A Winograd transformation matrices

Depending on the particular choice of Winograd domain (i.e., polynomial domain), transformation matrices A, B, and G in the Winograd algorithm can be different. In the paper, we present that the most popular interpolation points for $\mathrm{F}(2,3)$ are $[0,+1,-1]$ and then these transformation matrices can be constructed as follows:

$$
A^{T}=\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \tag{1}\\
0 & 1 & -1 & -1
\end{array}\right], \quad B^{T}=\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 \\
0 & -1 & 1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right], \quad G=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
0 & 0 & 1
\end{array}\right]
$$

For $\mathrm{F}(4,3)$ and $\mathrm{F}(6,3)$, we choose the same transformation matrices as BQW [1]. For $\mathrm{F}(4,3)$, the Winograd transformation matrices are as follows:

$$
\begin{gather*}
A^{T}=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & -1 & 2 & -2 & 0 \\
0 & 1 & 1 & 4 & 4 & 0 \\
0 & 1 & -1 & 8 & -8 & 1
\end{array}\right], \tag{2}\\
B^{T}=\left[\begin{array}{cccccc}
4 & 0 & -5 & 0 & 1 & 0 \\
0 & -4 & -4 & 1 & 1 & 0 \\
0 & 4 & -4 & -1 & 1 & 0 \\
0 & -2 & -1 & 2 & 1 & 0 \\
0 & 2 & -1 & -2 & 1 & 0 \\
0 & 4 & 0 & -5 & 0 & 1
\end{array}\right], \tag{3}\\
G=\left[\begin{array}{cccc}
\frac{1}{4} & 0 & 0 \\
-\frac{1}{6} & -\frac{1}{6} & -\frac{1}{6} \\
-\frac{1}{6} & \frac{1}{6} & -\frac{1}{6} \\
\frac{1}{24} & \frac{1}{12} & -\frac{1}{6} \\
\frac{1}{24} & -\frac{1}{12} & -\frac{1}{6} \\
0 & 0 & 1
\end{array}\right] \tag{4}
\end{gather*}
$$

For $\mathrm{F}(6,3)$, the Winograd transformation matrices are as follows:

$$
\begin{align*}
& A^{T}=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & -1 & 2 & -2 & 0 \\
0 & 1 & 4 & 4 & 0 & \\
0 & 1 & -1 & 8 & -8 & 1
\end{array}\right], \tag{5}\\
& B^{T}=\left[\begin{array}{cccccccc}
1 & 0 & -\frac{21}{4} & 0 & \frac{21}{4} & 0 & -1 & 0 \\
0 & 1 & 1 & -\frac{17}{4} & -\frac{17}{4} & 1 & 1 & 0 \\
0 & -1 & 1 & \frac{17}{4} & -\frac{17}{4} & -1 & 1 & 0 \\
0 & \frac{1}{2} & \frac{1}{4} & -\frac{5}{2} & -\frac{5}{4} & 2 & 1 & 0 \\
0 & -\frac{1}{2} & \frac{1}{4} & \frac{5}{2} & -\frac{5}{4} & -2 & 1 & 0 \\
0 & 2 & 4 & -\frac{5}{2} & -5 & \frac{1}{2} & 1 & 0 \\
0 & -2 & 4 & \frac{5}{2} & -5 & -\frac{1}{2} & 1 & 0 \\
0 & -1 & 0 & \frac{21}{4} & 0 & -\frac{21}{4} & 0 & 1
\end{array}\right], \tag{6}\\
& G=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{2}{9} & -\frac{2}{9} & -\frac{2}{9} \\
-\frac{2}{9} & \frac{2}{9} & -\frac{2}{9} \\
\frac{1}{90} & \frac{1}{45} & -\frac{2}{45} \\
\frac{1}{90} & -\frac{1}{45} & \frac{2}{45} \\
\frac{32}{45} & \frac{16}{45} & \frac{8}{45} \\
\frac{32}{45} & -\frac{16}{45} & \frac{8}{45} \\
0 & 0 & 1
\end{array}\right] \tag{7}
\end{align*}
$$

B Derivatives of transformation matrices

In the paper, in order to align these transformation procedures after quantization, we propose to adjust transformation matrices via an optimization procedure as follows:

$$
\begin{equation*}
\underset{A, B, G}{\operatorname{argmin}} \mathbb{E}_{X \sim \mathcal{D}}\left[\Sigma_{f}^{C_{o}}\left\|A^{T}\left(\Sigma_{c}^{C_{i}} Q\left(B^{T} X_{c} B\right) \odot Q\left(G W_{f, c} G^{T}\right)\right) A-Y_{f}\right\|^{2}\right] \tag{8}
\end{equation*}
$$

