
A Winograd transformation matrices

Depending on the particular choice of Winograd domain (i.e., polynomial domain), transformation
matrices A, B, and G in the Winograd algorithm can be different. In the paper, we present that the
most popular interpolation points for F(2,3) are [0,+1,−1] and then these transformation matrices
can be constructed as follows:

AT =

[
1 1 1 0
0 1 −1 −1

]
, BT =

1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1

 , G =

1 0 0
1
2

1
2

1
2

1
2 − 1

2
1
2

0 0 1

 (1)

For F(4,3) and F(6,3), we choose the same transformation matrices as BQW [1]. For F(4,3), the
Winograd transformation matrices are as follows:

AT =

1 1 1 1 1 0
0 1 −1 2 −2 0
0 1 1 4 4 0
0 1 −1 8 −8 1

 , (2)

BT =

4 0 −5 0 1 0
0 −4 −4 1 1 0
0 4 −4 −1 1 0
0 −2 −1 2 1 0
0 2 −1 −2 1 0
0 4 0 −5 0 1

 , (3)

G =

1
4 0 0

− 1
6 − 1

6 − 1
6

− 1
6

1
6 − 1

6
1
24

1
12 − 1

6
1
24 − 1

12 − 1
6

0 0 1

 (4)

For F(6,3), the Winograd transformation matrices are as follows:

AT =

1 1 1 1 1 0
0 1 −1 2 −2 0
0 1 4 4 0
0 1 −1 8 −8 1

 , (5)

BT =

1 0 − 21
4 0 21

4 0 −1 0
0 1 1 − 17

4 − 17
4 1 1 0

0 −1 1 17
4 − 17

4 −1 1 0
0 1

2
1
4 − 5

2 − 5
4 2 1 0

0 − 1
2

1
4

5
2 − 5

4 −2 1 0
0 2 4 − 5

2 −5 1
2 1 0

0 −2 4 5
2 −5 − 1

2 1 0
0 −1 0 21

4 0 − 21
4 0 1

, (6)

G =

1 0 0
− 2

9 − 2
9 − 2

9
− 2

9
2
9 − 2

9
1
90

1
45 − 2

45
1
90 − 1

45
2
45

32
45

16
45

8
45

32
45 − 16

45
8
45

0 0 1

(7)

1

B Derivatives of transformation matrices

In the paper, in order to align these transformation procedures after quantization, we propose to adjust
transformation matrices via an optimization procedure as follows:

argmin
A,B,G

EX∼D

[
ΣCo

f ||AT (ΣCi
c Q(BTXcB)⊙Q(GWf,cG

T))A− Yf ||2
]

(8)

By using the straight-through estimator [2] to approximate the gradient through the round function
as a pass-through operation, we can obtain the derivatives of A, B and G. In this paper, we directly
present the derivative of B. Here, a more comprehensive derivation is provided as follows:

∂L
∂Bij

= ΣCo

f tr

{
∂L
∂OT

f

· ∂Of

∂Bij

}
(9)

= ΣCo

f tr

{
∂L
∂OT

f

·
[
ΣCi

c (δjiXcB)⊙Q(Vf,c) + (BTXcδi,j)⊙Q(Vf,c)
]}

(10)

= ΣCo

f ΣCi
c tr

{
∂L
∂OT

f

· [(δjiXcB)⊙Q(Vf,c)] +
∂L
∂OT

f

·
[
(BTXcδij)⊙Q(Vf,c)

]}
(11)

= ΣCo

f ΣCi
c tr

{
(δjiXcB)T ·

[
∂L
∂Of

⊙Q(Vf,c)

]
+ (BTXcδij)

T ·
[
∂L
∂Of

⊙Q(Vf,c)

]}
(12)

= ΣCo

f ΣCi
c

[
XcB · (∂L

∂Of
⊙Q(Vf,c))

T

]
ij

+

[
XT

c B · (∂L

∂Of
⊙Q(Vf,c))

]
ij

(13)

We have obtained the derivative of Bij , and now we can provide the expression for the derivative of
B:

