
A Broader Impacts515

Our motivation is to strive to make decisions that are both understood and trusted by humans. By516

increasing the credibility and transparency of the decision-making process, human users develop517

a better understanding, validate and enhance the decisions made by algorithms. As a result, it is518

possible to bridge the gap between humans and AI, fostering a symbiotic relationship that leverages519

the strengths of both to enable more reliable and responsible decision-making in various filed. For520

example, in finance, transparent algorithms can enhance risk assessment, investment strategies, and521

fraud detection, while in transportation, trustworthy decision-making algorithms can contribute to522

safe and efficient navigation and logistics. To advance this mission, our work on the GRD algorithm523

represents a significant step forward. GRD explores facilitating policy learning in the presence of524

delayed rewards. By decomposing the overall return into Markovian rewards, we provide a clearer525

understanding of the contribution made by each state-action pair. Furthermore, we go beyond simply526

explaining the rewards and delve into the causal view of reward generation. This approach allows527

us to provide interpretable explanations of how Markovian rewards are generated, enabling a more528

transparent decision-making process. This interpretability is vital for building trust with human529

users who may need to understand and validate the decisions made by the algorithm. Moreover,530

with an interpretable reward function, we can readily incorporate additional restrictions, such as531

security constraints, into the decision-making process. This flexibility allows us to tailor the algorithm532

to specific needs and requirements, further enhancing its trustworthiness. Additionally, since the533

principles and techniques we are exploring can be applied across a wide range of domains and534

industries, our collaboration with GRD not only contributes to the field of reinforcement learning but535

also has broader implications beyond robotics.536

B Proofs and Causal Background537

B.1 Markov and faithfulness assumptions538

A directed acyclic graph (DAG), G = (𝑽, 𝑬), can be deployed to represent a graphical criterion539

carrying out a set of conditions on the paths, where 𝑽 and 𝑬 denote the set of nodes and the set of540

directed edges, separately.541

Definition 1. (d-separation [50]). A set of nodes 𝒁 ⊆ 𝑽 blocks the path 𝑝 if and only if (1) 𝑝 contains542

a chain 𝑖 → 𝑚 → 𝑗 or a fork 𝑖 ← 𝑚 → 𝑗 such that the middle node 𝑚 is in 𝒁, or (2) 𝑝 contains a543

collider 𝑖 → 𝑚 ← 𝑗 such that the middle node 𝑚 is not in 𝒁 and such that no descendant of 𝑚 is in544

𝒁. Let 𝑿, 𝒀 and 𝒁 be disjunct sets of nodes. If and only if the set 𝒁 blocks all paths from one node in545

𝑿 to one node in 𝒀 , 𝒁 is considered to d-separate 𝑿 from 𝒀 , denoting as (𝑿 ⊥𝑑 𝒀 | 𝒁).546

Definition 2. (Global Markov Condition [51, 50]). If, for any partition (𝑿,𝒀 , 𝒁), 𝑿 is d-separated547

from 𝒀 given 𝒁, i.e., 𝑿 ⊥𝑑 𝒀 | 𝒁. Then the distribution 𝑃 over 𝑽 satisfies the global Markov548

condition on graph 𝐺, and can be factorizes as, 𝑃(𝑿,𝒀 | 𝒁) = 𝑃(𝑿 | 𝒁)𝑃(𝒀 | 𝒁). That is, 𝑿 is549

conditionally independent of 𝒀 given 𝒁, writing as 𝑿 ⊥⊥ 𝒀 | 𝒁.550

Definition 3. (Faithfulness Assumption [51, 50]). The variables, which are not entailed by the551

Markov Condition, are not independent of each other.552

Under the above assumptions, we can apply d-separation as a criterion to understand the conditional553

independencies from a given DAG G. That is, for any disjoint subset of nodes 𝑿,𝒀 , 𝒁 ⊆ 𝑽,554

(𝑿 ⊥⊥ 𝒀 | 𝒁) and 𝑿 ⊥𝑑 𝒀 | 𝒁 are the necessary and sufficient condition of each other.555

