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Abstract

Image-based virtual try-on tasks remain challenging, primarily due to inherent
complexities associated with non-rigid garment deformation modeling and strong
feature entanglement of clothing within human body. Recent groundbreaking for-
mulations, such as in-painting, cycle consistency, and knowledge distillation, have
facilitated self-supervised generation of try-on images. However, these paradigms
necessitate the disentanglement of garment features within human body features
through auxiliary tasks, such as leveraging ’teacher knowledge’ and dual gener-
ators. The potential presence of irresponsible prior knowledge in the auxiliary
task can serve as a significant bottleneck for the main generator (e.g., ’student
model’) in the downstream task. Moreover, existing garment deformation methods
lack the ability to perceive the correlation between the garment and the human
body in the real world, leading to unrealistic alignment effects. To tackle these
limitations, we present a new parser-free virtual try-on network based on unified
self-cycle consistency (USC-PFN), which enables robust translation between differ-
ent garments using just a single generator, faithfully replicating non-rigid geometric
deformation of garments in real-life scenarios. Specifically, we first propose a
self-cycle consistency architecture with a circular mode. It utilizes real unpaired
garment-person images exclusively as input for training, effectively eliminating
the impact of irresponsible prior knowledge at the model input end. Additionally,
we formulate a Markov Random Field to simulate a more natural and realistic
garment deformation. Furthermore, USC-PFN can leverage a general generator for
self-supervised cycle training. Experiments demonstrate that our method achieves
state-of-the-art performance on a popular virtual try-on benchmark.

1 Introduction

To provide consumers with an online try-on experience similar to physical stores, researchers have
focused on image-based virtual try-on (VTON), allowing individuals to virtually try on garments
available in online shops. The mainstream image-based approach of VTON involves the replacement
of a person’s clothing area with an in-shop garment image. However, all current datasets are paired,
meaning one person corresponds to only one piece of clothing they are wearing. To capture underlying
correlations between unpaired images from random combinations in the dataset, three architectures
have been used: in-painting methods [8, 3, 9, 10, 4, 11–14], knowledge distillation methods [11, 6, 7],
and cycle consistency methods[15, 2] (see Figure 1).
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Figure 1: Comparison of virtual try-on pipelines. "+R" denotes that additional person representation
(e.g. semantic map) may be required. (a) cycle consistency approaches [1, 2] require two generators
to implement bidirectional translation between various garment styles. (b) in-painting approaches
[3–5] are implemented by reproducing the masked person’s garment. (c) knowledge distillation
approaches [6, 7] use pre-trained "teacher knowledge" to optimize student model. (d) USC-PFN
utilizes self-cycle consistency without the need for additional person representation, enabling a single
generator to perform bidirectional translation between various garment styles.

The in-painting-based method, inspired by [16], addresses variations in garment styles by masking the
upper body of the person image and training the model to learn the reproduction of masked regions.
This paradigm uses a person representation (e.g., semantic map) as input to provide masked body
information; however, slight errors in the person representation can result in occluded and unrealistic
outcomes. Moreover, this paradigm faces challenges when dealing with cases where the same person
tries on different garments due to their reliance on one-to-one paired garment-person images during
training (see Figure 2). Therefore, the knowledge distillation-based structure [11] is proposed, which
pretrains an in-painting-based teacher model to provide prior try-on result images for training the
student model. This paradigm introduced a new pipeline that enables self-supervised training using
only unpaired images as input. However, the potential presence of irresponsible teacher knowledge
can still reproduce some issues of in-painting methods. Additionally, a method is proposed in [1, 2]
that employs two CNNs to achieve the cycle training. In this approach, the output of CNN1 as
input is fed to CNN2 and then minimizes the difference between the output of CNN2 and the input
of CNN1 to achieve cycle consistency. However, the complex dual structure poses challenges in
network convergence, and reliance on person representation throughout the entire network hinders
the generation of high-quality virtual try-on results.

