
FlowPG: Action-constrained Policy Gradient with
Normalizing Flows

Janaka Chathuranga Brahmanage, Jiajing Ling, Akshat Kumar
School of Computing and Information Systems

Singapore Management University
{janakat.2022, jjling.2018}@phdcs.smu.edu.sg, akshatkumar@smu.edu.sg

Abstract

Action-constrained reinforcement learning (ACRL) is a popular approach for
solving safety-critical and resource-allocation related decision making problems.
A major challenge in ACRL is to ensure agent taking a valid action satisfying
constraints in each RL step. Commonly used approach of using a projection layer on
top of the policy network requires solving an optimization program which can result
in longer training time, slow convergence, and zero gradient problem. To address
this, first we use a normalizing flow model to learn an invertible, differentiable
mapping between the feasible action space and the support of a simple distribution
on a latent variable, such as Gaussian. Second, learning the flow model requires
sampling from the feasible action space, which is also challenging. We develop
multiple methods, based on Hamiltonian Monte-Carlo and probabilistic sentential
decision diagrams for such action sampling for convex and non-convex constraints.
Third, we integrate the learned normalizing flow with the DDPG algorithm. By
design, a well-trained normalizing flow will transform policy output into a valid
action without requiring an optimization solver. Empirically, our approach results
in significantly fewer constraint violations (upto an order-of-magnitude for several
instances) and is multiple times faster on a variety of continuous control tasks.

1 Introduction

Action-constrained reinforcement learning (ACRL), where an agent’s action taken in each RL
step should satisfy specified constraints, has been applied to solve a diverse range of real-world
applications [18]. One example is the resource allocation problem in supply-demand matching [4].
The allocation of resources must satisfy constraints such as total assigned resources should be
within a specific upper and lower limit. In robotics, kinematics constraints (e.g., limits on velocity,
acceleration, torque among others) can be modeled effectively using action constraints [1, 13, 26, 32].

One of the main challenges in solving ACRL is to ensure that during training and evaluation, all
the action constraints are satisfied at each time step, while simultaneously improving the policy.
Lagrangian Relaxation (LR) is a popular approach for solving constrained RL problems [30], however
directly applying LR to ACRL is impractical due to the difficulty in defining cost functions (c(s, a))
that penalize infeasible actions for all (s, a), and the inability to guarantee zero constraint violation
during training and policy execution. Also, there are studies addressing ACRL with discrete action
spaces [19, 20]. As they use propositional logic, it is not clear how to extend them to continuous
action spaces. Recently proposed approaches aim to satisfy continuous action constraints using
an action projection step. One natural approach is to add a differentiable projection layer at the
end of the policy network to satisfy the constraints [2, 4, 7, 26]. This projection layer projects the
unconstrained policy action onto the feasible action space by solving a quadratic program (QP).
However, this approach has two primary limitations. Firstly, solving a QP at each RL step can be

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

computationally expensive, particularly when dealing with non-convex action constraints or large
action spaces. Secondly, the coupling between the policy network and projection layer can lead to a
potential issue of zero gradient during end-to-end training, which can undermine the effectiveness
of the projection layer approach, especially in the early training stages, as highlighted by recent
studies [18]. This issue occurs when the policy output is far outside the feasible action space, thereby
any small change in the policy parameters does not result in any change in the projected action.

To overcome the zero gradient issue, an ACRL algorithm has been proposed in [18], which decouples
policy gradients from the projection layer. The policy parameters are updated by following the
direction found by the Frank-Wolf method [10], which is within the feasible action space. However,
this approach can also be computationally expensive, as solving a QP is still required during the
update of policy parameters and during policy execution. To summarize, while there are several
proposed approaches for solving ACRL with continuous action space, all of them share the common
drawback of requiring QP solving during either training or action execution, or both. This can cause
a significant reduction in training speed, which we also validate empirically. Moreover, some of
these approaches also suffer from the zero gradient issue, which can make training sample inefficient.
Therefore, there is need for more efficient methods to tackle ACRL with continuous action spaces.