B.2 Proofs556

Proposition 1 (Identifiability). Suppose the state 𝒔𝑡 , action 𝒂𝑡 , trajectory-wise long-term return 𝑅557

are observable while Markovian rewards 𝑟𝑡 are unobservable, and they form an MDP, as described558

in Eq. 2. Then under the global Markov condition and faithfulness assumption, the reward function 𝑔559

and the Markovian rewards 𝑟𝑡 are identifiable, as well as the causal structure that is characterized by560

binary masks 𝒄 ·→· and 𝑪 ·→· and the transition dynamics 𝑓 .561

Below is the proof of Proposition 1. We begin by clarifying the assumptions we made and then562

provide the mathematical proof.563

14

Assumption We assume that, 𝜖𝑠,𝑖,𝑡 and 𝜖𝑟 ,𝑡 in Eq. 2 are i.i.d additive noise. From the weight-space564

view of Gaussian Process [52], equivalently, the causal models for 𝒔𝑖,𝑡+1 and 𝑟𝑡 can be represented as565

follows, respectively,566

𝒔𝑖,𝑡+1 = 𝑓𝑖 (𝒔𝑡 , 𝒂𝑡) + 𝜖𝑠,𝑖,𝑡 = 𝑊𝑇
𝑖, 𝑓 𝜙 𝑓 (𝒔𝑡 , 𝒂𝑡) + 𝜖𝑠,𝑖,𝑡 , (A1)

567

𝑟𝑡 = 𝑔(𝒔𝑡 , 𝒂𝑡) + 𝜖𝑟 ,𝑡 = 𝑊𝑇
𝑔 𝜙𝑔 (𝒔𝑡 , 𝒂𝑡) + 𝜖𝑟 ,𝑡 , (A2)

where ∀𝑖 ∈ [1, 𝑑𝒔], and 𝜙 𝑓 and 𝜙𝑔 denote basis function sets.568

Then we denote the variable set in the system by 𝑽, with 𝑽 = {𝒔1,𝑡 , . . . , 𝒔𝑑𝒔 ,𝑡 , 𝒂1,𝑡 , . . . , 𝒂𝑑𝒂 ,𝑡 , 𝑟𝑡 }𝑇𝑡=1∪569

𝑅, and the variables form a Bayesian network G. Following AdaRL [23], there are possible edges570

only from 𝒔𝑖,𝑡−1 ∈ 𝒔𝑡−1 to 𝒔𝑖′ ,𝑡 ∈ 𝒔𝑡 , from 𝒂 𝑗 ,𝑡−1 ∈ 𝒂𝑡−1 to 𝒔𝑖′ ,𝑡 ∈ 𝒔𝑡 , from 𝒔𝑖,𝑡 ∈ 𝒔𝑡 to 𝑟𝑡 , and from571

𝒂 𝑗 ,𝑡 ∈ 𝒂𝑡 to 𝑟𝑡 in G. In particular, the 𝑟𝑡s are unobserved, while 𝑅 =
∑𝑇

𝑡=1 𝛾
𝑡−1𝑜𝑡 is observed. Thus572

there are deterministic edges from each 𝑟𝑡 to 𝑅.573

Below we omit the 𝛾 for simplicity.574

Proof. Given trajectory-wise long-term return 𝑅, the binary masks, 𝒄𝒔→𝑟 , 𝒄𝒂→𝑟 and Markovian575

reward function 𝑔 and the rewards 𝑟𝑡 are identifiable. Following the above assumption, we first576

rewrite the function to calculate trajectory-wise long-term return in Eq. 2 as,577

𝑅 =

𝑇∑︁
𝑡=1

𝑟𝑡

=

𝑇∑︁
𝑡=1

[
𝑊𝑇

𝑔 𝜙𝑔 (𝒔𝑡 , 𝒂𝑡) + 𝜖𝑟 ,𝑡
]

= 𝑊𝑇
𝑔

𝑇∑︁
𝑡=1

𝜙𝑔 (𝒔𝑡 , 𝒂𝑡) +
𝑇∑︁
𝑡=1

𝜖𝑟 ,𝑡 .

(A3)

For simplicity, we replace the components in Eq. A3 by,578

Z𝑔 (𝑋) =
𝑇∑
𝑡=1

𝜙𝑔 (𝒔𝑡 , 𝒂𝑡),

𝐸𝑟 =
𝑇∑
𝑡=1

𝜖𝑟 ,𝑡 ,

(A4)

where 𝑋 := [𝒔𝑡 , 𝒂𝑡]𝑇𝑡=1 representing the concatenation of the covariates 𝒔𝑡 and 𝒂𝑡 from 𝑡 = 1 to 𝑇 .579