In this task, Thin Plate Splines (TPS) [17, 18, 8, 3, 10, 4, 11, 2, 12] is commonly used to deform
garments. However, TPS focuses only on pixel transformations around the control point, often
causing excessive distortion. Another non-rigid deformation technique, called Appearance Flow
(AF) [19, 9, 6, 7, 14], predicts a pixel-level displacement field of garments for pixel-by-pixel
transformations. However, it lacks spatial prior knowledge, resulting in an inaccurate perception
of the spatial relationship between the garment and the human body. Recently, the Moving Least
Squares (MLS) [20, 13] has shown promise in handling deformation for simple poses. However,
there are difficulties in handling complex poses. These issues can lead to misalignment, hindering
accurate simulation of the natural non-rigid deformation that occurs during the interaction between
the garment and the body (see Figure 2).

Therefore, we propose a virtual parser-free try-on network based on self-cycle consistency to address
the aforementioned limitations. First, we explore the relationship between garments and the human
body. We use an auxiliary network to disentangle irrelevant features such as texture, color, and shape
in the latent feature space of the human body. This approach preserves valuable features like depth
and lighting while removing entanglements with unrelated features. Consequently, the network can
authentically simulate the interaction between different garments and the human body in real-life
scenarios, without being affected by the garment it wears. Furthermore, it has been confirmed that
the person representation appearing at the input end of the network has potential negative impacts on
performance [11, 6, 7]. Moreover, we argue that there is no inherent translation between multiple
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domains in virtual try-on tasks. Therefore, we introduce a shared-weight circular architecture where
the parser is shifted from the input end to the output end, specifically for loss computation. This
approach allows us to bypass the parser during the inference stage. The main contributions of our
paper can be summarized as follows:

• We propose USC-PFN, a novel parser-free virtual try-on network that generates highly realistic
try-on results using only unpaired data as input and a single CNN as the generator, offering a new
perspective for the virtual try-on task.

• We first leverage the Markov Random Field to estimate a deformation field to establish precise dense
pixel-level correspondences between the in-shop garment and the person. This is a new approach
to address the misalignment caused by a lack of spatial perception, and simulate the non-rigid
deformation and interaction of the garment in real-life scenarios.

• We propose a concise and effective self-cycle consistency paradigm for the parser-free virtual try-on
task, and extensive experiments on the popular benchmark show that our framework outperforms
state-of-the-art methods both qualitatively and quantitatively.

2 Related Work
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Figure 2: Comparisons of virtual try-on (DCTON
[2], PF-AFN [6], FS-VTON [7], RT-VTON [13],
and ours) and different deformation methods (TPS,
AF, MLS, and our proposed MRF).

Parser-Free Virtual Try-On The formula-
tions mentioned earlier (see Figure 1) can be
subdivided based on whether the parser is used
in image-to-image translation [21, 16]. It has
been demonstrated that the parser can improve
try-on results but may introduce unreliable se-
mantic errors [11, 6, 7]. Initially, [8, 3] used
pose heatmap and body mask as person repre-
sentation to provide body’s geometry informa-
tion. Later, [10] introduced a parser to estimate
an "after-try-on" semantic map instead of the
above person representation. To avoid unreli-
able semantic information, [11, 6, 7] trained a
"student model" without the parser using pre-
trained teacher knowledge. However, the poten-
tial presence of irresponsible teacher knowledge
can still affect the "student model," making it
challenging to train robust architectures without
the parser in the input end. To address this challenge, we present a parser-free pipeline called
self-cycle consistency. Our goal aims to achieve high-quality virtual try-on results using a general
network, minimum input, and simple but efficient architecture.

