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Abstract

The Winograd algorithm is an efficient convolution implementation, which per-
forms calculations in the transformed domain. To further improve the computation
efficiency, recent works propose to combine it with model quantization. Although
Post-Training Quantization has the advantage of low computational cost and has
been successfully applied in many other scenarios, a severe accuracy drop exists
when utilizing it in Winograd convolution. Besides, despite the Winograd algorithm
consisting of four stages, most existing methods only quantize the element-wise
multiplication stage, leaving a considerable portion of calculations in full precision.
In this paper, observing the inconsistency among different transformation proce-
dures, we present PTQ-Aware Winograd (PAW) to optimize them collaboratively
under a unified objective function. Moreover, we explore the full quantization of
faster Winograd (tile size ≥ 4) for the first time. We further propose a hardware-
friendly method called Factorized Scale Quantization (FSQ), which can effectively
balance the significant range differences in the Winograd domain. Experiments
demonstrate the effectiveness of our method, e.g., with 8-bit quantization and a
tile size of 6, our method outperforms the previous Winograd PTQ method by
8.27% and 5.38% in terms of the top-1 accuracy on ResNet-18 and ResNet-34,
respectively.

1 Introduction

Recently, Convolution Neural Networks (CNNs) have demonstrated state-of-the-art performance in
various computer vision tasks [1; 2; 3; 4]. However, the high computation and storage cost hinders
their deployment on resource-limited devices. To address this problem, various solutions have been
proposed in the literature, including network pruning [5], low-rank decomposition [6], network
quantization [7; 8; 9; 10; 11] and faster convolution implementation [12; 13]. In this paper, we focus
on network quantization, faster convolution implementation, and their combination.

Model quantization converts the floating-point weights and activations to low-bit integers. According
to whether data with labels are required for training, quantization can be divided into two categories:
Quantization-Aware Training (QAT) [14; 15; 16; 17] and Post-Training Quantization (PTQ) [18; 19;
20; 21]. Although QAT can achieve promising performance, training the network requires many GPU
resources and a full training dataset. Therefore, it is not always practical when either the training
dataset is unavailable (e.g., privacy and commercial training data) or rapid deployment is required.
On the contrary, as PTQ only needs few-shot, unlabeled calibration data and fewer computation
resources, it is widely applicable in the industry.
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An alternative method for enhancing the speed of CNNs involves the development of faster convolu-
tion implementations, such as FFT [13] and Winograd [12]. Among them, the Winograd algorithm is
the most popular fast convolution operator [22]. Recent research [23; 24; 25] has focused on combin-
ing the Winograd algorithm with model quantization to further utilize the benefits of both techniques.
However, two significant problems remain: On the one hand, while Winograd convolution with larger
tile sizes (tile size≥4) can provide more significant acceleration, existing PTQ methods for such
convolution still suffer from drastic accuracy degradation. On the other hand, most existing works
[24; 26] only quantize the element-wise multiplications, while leaving the domain transformation
implemented by full-precision matrix multiplications, which can comprise a significant portion of the
computation (40.1% when the input and output channels are 32 [24]). However, according to our
experiments (Table 2 and Figure 2), these matrix multiplications are challenging to quantize because
of the significant distribution imbalance in the Winograd domain.

In this paper, we first identify that quantization makes the transformation procedures in the Winograd
algorithm inconsistent. Based on this observation, we propose PTQ-Aware Winograd (PAW),
which optimizes transformation matrices collaboratively under a unified objective function. We then
explore the fully quantized Winograd convolution, which is the first time for large tile sizes. We
empirically find it is a non-trivial task because of the significant range differences of pixels in the
Winograd domain. Through theoretical analysis of this phenomenon, we discover that it is possible
to achieve comparable performance to per-pixel quantization without sacrificing computational
efficiency via Factorized Scale Quantization (FSQ), which factorizes the tile size scales into vector
size scales. Experiments are conducted to demonstrate the effectiveness of our method, e.g., with
8-bit quantization and a tile size of 6, our method outperforms the previous Winograd PTQ method
by 8.27% and 5.38% in terms of the top-1 accuracy on ResNet-18 and ResNet-34, respectively.

Overall, our contributions in this work are threefold:

• We experimentally observe that quantization will disrupt the consistency between different
transformation procedures and propose PTQ-Aware Winograd, which utilizes a unified
optimization procedure to make the Winograd algorithm more robust to quantization.

• Through extensive experiments and theoretical analysis, we propose Factorized Scale Quan-
tization, a hardware-friendly method suitable for the distribution characteristic of the Wino-
grad domain tensors.