Consequently, we derive the following equation,580

𝑅 = 𝑊𝑇
𝑔 Z𝑔 (𝑋) + 𝐸𝑟 . (A5)

Then we can obtain a closed-form solution of 𝑊𝑇
𝑔 in Eq. A5 by modeling the dependencies between581

the covariates 𝑋𝜏 and response variables 𝑅𝜏 , where both are continuous. One classical approach582

to finding such a solution involves minimizing the quadratic cost and incorporating a weight-decay583

regularizer to prevent overfitting. Specifically, we define the cost function as,584

𝐶 (𝑊𝑔) =
1
2

∑︁
𝑋𝜏 ,𝑅𝜏∼D

(𝑅𝜏 −𝑊𝑇
𝑔 Z𝑔 (𝑋𝜏))2 +

1
2
_∥𝑊𝑔∥2. (A6)

where 𝜏 represents trajectories consisting of state-action pairs 𝑋𝜏 and long-term returns 𝑅𝜏 , which585

are sampled from the replay buffer D. _ is the weight-decay regularization parameter. To find the586

closed-form solution, we differentiate the cost function with respect to 𝑊𝑔 and set the derivative to587

zero:588

𝜕𝐶 (𝑊𝑔)
𝜕𝑊𝑔

= 0. (A7)

15

Solving this equation will yield the closed-form solution for 𝑊𝑇
𝑔 , i.e.,589

𝑊𝑔 = (_𝐼𝑑 + Z𝑔Z𝑇𝑔)−1Z𝑔𝑅 = Z𝑔 (Z𝑇𝑔 Z𝑔 + _𝐼𝑛)−1𝑅 (A8)

Therefore, 𝑊𝑔, which indicates the causal structure and strength of the edge, can be identified from590

the observed data. In summary, given trajectory-wise long-term return 𝑅, the binary masks, 𝒄𝒔→𝑟 ,591

𝒄𝒂→𝑟 and Markovian reward function 𝑔 and the rewards 𝑟𝑡 are identifiable.592

The binary masks, 𝑪𝒔→𝒔, 𝑪𝒂→𝒔 and the transition dynamics 𝑓 are identifiable In a similar593

manner, based on the assumption and Eq. 2, we can rewrite Eq. A1 to,594

𝒔𝑡+1 = 𝑊𝑇
𝑖, 𝑓 𝜙 𝑓 (𝒔𝑡) + 𝜖𝑠,𝑖,𝑡 . (A9)

To obtain a closed-form solution for 𝑊𝑖, 𝑓 𝑇 in Equation A9, we can model the dependencies between595

the covariates 𝑋𝑡 and the response variables 𝒔𝑡 + 1, both of which are continuous. The closed-form596

solution can be represented as:597

𝐶 (𝑊𝑖, 𝑓) =
1
2

∑︁
𝒔𝑖,𝑡 ,𝒔𝑖,𝑡+1∼D

(𝒔𝑖,𝑡+1 −𝑊𝑇
𝑖, 𝑓 𝜙𝑖, 𝑓 (𝒔𝑡))

2 + 1
2
_∥𝑊𝑖, 𝑓 ∥2. (A10)

By taking derivatives of the cost function and setting them to zero, we can obtain the closed-form598

solution,599

𝑊𝑖, 𝑓 = (_𝐼𝑑 + 𝜙𝑖, 𝑓 𝜙𝑇𝑖, 𝑓)
−1𝜙𝑖, 𝑓 𝒔𝑖,𝑡+1

= 𝜙𝑖, 𝑓 (𝜙𝑇𝑖, 𝑓 𝜙𝑖, 𝑓 + _𝐼𝑛)
−1𝒔𝑖,𝑡+1.

(A11)

Therefore, 𝑊𝑖, 𝑓 can be identified from the observed data. This conclusion applies to all dimensions600

of the state. As a result, the 𝑓 , which indicates the parent nodes of the 𝑖-dimension of the state, as601

well as the strength of the causal edge, are identifiable. In summary, the binary masks, 𝑪𝒔→𝒔 , 𝑪𝒂→𝒔
602

and the transition dynamics 𝑓 are identifiable.603

Considering the Markov condition and faithfulness assumption, we can conclude that for any pair604

of variables 𝑉𝑖 , 𝑉 𝑗 ∈ 𝑽, 𝑉𝑖 and 𝑉 𝑗 are not adjacent in the causal graph G if and only if they are605