Non-rigid Deformation In virtual try-on tasks, common non-rigid image deformation methods
include Thin Plate Spline (TPS) [17, 18], Moving Least Squares (MLS) [20], and Appearance Flow
(AF) [19]. As shown in Figure 2, TPS is the most widely used due to its ability to provide high-quality
deformation while preserving the garment’s image structure [8, 3, 10, 4, 11, 2, 12]. However, TPS is
limited by its local mode, which only significantly affects pixels near control points. MLS is another
method introduced recently, but it is not suitable for large-scale deformation [13]. AF is the most
flexible method, deforming the garment by estimating pixel displacement vectors between the source
and target shapes [9, 6, 7, 14]. However, none of these methods can fully mimic the natural interaction
between the garment and the human body due to a lack of spatial perception. Our proposed method,
which is based on Markov Random Field system with unpaired images as input, can obtain realistic
spatial deformation.

Self-Cycle Consistency CycleGAN [1] utilized a self-supervised learning framework for cyclically
learning the translation between unpaired images from different domains. [2] extended this with
a deconstruction method for different garment styles to address the failure of cycle consistency in
virtual try-on tasks. However, the complex dual-model structure and reliance on the parser hinder
the generation of realistic results. To break through these limitations, following StarGAN [22], we
propose a single-model self-cyclic learning translation paradigm between different garment styles.
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Figure 3: Overview of our self-cycle consistency network: paired garment-person images (g, p) and
an arbitrary garment g′ serve as the training data. Left: Gθ is pre-trained using paired images to
obtain the ground-truth deformation field f̃ for the auxiliary deformer GA to optimize f̃A. Then, Gθ is
further trained by using f̃A of G∗

A with unpaired images. Right: Gφ takes unpaired (ĝ′, p) to generate
a fake person p̂′. Then, the real person p is reconstructed by re-feeding p̂′ and ĝ into Gφ, ensuring
self-cycle consistency p ≈ p̂. Ds is the discriminator that learns to distinguish real and fake images.
EPS represents enhanced pixel-level supervision and Det. represents detaching tensor p̂′ from the
computation graph.

3 Methodology

Notation. In this work, we use (g,p) to represent paired garment-person images where the person
p is wearing garment g. Moreover, we randomly select the garment image g′ to form unpaired
garment-person images (g′,p) with p. The try-on result of (g,p) and (g′,p) are denoted as p̂ and
p̂′, respectively. In general, "′" represents the target image, and "ˆ" denotes the transformation result.
In addition, "7→" represents the mapping relationship of the entire architecture, while "⇒" represents
the mapping relationship of the sub-modules.

Overview. The objective of the virtual try-on task is to naturally dress an arbitrary in-shop garment
image g′ ∈ R3×H×W on a reference person image p ∈ R3×H×W to obtain a try-on result p̂′ ∈
R3×H×W . As illustrated in Figure 3, we first propose a self-cycle consistency framework, USC-PFN,
a new virtual try-on paradigm that does not require the human parser and other person representation
at the model input end for generating highly realistic try-on images. The framework is broken up into
two sub-networks: (i) a non-rigid garment deformer Gθ, and (ii) a self-cyclic image generator Gφ.
They are mainly used to construct a cyclic mapping Vt : (p,g

′) 7→ p̂′, (p̂′,g) 7→ p̂, where p ≈ p̂,
i.e., p̂ is the same to the real image p.

3.1 Formulation

Garments Deformation. In (p,g′) 7→ p̂′, the initially flat garment g′ must be deformed to match
the posture of the person p before synthesizing the target try-on result p̂′, denotes as (p,g′)

θ⇒
ĝ′, (p, ĝ′)

φ⇒ p̂′. Our key idea involves using Gθ to model the non-rigid deformation based on
Markov Random Field (MRF) [23], to seek an optimal spatial transformation solution f̂∗ ∈ R2×H×W

(i.e. optimal deformation field f̂∗ = G∗
θ (p,g

′)) that minimizes the dissimilarity between the warped
garment ĝ′ and the garment p̂′

g worn on the target result p̂′, where ĝ′ is obtained by using bilinear
interpolation (δ): ĝ′ = ϱ(f̂ ,g′). This can be formalized as minimizing the MRF energy function:

minimize
∑

<f̃A,p̂′
g>∈V+

{
Edat

(
f̃A, f̂

)
+ λrEreg

(
f̂
)
+ λpEpix

(
p̂′
g, ĝ

′)} , (1)

where λr and λp are trade-off hyper-parameters. V+ represents the prior pseudo-label from the
pre-trained garment deformer and f̃A is the deformation field of p̂′

g.