• To the best of our knowledge, we are the first to achieve full quantization of Winograd
convolution with large tile sizes (4 and 6). Experiments prove that our proposed method
shows significant improvements over previous PTQ methods, even under fully-quantization
settings.

2 Related Works

Quantization-aware training (QAT) [8; 27; 28; 29; 30] is a technique that simulates quantization
noise during end-to-end training of neural networks. It uses discretized weights during both forward
and backward propagation and updates original full-precision weights. Since the gradient of the
quantization function is either zero or undefined everywhere, this procedure is done via a gradient
approximation method called straight-through estimator [31]. Recently, some methods also add
quantization related parameters to this training procedure, such as clipping range [32] and step size
[14]. Although QAT methods have promising performance, they need the whole dataset and huge
GPU resources.

Post-training quantization (PTQ) [7; 21; 9; 18; 33] is a more lightweight method that does not
require retraining the network end-to-end. It only needs a small number of samples to estimate
activation distribution. Despite its efficiency, PTQ suffers from a more significant accuracy degra-
dation than QAT. The research community has actively proposed various methods to alleviate this
problem. For example, [21] observes the scaling equivariance of activation functions and proposes
to balance weights in consecutive layers. They also propose bias correction, which absorbs high
biases into the next layer. Recently, some methods have found that the change in feature maps is a
practical proxy signal for final task loss and use a layer-wise feature map reconstruction procedure
to boost performance. Bit-Split [7] turns the low-bit discrete optimization into multiple single-bit
optimization problems to find the optimal quantization scales and integer weights. AdaRound [18]
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Table 1: Percentage of the computational burden of different operations in F(6,3) Winograd convolu-
tion. Experiments are conducted on different blocks of ResNet-20. "Offline" means this operation
can be preprocessed before inference.

Operation Block 0 Block 1 Block 2 Total

BTXB 22% 16% 10% 16%
U ⊙ V 39% 56% 72% 56%
ATOA 39% 28% 18% 28%

GWGT Offline Offline Offline Offline

proposes optimizing the round function with a soft relaxation, which makes huge progress than the
original round-to-nearest function.

Winograd convolution quantization Winograd is an fast convolution implementation first applied
by [12]. To further improve computational efficiency, many works [23; 24; 34; 35; 36] focus on
combining it with model quantization. For Winograd convolution networks with tile size ≥4, most
works can only achieve an acceptable accuracy drop when using QAT, where the strong effectiveness
of retraining the whole network hides the difficulty of quantization [23; 34; 36]. For instance, BQW
[24] observes the heterogeneity of channel ranges in transformed tensors and equalizes them via
migrating the scale variance from activations to weights. However, compared to the significant
performance improvements achieved in QAT, their method only achieves limited progress in the case
of PTQ. One of the reasons, we think, is that their method ignores the quantization impact on the
Winograd algorithm, which is more notable without fine-tuning the whole network. In this paper,
we will solve this problem and explore a more challenging scenario, fully quantized Winograd
convolution using PTQ.

3 Background

3.1 Winograd

Winograd proposes the minimum filtering algorithm of finite impulse response (FIR) filtering in
[37]. For r × r standard convolutions with filter size r, the algorithm transforms the convolution
operations to the Winograd domain and generates m×m (spatial) outputs at a time, which is denoted
as F (m, r). The parameter m is called tile size, which is used to balance the speedup and numerical
precision. The Winograd algorithm can be divided into four stages:

Input transformation: Firstly, a patch X ∈ RCi×a×a is extracted from the input data, with patch
size a = m+ r − 1. Then the c-th channel sub-tensor of X , denoted as Xc, is transformed into the
Winograd domain using input transformation matrix B ∈ Ra×a. In this paper, the transformed inputs
are denoted as U ∈ RCi×a×a:

Uc = BTXcB, c = 1, ..., Ci (1)

Weight transformation: Similarly, weights W ∈ RCo×Ci×r×r are transformed into the Winograd
domain to get transformed weights V ∈ RCo×Ci×a×a. This process can be performed offline before
inference because model weights are frozen after training.

Vf,c = GWf,cG
T , G ∈ Ra×r where f = 1, ..., Co, c = 1, ..., Ci (2)

Element-wise multiplication: In the Winograd domain, the convolution operation is performed by
element-wise multiplications between U and V :

Of = ΣCi
c Uc ⊙ Vf,c (3)

where ⊙ denotes element-wise multiplication.