conditionally independent given some subset of {𝑉𝑙 | 𝑙 ≠ 𝑖, 𝑙 ≠ 𝑗}. Additionally, since there are no606

instantaneous causal relationships and the direction of causality can be determined if an edge exists,607

the binary structural masks 𝒄𝒔→𝑟 , 𝒄𝒂→𝑟 , 𝑪𝒔→𝒔 , and 𝑪𝒂→𝒔 defined over the set 𝑽 are identifiable with608

conditional independence relationships [26]. Consequently, the functions 𝑓 and 𝑔 in Equation 2 are609

also identifiable.610

□611

C Implementation Details612

C.1 Baselines613

We compare our method against the following baselines,614

• RRD (biased). This baseline utilizes a surrogate objective called randomized return decom-615

position loss for reducing the consumption of estimating the Markovian reward function. It616

applies Monte-Carlo sampling to get a biased estimation of the Mean Square Error (MSE)617

between the observed episodic reward and the sum of Markovian reward predictions in a618

sequence. We keep the same setting and hyper-parameters with its official implementation619

to reproduce the results, in which the policy module is optimized by soft actor-critic (SAC)620

algorithm [44].621

• RRD (unbiased). This variant of RRD (biased) provides an unbiased estimation of MSE by622

sampling short sub-sequences. It offers a computationally efficient approach to optimize623

MSE. According to (author?) [14], RRD (biased) and RRD (unbiased) achieve state-of-the-624

art performance in episodic MuJoCo tasks.625

• This baseline performs non-parametric uniform reward redistribution. At each time step,626

the proxy reward is set to the normalized value of the trajectory return. IRCR is a simple627

and efficient approach, and except for RRD, it achieves state-of-the-art performance in the628

literature. The implementation is from RRD [14].629

16

Algorithm 1 Learning the generative process and policy jointly.
1: Initialize: Environment E, trajectory 𝜏 ← ∅, buffer D ← ∅
2: Initialize: Generative Model Φm := [𝜙cau, 𝜙dyn, 𝜙rew]; Policy Model Φ𝜋

3: for 𝑖 = 1, 2, . . . , 3 × 104 do
4: 𝜏 ← ∅, reset E
5: for 𝑛step = 1, 2, . . . , 100 do
6: sample data ⟨𝒔𝑡 , 𝒂𝑡 , 𝑜𝑡 ⟩ from E, and store them to trajectory 𝜏

7: if E done then
8: store trajectory 𝜏 = {𝒔1:𝑇 , 𝒂1:𝑇 , 𝑅} to buffer D, where 𝑅 =

∑𝑇
𝑖=1 𝛾

𝑡−1𝑜𝑡
9: 𝜏 ← ∅, reset E

10: end if
11: for 𝑛batch = 1, 2, . . . , train batches do
12: Sample 𝐷1 consisting of 𝑀 trajectories from D: 𝐷1 = {⟨𝒔𝑚𝑡 , 𝒂𝑚𝑡 ⟩ |𝑇𝑡=1, 𝑅

𝑚} |𝑀
𝑚=1

13: Sample 𝐷2 consisting of 𝑁 samples from D: 𝐷2 = {𝒔𝑡𝑛 , 𝒂𝑡𝑛 , 𝒔𝑡𝑛+1} |𝑁𝑛=1
14: Sample binary masks by Gumbel-Softmax from 𝜙cau: 𝒄𝒔→𝑟 , 𝒄𝒂→𝑟 , �̂�

𝒔→𝒔
and �̂�

𝒂→𝒔

15: Sample binary masks deterministically from 𝜙cau: 𝒄𝒔→𝑟 , 𝒄𝒂→𝑟 , and �̃�
𝒔→𝒔

16: Calculate 𝒄𝒔→𝜋 based on 𝒄𝒔→𝑟 and �̃�
𝒔→𝒔

17: Update 𝐷2: 𝐷2 ← {𝒄𝒔→𝜋 ⊙ 𝒔𝑡𝑛 , 𝒂𝑡𝑛 , 𝒔𝑡𝑛+1, 𝜙rew (𝒔𝑡𝑛 , 𝒂𝑡𝑛 , 𝒄𝒔→𝑟 , 𝒄𝒂→𝑟)} |𝑁
𝑛=1

18: Optimize 𝜙rew with 𝐷1 (Using 𝒄𝒔→𝑟 and 𝒄𝒔→𝑟): 𝜙rew ← 𝜙𝑟𝑒𝑤 − 𝛼∇𝜙rew𝐿rew (Eq. 4)
19: Optimize 𝜙dyn with 𝐷2 (Using �̂�

