
Connected Superlevel Set in (Deep) Reinforcement
Learning and its Application to Minimax Theorems

Sihan Zeng
Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA 30318

szeng30@gatech.edu

Thinh T. Doan
Electrical and Computer Engineering

Virginia Tech
Blacksburg, VA 24061
thinhdoan@vt.edu

Justin Romberg
Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA 30318

jrom@ece.gatech.edu

Abstract

The aim of this paper is to improve the understanding of the optimization landscape
for policy optimization problems in reinforcement learning. Specifically, we show
that the superlevel set of the objective function with respect to the policy parameter
is always a connected set both in the tabular setting and under policies represented
by a class of neural networks. In addition, we show that the optimization objective
as a function of the policy parameter and reward satisfies a stronger “equiconnect-
edness” property. To our best knowledge, these are novel and previously unknown
discoveries.
We present an application of the connectedness of these superlevel sets to the deriva-
tion of minimax theorems for robust reinforcement learning. We show that any
minimax optimization program which is convex on one side and is equiconnected
on the other side observes the minimax equality (i.e. has a Nash equilibrium). We
find that this exact structure is exhibited by an interesting class of robust reinforce-
ment learning problems under an adversarial reward attack, and the validity of
its minimax equality immediately follows. This is the first time such a result is
established in the literature.

1 Introduction

Policy optimization problems in reinforcement learning (RL) are usually formulated as the maximiza-
tion of a non-concave objective function over a convex constraint set. Such non-convex programs
are generally difficult to solve globally, as gradient-based optimization algorithms can be trapped in
sub-optimal first-order stationary points. Interestingly, recent advances in RL theory [Fazel et al.,
2018, Agarwal et al., 2021, Mei et al., 2020] have discovered a “gradient domination” structure in the
optimization landscape, which qualitatively means that every stationary point of the objective function
is globally optimal. An important consequence of this condition is that any first-order algorithm that
converges to a stationary point is guaranteed to find the global optimality.

In this work, our aim is to enhance the understanding of the optimization landscape in RL beyond
the gradient domination condition. Inspired by Mohammadi et al. [2021], Fatkhullin and Polyak
[2021] that discuss properties of the sublevel set for the linear-quadratic regulator (LQR), we study
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the superlevel set of the policy optimization objective under a Markov decision process (MDP)
framework and prove that it is always connected.

As an immediate consequence, we show that any minimax optimization program which is convex on
one side and is an RL objective on the other side observes the minimax equality. We apply this result
to derive an interesting and previously unknown minimax theorem for robust RL. We also note that it
is unclear at the moment, but certainly possible, that the result on connected superlevel sets may be
exploited to design more efficient and reliable policy optimization algorithms in the future.

1.1 Main Contribution

Our first contribution in this work is to show that the superlevel set of the policy optimization problem
in RL is always connected under a tabular policy representation. We then extend this result to the
deep reinforcement learning setting, where the policy is represented by a class of over-parameterized
neural networks. We show that the superlevel set of the underlying objective function with respect
to the policy parameters (i.e. weights of the neural networks) is connected at all levels. We further
prove that the policy optimization objective as a function of the policy parameter and reward is
“equiconnected”, which is a stronger result that we will define and introduce later in the paper. To
the best of our knowledge, our paper is the first to rigorously investigate the connectedness of the
superlevel sets for the MDP policy optimization program, both in the tabular case and with a neural
network policy class.

As a downstream application, we discuss how our main results can be used to derive a minimax
theorem for a class of robust RL problems. We consider the scenario where an adversary strategically
modifies the reward function to trick the learning agent. Aware of the attack, the learning agent
defends against the poisoned reward by solving a minimax optimization program. The formulation for
this problem is proposed and considered in Banihashem et al. [2021], Rakhsha et al. [2020]. However,
as a fundamental question, the validity of the minimax theorem (or equivalently, the existence of a
Nash equilibrium) is still unknown. We fill in this gap by establishing the minimax theorem as a
simple consequence of the equiconnectedness of the policy optimization objective.

1.2 Related Works

Our paper is closely connected to the existing works that study the structure of policy optimization
problems in RL, especially those on the gradient domination condition. Our result also relates to the
literature on minimax optimization for various function classes and robust RL. We discuss the recent
advances in these domains to give context to our contributions.

Gradient Domination Condition. The policy optimization problem in RL is non-convex but obeys
the special “gradient domination” structure, which has been widely used as a tool to show the
convergence of various gradient-based algorithms to the globally optimal policy [Agarwal et al.,
2020, Mei et al., 2020, Bhandari and Russo, 2021, Zeng et al., 2021a, Xiao, 2022]. In the settings of
LQR [Fazel et al., 2018, Yang et al., 2019] and entropy-regularized MDP [Mei et al., 2020, Cen et al.,
2022, Zeng et al., 2022], the gradient domination structure can be mathematically described by the
Polyak-Łojasiewicz (PŁ) condition, which bears a resemblance to strong convexity but does not even
imply convexity. It is known that functions observing this condition can be optimized globally and
efficiently by (stochastic) optimization algorithms [Karimi et al., 2016, Zeng et al., 2021b, Gower
et al., 2021]. When the policy optimization problem under a standard, non-regularized MDP is
considered, the gradient domination structure is weaker than the PŁ condition but still takes the form
of upper bounding a global optimality gap by a measure of the magnitude of the gradient [Bhandari
and Russo, 2019, Agarwal et al., 2020, 2021]. In all scenarios, the gradient domination structure
prevents any stationary point from being sub-optimal.

It may be tempting to think that the gradient domination condition and the connectedness of the
superlevel sets are strongly connected notions or may even imply one another. For 1-dimensional
function (f : Rn → R with n = 1), it is easy to verify that the gradient domination condition
necessarily implies the connectedness of the superlevel sets. However, when n ≥ 2 this is no
longer true. In general, the gradient domination condition neither implies nor is implied by the
connectedness of superlevel sets, which we illustrate with examples in Section 1.3. These two
structural properties are distinct concepts that characterize the optimization landscape from different
angles. This observation precludes the possibility of deriving the connectedness of the superlevel
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sets in RL simply from the existing results on the gradient domination condition, and suggests that a
tailored analysis is required.

Minimax Optimization & Minimax Theorems. Consider a function f : X × Y → R on convex
sets X ,Y . In general, the minimax inequality always holds

sup
x∈X

inf
y∈Y

f(x, y) ≤ inf
y∈Y

sup
x∈X

f(x, y).