By using the straight-through estimator [2] to approximate the gradient through the round function as a pass-through operation, we can obtain the derivatives of A, B and G. In this paper, we directly present the derivative of B. Here, a more comprehensive derivation is provided as follows:

$$
\begin{align*}
\frac{\partial \mathcal{L}}{\partial B_{i j}} & =\Sigma_{f}^{C_{o}} \operatorname{tr}\left\{\frac{\partial \mathcal{L}}{\partial O_{f}^{T}} \cdot \frac{\partial O_{f}}{\partial B_{i j}}\right\} \tag{9}\\
& =\Sigma_{f}^{C_{o}} \operatorname{tr}\left\{\frac{\partial \mathcal{L}}{\partial O_{f}^{T}} \cdot\left[\Sigma_{c}^{C_{i}}\left(\delta_{j i} X_{c} B\right) \odot Q\left(V_{f, c}\right)+\left(B^{T} X_{c} \delta_{i, j}\right) \odot Q\left(V_{f, c}\right)\right]\right\} \tag{10}\\
& =\Sigma_{f}^{C_{o}} \Sigma_{c}^{C_{i}} \operatorname{tr}\left\{\frac{\partial \mathcal{L}}{\partial O_{f}^{T}} \cdot\left[\left(\delta_{j i} X_{c} B\right) \odot Q\left(V_{f, c}\right)\right]+\frac{\partial \mathcal{L}}{\partial O_{f}^{T}} \cdot\left[\left(B^{T} X_{c} \delta_{i j}\right) \odot Q\left(V_{f, c}\right)\right]\right\} \tag{11}\\
& =\Sigma_{f}^{C_{o}} \Sigma_{c}^{C_{i}} \operatorname{tr}\left\{\left(\delta_{j i} X_{c} B\right)^{T} \cdot\left[\frac{\partial \mathcal{L}}{\partial O_{f}} \odot Q\left(V_{f, c}\right)\right]+\left(B^{T} X_{c} \delta_{i j}\right)^{T} \cdot\left[\frac{\partial \mathcal{L}}{\partial O_{f}} \odot Q\left(V_{f, c}\right)\right]\right\} \tag{12}\\
& =\Sigma_{f}^{C_{o}} \Sigma_{c}^{C_{i}}\left[X_{c} B \cdot\left(\frac{\partial L}{\partial O_{f}} \odot Q\left(V_{f, c}\right)\right)^{T}\right]_{i j}+\left[X_{c}^{T} B \cdot\left(\frac{\partial L}{\partial O_{f}} \odot Q\left(V_{f, c}\right)\right)\right]_{i j} \tag{13}
\end{align*}
$$

We have obtained the derivative of $B_{i j}$, and now we can provide the expression for the derivative of B :

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial B}=\Sigma_{f}^{C_{o}} \Sigma_{c}^{C_{i}} X_{c} B\left(\frac{\partial L}{\partial O_{f}} \odot Q\left(V_{f, c}\right)\right)^{T}+X_{c}^{T} B\left(\frac{\partial L}{\partial O_{f}} \odot Q\left(V_{f, c}\right)\right) \tag{14}
\end{equation*}
$$

The derivatives of A, G and O_{f} can be computed in a similar manner:

$$
\begin{gather*}
\frac{\partial \mathcal{L}}{\partial A}=\Sigma_{f}^{C_{o}} O_{f}^{T} A\left(A^{T} O_{f} A-Y_{f}\right)+O_{f} A\left(A^{T} O_{f} A-Y_{f}\right)^{T} \tag{15}\\
\frac{\partial \mathcal{L}}{\partial G}=\Sigma_{f}^{C_{o}} \Sigma_{c}^{C_{i}}\left(\frac{\partial L}{\partial O_{f}} \odot Q\left(U_{c}\right)\right) G W_{f, c}^{T}+\left(\frac{\partial L}{\partial O_{f}} \odot Q\left(U_{c}\right)\right)^{T} G W_{f, c} \tag{16}\\
\frac{\partial \mathcal{L}}{\partial O_{f}}=2 A\left(A^{T} O_{f} A-Y\right) A^{T} \tag{17}
\end{gather*}
$$