Often, action constraints are specified analytically using features from state and actions (e.g., x2 +
y2 <= 1 where x, y can be features). Our key idea is to exploit given action constraints as domain
knowledge and develop an effective, compact representation of all valid actions that can be integrated
with RL algorithms. To find such a representation, generative models provide an attractive solution
since they can generate valid actions by learning from a finite number of valid actions (which can
be provided by sampling from the valid action space). This allows for a compact feasible action
space representation even for continuous action spaces. Furthermore, generative models can be easily
integrated with RL algorithms for end-to-end training, as shown in previous work [22, 33], even
though they are not specifically solving ACRL problems. The idea of learning the representation of
all valid actions also shares a connection with offline RL, where invalid actions are often treated as
out-of-distribution (OOD) actions [12, 35]. However, a notable difference between our work and
offline RL lies in the availability of a dataset comprising valid actions. In offline RL, such a dataset is
assumed to be available (e.g., collected from a random policy or an expert). In ACRL, collecting data
even from a random policy is not straightforward as random policy must also select actions uniformly
from the feasible action space, which itself is the key problem we address in this work.

Our main contributions are:

• We utilize the normalizing flows, a type of generative model, to learn a differentiable, invertible
mapping between the data distribution of sampled valid actions and a simple latent distribution
(e.g., Gaussian, uniform distribution) [9, 27]. When a member of the latent distribution is given,
the flow model can transform it into an element that conforms to the distribution of valid actions,
assuming the model is well-trained. Compared to other generative models, such as Generative
Adversarial Networks (GANs) and Variational Autoencoders (VAEs), the normalizing flow model
is known to be more efficient at completing the task of data generation [9].

• Sampling uniformly from the feasible action space to train the flow model is challenging. For
example, valid action space may be characterized using a set of constraints over binary variables.
We therefore develop multiple methods, based on Hamiltonian Monte-Carlo [3] and probabilistic
decision diagrams (PSDD) [16, 28], for valid action sampling for (non)convex constraints. These
methods are significantly more sample efficient than the standard rejection sampling.

• We propose a simple and easy to implement method to integrate the normalizing flow model with
deep RL algorithms such as DDPG [17]. Our approach is general, requires change only in the last
layer of the policy network, and can be integrated with other deep RL methods. In our method, the
modified policy network outputs an element of the latent distribution used in the normalizing flow
model, which is then transformed into a valid action via the mapping provided by the normalizing
flow. We also show gradients can be propagated through the normalizing flow to improve the
policy. By integrating the normalizing flow with deep RL algorithms, we can avoid the zero
gradient issue since there is no projection of invalid action onto the feasible action space. We
show empirically that the flow model can be trained well on a variety of action constraints used in
the literature, therefore, probability of constraint violation occurring remains low. Empirically,
our approach results in significantly fewer constraint violations (upto 10x less), and is multiple
times faster on a variety of continuous control tasks than the previous best method [18].

2

2 Preliminaries

Action-constrained Markov Decision Process We consider a Markov decision process (MDP)
model, which is defined by a tuple (S,A, p, r, γ, b0), where S is the set of possible states, A is the set
of possible actions that an agent can take, p(st+1|st, at) is the probability distribution over the next
state st+1 given the current state st and action at, r(st, at) is the reward function that determines the
reward received by the agent after taking action a in state s at time step t, γ ∈ [0, 1) is the discount
factor, and b0 is the initial state distribution. We assume the action space A is continuous, and focus
on deterministic policies. Specifically, let µθ(·) denote a deterministic policy parameterized by θ;
action taken in state s is given as a = µθ(s). Under policy µθ, the state value function (V) and the
state-action value function (Q) are defined as follows respectively.

V µθ (s) = E[
∞∑
t=0

γtr(st, at)|s0 = s;µθ], Q
µθ (s, a) = E[

∞∑
t=0

γtr(st, at)|s0 = s, a0 = a;µθ] (1)

An action-constrained MDP extends the standard MDP by incorporating explicit action constraints
that determine a valid action set C(s) ⊆ A for each state s ∈ S. In other words, the agent can only
choose an action from the set of valid actions at each time step. The goal of an action-constrained
MDP is to find a policy that maximizes the expected discounted total reward while ensuring that all
chosen actions are valid with respect to the constraints. Formally, we have:

max
θ
J(µθ) = Es∼b0 [V µθ (s)] s.t. at ∈ C(st) ∀t (2)

We conisder a RL setting where transition and reward functions are not known. The agent learns a
policy by interacting with the environment and using collected experiences (st, at, rt, st+1).