The seminal work Neumann [1928] shows that this inequality holds as an equality for matrix games
where X ⊆ Rm,Y ⊆ Rn are probability simplexes and we have f(x, y) = x⊤Ay given a payoff
matrix A ∈ Rm×n. The result later gets generalized to the setting where X ,Y are compact sets,
f(x, ·) is quasi-convex for all x ∈ X , and f(·, y) is quasi-concave for all y ∈ Y [Fan, 1953, Sion,
1958]. Much more recently, Yang et al. [2020] establishes the minimax equality when f satisfies the
two-sided PŁ condition. For arbitrary functions f , the minimax equality need not be valid.

The validity of the minimax equality is essentially equivalent to the existence of a global Nash
equilibrium (x⋆, y⋆) such that

f(x, y⋆) ≤ f(x⋆, y⋆) ≤ f(x⋆, y), ∀x ∈ X , y ∈ Y.
The Nash equilibrium (x⋆, y⋆) is a point where neither player can improve their objective function
value by changing its strategy. In general nonconvex-nonconcave settings where the global Nash
equilibrium may not exist, alternative approximate local/global optimality notions are considered
[Daskalakis and Panageas, 2018, Nouiehed et al., 2019, Adolphs et al., 2019, Jin et al., 2020].

Robust Reinforcement Learning. Robust RL studies finding the optimal policy in the worst-case
scenario under environment uncertainty and/or possible adversarial attacks. Various robust RL
models have been considered in the existing literature, such as: 1) the learning agent operates under
uncertainty in the transition probability kernel [Goyal and Grand-Clement, 2022, Li et al., 2022,
Panaganti and Kalathil, 2022, Wang et al., 2023], 2) an adversary exists and plays a two-player
zero-sum Markov game against the learning agent [Pinto et al., 2017, Tessler et al., 2019], 3) the
adversary does not affect the state transition but may manipulate the state observation [Havens et al.,
2018, Zhang et al., 2020], 4) there is uncertainty or attack only on the reward [Wang et al., 2020,
Banihashem et al., 2021, Sarkar et al., 2022], 5) the learning agent defends against attacks from a
population of adversaries rather than a single one [Vinitsky et al., 2020]. A particular attack and
defense model considered later in our paper is adapted from Banihashem et al. [2021].

Other Works on Connected Level Sets in Machine Learning. Last but not least, we note that our
paper is related to the works that study the connectedness of the sublevel sets for the LQR optimization
problem [Fatkhullin and Polyak, 2021] and for deep supervised learning under a regression loss
[Nguyen, 2019]. The neural network architecture considered in our paper is inspired by and similar
to the one in Nguyen [2019]. However, our result and analysis on deep RL are novel and significantly
more challenging to establish, since 1) the underlying loss function in Nguyen [2019] is convex, while
ours is a non-convex policy optimization objective, 2) the analysis of Nguyen [2019] relies critically
on the assumption that the activation functions are uniquely invertible, while we use a non-uniquely
invertible softmax activation function to generate policies within the probability simplex.

1.3 Connection between Gradient Domination and Connected Superlevel Sets

We loosely use the term “gradient domination” to indicate that a differentiable function does not have
any sub-optimal stationary points. In this section, we use two examples to show that the gradient
domination condition in general does not imply or get implied by the connectedness of the superlevel
sets. The first example is a function that observes the gradient domination condition but has a
disconnected set of maximizers (which implies that the superlevel is not always connected).

Consider f : [−4, 4]× [−2, 0] → R

f(x, y) =

{
f1(x, y) = −(x− 1)3 + 3(x− 1)− y2 − 2y − 0.02(y + 10)2(10− x2), for x ≥ 0
f2(x, y) = −(−x− 1)3 + 3(−x− 1)− y2 − 2y − 0.02(y + 10)2(10− x2), else

It is obvious that the function is symmetric along the line x = 0 and that f1(0, y) = f2(0, y) for all
y ∈ [−2, 0]. Computing the derivatives of f1 and f2 with respect to x, we have

∇xf1(x, y) = −3(x− 1)2 + 3 + 0.04x(y + 10)2,

∇xf2(x, y) = 3(x+ 1)2 − 3 + 0.04x(y + 10)2.
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We can again verify ∇xf1(0, y) = ∇xf2(0, y) for all y, which implies that the function f is
everywhere continuous and differentiable. Visualization of f in Fig. 1 along with simple calculation
(solving the system of equations ∇xf(x, y) = 0 and ∇yf(x, y) = 0) show that there are only
two stationary points of f on [−4, 4] × [−2, 0]. The two stationary points are (3.05,−1.12) and
(−3.05,−1.12), and they are both global maximizers on this domain, which means that the gradient
domination condition is observed. However, the set of maximizers {(3.05,−1.12), (−3.05,−1.12)}
is clearly disconnected.

We next present a function that has connected superlevel sets at all level but does not observe the
gradient domination condition (i.e. has sub-optimal stationary points).

Figure 1: Visualization of Functions f (Left) and g (Right)

Consider g : R2 → R defined as
g(x, y) = −(x2 + y2)2 + 4(x2 + y2).

This is a volcano-shaped function, which we visualize in Fig. 1. It is obvious the superlevel set
{(x, y) : g(x, y) ≥ λ} is always either a 2D circle (convex set) or a donut-shaped connected set
depending on the choice of λ. However, the gradient domination condition does not hold as (0, 0) is
a first-order stationary point but not a global maximizer (it is actually a local minimizer).

Outline of the paper. The rest of the paper is organized as follows. In Section 2, we discuss the policy
optimization problem in the tabular setting and establish the connectedness of the superlevel sets. Sec-
tion 3 generalizes the result to a class of policies represented by over-parameterized neural networks.
We introduce the structure of the neural network and the definition of super level sets in this context,
and present our theoretical result. In Section 4, we use our main results on superlevel sets to derive two
minimax theorems for robust RL. Finally, we conclude in Section 5 with remarks on future directions.

2 Connected Superlevel Set Under Tabular Policy

We consider the infinite-horizon average-reward MDP characterized by M = (S,A,P, r). We use
S and A to denote the state and action spaces, which we assume are finite. The transition probability
kernel is denoted by P : S × A → ∆S , where ∆S denotes the probability simplex over S. The
reward function r : S × A → [0, Ur] is bounded for some positive constant Ur and can also be
regarded as a vector in R|S|×|A|. We use Pπ ∈ RS×S to represent the state transition probability
matrix under policy π ∈ ∆S

A, where ∆S
A is the collection of probability simplexes over A across the

state space

Pπ
s′,s =

∑
a∈A

P(s′ | s, a)π(a | s), ∀s′, s ∈ S. (1)

We consider the following ergodicity assumption in the rest of the paper, which is commonly made in
the RL literature [Wang, 2017, Wei et al., 2020, Wu et al., 2020].