Edat = argminf̂

∥∥∥f̃A − f̂
∥∥∥ , Ereg = wϕRsm

(
f̂
)
, Epix = argminf̂ D

[
p̂′
g, ĝ

′] , (2)
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where Ereg is regularization term of f̂ , which composed of spatial position weights wϕ of pixel
points and a smoothing term Rsm. Rsm is used to ensure that each element in f̂ and its neighborhood
have similar values. D [·, ·] indicates quantification of similarity or difference. During garment
deformation, we find that the deformation range of the edge region is often larger than the central
region. Therefore, we use the two-dimensional Gaussian distribution [24] with the centroid and
variance of pixel coordinates in the cloth region, as wϕ to maintain the flexibility of the edge region.

In (p̂′,g) 7→ p̂, this process is similar to the one above, i.e., (p̂′,g)
θ⇒ ĝ, (p̂′, ĝ)

φ⇒ p̂, but the
difference is that we remove Edat from Eq.(1) to ensure more accurate results.

Synthesis of Try-On Results. Recall that the goal of the virtual try-on task is to synthesize the
target try-on result after warping the garment as if it was shot from realistic scenes. Therefore,
reconstructing the real image p is an essential task to form self-supervised training, which can be
formalized as minimizing the following objective:

minimize
∑

<ĝ,p>∈V

argminp̂ D [p, p̂] , with (p̂′, ĝ)
φ⇒ p̂, (3)

where V is training set. p̂′ denotes p wearing the garment g′. This differentiable generation appears
to have completeness, however, the absence of p̂′ in V forces the process to be compensated by extra
person representation R (semantic maps, pose heatmaps, etc.) as input. This means that results are
heavily constrained by R, and any errors that occur can directly affect the final try-on effect. To
tackle this problem, [6, 7] utilized a pre-trained and parser-based "teacher network" T to generate p̂′:

p̂′ = T ∗ (R,p, ĝ′) , p̂ = S (p̂′, ĝ) . (4)

Yet they cannot handle that irresponsible teacher knowledge brings to the learning process of their
"student network" S. [2] introduced the cycle-consistency structure that employed and trained
cyclically two CNNs (e.g., N1 and N2), where let N1 provide p̂′ for N2:

p̂′ = N1 (R,p, ĝ′) , p̂ = N2 (R, p̂′, ĝ) , (5)

where the structural difference between p̂ and p is minimized to ensure cycle-consistency. However,
decomposing the body and then synthesizing it back together based on semantics leads to occlusion
and artifacts due to some parsing errors. Relying on prior knowledge weakens the learning of the
garment of adaptive spatial structure on the human body. Additionally, the dual-model structure
is complex, resulting in longer training times and unstable convergence. Inspired by [22], we
reformulate the synthesis process as an unpaired garment style translation problem. Specifically, we
provide p̂′ for ourselves (Gφ) by ourselves (weight-sharing structure):

p̂ = Gφ (p̂′, ĝ) , with p̂′ = Gφ (p, ĝ′) . (6)

Inference. During inference, our goal is to synthesize the desired try-on result p̂ just by feeding
arbitrary garment-person pairs (p,g′) you need into G∗

θ and G∗
φ:

p̂ = G∗
φ (p, ĝ′) , with ĝ′ = ϱ (G∗

θ (p,g
′) ,g′) . (7)