Deep Deterministic Policy Gradient Deep Deterministic Policy Gradient (DDPG) is a RL al-
gorithm specifically designed to handle continuous action spaces [17]. The algorithm combines
deterministic policy gradient [29] with deep Q-learning [25]. To solve an unconstrained RL problem,
DDPG applies stochastic gradient ascent to update policy parameters θ in the direction of the gradient
∇θJ(µθ). The deterministic policy gradient theorem is used to compute the policy gradient as:

∇θJ(µθ) = Es∼B[∇aQµθ (s, a;ϕ)∇θµθ(s)|a=µθ(s)] (3)

The state-action value function Q(s, a;ϕ) is approximated using a deep neural network, and the
parameters ϕ of this neural network are updated by minimizing the following loss function:

E(s,a,s′,r)∼B[(r + γQ(s′, µθ′(s
′);ϕ′)−Q(s, a;ϕ))2] (4)

where (s, a, s′, r) is a transition sample; B is the replay buffer that stores transition samples; θ′ and
ϕ′ are the parameters of the target policy and the target state-action value function respectively.

Normalizing Flows A normalizing flow model is a type of generative model that transforms a simple
distribution, such as a Gaussian or uniform distribution, into a complex one by applying a sequence
of invertible transformation functions [9, 27]. Let f = fK ◦ fK−1 ◦ . . . ◦ f1 : RD 7→ RD denote
a normalizing flow model, where each fi : RD 7→ RD, i = 1 : K, is an invertible transformation
function. Starting from an initial sample from a base distribution (or prior distribution), z0 ∼ p(z0),
the transformed sample from the model is x = fK ◦fK−1 ◦ . . .◦f1(z0). Each fi takes input zi−1 and
outputs zi, and x = zK . Given a training datasetD, the mapping function f is learned by maximizing
the log-likelihood of the data, which is defined as log p(D) =

∑
x∈D log p(x). The log probability

log p(x) is computed by repeatedly applying the change of variables theorem, and is expressed as:

log p(x) = log p(z0)−
K∑
i=1

log

∣∣∣∣det ∂fi(zi−1)

∂(zi−1)T

∣∣∣∣ (5)

3 Normalizing Flow for ACRL

3.1 Learning Valid Action Mapping Using Normalizing Flows

We employ normalizing flows to establish an invertible mapping between the support of a simple
distribution and the space of valid actions. While various transformation functions can be utilized

3

for implementing normalizing flows, we specifically focus on the conditional RealNVP model [34]
due to its suitability for the general ACRL setting, where the set of valid actions is dependent on
the state variable. The conditional RealNVP extends the original RealNVP [9] by incorporating
the conditioning variable in both the prior distribution and the transformation functions. These
transformation functions, which are implemented as affine coupling layers, possess the advantageous
properties of enabling efficient forward propagation during model learning and efficient backward
propagation for sample generation [9].

Given a dataset D consisting of valid actions (details in Section 3.2), we train the invertible mapping
fψ parameterized by ψ to capture the relationship between the support of a uniform distribution p
and the elements in D. Learning this mapping provides an easy way to generate new valid actions.
The policy network outputs an element from the domain of the uniform distribution, which is then
mapped to a valid action using the learned flow. This process of generating actions is much simpler
than using a math program for action projection, which can result in the zero gradient issue.

The flow learning process involves maximizing the log-likelihood of the data, following the method-
ology presented in [34]. In contrast to using a Gaussian distribution, we opt for a uniform distribution
as it demonstrated better empirical performance when combined with the DDPG algorithm. Once the
normalizing flow model is learned, during backward propagation with conditioning variables, each
bijective function fψi , where i = 1, . . . ,K, takes inputs of zi−1 ∈ RD and a conditioning variable
y ∈ RDy (representing state features) and produces an output of xi ∈ RD as:

xi1:d = zi−1
1:d (6)

xid+1:D = (zi−1
d+1:D − t(z

i−1
1:d , y))⊙ exp(−k(zi−1

1:d , y)) (7)

where d < D is the index that splits dimensions of input xi into two parts; k and t are scale and
translation functions that map from Rd+Dy 7→ RD−d. These two functions are modeled using neural
networks. ⊙ denotes the element-wise product (Hadamard product). Therefore, given a random
member of the uniform distribution z0 ∼ p(z0) and a conditioning variable y, the mapped element is:

x = fψK ◦ fψK−1
◦ . . . ◦ fψ1(z

0, y) (8)

Note that the transformed output x obtained through the normalizing flow model may not precisely
match any specific element from the dataset D. However, when the mapping fψ is effectively trained,
the resulting x should exhibit similar characteristics to the elements in D, thereby satisfying the
constraints with high probability, as we also observed empirically. In essence, the combination of the
uniform distribution and the learned mapping serves as an efficient representation of all valid actions,
providing a means to generate actions that adhere to the constraints.