Assumption 1 Given any policy π, the Markov chain formed under the transition probability matrix
Pπ is ergodic, i.e. irreducible and aperiodic.
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Let µπ ∈ ∆S denote the stationary distribution of the states induced by policy π. As a consequence
of Assumption 1, the stationary distribution µπ is unique and uniformly bounded away from 0 under
any π. In addition, µπ is the unique eigenvector of Pπ with the associated eigenvalue equal to 1, i.e.
µπ = Pπµπ. Let µ̂π ∈ ∆S×A denote the state-action stationary distribution induced by π, which
can be expressed as

µ̂π(s, a) = µπ(s)π(a | s). (2)

We measure the performance of a policy π under reward function r by the average cumulative reward
Jr(π)

Jr(π) ≜ lim
K→∞

∑K
k=0 r(sk, ak)

K
= Es∼µπ,a∼π[r(sk, ak)] =

∑
s,a

r(s, a)µ̂π(s, a).

The objective of the policy optimization problem is to find the policy π that maximizes the average
cumulative reward

max
π∈∆S

A

Jr(π). (3)

The superlevel set of Jr is the set of policies that achieve a value function greater than or equal to
a specified level. Formally, given λ ∈ R, the λ-superlevel set (or superlevel set) under reward r is
defined as

Uλ,r ≜ {π ∈ ∆S
A | Jr(π) ≥ λ}.

The main focus of this section is to study the connectedness of this set Uλ,r, which requires us to
formally define a connected set.

Definition 1 A set U is connected if for any x, y ∈ U there exists a continuous map p : [0, 1] → U
such that p(0) = x and p(1) = y.

We say that a function is connected if its superlevel sets are connected at all levels. We also introduce
the definition of equiconnected functions.

Definition 2 Given two spaces X and Y , the collection of functions {fy : X → R}y∈Y is said to be
equiconnected if for every x1, x2 ∈ X , there exists a continuous path map p : [0, 1] → X such that

p(0) = x1, p(1) = x2, fy(p(α)) ≥ min{fy(x1), fy(x2)},

for all α ∈ [0, 1] and y ∈ Y .

Conceptually, the collection of functions {fy : X → R}y∈Y being equiconnected requires 1) that
fy(·) is a connected function for all y ∈ Y (or equivalently, the set {x ∈ X : fy(x) ≥ λ} is
connected for all λ ∈ R and y ∈ Y) and 2) that the path map constructed to prove the connectedness
of {x ∈ X : fy(x) ≥ λ} is independent of y.

We now present our first main result of the paper, which states that the superlevel set Uλ,r is always
connected.

Theorem 1 Under Assumption 1, the superlevel set Uλ,r is connected for any λ ∈ R and r ∈ R|S||A|.
In addition, the collection of functions {Jr(·) : ∆S

A → R}r∈R|S|×|A| is equiconnected.

Our result here extends easily to the infinite-horizon discounted-reward setting since a discounted-
reward MDP can be regarded as an average-reward one with a slightly modified transition kernel
[Konda, 2002].

The claim in Theorem 1 on the equiconnectedness of {Jr}r∈R|S|×|A| is a slightly stronger result
than the connectedness of Uλ,r, and plays an important role in the application to minimax theorems
discussed later in Section 4.

We note that the proof, presented in Section A.1 of the appendix, mainly leverages the fact that the
value function Jr(π) is linear in the state-action stationary distribution µ̂π and that there is a special
connection (though nonlinear and nonconvex) between µ̂π and the policy π, which we take advantage
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of to construct the continuous path map for the analysis. Specifically, given two policies π1, π2 with
Jr(π1), Jr(π2) ≥ λ, we show that the policy πα defined as

πα(a | s) = αµπ1(s)π1(a | s) + (1− α)µπ2(s)π2(a | s)
αµπ1

(s) + (1− α)µπ2
(s)

, ∀α ∈ [0, 1]

is guaranteed to achieve Jr(πα) ≥ λ for all α ∈ [0, 1].

Besides playing a key role in the proof of Theorem 1, our construction of this path map may inform
the design of algorithms in the future. Given any two policies with a certain guaranteed performance,
we can generate a continuum of policies at least as good. As a consequence, if we find two optimal
policies (possibly by gradient descent from different initializations) we can generate a range of
interpolating optimal policies. If the agent has a preference over these policy (for example, to
minimize certain energy like in H1 control, or if some policies are easier to implement physically),
then the selection can be made on the continuum of optimal policies, which eventually leads to a
more preferred policy.

3 Connected Superlevel Set Under Neural Network Parameterized Policy

In real-world reinforcement learning applications, it is common to use a deep neural network to
parameterize the policy [Silver et al., 2016, Arulkumaran et al., 2017]. In this section, we consider the
policy optimization problem under a special class of policies represented by an over-parameterized
neural network and show that this problem still enjoys the important structure — the connectedness of
the superlevel sets — despite the presence of the highly complex function approximation. Illustrated
in Fig. 2, the neural network parameterizes the policy in a very natural manner which matches how
neural networks are actually used in practice.

Figure 2: Neural Network Policy Representation

Mathematically, the parameterization can be described as follows. Each state s ∈ S is associated
with a feature vector ϕ(s) ∈ Rd, which in practice is usually carefully selected to summarize the key
information of the state. For state identifiability, we assume that the feature vector of each state is
unique, i.e.

ϕ(s) ̸= ϕ(s′), ∀s, s′ ∈ S and s ̸= s′.