Output transformation: Finally, O ∈ RCo×a×a are transformed back to the feature map domain,
and then, we get final outputs Y ∈ RCo×m×m:

Yf = ATOfA, A ∈ Ra×m and f = 1, ..., Co (4)
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Depending on the particular choice of Winograd domain (i.e., polynomial domain), these transforma-
tion matrices A, B, and G in Eq. (1)-(4) can be different. For F(2,3), the most common choice of the
Winograd domain is f(x) = (x− 1)(x+ 1)x, then A, B and G can be constructed as follows[12].
More details are provided in the supplemental materials.

AT =

[
1 1 1 0
0 1 −1 −1

]
, BT =

1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1

 , G =

1 0 0
1
2

1
2

1
2

1
2 − 1

2
1
2

0 0 1

 (5)

Although the Winograd algorithm reduces the computational complexity of convolution operations by
performing them in the Winograd domain, these transformation steps also bring additional overheads.
An example is shown in Table 1. When the channel numbers Co and Ci are not large enough, these
transformation processes will incur considerable computational costs.

3.2 Quantization

Quantization converts a full-precision tensor to an integer one. To improve hardware simplicity and
efficiency, we utilize symmetric uniform quantization without zero-point. For a tensor V , quantization
maps it to the integer values Ṽ and de-quantization remaps it to float-point values Q(V ):

Ṽ =

⌊
clip(

V

s
,−qmin, qmax)

⌉
(6)

Q(V ) = Ṽ · s (7)

where s represents a full-precision scalar called quantization scale, ⌊z⌉ rounds z to the nearest
integer and clip(z, r1, r2) clamps z into the range [r1, r2]. For symmetric quantization with B bits,
qmin = −2B−1 and qmax = 2B−1.

In Eq. (6), we utilize a scalar s to quantize the entire tensor, called per-tensor quantization. Previous
studies [24; 26] have shown that using per-pixel quantization, which provides independent scales for
different pixels of transformed tensors, can significantly improve performance:

Ũc = ⌊Uc ⊘ SU⌉ (8)

and
Ṽf,c = ⌊Vf,c ⊘ SV ⌉ (9)

Here ⊘ is the element-wise division and we emit the clip function. SU and SV ∈ Ra×a are tile size
scales and can be factored out of the summation of Eq. (3). Thus, we can perform MAC operations in
fixed-point format:

Of = (ΣCi
c Ũc ⊙ Ṽf,c)︸ ︷︷ ︸

int8

⊙(SU ⊙ SV ) (10)

4 Method

4.1 PTQ-aware Winograd algorithm

While current state-of-the-art PTQ methods [18; 19; 9; 33] can achieve near-lossless 6-bit quantization
on popular non-Winograd CNNs, recent research has shown that 8-bit quantization of Winograd
convolutions still suffers from a significant accuracy drop (e.g., 9.71% for F(6,3) on ResNet-18 [24]).
We argue that one key reason why quantization and the Winograd algorithm are not well-compatible
is that quantization alters input and weight transformation procedures, making the whole algorithm
inconsistent.

To support our argument, we experiment on the first layer of ResNet-18 and take weight transformation
as an example. After quantization, the weight transformation procedure is changed from GWGT to
Q(GWGT ). Consequently, the other two transformation procedures, ATOA and BTXB, will not
be consistent with this new weight transformation. To illustrate it, we randomly perturb A and B and
compute the reconstruction loss Lquant and Lorigin with or without quantization, respectively:

Lorigin = ΣCo

f ||AT (ΣCi
c (BTXcB)⊙ (GWf,cG

T ))A− Yf ||2 (11)
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Figure 1: Reconstruction loss points obtained by randomly perturbing A, B (a) or A, G (b). The
bottom points indicate a minor loss without quantization. And the left points indicate a minor loss
with quantization.

Lquant = ΣCo

f ||AT (ΣCi
c (BTXcB)⊙Q(GWf,cG

T ))A− Yf ||2 (12)
The results are shown in Figure 1(a). Although original A and B can produce desired results with
floating-point GWGT (the yellow triangle on the bottom), they are no longer optimal when changing
GWGT to Q(GWGT ). Concretely, about half of the random perturbed matrices lead to smaller
errors (the blue dots on the upper left of the yellow triangle). A similar phenomenon also exists for
input transformation, as shown in Figure 1(b). These experiments indicate that the inconsistency
between domain transformations caused by quantization renders the original matrices unsuitable
for quantization scenarios, which is the primary reason why Winograd convolutions are difficult to
quantize. In order to align these transformation procedures after quantization, we propose to adjust
transformation matrices via an optimization procedure as follows:

argmin
A,B,G

EX∼D

[
ΣCo

f ||AT (ΣCi
c Q(BTXcB)⊙Q(GWf,cG

T ))A− Yf ||2
]