Unlike other generative models, normalizing flows provide the ability to measure the recall rate in
learning the valid action mapping due to their invertible bijective transformations. The recall rate (we
call it "coverage") indicates the fraction of valid actions that can be generated from the latent space.
Given a conditioning variable y, let C(y) denote the set of valid actions that are uniformly distributed
in the feasible region. The recall can be computed as follows.

recall(y) =

∑
x∈C(y) Idomfψ f

−1
ψ (x, y)

|C(y)|
(9)

where f−1
ψ is the inverse transformation function of the normalizing flows model fψ . Recall is useful

to characterize the learned generative model. If the recall is low, it would limit the feasible constrained
space over which ACRL algorithm optimizes the policy. This can result in lower solution quality.

The Mollified Uniform Prior Most recent studies of normalizing flows employ a standard Gaussian
distribution as the latent space distribution [9, 15, 27], which spans the entire real number space
RD. However, through empirical observation, we noticed that with Gaussian latent distribution, the
feasible action region tends to be mapped closer to zero in the latent space, where the probability
of the standard Gaussian is higher. On the other hand, points located far away from the center
of the Gaussian (several standard deviations) often get mapped into the infeasible action space.
Consequently, when coupling the DDPG policy network with the flow, it resulted in high constraint
violations as the policy network output can be any number from the support of the Gaussian, and not
just limited to the high probability region.

4

1

A ¬A

3

B⊥ ¬B

3

B ¬B

5

C⊥ ¬C¬D

5

C⊥ ¬C⊤

5

C¬D ¬C⊤

(a)

1

A

0.17

¬A

0.83

3

B ¬B

1

3

B

0.40

¬B

0.60

5

C:.⊥

5

C⊥ ¬C¬D

1

5

C⊥ ¬CD:0.50

1

5

C¬D

0.33

¬CD:0.50

0.67

(b) (c)
Figure 1: (a)An SDD representing the PB constraint A·21+B·20+C·21+D·20≤2; (b)A PSDD ; (c)
Samples generated with HMC

To address this issue, we decided to use a uniform distribution from [−1, 1]D as the latent distribution
instead of the standard Gaussian. In the uniform distribution, there is no high or low probability
region unlike the standard Gaussian. However, the uniform distribution is not differentiable, therefore
we employ a modified version called the Mollified uniform distribution [11]. In order to train the
normalizing flow, we require the probability density of the prior distribution as in Eq. 5. Computing
the probability density of a multi-dimensional mollified distribution can be challenging since it
requires integrating over all dimensions [11]. However, in the case of a single dimension, a sample
drawn from a mollified uniform distribution can be seen as a sample from a uniform distribution
with added Gaussian noise. In other words, a sample x is obtained as x = x0 + δ, where x0 follows
a uniform distribution in the range [−1, 1], and δ follows a Gaussian distribution with mean 0 and
standard deviation σ.

To calculate the overall probability density, we treat each dimension individually, compute
their probability densities, and take their product as the overall probability. The probability
density in a single dimension can be easily calculated using the following formula: p(x) =∫ 1

−1
1√

2πσ2
e−

1
2σ2

(x−x0)
2

dx0 = Φ
(
1−x
σ

)
− Φ

(−1−x
σ

)
. In this formula, Φ represents the cumulative

density function of the standard Gaussian distribution.

3.2 Generating Random Samples from the Valid Action Space

To effectively train the normalizing flow model, we need to generate samples from the set of valid
actions. Even with the known analytical form of action constraints this is a challenging problem.
Standard rejection sampling is highly inefficient to sample from the complex constraints that arise in
ACRL benchmarks. Therefore, we use two methods described next.