To map a feature vector ϕ(s) to a policy distribution over state s, we employ a L-layer neural network,
which in the kth layer has weight matrix Wk ∈ Rnk−1×nk and bias vector bk ∈ Rnk with n0 = d
and nL = |A|. For the simplicity of notation, we use Ωk to denote the space of weight and bias
parameters (Wk, bk) of layer k, and we write Ω = Ω1 × · · · × ΩL. We use θ to denote the collection
of the weights and biases

θ = ((W1, b1), · · · , (WL, bL)) ∈ Ω

We use the same activation function for layers 1 through L − 1, denoted by σ : R → R, applied
in an element-wise fashion to vectors. To ensure that the output of the neural network is a valid
probability distribution, the activation function for the last layer is a softmax function, denoted by
ψ : R|A| → ∆A, i.e. for any vector v ∈ R|A|

ψ(v)i =
exp(vi)∑|A|

i′=1 exp(vi′)
, ∀i = 1, ..., |A|.
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With v ∈ Rd as the input to a neural network with parameters θ, we use fθk (v) ∈ Rnk to denote the
output of the network at layer k. For k = 1, · · · , L, fθk (v) is computed as

fθk (v) =


σ
(
W⊤

1 v + b1
)

k = 1
σ
(
W⊤

k fk−1(v) + bk
)

k = 2, 3, ..., L− 1
ψ
(
W⊤

L fL−1(v) + bL
)

k = L.
(4)

The policy πθ ∈ R|S|×|A| parametrized by θ is the output of the final layer:

πθ(· | s) = fθL(ϕ(s)) ∈ ∆A, ∀s ∈ S.

Our analysis relies two assumptions about the structure of the neural network. The first concerns the
invertibility of σ(·) as well as the continuity and uniqueness of its inverse, which can be guaranteed
by the following:

Assumption 2 σ is strictly monotonic and σ(R) = R. In addition, there do not exist non-zero scalars
{pi, qi}mi=1 with qi ̸= qj , ∀i ̸= j such that for some m > 0, σ(x) =

∑m
i=1 piσ(x− qi), ∀x ∈ R.

We note that this assumption holds for common activation functions including leaky-ReLU and
parametric ReLU [Xu et al., 2015].

Our second assumption is that the neural network is sufficiently over-parameterized and that the
number of parameters decreases with each layer.

Assumption 3 The output of the first layer is wider than 2|S|, and the width of the network decreases
over the layers, i.e.

n1 ≥ 2|S|, and n1 > n2 > ... > nL = |A|.

Neural networks meeting this criteria have a number of weight parameters that is larger than the
cardinality of the state space, making them impractical for large |S|. While ongoing work seeks to
relax or remove this assumption, we point out that similar over-parameterization assumptions are
critical and very common in most existing works on the theory of neural networks [Zou and Gu, 2019,
Nguyen, 2019, Liu et al., 2022, Martinetz and Martinetz, 2022, Pandey and Kumar, 2023].

The λ-superlevel set of the value function with respect to θ under reward function r is

UΩ
λ,r ≜ {θ ∈ Ω | Jr(πθ) ≥ λ}.

Our next main theoretical result guarantees the connectedness of UΩ
λ,r.

Theorem 2 Under Assumptions 1-3, the superlevel set UΩ
λ,r is connected for any λ ∈ R. In addition,

with Jr,Ω(θ) ≜ Jr(πθ), the collection of functions {Jr,Ω(·) : Ω → R}r∈R|S|×|A| is equiconnected.

The proof of this theorem is deferred to the appendix. Similar to Theorem 1, the claim in Theorem 2
on the equiconnectedness of {Jr,Ω}r∈R|S|×|A| is again stronger than the connectedness of UΩ

λ,r and
needs to be derived for the application to minimax theorems, which we discuss in the next section.

4 Application to Robust Reinforcement Learning

In this section, we consider the robust RL problem under adversarial reward attack, which can be
formulated as a convex-nonconcave minimax optimization program. In Section 4.1, we show that the
minimax equality holds for this optimization program in the tabular policy setting and under policies
represented by a class of neural networks, as a consequence of our results in Sections 2 and 3. To
our best knowledge, the existence of the Nash equilibrium for this robust RL problem has not been
established before even in the tabular case. A specific example of this type of robust RL problems is
given in Section 4.2.
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4.1 Minimax Theorem

Robust RL in general studies identifying a policy with reliable performance under uncertainty or
attacks. A wide range of formulations have been proposed for robust RL (which we reviewed in
details in Section 1.2), and an important class of formulations takes the form of defending against an
adversary that can modify the reward function in a convex manner. Specifically, the objective of the
learning agent can be described as solving the following minimax optimization problem

max
π∈∆S

A

min
r∈C

Jr(π), (5)

where C is some convex set. It is unclear from the existing literature whether minimax inequality
holds for this problem, i.e.

max
π∈∆S

A

min
r∈C

Jr(π) = min
r∈C

max
π∈∆S

A

Jr(π), (6)

and we provide a definitive answer to this question. We note that there exists a classic minimax
theorem on a special class of convex-nonconcave functions [Simons, 1995], which we adapt and
simplify as follows.

Theorem 3 Consider a separately continuous function f : X × Y → R, with Y being a convex,
compact set. Suppose that f(x, ·) is convex for all x ∈ X . Also suppose that the collection of
functions {f(·, y)}y∈Y is equiconnected. Then, we have

sup
x∈X

min
y∈Y

f(x, y) = min
y∈Y

sup
x∈X

f(x, y). (7)

Theorem 3 states that the minimax equality holds under two main conditions (besides the continuity
condition, which can easily be verified to hold for Jr(π)). First, the function f(x, y) needs to be
convex with respect to the variable y within a convex, compact constraint set. Second, f(x, y) needs
to have a connected superlevel set with respect to x, and the path function constructed to prove the
connectedness of the superlevel set is independent of y. As we have shown in this section and earlier
in the paper, if we model Jr(π) by f(x, y) with π and r corresponding to x and y, both conditions
are observed by the optimization problem (5), which allows us to state the following corollary.

Corollary 1 Suppose that the Markov chain M satisfies Assumption 1 on ergodicity. Then, the
minimax equality (6) holds.

When the neural network presented in Section 3 is used to represent the policy, the collection of
functions {Jr,Ω}r is also equiconnected. This allows us to extend the minimax equality above to the
neural network policy class. Specifically, consider problem (5) where the policy πθ is represented by
the parameter θ ∈ Ω as described in Section 3. Using f(x, y) to model Jr(πθ) with x and y mirroring
θ and r, we can easily establish the minimax theorem in this case as a consequence of Theorem 2 and 3.

Corollary 2 Suppose that the Markov chain M satisfies Assumption 1 on ergodicity and that the
neural policy class satisfies Assumptions 2-3. Then, we have

sup
θ∈Ω

min
r∈C

Jr(πθ) = min
r∈C

sup
θ∈Ω

Jr(πθ). (8)

Corollary 1 and 2 establish the minimax equality (or equivalently, the existence of the Nash equilib-
rium) for the robust reinforcement learning problem under adversarial reward attack for the tabular
and neural network policy class, respectively. To our best knowledge, these results are both novel and
previously unknown in the existing literature. The Nash equilibrium is an important global optimality
notion in minimax optimization, and the knowledge on its existence can provide strong guidance on
designing and analyzing algorithms for solving the problem.