3.2 Network Architecture

Non-rigid Garment Deformer (NGD) Gθ. The deformer Gθ can adopt arbitrary encoder-decoder
networks. As shown in Eq. (1), to fit Markov Random Field, we first pre-trained Gθ by feeding paired
images (p,g) to learn a real deformation field f̃ , i.e. f̃ = Gθ (p,g). At this point, pre-trained Gθ

contains the full latent alignment information, including shape, color, perspective changes, texture
variations, shadows and lighting, and depth of field, between the paired images (p,g). However,
features such as color, shape, and texture do not need to be learned, because the input garment varies
greatly during inference, but g and p used for training are paired. Therefore, Gθ is necessarily invalid
when unpaired images are fed. To disentangle the aforementioned feature entanglement, we employ
an auxiliary deformer GA, which takes the garment g, prior Densepose descriptor pd ∈ R1×H×W

[25], and the pose heatmap ph ∈ R18×H×W as input to learn the same goal as pre-trained Gθ,
i.e., f̃A = GA (pd,ph,g). Because pd and ph are not correlated with g in terms of color, texture,
and shape, GA does not face the challenges mentioned above and can handle any type of garment
effortlessly. However, unfortunately, pd and ph also lack perspective changes, shadows, lighting,
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and depth of field. As a result, the deformation results obtained are often not realistic. Therefore, we
use f̃ to supervise the training of GA, f̃A ≈ f̃ , supplementing its spatial perception abilities. After
obtaining the optimal G∗

A, we continue to train the deformer Gθ by taking unpaired (p,g′) as input
and fA as supervision, to disentangle the feature entanglement of Gθ:

f̃A ≈ f̂ , with f̂ = Gθ (p,g
′) , f̃A = G∗

A (pd,ph,g
′) . (8)

Self-cyclic Image Generator (SIG) Gφ. The generator Gφ can adopt arbitrary encoder-decoder
networks. Our goal is to optimize Gφ by taking unpaired images (p, ĝ′). The training process is
divided into two steps: 1) generating the try-on result p̂′ by taking unpaired images (p, ĝ′) as input,
i.e. p̂′ = Gφ (p, ĝ′). Immediately after, 2) taking p̂′ and warped garment ĝ as input of Gφ to generate
try-on result p̂, i.e. p̂ = Gφ (p̂′, ĝ). Different from the current methods that rely on an additional
network to provide prior pseudo-label p̂′, training Gφ directly with self-cycle consistency is not work
due to the absence of ground truth of p̂′, Gφ is more inclined to learn the mapping: p 7→ p̂ when
we jointly perform the two steps. Therefore, we introduce additional supervision on the upper body
of the generated p̂′ to take over the role of the label in [22]. In simple terms, the functionality of
the person representation R has shifted from the input side to the supervision side. In addition, the
self-cycle consistency can be ensured by enforcing p̂ ≈ p to establish self-supervision in step 2.

3.3 Self-Cycle Consistency Training Strategy

Training of NGD. As shown in Eq.(1), Eq.(2), and Eq.(8), to achieve the MRF energy minimization,
we design multiple loss functions. Edat is implemented with the pixel-level L1 loss to encourage
the similarity between f̂ and f̃A. Ereg is composed of the weights wϕ and the smoothing term Rsm

(implemented as second-order smooth constraint Lsec [6]). Epix is implemented with L1 loss and
VGG perceptual loss Lper [26] as the evaluation of structural similarity. Finally, we define the overall
loss function of NGD as:

Lngd = Ldat
1 + λrLsec + λp (L1 + Lper) , (9)

where λr and λd are hyperparameters that balances the relative contributions of sub-loss terms.

Training of SIG. To self-supervised cyclic optimization of SIG, we propose a self-cycle consistency
loss consisting of L1 loss and perceptual loss Lper, respectively, to maintain consistency between the
try-on result p̂ and the real person p:

Lscyc = ∥p− p̂∥1 + ∥p− p̂∥per . (10)
To make p̂′ as close as possible to the real distribution of person, we employ a discriminator Ds to
introduce adversarial loss:

LD
adv = Ep [log (Ds (p))] + Eĝ′,p [log (1−Ds (Gφ (ĝ′,p)))] . (11)

