(◁(u′))

Jf(u′) = i′Kζ̂(◁(u′), f) = 1

and ∑
f∈{0,1}H(▷(u′))

Jf(u′) = i′Kζ̂(▷(u′), f) = 1

so: ∑
f∈{0,1}H(u′)

Jf(↑ZT
(u′)) = iKJf(u′) = i′Kζ̂(◁(u′), f)ζ̂(▷(u′), f) = 1

and hence: ∑
f∈{0,1}H(u′)

Jf(↑ZT
(u′)) = iKJf(u′) = i′Kζ̂(u′, f) = τi,i′(ZT , u)

Summing over i′ ∈ {0, 1} and noting Equation (44) then shows us the result holds for this case and
hence, by induction, holds always.

Given u′, u′′ ∈ ZT with u′′ ∈ ⇓ZT
(u′) we define Ĥ(u′, u′′) to be the maximal subtree of ZT which

has u′ and u′′ as leaves. Given, in addition, f : Ĥ(u′, u′′)→ {0, 1} we define:

ζ̃(u′, u′′, f) :=
∏

u∈Ĥ(u′,u′′)\{u′}

τf(↑ZT
(u)),f(u)(ZT , u)

and:
δ(u′, u′′) := d(u′′)− d(u′)

We now have the following lemma.
Lemma E.4. Given u′, u′′ ∈ ZT with u′′ ∈ ⇓Zt

(u′) \ {u′} and indices i′, i′′ ∈ {0, 1} we have that:∑
f∈{0,1}Ĥ(u′,u′′)

Jf(u′) = i′KJf(u′′) = i′′Kζ̃(u′, u′′, f)

is equal to
Ji′ ̸= i′′Kϕδ(u′,u′′) + Ji′ = i′′K(1− ϕδ(u′,u′′))

Proof. We prove by induction on the distance from u′ to u′′ in ZT . If this distance is one then we
have u′ = ↑ZT

(u′′) and Ĥ(u′, u′′) = {u′, u′′} so we have:∑
f∈{0,1}Ĥ(u′,u′′)

Jf(u′) = i′KJf(u′′) = i′′Kζ̃(u′, u′′, f) = τi′,i′′(ZT , u
′′)

which immediately implies that the inductive hypothesis holds in this case. Now suppose that the
inductive hypothesis holds whenever the distance from u′ to u′′ is j. We now consider the case
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that the distance from u′ to u′′ is j + 1. Let u∗ be the child of u′ that lies in Ĥ(u′, u′′). Without
loss of generality assume that u′′ is a descendant of ◁(u∗). Now choose any i∗ ∈ {0, 1}. Given
f : Ĥ(u′, u′′)→ {0, 1} let:

h(i∗, f) = Jf(u′) = i′KJf(u′′) = i′′KJf(u∗) = i∗K

and let f ′ and f ′′ be the restriction of f onto the sets Ĥ(u∗, u′′) andH(▷(u∗)) respectively. Note that

ζ̃(u′, u′′, f) = τf(u′),f(u∗)(ZT , u
∗)ζ̃(u∗, u′′, f ′)ζ̂(▷(u∗), f ′′)

By Lemma E.3 and the inductive hypothesis we then have that the quantity:∑
f∈{0,1}Ĥ(u′,u′′)

h(i∗, f)ζ̃(u′, u′′, f)

is equal to the quantity:

τi′,i∗(ZT , u
∗)(Ji∗ ̸= i′′Kϕδ(u∗,u′′) + Ji∗ = i′′K(1− ϕδ(u∗,u′′)))

Summing over i∗ ∈ {0, 1} gives us the result. We have hence proved the result in general.

Suppose we have some f : J → {0, 1}. Let:

F̂(f) := {f ′ ∈ {0, 1}ZT | ∀u ∈ J , f ′(u) = f(u)}

Given u ∈ J we have that:

Jf(↑J (u)) ̸= f(u)Kϕδ(↑J (u),u) + Jf(↑J (u)) = f(u)K(1− ϕδ(↑J (u),u))

is equal to τf(↑J (u)),f(u)(J , u) and hence Lemma E.4 implies that:∑
f ′∈Ĥ(↑J (u),u)

Jf ′(↑J (u)) = f(↑J (u))KJf ′(u) = f(u)Kζ̃(↑J (u), u, f ′) = τf(↑J (u)),f(u)(J , u)

so since, by the definition of a contraction, the edge sets of the subtrees in {Ĥ(↑J (u), u) | u ∈
J \ {r(J )}} partition the edge set of ZT we have, by definition of ζ̃, that:∑

f ′∈F̂(f)