4.2 Example - Defense Against Reward Poisoning

We now discuss a particular example of (5). We consider the infinite horizon, average reward MDP
M = (S,A,P, r) introduced in Section 2, where r is the true, unpoisoned reward function. Let
Πdet denote the set of deterministic policies from S to A. With the perfect knowledge of this MDP,
an attacker has a target policy π† ∈ Πdet and tries to make the learning agent adopt the policy by
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manipulating the reward function. Mathematically, the goal of the attacker can be described by the
function Attack(r, π†, ϵ†) which returns a poisoned reward under the true reward r, the target policy
π†, and a pre-selected margin parameter ϵ† ≥ 0. Attack(r, π†, ϵ†) is the solution to the following
optimization problem

Attack(r, π†, ϵ†) = argmin
r′

∑
s∈S,a∈A

(r′(s, a)− r(s, a))
2

s. t. Jr′(π†) ≥ Jr′(π) + ϵ†, ∀π ∈ Πdet\π†.
(9)

In other words, the attacker needs to minimally modify the reward function to make π† the optimal
policy under the poisoned reward. This optimization program minimizes a quadratic loss under a
finite number of linear constraints and is obviously convex.

The learning agent observes the poisoned reward r† = Attack(r, π†, ϵ†) rather than the original
reward r. As noted in Banihashem et al. [2021], without any defense, the learning agent solves the
policy optimization problem under r† to find π†, which may perform arbitrarily badly under the
original reward. One way to defend against the attack is to maximize the performance of the agent
in the worst possible case of the original reward, which leads to solving a minimax optimization
program of the form

max
π∈∆S

A

min
r′

Jr′(π) s. t. Attack(r′, π†, ϵ†) = r†. (10)

When the policy π is fixed, (10) reduces to

min
r′

Jr′(π) s. t. Attack(r′, π†, ϵ†) = r†. (11)

With the justification deferred to Appendix D, we point out that (11) consists of a linear objective
function and a convex (and compact) constraint set, and is therefore a convex program. On the other
side, when we fix the reward r′, (10) reduces to a standard policy optimization problem.

We are interested in investigating whether the following minimax equality holds.

max
π∈∆S

A

min
r′:Attack(r′,π†,ϵ†)=r†

Jr′(π) = min
r′:Attack(r′,π†,ϵ†)=r†

max
π∈∆S

A

Jr′(π). (12)

This is a special case of (5) with C = {r′ | Attack(r′, π†, ϵ†) = r†}, which can be verified to be a
convex set. Therefore, the validity of (12) directly follows from Corollary 1. Similarly, in the setting
of neural network parameterized policy we can establish

max
θ∈Ω

min
r′:Attack(r′,π†,ϵ†)=r†

Jr′(πθ) = min
r′:Attack(r′,π†,ϵ†)=r†

max
θ∈Ω

Jr′(πθ)

as a result of Corollary 2.

5 Conclusions & Future Work

We study the superlevel set of the policy optimization problem under the MDP framework and show
that it is always a connected set under a tabular policy and for policies parameterized by a class of
neural networks. We apply this result to derive a previously unknown minimax theorem for a robust
RL problem. An immediate future direction of the work is to investigate whether/how the result
discussed in this paper can be used to design better RL algorithms. In Fatkhullin and Polyak [2021],
the authors show that the original LQR problem has connected level sets, but the partially observable
LQR does not. It is interesting to study whether this observation extends to the MDP setting, i.e. the
policy optimization problem under a partially observable MDP can be shown to have disconnected
superlevel sets.
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A Proof of Theorems

A.1 Proof of Theorem 1:

We note that there exists a bijective map between π and µ̂π where µ̂π is induced by π according to
(2) and conversely

π(a | s) = µ̂π(s, a)

µπ(s)
=

µ̂π(s, a)∑
a∈A µ̂π(s, a)

, (13)

provided that µπ(s) ̸= 0, which is guaranteed by Assumption 1. Eq. (13) inspires the construction of
the path map.

To prove that the superlevel set is connected, we show that for any λ ∈ R and π1, π2 ∈ Uλ,r, there
exists a continuous path map p : [0, 1] → Uλ,r such that p(0) = π1 and p(1) = π2. We now construct
the path function p by defining

p(α)(a | s) = αµπ1
(s)π1(a | s) + (1− α)µπ2

(s)π2(a | s)
αµπ1

(s) + (1− α)µπ2
(s)

,

which is well-defined for all α ∈ [0, 1] as µπ1(s), µπ2(s) are positive for all s ∈ S. Note that the
construction of p does not depend on the reward function r. It is easy to see that p(α) ∈ ∆S

A is a
continuous in α. To stress that p(α) is in the policy space, we denote πα = p(α).

Recall the definition of the transition probability matrix in (1). We define B ∈ R|S| as

B = Pπα · (αµπ1 + (1− α)µπ2) .

Each entry of B can be expressed as

B(s′) =
∑
s,a

P(s′ | s, a)πα(a | s) (αµπ1(s) + (1− α)µπ2(s))

=
∑
s,a

P(s′ | s, a)αµπ1
(s)π1(a | s) + (1− α)µπ2

(s)π2(a | s)
αµπ1(s) + (1− α)µπ2(s)

(αµπ1(s) + (1− α)µπ2(s))

=
∑
s,a

P(s′ | s, a)αµπ1
(s)π1(a | s) +

∑
s,a

P(s′ | s, a)(1− α)µπ2
(s)π2(a | s)

= α
∑
s,a

Pπ1

s′,sµπ1
(s) + (1− α)

∑
s,a

Pπ2

s′,sµπ2
(s)

= αµπ1(s
′) + (1− α)µπ2(s

′),

which implies

Pπα · (αµπ1
+ (1− α)µπ2

) = αµπ1
+ (1− α)µπ2

. (14)

A consequence of Assumption 1 is that for any policy π there is a unique eigenvector of Pπ associated
with the eigenvalue 1, and this eigenvector (properly normalized) is the stationary distribution.
Therefore, (14) means that αµπ1

+(1−α)µπ2
has to be the stationary distribution under policy πα, i.e.

µπα = αµπ1 + (1− α)µπ2 .