𝒔→𝒔
and �̂�

𝒔→𝒔
): 𝜙dyn ← 𝜙𝑑𝑦𝑛 − 𝛼∇𝜙𝑑𝑦𝑛

𝐿𝑑𝑦𝑛 (Eq. 5)
20: Optimize 𝜙cau: 𝜙cau ← 𝜙cau − 𝛼∇𝜙cau (𝐿sp + 𝐿rew + 𝐿dyn) (Eq. 6)
21: Optimize Φ𝜋 : Φ𝜋 ← Φ𝜋 − 𝛼∇Φ𝜋

𝐽𝜋 (Eq. 8)
22: end for
23: end for
24: end for

C.2 Detailed Generative Model630

The parametric generative model Φm used in the MDP environment consists of three components:631

𝜙cau, 𝜙rew, and 𝜙dyn. We provide a detailed description of their model structures below.632

𝜙cau for predicting the causal structure 𝜙cau comprises a set of free parameters without input. We633

divide 𝜙cau into four parts, each corresponding to the binary masks in Equation 2. Specifically, we634

have635

• 𝜙𝒔→𝒔
cau ∈ R𝑑

𝒔×𝑑𝒔×2 for 𝑪𝒔→𝒔 ∈ {0, 1}𝑑𝒔×𝑑𝒔
,636

• 𝜙𝒂→𝒔
cau ∈ R𝑑

𝒂×𝑑𝒔×2 for 𝑪𝒂→𝒔 ∈ R𝑑𝒂×𝑑𝒔
,637

• 𝜙𝒔→𝑟
cau ∈ R𝑑

𝒔×2 for 𝒄𝒔→𝑟 ∈ R𝑑𝒔
,638

• 𝜙𝒂→𝑟
cau ∈ R𝑑

𝒂×2 for 𝒄𝒂→𝑟 ∈ R𝑑𝒂
.639

Below we explain the shared workflows in 𝜙cau using the example of predicting the causal edge640

from the 𝑖-th dimension of state 𝒔𝑖,𝑡 to the 𝑗-th dimension of the next state 𝒔 𝑗 ,𝑡+1, by part of the free641

parameters, 𝜙𝒔→𝒔
cau,𝑖, 𝑗 .642

For simplicity, we denote 𝜙𝒔→𝒔
cau,𝑖, 𝑗 as 𝜓. The shape of 𝜓 is now easy to be determined. That is643

𝜓 ∈ R2 and we write it as 𝜓 = [𝜓0, 𝜓1]. With this 2-element vector, we can characterize a Bernoulli644

distribution, where each element corresponds to the unnormalized probability of classifying the645

edge as existing (𝜓0) or not existing (𝜓1), respectively. Therefore, the probability of the causal edge646

existing from the 𝑖-th dimension of state 𝒔𝑖,𝑡 to the 𝑗-th dimension of the next state 𝒔 𝑗 ,𝑡+1 can be647

calculated as:648

𝑃(𝑪𝒔→𝒔
𝑖, 𝑗) =

exp(𝜓0)
exp(𝜓0) + exp(𝜓1)

(A12)

Obtain �̂�
𝒔→𝒔
𝑖, 𝑗 through Gumbel-Softmax sampling in the training phases. During training, it is649

crucial to maintain the gradient flow for backpropagation. To achieve this, we sample the binary650

17

Layer# 1 2 3
𝜙rew FC256 FC256 FC1
𝜙dyn FC256 FC256 FC9
𝜙𝜋 FC256 FC256 FC2𝑑𝒂
𝜙𝑣 FC256 FC256 FC1

Table A1: The network structures of 𝜙rew, 𝜙dyn, 𝜙𝜋 and 𝜙𝑣 . 𝐹𝐶256 denotes a fully-connected layer
with an output size of 256. Each hidden layer is followed by an activation function, ReLU. 𝑑𝒂 is the
number of dimensions of the action in a specific task.