Additionally, the adversarial loss LG
adv of generator Gφ is introduced simultaneously. In addition to

the aforementioned losses, we propose a skin reconstruction loss Lsr to forcefully supervise the skin
reconstruction of p̂′ in the arm and neck regions. To do this, we pre-trained a model SR, which can
be fed into deformed garment ĝ′ and parts of the skin sp to reconstruct the envisaged arm and neck
regions of p̂′:

Lsr = ∥SR (ĝ′, sp)− p̂′
s∥1 , (12)

where p̂′
s denotes skin regions of p̂′. Furthermore, to generate the garment part of p̂′ and preserve

the invariant body content (e.g. head, trouser), we introduce the garment reconstruction loss Lgr and
content preservation loss Lcp:

Lgr =
∥∥p̂′

g − ĝ′∥∥
1
, Lcp = ∥p̂′

c − pc∥1 , (13)

where p̂′
g denotes garment part of p̂′, p̂′

c and pc denote the same content of p̂′ and p, respectively.2
Finally, we define the overall loss function of SIG as:

Lt
sig = λscycLscyc + λG

advLG
adv + λsrLsr + λgrLgr + λcpLcp. (14)

To prevent the unreliable result p̂′ generated in step 1 to wrongly guide step 2, we introduce an
adjustable gated mechanism late in the training to prevent irresponsible backpropagation:

Lsig = αLt
sig, with α =

{
1, ∥p− p̂′∥1 > ∥p− p̂∥1,
0, otherwise, (15)

where α is the adjustable gated factor that determines whether backpropagation is enabled.
2We provide the means to obtain sp, p̂′

s, p̂′
g, and p̂′

c in the supplementary material.
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Figure 4: Qualitative results of different methods (CP-VTON+[27], ACGPN[4], DCTON[2], PF-
AFN[6], SDAFN[28], RT-VTON[13], FS-VTON[7], and ours) in the unpaired setting.

4 Experiments

Dataset. We conduct experiments using the VITON dataset [8], which consists of 16,253 image
groups. Each group includes a front-view female image p, an in-shop garment image g with its mask
pM, a reference semantic map pp, and a pose heatmap ph. The image size for each is 256 pixels
× 192 pixels. The training set contains 14,221 groups, and the test set contains 2,032 groups. All
evaluations and visualizations are performed using the test set. Note that the in-shop garment and the
garment worn on the person are identical in the training set, while they differ in the test set.

Implementation Details. The USC-PFN is implemented in PyTorch and trained on a single Nvidia
Tesla V100 GPU running Ubuntu 16.04. During training, a batch size of 16 is used for 100 epochs,
and the Adam optimizer [29] is employed with parameters β1 = 0.5 and β2 = 0.999, and the initial
learning rate is set to 1e−4 with linear decay after 50 epochs. The USC-PFN consists of NGD and
SIG, both have the same structure as Res-UNet [30], and the discriminator is from pix2pixHD [16].
In the loss functions, the λr = 20 and λp = 0.25 in the Lngd. The λscyc = 1, λG

adv = 0.1, λsr = 50,
λgr = 1, and λcp = 10 in the Lt

sig .

Baselines. We perform comparative evaluations of our model’s performance, which includes
the deformer and generator, against publicly available state-of-the-art methods. To this end, we
leverage ten popular methods, including VITON[8], CP-VTON[3], Cloth-flow[9], CP-VTON+[27],
ACGPN[4], DCTON[2], PF-AFN[6], ZFlow[31], SDAFN[28], and RT-VTON[13], as baseline
methods for quantitative evaluation. In particular, we select seven most cutting-edge methods
[27, 4, 2, 6, 28, 13, 7] for qualitative evaluation.

Evaluation Metrics. Quantitative evaluations are carried out in both paired and unpaired settings
to compare our approach with baseline methods. For the paired setting, we use Structure Similarity
(SSIM) [32] to evaluate the visual quality and diversity of the generated images. In the unpaired
setting, as there is no ground truth available, FID is directly employed to evaluate the distributional
similarity between the generated and real images. Note that we do not use Inception Score (IS) [33]
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Table 1: Quantitative results of different methods on VITON. ’Def.’ represents different warping
methods. ’Syn.’ represents different synthesizing paradigms. ’Parser’ indicates whether the parser is
used in the model during inference. The best result are in bold and the second best result are in blue.

