
A Winograd transformation matrices

Depending on the particular choice of Winograd domain (i.e., polynomial domain), transformation
matrices A, B, and G in the Winograd algorithm can be different. In the paper, we present that the
most popular interpolation points for F(2,3) are [0,+1,−1] and then these transformation matrices
can be constructed as follows:

AT =

[
1 1 1 0
0 1 −1 −1

]
, BT =

1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1

 , G =

1 0 0
1
2

1
2

1
2

1
2 − 1

2
1
2

0 0 1

 (1)

For F(4,3) and F(6,3), we choose the same transformation matrices as BQW [1]. For F(4,3), the
Winograd transformation matrices are as follows:

AT =

1 1 1 1 1 0
0 1 −1 2 −2 0
0 1 1 4 4 0
0 1 −1 8 −8 1

 , (2)

BT =
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For F(6,3), the Winograd transformation matrices are as follows:

AT =

1 1 1 1 1 0
0 1 −1 2 −2 0
0 1 4 4 0
0 1 −1 8 −8 1

 , (5)

BT =
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, (6)
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B Derivatives of transformation matrices

In the paper, in order to align these transformation procedures after quantization, we propose to adjust
transformation matrices via an optimization procedure as follows:

argmin
A,B,G

EX∼D

[
ΣCo

f ||AT (ΣCi
c Q(BTXcB)⊙Q(GWf,cG

T ))A− Yf ||2
]

(8)

By using the straight-through estimator [2] to approximate the gradient through the round function
as a pass-through operation, we can obtain the derivatives of A, B and G. In this paper, we directly
present the derivative of B. Here, a more comprehensive derivation is provided as follows:

∂L
∂Bij

= ΣCo

f tr

{
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∂OT

f

· ∂Of

∂Bij

}
(9)
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f tr
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f

·
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ΣCi

c (δjiXcB)⊙Q(Vf,c) + (BTXcδi,j)⊙Q(Vf,c)
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(10)
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f ΣCi
c tr
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f

· [(δjiXcB)⊙Q(Vf,c)] +
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∂OT

f

·
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(BTXcδij)⊙Q(Vf,c)
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(11)
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c tr

{
(δjiXcB)T ·

[
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⊙Q(Vf,c)

]
+ (BTXcδij)
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[
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]}
(12)

= ΣCo

f ΣCi
c

[
XcB · ( ∂L

∂Of
⊙Q(Vf,c))

T

]
ij

+

[
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c B · ( ∂L

∂Of
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]
ij

(13)

We have obtained the derivative of Bij , and now we can provide the expression for the derivative of
B:

∂L
∂B

= ΣCo

f ΣCi
c XcB(

∂L

∂Of
⊙Q(Vf,c))

T +XT
c B(

∂L

∂Of
⊙Q(Vf,c)) (14)

The derivatives of A, G and Of can be computed in a similar manner:

∂L
∂A

= ΣCo

f OT
f A(ATOfA− Yf ) +OfA(ATOfA− Yf )

T (15)

∂L
∂G

= ΣCo

f ΣCi
c (

∂L

∂Of
⊙Q(Uc))GWT

f,c + (
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∂Of
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∂L
∂Of

= 2A(ATOfA− Y )AT (17)

C Optimal quantization scale for Guassion varibles

In Theorem 1, in order to demonstrate that the optimal per-pixel scale S can be factorized into vectors,
we rely on the conclusion that the optimal scale s∗ to minimize the mean-square error of quantization
of Gaussian variables z ∼ N (0, σ2) is proportional to σ, i.e., s∗ = Kσ, where K is a constant. Here,
we will provide a proof of it.

Theorem C.1. Assuming z ∼ N (0, σ2), the optimal scale s∗ to minimize the mean-square error of
quantization of z is proportional to the standard deviation σ, i.e., s∗ = Kσ, where K is a constant.

Proof. Because z ∼ N (0, σ2), z can be reparameterized as z = σ · u, where u ∼ N (0, 1).
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E
[
(Q(z)− z)2

]
=

∫ ∞

−∞
pz(z)(Q(z)− z)2dz (18)

=

∫ ∞

−∞
pu(u)(Q(σu)− σu)2du (19)

=

∫ ∞

−∞
pu(u)(clip(

⌊σu
s

⌉
,−qmin, qmax) · s− σu)2du (20)

= σ2

∫ ∞

−∞
pu(u)(clip(

⌊
u

s/σ

⌉
,−qmin, qmax) ·

s

σ
− u)2du (21)

= σ2h(
s

σ
) (22)

Eq. (18) can be treated as a function of s/σ when solving for s with σ as a known value. Assuming
K minimizes function h(x), i.e., K = argmin

x
h(x), we have:

s∗ = argmin
s

E
[
(Q(z)− z)2

]
= argmin

s
σ2h(

s

σ
) = K · σ (23)

D Experiments on other architectures

In Section 5, we compare our methods to previous work BQW[1] on the ResNet model family with
comprehensive experiment settings, including various bit widths, tile sizes, and datasets. Here, we
present a similar analysis for two other popular architectures VGG and Squeezenet using the Cifar-10
dataset. The results are shown in Table 1 and Table 2. These results align with our analysis in Section
5. Our PTQ-Aware Winograd (PAW) method outperforms the strong baseline introduced in Section 5
and our FSQ method is well-compatible with PAW.

Table 1: PTQ results of VGG11 on CIFAR-10.

Model Tile Bits Partial Quantization Full Quantization

Baseline PAW FSQ FSQ+PAW

F(4,3) 6 89.13 91.56 86.59 91.55
VGG-11 8 92.02 92.28 90.82 91.83
(92.02%) F(6,3) 6 75.10 89.94 68.98 90.34

8 91.27 91.88 88.44 91.63

Table 2: PTQ results of SqueezeNet on CIFAR-10.

Model Tile Bits Partial Quantization Full Quantization

Baseline PAW FSQ FSQ+PAW

F(4,3) 6 89.69 91.98 88.66 91.78
SqueezeNet 8 92.61 92.68 92.01 92.80
(92.62%) F(6,3) 6 80.50 90.67 76.48 91.26

8 92.37 92.61 90.54 92.42
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