C Optimal quantization scale for Guassion varibles

In Theorem 1, in order to demonstrate that the optimal per-pixel scale S can be factorized into vectors, we rely on the conclusion that the optimal scale s^{*} to minimize the mean-square error of quantization of Gaussian variables $z \sim \mathcal{N}\left(0, \sigma^{2}\right)$ is proportional to σ, i.e., $s^{*}=K \sigma$, where K is a constant. Here, we will provide a proof of it.
Theorem C.1. Assuming $z \sim \mathcal{N}\left(0, \sigma^{2}\right)$, the optimal scale s^{*} to minimize the mean-square error of quantization of z is proportional to the standard deviation σ, i.e., $s^{*}=K \sigma$, where K is a constant.

Proof. Because $z \sim \mathcal{N}\left(0, \sigma^{2}\right), z$ can be reparameterized as $z=\sigma \cdot u$, where $u \sim \mathcal{N}(0,1)$.

$$
\begin{align*}
\mathbf{E}\left[(Q(z)-z)^{2}\right] & =\int_{-\infty}^{\infty} p_{z}(z)(Q(z)-z)^{2} d z \tag{18}\\
& =\int_{-\infty}^{\infty} p_{u}(u)(Q(\sigma u)-\sigma u)^{2} d u \tag{19}\\
& =\int_{-\infty}^{\infty} p_{u}(u)\left(\operatorname{clip}\left(\left\lfloor\frac{\sigma u}{s}\right\rceil,-q_{\min }, q_{\max }\right) \cdot s-\sigma u\right)^{2} d u \tag{20}\\
& =\sigma^{2} \int_{-\infty}^{\infty} p_{u}(u)\left(\operatorname{clip}\left(\left\lfloor\frac{u}{s / \sigma}\right\rceil,-q_{\min }, q_{\max }\right) \cdot \frac{s}{\sigma}-u\right)^{2} d u \tag{21}\\
& =\sigma^{2} h\left(\frac{s}{\sigma}\right) \tag{22}
\end{align*}
$$

Eq. (18) can be treated as a function of s / σ when solving for s with σ as a known value. Assuming K minimizes function $h(x)$, i.e., $K=\operatorname{argmin} h(x)$, we have:

$$
\begin{equation*}
s^{*}=\underset{s}{\operatorname{argmin}} \mathbf{E}\left[\left(Q(z)^{x}-z\right)^{2}\right]=\underset{s}{\operatorname{argmin}} \sigma^{2} h\left(\frac{s}{\sigma}\right)=K \cdot \sigma \tag{23}
\end{equation*}
$$

D Experiments on other architectures

In Section 5, we compare our methods to previous work BQW[1] on the ResNet model family with comprehensive experiment settings, including various bit widths, tile sizes, and datasets. Here, we present a similar analysis for two other popular architectures VGG and Squeezenet using the Cifar-10 dataset. The results are shown in Table 1 and Table 2. These results align with our analysis in Section 5. Our PTQ-Aware Winograd (PAW) method outperforms the strong baseline introduced in Section 5 and our FSQ method is well-compatible with PAW.

Table 1: PTQ results of VGG11 on CIFAR-10.

Model	Tile	Bits	Partial Quantization		Full Quantization	
			Baseline	PAW	FSQ	FSQ+PAW
$\begin{aligned} & \text { VGG-11 } \\ & (92.02 \%) \end{aligned}$	$F(4,3)$	6	89.13	91.56	86.59	91.55
		8	92.02	92.28	90.82	91.83
	$F(6,3)$	6	75.10	89.94	68.98	90.34
		8	91.27	91.88	88.44	91.63

Table 2: PTQ results of SqueezeNet on CIFAR-10.

Model	Tile	Bits	Partial Quantization		Full Quantization	
			Baseline	PAW	FSQ	FSQ+PAW
SqueezeNet (92.62\%)	$\mathrm{F}(4,3)$	6	89.69	91.98	88.66	91.78
		8	92.61	92.68	92.01	92.80
	$F(6,3)$	6	80.50	90.67	76.48	91.26
		8	92.37	92.61	90.54	92.42

References

[1] Vladimir Chikin and Vladimir Kryzhanovskiy. Channel balancing for accurate quantization of winograd convolutions. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pages 12497-12506. IEEE, 2022.
[2] Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients through stochastic neurons for conditional computation. CoRR, abs/1308.3432, 2013.