values of �̂�
𝒔→𝒔
𝑖, 𝑗 by applying Gumbel-Softmax [41],651

�̂�
𝒔→𝒔
𝑖, 𝑗 = GS(𝜓) (A13)

where GS denotes the Gumbel-Softmax sampling, which allows us to obtain binary discrete samples652

from the Bernoulli distribution. By applying Gumbel Softmax sampling allows us to randomly653

sample from the Bernoulli distribution in a stochastic manner, rather than simply selecting the class654

with the highest probability. This introduces some randomness, enabling the model to explore the655

balance and uncertainty between different classifications more flexibly.656

Obtain �̃�
𝒔→𝒔
𝑖, 𝑗 by deterministic sampling in the inference phases. During inference, including data657

sampling and policy learning, we get the prediction of 𝑪𝒔→𝒔
𝑖, 𝑗 through a deterministic sampling,658

�̃�
𝒔→𝒔
𝑖, 𝑗 =

{
1, 𝜓0 ≥ 𝜓1
0, 𝜓0 < 𝜓1.

(A14)

This is a greedy sampling to avoid introducing randomness during the Gumble-Softmax sampling.659

The above explanation of the workflow in 𝜙cau for predicting a single causal edge provides insight660

into the overall implementation of the entire module 𝜙cau and can be applicable for all the causal661

edges. Therefore, we can obtain �̂�
𝒂→𝒔

, 𝒄𝒔→𝑟 , 𝒄𝒂→𝑟 , 𝒄𝒔→𝑟 and 𝒄𝒂→𝑟 , using similar procedures.662

𝜙rew for predicting the Markovian rewards 𝜙rew is a stacked fully-connected network, and the663

details of the network structure are provided in Table A1.664

During training, the prediction of Markovian reward can be written as,665

𝑟 = 𝜙rew (𝒔𝑡 , 𝒂𝑡 , 𝒄𝒔→𝑟 , 𝒄𝒂→𝑟) = FCs([�̂�𝒔→𝑟 ⊙ 𝒔𝑡 , �̂�
𝒂→𝑟 ⊙ 𝒂𝑡]), (A15)

where [·, ·], ⊙ denotes concatenation and element-wise multiply operations, respectively. FCs denotes666

the stacked fully-connected network. �̂�𝒔→𝑟 and �̂�𝒔→𝑟 are derived from 𝜙cau by Gumbel-Softmax.667

During inference, including policy learning and data sampling, the predicted Markovian reward is668

𝑟 = 𝜙rew (𝒔𝑡 , 𝒂)𝑡 , 𝒄𝒔→𝑟 , 𝒄𝒂→𝑟) = FCs([�̃�𝒔→𝑟 ⊙ 𝒔𝑡 , �̃�
𝒂→𝑟 ⊙ 𝒂𝑡]), (A16)

where �̂�𝒔→𝑟 and �̂�𝒔→𝑟 are derived from 𝜙cau greedily by deterministic sampling.669

𝜙dyn for modeling the environment dynamics In our experiment, we do not directly utilize 𝜙dyn670

in policy learning. Instead, this module serves as a bridge to optimize 𝜙𝒔→𝒔
cau and 𝜙𝒂→𝒔

cau . Subsequently,671

𝜙𝒔→𝒔
cau can be utilized in the calculation of 𝒄𝒔→𝜋 .672

During training, we initially sample �̂�
𝒔→𝒔

and �̂�
𝒂→𝒔

using Gumbel-Softmax. The prediction for the673

𝑖-th dimension of the next state can be represented as follows,674

�̂�𝑖,𝑡 = MDN([�̂�𝒔→𝒔
·,𝑖 ⊙ 𝒔𝑡 , �̂�

𝒂→𝒔
·,𝑖 ⊙ 𝒂𝑡]), (A17)

where [·, ·] denotes concatenation and MDN denotes the Mixture Density Network which outputs the675

means, variances, and probabilities for 𝑁𝐺𝑎𝑢 Gaussian cores. The parameters of MDN are shared676

across the predictions of different dimensions of the next state. We set 𝑁𝑐𝑎𝑢 = 3 in our experiments.677

More details about 𝜙dyn can be found in Table A1.678

C.3 Detailed Policy Model679

Considering the specific requirements of the employed RL algorithm, Soft Actor-Critic (SAC), our680

Policy Model Φ𝜋 comprises two components, the actor 𝜙𝜋 and the critic 𝜙𝑣 . Detailed network681

structures for both components can be found in Table A1.682

18

Table A2: The table of the hyper-parameters used in the experiments for GRD.
Envs _1 _2 _3 _4 _5
Ant 10−5 0 10−7 10−8 10−8