As a result, for all s ∈ S, a ∈ A
µ̂πα

(s, a) = µπα
(s)πα(a | s)

= (αµπ1(s) + (1− α)µπ2(s))
αµπ1

(s)π1(a | s) + (1− α)µπ2
(s)π2(a | s)

αµπ1(s) + (1− α)µπ2(s)

= αµπ1(s)π1(a | s) + (1− α)µπ2(s)π2(a | s)
= αµ̂π1(s, a) + (1− α)µ̂π2(s, a).

Note that Jr(π) =
∑

s∈S,a∈A r(s, a)µ̂π(s, a). Since ππ1 , ππ2 ∈ Uλ,r, we know∑
s∈S,a∈A

r(s, a)µ̂π1
(s, a) ≥ λ,

∑
s∈S,a∈A

r(s, a)µ̂π2
(s, a) ≥ λ.
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Therefore, we have for any α ∈ [0, 1]

Jr(πα) =
∑

s∈S,a∈A
r(s, a)µ̂πα

(s, a) =
∑

s∈S,a∈A
r(s, a) (αµ̂π1

(s, a) + (1− α)µ̂π2
(s, a)) ≥ λ,

which implies πα ∈ Uλ,r. So far we have verifed that the constructed path map p is indeed continuous
and maps α ∈ [0, 1] to Uλ,r with p(0) = π1 and p(1) = π2. This concludes the proof on the
connectedness of the superlevel set Uλ,r. The claim on the equiconnectedness simply follows from
the fact that the construction of the path map p does not depend on the reward function.

■

A.2 Proof of Theorem 2

We use X to denote the concatenation of the feature vectors across all states

X ≜


ϕ(s1)

⊤

ϕ(s2)
⊤

...
ϕ(s|S|)

⊤

 ∈ R|S|×d

In the analysis we may apply the softmax function ψ to a matrix in a row-wise fashion. Specifically,
for any n ≥ 1 and matrix M ∈ Rn×|A|, we have

ψ(M)i,j =
exp(Mi,j)∑|A|

j′=1 exp(Mi,j′)
∀i = 1, ..., n.

The softmax operator ψ can be inverted up to an additive constant factor. We define ψinv for any
matrix M ∈ Rn×|A| as

ψinv(M)i,j = log(Mi,j) + ci ∀i, j,
with ci determined such that

∑|A|
j=1 ψinv(M)i,j = 0. Note that ψinv is a right inverse of ψ, i.e.

ψ(ψinv(M)) =M for all matrix A.

When the input to a neural network with parameter θ is the feature table X , we denote the output of
layer k by F θ

k ∈ R|S|×nk . According to (4), F θ
k can be expressed as

F θ
k =


σ
(
XW1 + 1|S|b

⊤
1

)
k = 1

σ
(
F θ
k−1Wk + 1|S|b

⊤
k

)
k = 2, 3, ..., L− 1

ψ
(
F θ
L−1WL + 1|S|b

⊤
L

)
k = L

where 1|S| is the all-one vector of dimension |S| × 1. Note that F θ
L ∈ R|S|×|A| is the policy table

produced by the neural network, i.e. πθ = F θ
L.

The proof of Theorem 2 relies on the following intermediate results, which we now present. The
proof of Proposition 1 can be found in Appendix B.

Proposition 1 If rank(X) = |S|, then under Assumption 1 and 2, the superlevel set UΩ
λ,r is connected

for all λ ∈ R.

Lemma 1 Let (X,W, b, V ) ∈ R|S|×n0 × Rn0×n1 × Rn1 × Rn1×n2 . Let Z = σ(XW + 1|S|b⊤)V .
Suppose X has distinct rows. Then, under Assumption 2 and 3, there exists a continuous path map
c : [0, 1] → Rn0×n1 × Rn1 × Rn1×n2 with c(λ) = (W (λ), b(λ), V (λ)) such that

1) c(0) = (W,b,V),

2) σ
(
XW (λ) + 1|S|b(λ)

T
)
V (λ) = Z,∀λ ∈ [0, 1],

3) rank
(
σ
(
XW (1) + 1|S|b(1)

T
))

= N .

Lemma 2 Let (X,W, V,W ′) ∈ R|S|×n0 ×Rn0×n1 ×Rn1×n2 ×Rn0×n1 . Suppose rank(σ(XW )) =
|S| and rank(σ(XW ′)) = |S|. Then, under Assumption 2 and 3, there exists a continuous path map
c : [0, 1] → Rn0×n1 × Rn1×n2 with c(λ) = (W (λ), V (λ)) such that
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1) c(0) = (W,V),

2) σ (XW (λ))V (λ) = σ (XW )V,∀λ ∈ [0, 1],

3) W (1) =W ′.

To prove Theorem 2, it suffices to show that for any θ1 = (W1,l, b1,l)
L
l=1 ∈ UΩ

λ,r and θ2 =

(W2,l, b2,l)
L
l=1 ∈ UΩ

λ,r there exists a connected path that is completely within UΩ
λ,r.

Applying Lemma 1 with (X,W1,1, b1,1,W1,2) and (X,W2,1, b2,1,W2,2), the problem simplifies to
showing the existence of a continuous path within UΩ

λ,r that connects

θ′1 = ((W ′
1,1, b

′
1,1), (W

′
1,2, b1,2), (W1,l, b1,l)

L
l=3)

and
θ′2 = ((W ′

2,1, b
′
2,1), (W

′
2,2, b1,2), (W2,l, b2,l)

L
l=3)

such that
rank(F

θ′
1

1 ) = rank(F
θ′
2

1 ) = |S|.

Then, we can apply Lemma 2 with ([X, 1|S|], [W
′⊤
1,1, b

′
1,1]

⊤,W ′
1,2, [W

′⊤
2,1, b

′
2,1]

⊤) to show that there
is a continuous path between θ′1 and θ′′1 with θ′′1 = ((W ′

2,1, b
′
2,1), (W

′′
1,2, b1,2), (W1,l, b1,l)

L
l=3) such

that
rank(F

θ′′
1

1 ) = rank(F
θ′
1

1 ) = |S|.

As a consequence, now we simply have to show that θ′′1 and θ′2 is connected by a continuous path
within UΩ

λ,r.

Note that θ′′1 and θ′2 have identical first layer parameters and thus the same first layer output, which
is full rank. This allows us to treat the layers from 2 to L as a new network and apply Proposition
1 (which requires the input to be full rank) to the new network to guarantee that there exists a
continuous path map c : [0, 1] → Ω2 × ... × Ωk such that c(0) = ((W ′′

1,2, b1,2), (W1,l, b1,l)
L
l=3),

c(1) = ((W ′
2,2, b1,2), (W2,l, b2,l)

L
l=3), and

min{Jr(πθ1), Jr(πθ2)} ≤ Jr(π((W ′
2,1,b

′
2,1),c(α))

) ≤ max{Jr(πθ1), Jr(πθ2)}

for all α ∈ [0, 1]. This implies that there is indeed a continuous path between θ′′1 and θ′2 within UΩ
λ,r.