(13)

Since the transformation procedures in the Winograd algorithm are adopted considering the effect of
PTQ, we name this method as PTQ-Aware Winograd (PAW). By using the straight-through estimator
[31] to approximate the gradient through the round function as a pass-through operation, we can
obtain the derivative of G (derivatives of A and B are shown in supplemental materials) and update it
using SGD:

∂L
∂G

= ΣCo

f ΣCi
c (

∂L

∂Of
⊙Q(Uc))GWT

f,c + (
∂L

∂Of
⊙Q(Uc))

TGWf,c (14)

where
∂L

∂Of
= 2A(ATOfA− Y )AT (15)

4.2 Fully-quantized Winograd convolution

4.2.1 Motivation

Winograd convolution involves a sequence of computational steps from Eq. (1) to Eq. (4). To further
improve computation efficiency via full quantization, all these operations need to be quantized except

Table 2: Exploration on 8-bit quantization of different components of Winograd convolution on
ResNet-18. Output tensor in the Winograd domain (O) is the primary cause of accuracy degeneration.

FP A B X U V O BTX ATO

Accuracy 69.76 69.74 69.66 69.67 69.40 69.40 0.20 69.22 66.56
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Figure 2: The ranges of O vary widely
between different pixels. In both layers,
the std of O5,5 is ten times larger than
that of O4,4.

Table 3: The performance of different quantization
schemes for O. Although per-pixel quantization is ex-
cellent in maintaining model accuracy, it is not supported
in hardware.

Granularity Accuracy Hard-friendly

Quantize O (per-tensor) 0.216 ✓
Quantize O (per-pixel) 68.740 ✗

Quantize O (ours) 67.866 ✓

Eq. (2), which can be done offline. However, we empirically find that it is non-trivial to achieve
full quantization because that accuracy will drop to zero due to the quantization of O (i.e., the
output tensor in the Winograd domain), as shown in Table 2. After further investigation, we find
that the ranges of O vary widely between different pixels. For example, as shown in Figure 2, the
standard deviation (std) of O distributed at pixel (4,4) is ten times larger than that at pixel (5,5).
A shared quantization scale for them is difficult to achieve both small round error and clamping
error. A possible solution is to provide independent scales for them, i.e., to use per-pixel quantization
(Table 3). However, since O will take part in matrix multiplication (Eq. 4) instead of element-wise
multiplication, per-pixel quantization will lead to different scales in the summation dimension, which
makes it not feasible in general hardware.

4.2.2 Factorized-scale quantization

Motivated by the strong range difference, we present the following theorem, which shows the cause
of this distribution characterization and proves the standard deviation of O can be factorized into two
vectors.

Proposition 1. Assume all elements of W ∈ RCi×r×r and X ∈ RCi×a×a are independently and
identically distributed variables with zero mean (e.g., X ∼ N (0, σX), W ∼ N (0, σW )). If denote
BT = (bT1 , b

T
2 , ..., b

T
a )

T and G = (gT1 , g
T
2 , ..., g

T
a )

T , we have:

V ar [Oij ] = V ar
[
ΣCi

c (BTXcB ⊙GWGT )ij
]
= uivj (16)

where ui =
√
CiσXσW ||bi||2||gi||2 and vj =

√
CiσXσW ||bj ||2||g2j ||.

Proof. Firstly, since BTXcB and GWcG
T are the linear combinations of independent and identical

variables with zero mean, we can calculate their mean and variance:

E
[
(BTXcB)ij

]
= 0 and E

[
(GWcG

T )ij
]
= 0, (17)

V ar
[
(BTXcB)ij

]
= V ar

[
bTi Xcbj

]
= ||bi||2||b2j ||σX , (18)

V ar
[
(GWcG

T )ij
]
= V ar

[
gTi Wcgj

]
= ||gi||2||g2j ||σW (19)

Then we can derive the variance of O :

V ar [Oij ]
(a)
= ΣCi

c V ar
[
(BTXcB)ij · (GWcG

T )ij
]

(b)
= ΣCi

c V ar
[
(BTXcB)ij

]
V ar

[
(GWcG

T )ij
]
= Ci||bi||2||bj ||2||gi||2||g2j ||σXσW

(20)
The equation (a) holds because the variables in different channels are independent. The equation (b)
holds because the random variables U and V are independent of each other and have zero mean.