Hamiltonian Monte-Carlo (HMC) HMC is a Markov chain Monte Carlo method, which utilizes
energy conservation to effectively sample a target distribution [3]. It utilizes Hamiltonian-dynamics
to simulate the movement of a particle in a continues space based on a potential energy function. It
uses leap-frog algorithm with the first order integrator, to estimate the next position of the particle. In
our work, we need to generate samples in the feasible region. Therefore we define energy function to
be a fixed value 0 in the feasible region. Then we bound the feasible region with a hard wall of infinity
potential by setting the potential to∞ in the infeasible region. Figure 1(c) depicts the distribution
of feasible action samples generated by HMC in the action constraint of the Reacher Environment
(a21 + a22 ≤ 0.05). It presents a contour map of the sample density in Figure 1(c)-(ii), as well as their
projection onto each dimension in Figure 1(c)-(i) and Figure 1(c)-(iii) respectively.

Probabilistic Sentential Decision Diagrams In many real-world applications such as resource
allocation, the constraints are defined using a set of linear equalities/inequalities over integer variables.
However, sampling valid actions using HMC that satisfy such constraints is very challenging due
to the presence of equality constraints. To address this challenge, we propose to use a Probabilistic
Sentential Decision Diagram (PSDD) [16] to encode a uniform distribution over all the valid actions
and then sample actions from the PSDD. For this setting, we assume that all the constraints are
linear (in)equalities. We describe the process of constructing a PSDD next. Consider an inequality
constraint x+ y ≤ 2. We follow the following steps:

5

1. We convert the variables into binary representations. The number of bits used in the binary
representation depends on the upper/lower bounds of variables. For example, assuming x, y ∈
{0, 1, 2, 3}, we can use A·21+B·20 to represent x and C·21+D·20 to represent y where A,B,C,D
are Boolean variables.

2. We convert the given linear constraint into a Pseudo-Boolean (PB) constraint by using the binary
representation of variables. The resulting PB constraint is A·21+B·20+C·21+D·20≤2. Note that the
coefficients in a PB constraint can be real numbers.

3. We compile the PB constraint into an SDD using the method described in [6]. An SDD encodes
all instantiations of Boolean variables that satisfy the constraint. Each valid instantiation is
called a model of the SDD. Figure 1(a) shows a compiled SDD for the PB constraint. For the
syntax and semantics of SDD, we refer to [8] for detailed elaboration. When there are multiple
equalities/inequalities constraints, we create SDDs in this fashion for each constraint. We then
conjoin all such SDDs (which is a poly-time operation) to encode all the constraints into a single
SDD that represents the valid action space satisfying all the constraints.

4. We parameterize the final SDD using a standard package [5] to obtain a PSDD as shown in
Figure 1(b), which represents a probability distribution over all models of the underlying SDD.
A uniform distribution over all models is achievable by a special parameter initialization scheme
as provided in [5]. Sampling models from the PSDD can be efficiently performed using a fast
and top-down procedure, as described in [16].

We use this scheme to sample valid resource allocation actions in a bike sharing domain that has
multiple equality and inequality constraints and has been used previously [4, 18].

3.3 Integrating DDPG with Normalizing Flows

In previous approaches to ACRL, addressing zero constraint violations often involves adding a
projection layer to the original policy network. However, this method has drawbacks such as
increased training time, slow convergence, and the issue of zero gradient when updating policy
parameters, particularly during the early stages of training when pre-projection actions are likely to
be invalid. In our work, we propose an integration of the DDPG algorithm with the learned mapping
between the support of a uniform distribution p and the set of valid actions as in Section 3.1. This
integration allows us to incorporate the learned mapping directly into the original policy network of
DDPG, alleviating the aforementioned issues.

Figure 2(a) illustrates the architecture of our proposed policy network, which consists of two mod-
ules.

• The first module is the original parameterized policy network µθ from DDPG, which takes the
state s as input and outputs ã. To ensure that ã belongs to a uniform distribution p used for
learning the mapping fψ, we employ a Tanh activation function at the end of the original policy
network.

• The second module is the learned mapping function fψ using normalizing flows. This mapping
function takes inputs of ã and s.