Similar to the proof of Theorem 1, the claim on the connectedness simply follows from the fact that
the construction of the path map p does not depend on the reward function. ■

B Proof of Proposition 1

For each layer of the neural network k = 1, · · · , L, we define Ω⋆
k ⊆ Ωk to be the set of weights Wk

and biases bk of layer k such that Wk is full rank, i.e.

Ω⋆
k = {(Wk, bk) ∈ Ωk :Wk is full rank}. (15)

We denote Ω⋆ = Ω⋆
1 ×Ω⋆

2 × ...×Ω⋆
L. Next, we introduce the following lemmas in aid of the analysis.

Condition 1 Given θ = (Wl, bl)
L
l=2, Wl has full rank for every l ∈ [2, L].

Lemma 3 Under Assumption 2, 3, and Condition 1, given any k ∈ [2, L] and matrix F ∈ R|S|×nk ,
there exists a continuous map h : Ω⋆

2 × ...× Ω⋆
k × R|S|×nk → Ω1 such that

1) Given ((W2, b2), ..., (Wk, bk), F ) ∈ Ω⋆
2 × ...× Ω⋆

k × R|S|×nk , we have

F
h((Wl,bl)

k
l=2,F ),(Wl,bl)

k
l=2

k = F.

2) For any θ⋆ = (W ⋆
l , b

⋆
l )

L
l=1 ∈ Ω1 × Ω⋆

2 × ... × Ω⋆
L, there exists a continuous path map p :

[0, 1] → Ω1×Ω⋆
2 × ...×Ω⋆

L such that p(0) = θ⋆, p(1) =
(
h((W ⋆

l , b
⋆
l )

k
l=2, F

θ⋆

k ), (W ⋆
l , b

⋆
l )

L
l=2

)
, and

F
p(α)
L = F θ⋆

L for all α ∈ [0, 1].
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Lemma 4 Given two connected sets A ⊆ Rm1×n and B ⊆ Rn×m2 , the set {ab | a ∈ A, b ∈ B} is
connected. Given two connected sets A,B ⊆ Rm×n, the set {a+ b | a ∈ A, b ∈ B} is connected.

Lemma 5 Under Assumption 2, for any θ ∈ Ω, there exist θ⋆ ∈ Ω⋆ and a continuous path map
p : [0, 1] → Ω such that p(0) = θ, p(1) = θ⋆, and F p(α)

L = F θ
L for all α ∈ [0, 1].

Lemma 6 If n < m, then the set F = {F ∈ Rm×n | rank(F ) = n} is connected. In other words,
given F1, F2 ∈ F , there exists a continuous path map q : [0, 1] → F such that q(0) = F1 and
q(1) = F2.

Fix a λ ∈ R. To show the superlevel set UΩ
λ,r is connected, it suffices to show that for any θ1, θ2 ∈ UΩ

λ,r,
there exists a continuous path between them that is completely in UΩ

λ,r.

Without any loss of generality, we can safely assume that both θ1 = (W1,l, b1,l)
L
l=1 and θ2 =

(W2,l, b2,l)
L
l=1 satisfy Condition 1, since otherwise by Lemma 5 we can find a continuous path from

θ1 and θ2 that leads to one satisfying Condition 1. We denote the policies parameterized by θ1, θ2 as
π1, π2, i.e.

π1 = F θ1
L , π2 = F θ2

L .

By Lemma 3, there is a continuous path from θ1/θ2 to θ′1/θ
′
2 where we define

θ′1 =
(
h
(
(W1,l, b1,l)

L
l=2 , π1

)
, (W1,l, b1,l)

L
l=2

)
,

and θ′2 =
(
h
(
(W2,l, b2,l)

L
l=2 , π2

)
, (W2,l, b2,l)

L
l=2

)
.

Now, we just have to show that there exists a continuous path between θ′1 and θ′2 that is completely
within UΩ

λ,r. By Lemma 6, we know that for l = 2, .., L, there exists a continuous path map
ql : [0, 1] → Ω⋆

l such that ql(1) =W1,l and ql(0) =W2,l. Then, we construct the map q : [0, 1] → Ω

q(α) =
(
h((ql(α), αb1,l + (1− α)b2,l)

L
l=2, π1), (ql(α), αb1,l + (1− α)b2,l)

L
l=2

)
∀α ∈ [0, 1].

It is obvious that q is a continuous map as h, q2, ..., qL are continuous. In addition, F q(α)
L = π1 for

all α ∈ [0, 1], and q(1) = θ′1. We define

θ′′1 = q(0) =
(
h
(
(W2,l, b2,l)

L
l=2 , π1

)
, (W2,l, b2,l)

L
l=2

)
.

Now our aim simplifies to finding a continuous path between θ′′1 and θ′2 that is completely in UΩ
λ,r. To

show that this path exists, we construct a continuous map t : [0, 1] → Ω as follows

t(α) =
(
h
(
(W2,l, b2,l)

L
l=2 , π̃α

)
, (W2,l, b2,l)

L
l=2

)
∀α ∈ [0, 1],

where π̃ is defined entry-wise

π̃α(a | s) = αµπ1(s)π1(a | s) + (1− α)µπ2(s)π2(a | s)
αµπ1

(s) + (1− α)µπ2
(s)

.

It can be seen that t is indeed continuous since π̃α is continuous in α, and t(0) = θ′2 and t(1) = θ′′1 .
What remains to be shown is that F t(α)

L ∈ UΩ
λ,r, i.e. Jr(F

t(α)
L ) ≥ λ. By the definition of h in Lemma

3, F t(α)
L = π̃α. It has been shown in the proof of Theorem 1 that indeed Jr(π̃α) ≥ λ provided that

Jr(π1) ≥ λ and Jr(π2) ≥ λ. This concludes the proof of Proposition 1.

■

C Proof of Supporting Lemmas

C.1 Proof of Lemma 1

This lemma is adapted from Lemma 5.2 of Nguyen [2019].
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C.2 Proof of Lemma 2

This lemma is adapted from Lemma 5.3 of Nguyen [2019].

C.3 Proof of Lemma 3

We provide a proof for the case k = L. For k ̸= L, the proof can be found in Nguyen [2019][Lemma
3.3].