After finding that the standard deviation of O can be decoupled along rows and columns separately,
an intuitive thought is that the per-pixel scales may also satisfy similar rules. A more theoretical
proof is provided as Theorem 1.
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Figure 3: An illustration of Factorized Scale Quantization. Since the standard deviation of O can
be decoupled along rows and columns separately, using two vector scales, α and β, is enough for
balancing O to a similar distribution.

Theorem 1. Assuming X ∼ N (0, σX), W ∼ N (0, σW ), the optimal per-pixel scales S∗ which
minimize quantization error in Eq. (21) can be factorized as: S∗ = α ∗ βT .

argmin
S

EX∼N (0,σX),W∼N (0,σW )

[
||O −QS(O)||2

]
(21)

Proof. In Proposition 1, we have proven that:

V ar [Oij ] =
√
CiσXσW ||bi||2||gi||2 ·

√
CiσXσW ||bj ||2||g2j || (22)

Observing that Oij is the summation of Ci independent variables, where Ci is the number of input
channels and is usually large (e.g., 128). According to the Central Limit Theorem [38], we can assume
Oij follows Gaussian distribution. In supplementary material, we will show that the optimal scale s
to minimize the mean-square error of quantizing Gaussian variables z ∼ N (0, σ2) is proportional to
σ, i.e., s = Kσ, where K is a constant. Thus, we have:

Sij =
√
KCi||bi||2||gi||2σXσW ·

√
KCi||bj ||2||g2j ||σXσW = αi · βj (23)

The benefit of factorizing per-pixel scales into two vectors is that we can move both scales into
transformation matrices. So we can facilitate per-tensor matrix multiplication implementation when
per-pixel quantization is utilized:

ATOA ≈ AT · (SO ⊙ Õ) ·A
= AT · ((α ∗ βT )⊙ Õ) ·A
= ALÕAR

(24)

where:
AL = AT ·Diag(α), AR = Diag(β) ·A and Õ = ⌊O ⊘ SO⌉ (25)

Note that at this stage, matrix A is not quantized. After rescaling, we can further quantize these
transformation matrices and middle results to obtain fully-quantized Winograd convolution. In this
paper, this method is called Factorized Scale Quantization (FSQ) and an illustration of it is shown in
Figure 3.

4.2.3 Optimization procedure

In this section, we focus on how to determine the optimal α and β. Given N samples
{O1, O2, ..., ON}, we can minimize the quantization error via the following non-linear least square
regression problems:

argmin
α,β

ΣN
n ΣCo

f ||On
f − (α ∗ βT )⊙ Õn

f ||
2

(26)
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The optimization of Eq. (26) is non-trivial due to the integer constraint of Õ. Thus we propose an
iteration method to solve it.

Solving α when fixed β and Õ. When β and Õ are fixed, (26) is a quadratic function with respect to
α. Then the closed-form solution for α can be easily obtained as:

α∗ =
ΣN

n ΣCo

f (On
f ⊙ Õn

f ) · β
ΣN

n ΣCo

f (Õn
f ⊙ Õn

f ) · (β ⊙ β)
(27)

Solving β When fixed α and Õ. The closed-form solution for β is similar to that of α:

β∗ =
ΣN

n ΣCo

f (On
f ⊙ Õn

f )
T · α

ΣN
n ΣCo

f (Õn
f ⊙ Õn

f )
T · (α⊙ α)

(28)

Solving Õ when fixed α and β. When α and β are fixed, Õ is simply the integer values by rounding
to the nearest:

Õn
f ∗ =

⌊
On

f ⊘ (αT · β)
⌉

(29)

5 Experiments

5.1 Experimental settings

We use full-precision pre-trained models and replace all 3x3 convolutions (stride 1) with Winograd
convolutions. All convolutions, including the first and last layers, are quantized using symmetric
quantization. Following BQW[24], we use per-pixel quantization for transformed inputs U and
weights V . In order to verify the effectiveness of our method, we first construct a strong baseline
on Post-training Quantization Winograd. Concretely, we resort to Adaround [18] and LSQ [14] to
quantize U and V , respectively. Following BRECQ [19], we use 1024 unlabeled images and Adam
[39] optimizer with 20k iterations and a batch size of 32. Experiments show that our strong baseline
has surpassed previous state-of-the-art PTQ Winograd work. Based on it, we further verify our
method on the strong baseline. The learning rates of A, B, and G are set to (1e-4, 1e-4, 5e-4) by
default, and the reason will be shown in Section 5.4. All our experiments are conducted on NVIDIA
GeForce RTX 3090 24GB GPU servers and last for several hours.