∏
u∈ZT \{r(ZT )}

τf ′(↑ZT
(u)),f ′(u)(ZT , u) =

∏
u∈J\{r(J )}

τf(↑J (u)),f(u)(J , u)

Since for all f ′ ∈ F̂(f) and for all u ∈ ZT \ J we have κ̃f ′(u)(ZT , λ̂T , u) = 1 we have now shown
that the quantity: ∑

f ′∈F̂(f)

∏
u∈ZT \{r(ZT )}

τf ′(↑ZT
(u)),f ′(u)(ZT , u)κ̃f ′(u)(ZT , λ̂T , u)

is equal to the quantity: ∏
u∈J\{r(J )}

τf(↑J (u)),f(u)(J , u)κ̃f(u)(ZT , λ̂T , u)

Summing over all f ∈ F(J , û) and noting Equations (42) and (43) gives us the result.

E.7 Theorem D.1

Lemma E.5. Given u, u′ ∈ Zt the algorithm for computing ν(u, u′) is correct.

Proof. If u = u′ then the proof is trivial. Otherwise we consider the following cases:

• Consider first the case that ŝ ̸= ▽(s∗). Without loss of generality assume ŝ = ◁(s∗). Then
we have u ∈ ⇓(◁(ξ(s∗))) and since ŝ′ ̸= ◁(s∗) we have u′ /∈ ⇓(◁(ξ(s∗))). Hence u′ /∈ ⇓(u)
so ν(u, u′) = ▲ as required.
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• If u = ξ(s∗) then ŝ = ▽(s∗) so either ŝ′ = ◁(s∗) or ŝ′ = ▷(s∗). In the former case we have
u′ ∈ ⇓(◁(ξ(s∗))) = ⇓(◁(u)) so that ν(u, u′) =◀ and similarly in the later case we have
ν(u, u′) =▶ as required.

• If ŝ = ▽(s∗) and u ̸= ξ(s∗) then we invoke the process. Consider the vertex s at any stage
in the process. By induction we have that if s ∈ E• then u′ ∈ ⇓(µ′(s)). This is because
if s ∈ E• then µ′(s) is an ancestor of µ′(↑E(s)). This further implies that when s ̸= ŝ we
have u′ ∈ ⇓(µ′(↑E(s))). Now suppose that s ∈ E◦ and without loss of generality assume
s = ◁(↑E(s)). Then u ∈ ⇓(◁(ξ(↑E(s)))) and µ′(↑E(s)) ∈ ⇓(▷(ξ(↑E(s)))) so that, since
u′ ∈ ⇓(µ′(↑E(s))), we have u′ /∈ ⇓(u) and hence ν(u, u′) = ▲ as required. Suppose now
that s ∈ E• and that u = ξ(s). If ◁(s) ∈ E• then we have µ′(s) ∈ ⇓(◁(ξ(s))) = ⇓(◁(u))
so that, by above, u′ ∈ ⇓(◁(u)) and hence ν(u, u′) =◀ as required. Similarly, if ▷(s) ∈ E•
then ν(u, u′) =▶ as required. This completes the proof.

Lemma E.6. The algorithm correctly finds û.

Proof. By induction on the depth of s we have, for all vertices s in the constructed path, that:

• If s ∈ D◦ then ut lies in the maximal subtree of Zt containing µ(s) and having ↑J (µ(s))
as a leaf .

• If s ∈ D• then ut lies in the maximal subtree of Zt with ↑J (µ(s)) and µ′(s) as leaves.

Let s′ be the unique leaf of D that is on the constructed path. If s′ ∈ D◦ then µ(s′) is a leaf of J
and hence also a leaf of Zt. So by above we have that ut lies in the maximal subtree of Zt with
↑J (µ(s′)) and µ(s′) as leaves. If, on the other hand, s′ ∈ D• then since s′ is a leaf of D we have
that µ(s′) = µ′(s′) and hence, by above, we have that ut lies in the maximal subtree of Zt with
↑J (µ(s′)) and µ(s′) as leaves. In either case we have û = µ(s′) as required.

Lemma E.7. The algorithm correctly finds u∗.

Proof. By induction on the depth of s we have, for all vertices s in the constructed path, that:

• If s ∈ E◦ then ΓZt
(ut, û) lies in ⇓Zt

(µ(s)).

• If s ∈ E• then ΓZt
(ut, û) lies in the maximal subtree of Zt with µ(s) and µ′(s) as leaves.

Let s′ be the unique leaf of E that is on the constructed path. If s′ ∈ E◦ then µ(s′) is a leaf of Zt and
hence, by above, ΓZt(ut, û) = µ(s′) as required. If s ∈ E• then µ(s) = µ′(s) and hence, by above,
ΓZt(ut, û) = µ(s′) as required.
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