∂L
∂B

= ΣCo

f ΣCi
c XcB(

∂L

∂Of
⊙Q(Vf,c))

T +XT
c B(

∂L

∂Of
⊙Q(Vf,c)) (14)

The derivatives of A, G and Of can be computed in a similar manner:

∂L
∂A

= ΣCo

f OT
f A(ATOfA− Yf) +OfA(ATOfA− Yf)

T (15)

∂L
∂G

= ΣCo

f ΣCi
c (

∂L

∂Of
⊙Q(Uc))GWT

f,c + (
∂L

∂Of
⊙Q(Uc))

TGWf,c (16)

∂L
∂Of

= 2A(ATOfA− Y)AT (17)

C Optimal quantization scale for Guassion varibles

In Theorem 1, in order to demonstrate that the optimal per-pixel scale S can be factorized into vectors,
we rely on the conclusion that the optimal scale s∗ to minimize the mean-square error of quantization
of Gaussian variables z ∼ N (0, σ2) is proportional to σ, i.e., s∗ = Kσ, where K is a constant. Here,
we will provide a proof of it.

Theorem C.1. Assuming z ∼ N (0, σ2), the optimal scale s∗ to minimize the mean-square error of
quantization of z is proportional to the standard deviation σ, i.e., s∗ = Kσ, where K is a constant.

Proof. Because z ∼ N (0, σ2), z can be reparameterized as z = σ · u, where u ∼ N (0, 1).

2

E
[
(Q(z)− z)2

]
=

∫ ∞

−∞
pz(z)(Q(z)− z)2dz (18)

=

∫ ∞

−∞
pu(u)(Q(σu)− σu)2du (19)

=

∫ ∞

−∞
pu(u)(clip(

⌊σu
s

⌉
,−qmin, qmax) · s− σu)2du (20)

= σ2

∫ ∞

−∞
pu(u)(clip(

⌊
u

s/σ

⌉
,−qmin, qmax) ·

s

σ
− u)2du (21)

= σ2h(
s

σ
) (22)

Eq. (18) can be treated as a function of s/σ when solving for s with σ as a known value. Assuming
K minimizes function h(x), i.e., K = argmin

x
h(x), we have:

s∗ = argmin
s

E
[
(Q(z)− z)2

]
= argmin

s
σ2h(

s

σ
) = K · σ (23)

D Experiments on other architectures

In Section 5, we compare our methods to previous work BQW[1] on the ResNet model family with
comprehensive experiment settings, including various bit widths, tile sizes, and datasets. Here, we
present a similar analysis for two other popular architectures VGG and Squeezenet using the Cifar-10
dataset. The results are shown in Table 1 and Table 2. These results align with our analysis in Section
5. Our PTQ-Aware Winograd (PAW) method outperforms the strong baseline introduced in Section 5
and our FSQ method is well-compatible with PAW.

Table 1: PTQ results of VGG11 on CIFAR-10.

Model Tile Bits Partial Quantization Full Quantization

Baseline PAW FSQ FSQ+PAW

F(4,3) 6 89.13 91.56 86.59 91.55
VGG-11 8 92.02 92.28 90.82 91.83
(92.02%) F(6,3) 6 75.10 89.94 68.98 90.34

8 91.27 91.88 88.44 91.63

Table 2: PTQ results of SqueezeNet on CIFAR-10.

Model Tile Bits Partial Quantization Full Quantization

Baseline PAW FSQ FSQ+PAW

F(4,3) 6 89.69 91.98 88.66 91.78
SqueezeNet 8 92.61 92.68 92.01 92.80
(92.62%) F(6,3) 6 80.50 90.67 76.48 91.26

8 92.37 92.61 90.54 92.42

References
[1] Vladimir Chikin and Vladimir Kryzhanovskiy. Channel balancing for accurate quantization of

winograd convolutions. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pages 12497–12506. IEEE, 2022.

[2] Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. CoRR, abs/1308.3432, 2013.

3

	Winograd transformation matrices
	Derivatives of transformation matrices
	Optimal quantization scale for Guassion varibles
	Experiments on other architectures