5.2 PTQ-Aware Winograd

In this section, we compare our PTQ-Aware Winograd method to the previous work BQW [24] with
comprehensive experiments settings, including various bitwidths, tile sizes, datasets and models.

Table 4: PTQ results of ResNet-20 on CIFAR-10 with different tile sizes (4,6) and different bitwidths
(4,6,8).

Model Winograd Bits Quantization Accuracy

Algorithm Strong Baseline BQW [24] PAW

F(4,3)
4 22.46 17.33 62.50 (+45.17)
6 80.63 79.36 90.25 (+12.65)

ResNet-20 8 89.55 90.31 92.02 (+1.71)
(91.76%)

F(6,3)
4 13.51 10.00 21.71 (+11.71)
6 46.62 39.75 85.29 (+45.54)
8 81.44 81.44 91.10 (+9.66)

CIFAR-10. The results of different PTQ methods on ResNet-20 are shown in Table 4. Although
our strong baseline has been able to outperform previous method, our PTQ-Aware Winograd (PAW)
can even improve it further, especially with lower bitwidth or larger tile size. For example, our
methods surpass BQW [24] by 12.65 % and 45.54% when using 6-bit quantization on F(4,3) and
F(6,3), respectively, which means our method makes deploying CNNs with more limited computation
resources possible.
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ImageNet. We also conduct experiments on ImageNet, a more challenging image classification
dataset than CIFAR-10. In this experiment, we replace the convolutions in the last block with F(4,3)
Winograd convolution since F(6,3) Winograd convolution needs more padding for 7× 7 input size.
Noting that BQW [24] only conducts PTQ with 8-bit because of severe accuracy degeneration on
lower bitwidth, we compare our method with our strong baseline. The results presented in Table 5
demonstrate two breakthroughs of our method. First, we are the first to achieve negligible accuracy
drop with 8-bit post-training quantization on Winograd convolution. Second, we are the first to
achieve an acceptable accuracy drop with 6-bit post-training quantization on Winograd convolution.

5.3 Factorized Scale Quantization

In this section, we use Factorized Scale Quantization (FSQ) for O and per-pixel quantization for
U and V . Other components are conducted with per-tensor quantization. We conduct experiments
on ImageNet with bitwidths 6 and 8. In 6-bit quantization, we use 6-bit to quantize U , V , and
8-bit to quantize other components. The results shown in Table 5 indicate that our proposed FSQ
is the crucial step to fully quantizing Winograd convolutions, and it is well-compatible with PTQ-
Aware Winograd (PAW). Even with fully-quantization settings, our methods can achieve comparable
accuracy compared to BQW[24].

Table 5: PTQ results of ResNets on ImageNet. Previous method BQW [24] does not quantize matrix
multiplications in Winograd transformation. ‘SB’ indicates our Strong Baseline.

Model Tile Bits Partial Quantization Full Quantization

SB BQW [24] PAW PAW FSQ FSQ+PAW

F(4,3) 6 50.86 N/A 65.15 0.26 44.21 64.34
ResNet-18 8 68.08 67.54 69.06 0.21 64.46 68.16
(69.76%) F(6,3) 6 24.58 N/A 59.58 0.13 18.68 59.30

8 65.84 60.09 68.36 0.13 58.48 66.89

F(4,3) 6 58.85 N/A 69.71 0.88 52.10 68.80
ResNet-34 8 72.11 71.86 72.67 0.96 69.51 71.75
(73.30%) F(6,3) 6 27.91 N/A 63.56 0.19 22.06 62.11

8 69.68 66.52 71.90 0.29 63.60 69.72

F(4,3) 6 73.25 N/A 74.94 22.44 72.21 74.75
ResNet-50 8 75.89 75.84 76.01 17.80 75.90 75.74
(76.15%) F(6,3) 6 69.20 N/A 73.99 5.97 66.85 73.84

8 75.34 74.47 75.80 3.20 73.66 75.36

5.4 Ablation studies

To evaluate the effectiveness of our quantization-aware Winograd, we conduct an ablation study
on ResNet-18 by optimizing different combinations of A, B, and G. Empirically, we find that the
learning rate of G is more sensitive than those of A and B. Thus we fix the learning rates of A and B
to 1e-4 for all experiments and perform a grid search on the learning rate of G separately, which is
varied in the interval [1e-7, 1e-3]. The best results are shown in Table 6. When optimizing them, the
optimal learning rate for G is 5e-4, and the performance improvement reaches 1.22%.