Methods Publication Def. Syn. Parser SSIM ↑ FID ↓
VITON [8] CVPR 2018 TPS IP Y 0.74 55.71

CP-VTON [3] ECCV 2018 TPS IP Y 0.72 24.45
Cloth-flow [9] ICCV 2019 AF IP Y 0.84 14.43

CP-VTON+ [27] CVPRW 2020 TPS IP Y 0.75 21.04
ACGPN [4] CVPR 2020 TPS IP Y 0.84 16.64
DCTON [2] CVPR 2021 TPS CC Y 0.83 14.82
PF-AFN [6] CVPR 2021 AF KD N 0.89 10.09
ZFlow [31] ICCV 2021 AF IP Y 0.88 15.17

RT-VTON [13] CVPR 2022 MLS IP Y - 11.66
SDAFN [28] ECCV 2022 AF IP N 0.88 12.05

USC-PFN (Ours) This Work MRF SC N 0.91 10.47
− : official code or data are not provided. IP: in-painting; CC: cycle consistency; KD: knowledge distillation; SC: self-cycle consistency.

in the evaluation [34, 35], as it is only effective in datasets similar to ImageNet [36]. Specifically, a
lower score of FID indicates a higher quality of the result.

4.1 Experimental Evaluation

Table 2: Analysis of time cost and computational com-
plexity between ACGPN[4], DCTON[2], PF-AFN[6], and
ours.

Methods Time #Params FLOPs FPS

ACGPN [4] ∼40h 139M 206G 10
DCTON [2] ∼44h 153M 194G 19
PF-AFN [6] - 99M 69G 34

Ours ∼32h 140M 46G 39

Qualitative Results. In Figure 4, we
perform visual comparison with seven
methods, including SOTA in-painting
methods [27, 4, 13, 28], the SOTA cy-
cle consistency method [2], and SOTA
knowledge distillation methods [6, 7].
In particular, we specifically select four
striped garments to visually showcase
the deformation effects of each method.
It indicates that all methods can achieve
approximate garment alignment and try-
on synthesis. However, in terms of gar-
ment alignment, the TPS-based methods
(columns 3, 4, and 5) exhibit excessive local fabric deformation and misaligned spatial correspon-
dence. The AF-based methods (columns 6, 7, and 8) demonstrate overly flexible and unconstrained
deformation effects, which are particularly noticeable in the first row. The MRF-based method (col-
umn 9) shows semi-rigid deformation effects in highly non-rigid body poses, such as misalignment
in the arm region. In terms of try-on synthesis, the in-painting methods (columns 3, 4, 7, and 9)
exhibit mismatches between the given garments and the synthesized try-on results due to parsing
errors, particularly noticeable in the arms region. The cycle consistency method (column 5), being
modular in nature, shows artifacts along the module boundaries. The knowledge distillation methods
(columns 6 and 8) occasionally suffer from similar issues as the in-painting methods, both in terms of
clothing deformation and try-on synthesis, due to irresponsible teacher knowledge. In contrast, our
proposed method (last column) can achieve the most realistic results benefits from two key factors.
Firstly, it leverages MRF’s perception of human spatial structure to faithfully simulate the process
of cloth deformation after try-on, capturing realistic fabric draping effects. Secondly, it utilizes the
self-cycle consistency paradigm to accurately reconstruct the appearance of the garment worn on the
body, all without the need for additional parsers or complex designs.