For ((W2, b2), ..., (WL, bL), π) ∈ Ω⋆
2 × ...× Ω⋆

L ×∆S
A, we define the map h as follows

h
(
(Wl, bl)

L
l=2, π

)
=

(
Ŵ1, b̂1

)
where Ŵ1 and b̂1 is defined as

[
W1

b⊤1

]
=

[
X,1|S|

]†
σ−1 (B1) ,

Bl =
(
σ−1 (Bl+1)− 1|S|b

⊤
l+1

)
W †

l+1,∀l ∈ [1, k − 2]

Bk−1 =
(
ψinv(π)− 1|S|b

⊤
L

)
W †

L

(16)

where we use A† to denote the Moore-Penrose inverse of a matrix A. If A has full column rank, then
we have A†A = I . If A has full row rank, we have AA† = I . We can easily see that the defined h
operator is continuous as it is a composition of continuous operators.

Assumption 3, and Condition 1 imply that the matrices W2, ...,WL all have full column rank, which
means W †

l Wl = I . We also know that [X,1|S|] has full row rank by our assumption that X has full
row rank, which means [X,1|S|][X,1|S|]

† = I . Therefore, we can layerwise invert (16) and verify
that

F
h((Wl,bl)

L
l=2,π),(Wl,bl)

L
l=2

L = π.

For every layer l = 2, ..., L, we define the operator Gl : R|S|×nl−1 → R|S|×nl

Gl(Y ) =

 σ
(
YW ⋆

l + 1|S| (b
⋆
l )

⊤
)

l ∈ [2, L− 1]

ψ
(
YW ⋆

L + 1|S| (b
⋆
L)

⊤
)

l = L

We also define the operator H : R(d+1)×n1 → R|S|×n1

H(Y ) = σ
(
[X,1|S|]Y

)
.

To show the continuous path claimed in Lemma 3 exists, it suffices to show that the set {(W1, b1) :

F
(W1,b1),(W

⋆
l ,b⋆l )

L
l=2

L = F θ⋆

L } is connected, which is equivalent to showing that the set f−1(F θ⋆

L ) is
connected where f is defined as

f([W⊤
1 , b1]

⊤) = GL ◦ ... ◦G2 ◦H([W⊤
1 , b1]

⊤).

Note that the definition of f implies

f−1(π) = H−1 ◦G−1
2 ◦ ... ◦G−1

L (π). (17)

Note that G−1
l is

G−1
l (F )=

{ (
ψinv(F )+{C | Ci,j=Ci,j′ ∀i, j ̸=j′}−1Nb

T
L

)
(W ⋆

L)
†
+ {B |BW ⋆

L = 0} , l = L(
σ−1(F )− 1Nb

⋆
l

)
(W ⋆

l )
†
+ {B | BW ⋆

l = 0} , l = 2, ..., L− 1

It is easy to verify that {C | Ci,j = Ci,j′ ∀i, j ̸= j′} and {B | BW ⋆
l = 0} for all l = 2, ..., L. Then,

Lemma 4 implies that G−1
l (F ) is a connected set for all F .

Similarly, H−1(F ) =
[
X,1|S|

]†
σ−1(F ) +

{
B |

[
X,1|S|

]
B = 0

}
is also a connected set for all F .

Therefore, from (17) we know that f−1(F ) is a connected set for any F , which concludes the proof
of Lemma 3.

■
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C.4 Proof of Lemma 4

To show that the product of the two connected sets are connected, we consider any x, y ∈ {ab |
a ∈ A, b ∈ B}. Obviously, there exist ax, ay ∈ A and bx, by ∈ B such that x = axbx, y = ayby.
The connectedness of A and B implies that there exists continuous path maps pA : [0, 1] → A and
pB : [0, 1] → B such that pA(0) = ax, pA(1) = ay, pB(0) = bx, pB(1) = by. Define p(α) = pApB
for α ∈ [0, 1]. It is obvious that p(α) ∈ {ab | a ∈ A, b ∈ B} for all α. Since the product of
continuous maps is still continuous, p : [0, 1] → {ab | a ∈ A, b ∈ B} is a continuous path map
satisfying p(0) = x and p(1) = y. This implies that the set {ab | a ∈ A, b ∈ B} is a connected set.

A similar argument can be used to show that the sum of two connected sets is connected.

■

C.5 Proof of Lemma 5

Define F̃L((Wl, bl)
L
l=1) as the output of the final layer before the softmax activation

F̃
(Wl,bl)

L
l=1

L = FL−1WL + 1|S|b
⊤
L .

Then, existing results in the literature (such as Lemma 3.4 of Nguyen [2019]) show that for any
θ ∈ Ω, there exists a continuous path map p : [0, 1] → Ω such that p(0) = θ, p(1) = θ⋆ ∈ Ω⋆, and
F̃L(p(α)) = F̃L(θ) for all α ∈ [0, 1]. This leads to our claim.

■

C.6 Proof of Lemma 6

This lemma is adapted from Theorem 4 of Evard and Jafari [1994].

D Convexity of Optimization Program (11)

In this section, we show that (11) is a convex optimization program. First, we note that

Jr′(π) =
∑
s,a

r′(s, a)µ̂π = µ̂⊤
π r

′,

which means that the objective function is linear in the reward.

The constraint set is obvious closed. It is also bounded as the reward r(s, a) ∈ [0, Ur]. To prove the
constraint set is convex, we need to show that for any r1, r2 such that Attack(r1, π†, ϵ†) = r† and
Attack(r2, π†, ϵ†) = r†, we have

Attack(αr1 + (1− α)r2, π†, ϵ†) = r†, ∀α ∈ [0, 1]. (18)

By the optimality condition of (9), r† being the optimal poisoned reward for true reward r1 and r2 is
equivalent to

⟨r − r†, r1 − r†⟩ ≤ 0 and ⟨r − r†, r2 − r†⟩ ≤ 0

for all r such that Jr(π†) ≥ Jr(π) + ϵ†, ∀π ∈ Πdet\π†. By taking the convex combination of these
two inequalities, we have for any α ∈ [0, 1]

⟨r − r†, αr1 + (1− α)r2 − r†⟩ ≤ 0 (19)

for all r such that Jr(π†) ≥ Jr(π) + ϵ†, ∀π ∈ Πdet\π†. Again by the optimality condition of (9),
(19) is equivalent to (18).

At this point, we have shown that (11) has a linear objective function and a convex (and also compact)
constraint set. As a result, the optimization program is convex.
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