Table 6: Impact of different design choices for optimization of transformation matrices, on the
ImageNet validation accuracy (%) for ResNet-18.

Optimized Matrices None A B G A, B B, G A, G A, B, G

Accuracy 68.04 68.07 68.24 68.03 68.87 68.28 68.03 69.26
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6 Conclusions

This paper focuses on accelerating deep convolution neural networks by combining the Winograd
algorithm and model quantization. We propose a unified optimization procedure to improve the
compatibility between quantization and the Winograd algorithm. To achieve a more significant
speed-up via full quantization, we propose a theoretically supported and hardware-friendly method
called Factorized-Scale Quantization, which is suitable for the distribution characteristics of tensors
in the Winograd domain. Experiments are conducted to show that our method can boost performance
by a large margin, especially with lower bitwidth or larger tile size, which means our method makes
deploying CNNs with more limited computation resources possible.
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A Winograd transformation matrices

Depending on the particular choice of Winograd domain (i.e., polynomial domain), transformation
matrices A, B, and G in the Winograd algorithm can be different. In the paper, we present that the
most popular interpolation points for F(2,3) are [0,+1,−1] and then these transformation matrices
can be constructed as follows:

AT =

[
1 1 1 0
0 1 −1 −1

]
, BT =

1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1

 , G =

1 0 0
1
2

1
2

1
2

1
2 − 1

2
1
2

0 0 1

 (30)

For F(4,3) and F(6,3), we choose the same transformation matrices as BQW [24]. For F(4,3), the
Winograd transformation matrices are as follows:

AT =

1 1 1 1 1 0
0 1 −1 2 −2 0
0 1 1 4 4 0
0 1 −1 8 −8 1

 , (31)

BT =


4 0 −5 0 1 0
0 −4 −4 1 1 0
0 4 −4 −1 1 0
0 −2 −1 2 1 0
0 2 −1 −2 1 0
0 4 0 −5 0 1

 , (32)

G =


1
4 0 0

− 1
6 − 1

6 − 1
6

− 1
6

1
6 − 1

6
1
24

1
12 − 1

6
1
24 − 1

12 − 1
6

0 0 1

 (33)

For F(6,3), the Winograd transformation matrices are as follows:

AT =

1 1 1 1 1 0
0 1 −1 2 −2 0
0 1 4 4 0
0 1 −1 8 −8 1

 , (34)

BT =



1 0 − 21
4 0 21

4 0 −1 0
0 1 1 − 17

4 − 17
4 1 1 0

0 −1 1 17
4 − 17

4 −1 1 0
0 1

2
1
4 − 5

2 − 5
4 2 1 0

0 − 1
2

1
4

5
2 − 5

4 −2 1 0
0 2 4 − 5

2 −5 1
2 1 0

0 −2 4 5
2 −5 − 1

2 1 0
0 −1 0 21

4 0 − 21
4 0 1


, (35)

G =



1 0 0
− 2

9 − 2
9 − 2

9
− 2

9
2
9 − 2

9
1
90

1
45 − 2

45
1
90 − 1

45
2
45

32
45

16
45

8
45

32
45 − 16

45
8
45

0 0 1


(36)
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B Derivatives of transformation matrices

In the paper, in order to align these transformation procedures after quantization, we propose to adjust
transformation matrices via an optimization procedure as follows:

argmin
A,B,G

EX∼D

[
ΣCo

f ||AT (ΣCi
c Q(BTXcB)⊙Q(GWf,cG

T ))A− Yf ||2
]

(37)

By using the straight-through estimator [31] to approximate the gradient through the round function
as a pass-through operation, we can obtain the derivatives of A, B and G. In this paper, we directly
present the derivative of B. Here, a more comprehensive derivation is provided as follows:

∂L
∂Bij

= ΣCo

f tr

{
∂L
∂OT

f

· ∂Of

∂Bij

}
(38)

= ΣCo

f tr

{
∂L
∂OT

f

·
[
ΣCi

c (δjiXcB)⊙Q(Vf,c) + (BTXcδi,j)⊙Q(Vf,c)
]}

(39)

= ΣCo

f ΣCi
c tr

{
∂L
∂OT

f

· [(δjiXcB)⊙Q(Vf,c)] +
∂L
∂OT

f

·
[
(BTXcδij)⊙Q(Vf,c)

]}
(40)

= ΣCo

f ΣCi
c tr

{
(δjiXcB)T ·

[
∂L
∂Of

⊙Q(Vf,c)

]
+ (BTXcδij)

T ·
[
∂L
∂Of

⊙Q(Vf,c)

]}
(41)