Quantitative Results. We evaluate the quantitative results of different methods under the same
configuration for a fair comparison. We use SSIM for measuring structural similarity in the paired
setting and FID for measuring distributional similarity in the unpaired setting. Table 1 presents
our quantitative results, including the SSIM and FID scores of baseline methods [8, 3, 9, 27, 4, 2,
6, 31, 28, 13] and the proposed USC-PFN, on the VITON dataset. In terms of SSIM, USC-PFN
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Figure 5: Ablation studies on the effect of NGD and SIG in the unpaired setting.

surpasses the SOTA in-painting method SDAFN [28] by 0.03, the SOTA knowledge distillation
method PF-AFN[6] by 0.02, and the SOTA cycle consistency method DCTON [2] by 0.08. In terms
of FID, it surpasses the SOTA in-painting method RT-VTON [13] by 1.19 and the SOTA cycle
consistency method DCTON by 4.35. Although PF-AFN obtains a lower FID score, some of their
results appear to be worse than ours 3. Additionally, PF-AFN requires complex training with the
assistance of the teacher model. The result demonstrates the superiority of our self-cycle consistency
approach while showcasing the significant advantage of generating high-quality try-on images.

Computational Complexity. In addition, to demonstrate the superior performance of our network,
we calculate the computational costs of ACGPN[4], DCTON[2], PF-AFN[6], and our method as
shown in Table 2. On the same Tesla V100 GPU, we have an appropriate number of parameters and
the fewest FLOPs (floating point operations), yet our inference speed is nearly four times faster than
ACPGN and about twice as fast as DCTON. This demonstrates the real-time capability of our method
and its ability to achieve high-quality visual performance with fewer computational resources. Note
that our architecture can employ any encoder-decoder network, allowing for flexible selection of the
network based on computational resources.

Ablation Study. In the ablation study, we evaluate the effectiveness of NGD and SIG in USC-PFN.
Table 3 and Figure 5 provide both quantitative and qualitative results. Firstly, we demonstrate that
the auxiliary deformer GA successfully disentangles the color, texture, and shape correlations in the
pre-trained Gθ. The experiments further validate the necessity of the data term Edat in MRF, as it
plays a crucial role in ensuring the accurate deformation of the garment. Moreover, we conduct an
experiment by removing the entire MRF module to emphasize its essential in USC-PFN. Finally, the
efficacy of Lsr in SIG is validated, emphasizing its critical role in supervising skin generation.

Table 3: Ablation studies of NGD and SIG in the unpaired
setting. Lower score of FID indicates higher quality of
results.

NGD FID ↓ SIG FID ↓
w/o GA 42.23 w/o MRF 14.28
w/o Edat 30.53 w/o Lsr 15.44

Full NGD 25.44 Full SIG 10.47

Limitations and Discussion. There
are still limitations to USC-PFN that
need to be addressed in future work.
Firstly, due to the complex non-rigid de-
formation of garment images, it is chal-
lenging to achieve good convergence dur-
ing end-to-end training; that is, integrat-
ing the garment deformer Gθ into the im-
age generator Gφ remains a difficult task.
Secondly, accurately aligning garments
with human poses is challenging due to
the complexity and variability of human
poses. Thus, finding a more optimal closed-form solution is necessary to solve the garment deforma-
tion task. Finally, we still require extensive supervision during the training, and it is still an urgent
issue to find a solution to train a high-quality network with less supervision.

5 Conclusion

In this paper, we present USC-PFN, a parser-free virtual try-on network that utilizes a self-cycle
consistency pipeline, which only uses one model to cyclically learn trying on different styles of

3See more visual comparisons in the supplementary material.
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garments. To get a more natural and realistic garment alignment, USC-PFN first incorporates the
Markov Random Field as a non-rigid deformation method, by enhancing the deformer’s perception
of human spatial structure, thereby mimicking the natural interaction between the garment and the
person. In addition, unlike existing paradigms, our method does not require input information from
parsers, teacher knowledge, or complex person representations for the generator. Instead, it solely
relies on the garment and human images as input to train and infer try-on results. The result indicates
that USC-PFN outperforms the state-of-the-art methods significantly in terms of subjective and
objective evaluations, demonstrating its superior performance. In the future, we plan to extend this
architecture to different tasks of image-to-image translation.
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