HalfCheetah 10−5 10−5 10−5 10−6 10−5

Walker2d 10−5 10−5 10−6 10−6 10−7

Humanoid 10−5 10−8 10−5 10−7 10−8

Reacher 5 × 10−7 10−8 10−8 10−8 10−8

Swimmer 10−7 10−9 10−9 0 10−9

Hopper 10−6 10−6 10−6 10−7 10−6

HumanStandup 10−5 10−4 10−6 10−7 10−7

Table A3: The hyper-parameters.
hyperparameters value hyperparameters value

epochs 3 optimizer Adam
cycles 100 learning rate 3 × 10−4

iteration 100 𝑁 256
train batches 100 𝑀 4

replay buffer size 106 𝛾 1.00
evaluation episodes 10 Polyak-averaging coefficient 0.0005

C.4 Training Process.683

We follow the line of joint learning in (author?) [14], which avoids learning a return decomposition684

model in advance using data sampled by optimal or sub-optimal policies [13]. During each mini-batch685

training iteration, we sample two sets of data separately from the replay buffer D:686

• 𝐷1 = {⟨𝒔𝑚𝑡 , 𝒂𝑚𝑡 ⟩ |𝑇𝑡=1, 𝑅
𝑚} |𝑀

𝑚=1 consists of 𝑀 trajectories. Provided with the trajectory-wise687

long-term returns 𝑅𝑚 |𝑀
𝑚=1, 𝐷1 is utilized to optimize 𝜙𝒔→𝑟

cau , 𝜙𝒂→𝑟
cau and 𝜙rew, with 𝐿rew.688

• 𝐷2 = {𝒔𝑡𝑛 , 𝒂𝑡𝑛 , 𝒔𝑡𝑛+1} |𝑁𝑛=1 consists of 𝑁 state-action pairs. 𝐷2 are used for policy optimiza-689

tion and optimize the parts of causal structure, 𝜙𝒔→𝒔
cau and 𝜙𝒂→𝒔

cau , 𝜙dyn. With such a 𝐷2, GRD690

breaks the temporal cues in the training data to learn the policy and dynamics function.691

Please refer to Algorithm 1 for a detailed training process.692

C.5 Hyper-Parameters.693

The network is trained from scratch using the Adam optimizer, without any pre-training. The initial694

learning rate for both model estimation and policy learning is set to 3 × 10−4. The hyperparameters695

for policy learning are shared across all tasks, with a discount factor of 1.00 and a Polyak-averaging696

coefficient of 5 × 10−4. The target entropy is set to the negative value of the dimension of the robot697

action. To facilitate training, we utilize a replay buffer with a size of 1 × 106 time steps. The warmup698

size of the buffer for training is set to 1 × 104. The model is trained for 3 epochs, with each epoch699

consisting of 100 training cycles. In each cycle, we repeat the process of data collection and model700

training for 100 iterations. During each iteration, we collect data from 100 time steps of interaction701

with the MuJoCo simulation, which is then stored in the replay buffer. For training the 𝜙rew, we702

sample 4 episodes, each containing 5× 103 steps. As for policy learning and the optimization of 𝜙dyn,703

we use data from 256 time steps. 𝜙cau is trained together with 𝜙rew and 𝜙dyn. Validation is performed704

after every cycle, and the average metric is computed based on 10 test rollouts. The hyperparameters705

for learning the GRD model can be found in Table A2. All experiments were conducted on an706

HPC system equipped with 128 Intel Xeon processors operating at a clock speed of 2.2 GHz and 5707

terabytes of memory.708

19

Figure A1: The visualization of redistributed rewards and grounded rewards in Ant. The results are
produced by the GRD model trained after 1 × 106 steps. The redistributed rewards are shown in red,
and the grounded rewards are shown in blue.

D Visualization709

As shown in Figure A1, we visualize the redistributed rewards in Ant by GRD, as well as the grounded710

rewards provided by the environment.711

20

	Introduction
	Related Work
	Preliminaries
	A Causal Reformulation of Return Decomposition
	A Causal Treatment for RL with Delayed Rewards
	Generative Model Estimation
	Policy Optimisation with Generative Models

	Experiments
	Setup
	Main Results
	Ablation Study
	Visualization

	Conclusion
	Broader Impacts
	Proofs and Causal Background
	Markov and faithfulness assumptions
	Proofs

	Implementation Details
	Baselines
	Detailed Generative Model
	Detailed Policy Model
	Training Process.
	Hyper-Parameters.

	Visualization