= ΣCo

f ΣCi
c

[
XcB · ( ∂L

∂Of
⊙Q(Vf,c))

T

]
ij

+

[
XT

c B · ( ∂L

∂Of
⊙Q(Vf,c))

]
ij

(42)

We have obtained the derivative of Bij , and now we can provide the expression for the derivative of
B:

∂L
∂B

= ΣCo

f ΣCi
c XcB(

∂L

∂Of
⊙Q(Vf,c))

T +XT
c B(

∂L

∂Of
⊙Q(Vf,c)) (43)

The derivatives of A, G and Of can be computed in a similar manner:

∂L
∂A

= ΣCo

f OT
f A(ATOfA− Yf ) +OfA(ATOfA− Yf )

T (44)

∂L
∂G

= ΣCo

f ΣCi
c (

∂L

∂Of
⊙Q(Uc))GWT

f,c + (
∂L

∂Of
⊙Q(Uc))

TGWf,c (45)

∂L
∂Of

= 2A(ATOfA− Y )AT (46)

C Optimal quantization scale for Guassion varibles

In Theorem 1, in order to demonstrate that the optimal per-pixel scale S can be factorized into vectors,
we rely on the conclusion that the optimal scale s∗ to minimize the mean-square error of quantization
of Gaussian variables z ∼ N (0, σ2) is proportional to σ, i.e., s∗ = Kσ, where K is a constant. Here,
we will provide a proof of it.

Theorem 2. Assuming z ∼ N (0, σ2), the optimal scale s∗ to minimize the mean-square error of
quantization of z is proportional to the standard deviation σ, i.e., s∗ = Kσ, where K is a constant.

Proof. Because z ∼ N (0, σ2), z can be reparameterized as z = σ · u, where u ∼ N (0, 1).
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E
[
(Q(z)− z)2

]
=

∫ ∞

−∞
pz(z)(Q(z)− z)2dz (47)

=

∫ ∞

−∞
pu(u)(Q(σu)− σu)2du (48)

=

∫ ∞

−∞
pu(u)(clip(

⌊σu
s

⌉
,−qmin, qmax) · s− σu)2du (49)

= σ2

∫ ∞

−∞
pu(u)(clip(

⌊
u

s/σ

⌉
,−qmin, qmax) ·

s

σ
− u)2du (50)

= σ2h(
s

σ
) (51)

Eq. (47) can be treated as a function of s/σ when solving for s with σ as a known value. Assuming
K minimizes function h(x), i.e., K = argmin

x
h(x), we have:

s∗ = argmin
s

E
[
(Q(z)− z)2

]
= argmin

s
σ2h(

s

σ
) = K · σ (52)

D Experiments on other architectures

In Section 5, we compare our methods to previous work BQW[24] on the ResNet model family with
comprehensive experiment settings, including various bit widths, tile sizes, and datasets. Here, we
present a similar analysis for two other popular architectures VGG and Squeezenet using the Cifar-10
dataset. The results are shown in Table 1 and Table 2. These results align with our analysis in Section
5. Our PTQ-Aware Winograd (PAW) method outperforms the strong baseline introduced in Section 5
and our FSQ method is well-compatible with PAW.

Table 1: PTQ results of VGG11 on CIFAR-10.

Model Tile Bits Partial Quantization Full Quantization

Baseline PAW FSQ FSQ+PAW

F(4,3) 6 89.13 91.56 86.59 91.55
VGG-11 8 92.02 92.28 90.82 91.83
(92.02%) F(6,3) 6 75.10 89.94 68.98 90.34

8 91.27 91.88 88.44 91.63

Table 2: PTQ results of SqueezeNet on CIFAR-10.

Model Tile Bits Partial Quantization Full Quantization

Baseline PAW FSQ FSQ+PAW

F(4,3) 6 89.69 91.98 88.66 91.78
SqueezeNet 8 92.61 92.68 92.01 92.80
(92.62%) F(6,3) 6 80.50 90.67 76.48 91.26

8 92.37 92.61 90.54 92.42

15


	Introduction
	Related Works
	Background
	Winograd
	Quantization

	Method
	PTQ-aware Winograd algorithm
	Fully-quantized Winograd convolution
	Motivation
	Factorized-scale quantization
	Optimization procedure


	Experiments
	Experimental settings
	PTQ-Aware Winograd
	Factorized Scale Quantization
	Ablation studies

	Conclusions
	Acknowledgements
	Winograd transformation matrices
	Derivatives of transformation matrices
	Optimal quantization scale for Guassion varibles
	Experiments on other architectures