Since ã is a member of the uniform distribution p, for a well trained fψ , chances of the mapped action
outside of the valid action space will be low, which we also observe empirically. Our proposed policy
network offers two significant advantages compared to previous ACRL methods. First, it eliminates
the need to solve a QP to achieve zero constraint violation. Instead, the valid action is obtained by
mapping a sample from the uniform distribution, resulting in a substantial increase in training speed.
Note that in our work the mapping function fψ is pre-trained, and its parameters ψ remain fixed
during the learning process of the original policy parameters θ. However, if it becomes necessary for
large state/action spaces, we can adapt our approach to refine the flow during the learning process.
This can be achieved by performing a gradient update on fψ, using newly encountered states and
valid actions, as described in Section 3.1. Through our experiments, we demonstrate the accuracy
of the learned mapping, highlighting the effectiveness of our approach to satisfy action constraints.
Second, the architecture of our policy network enables end-to-end updating of the original policy
parameters θ without solving a math program for action projection, thereby avoiding the issue of zero
gradient. This advantage allows for smoother training and more stable convergence.

6

Policy update The objective is to learn a deterministic policy fψ(µθ(s), s) that gives the action a
given a state s such that J(µθ) is maximized. We assume that the Q-function is differentiable with
respect to the action. Given that the learned mapping fψ is also differentiable and the parameters ψ
are frozen, we can update the policy by performing gradient ascent only with respect to the original
policy network parameters θ to solve the following optimization problem:

max
θ
J(µθ) = Es∼B[Q(s, fψ(µθ(s), s);ϕ)] (10)

where B is the replay buffer and Q-function parameters ϕ are treated as constants. Figure 2(b) shows
the reversed gradient backpropagation path (in blue) for θ. The new deterministic policy gradient for
the update of θ is then given as follows.

∇θJ(µθ) = Es∼B[∇aQµθ (s, a;ϕ)∇ãfψ(ã, s)∇θµθ(s)|ã=µθ(s),a=fψ(ã,s)] (11)

Next, we derive the analytical form of the gradient term ∇ãfψ(ã, s) in the new deterministic policy
gradient, which is an additional component compared to the standard DDPG update (3). For notational
simplicity, we focus on computing ∇z0fψ(z0, y), which is same as∇ãfψ(ã, s) (as last layer of the
policy maps to the domain of the latent uniform distribution, or ã = z0). We also note ψ is the
collection of parameters ψi ∀i = 1, . . . ,K. To compute this gradient, we apply the chain rule of
differentiation. Considering the composition of functions fψ(z0, y) = fψK (fψK−1

(. . . fψ1
(z0, y))),

we can express the derivative as a product of gradients:

∇z0fψ(z
0, y) =

∂fψK ◦ fψK−1 ◦ . . . ◦ fψ1(z
0, y)

∂(z0)T
(z0)

=
∂fψ1

∂(z0)T
(z0) · . . . · ∂fψK

∂(zK−1)T
(zK−1 = fψK−1(z

K−2, y)) (12)

The Jacobian of each bijective function fψi , i = 1, . . . ,K is

∂fψi
∂(zi−1)T

=
∂xi

∂(zi−1)T
=

[Id 0
∂xid+1:D

∂(zi−1
1:d

)T
diag(exp[−k(zi−1

1:d , y)])

]
(13)

where Id is a d×d identity matrix. diag(exp[−k(zi−1
1:d , y)]) is the diagonal matrix where the diagonal

consist of elements corresponding to the vector exp[−k(zi−1
1:d , y)] and the other elements are all zeros.

∂xid+1:D/∂(z
i−1
1:d)T is computed as follows.

∂xid+1:D

∂(zi−1
1:d)T

= − exp[−k(zi−1
1:d , y)]1T ⊙

(
[zi−1
d+1:D − t(zi−1

1:d , y)]1T ⊙
∂k(zi−1

1:d , y)

∂(zi−1
1:d)T

+
∂t(zi−1

1:d , y)

∂(zi−1
1:d)T

)
(14)

where 1T denotes a row vector of length d whose elements are all one. ∂k(z
i−1
1:d ,y)

∂(zi−1
1:d)T

and ∂t(zi−1
1:d ,y)

∂(zi−1
1:d)T

are
the Jacobian of k and t respectively. Note that when k and t are complex functions modeled by neural
networks. The Jacobian matrix can be computed efficiently using automatic differentiation tools such
as Pytorch and Tensorflow.

Critic Update The update of Q-function parameters ϕ in our approach follows the same update
rule as in DDPG (4). However, in case the mapped action by the learned flow does not satisfy action
constraints, we solve a QP to project it into the feasible action space as the environment only accepts
valid actions. Therefore, the action stored in the replay buffer B is either the output from the flow
model or the projected action, depending on whether flow mapped action is valid or not. We note that
the probability of using the projected action during training is low as for all the tested instances as the
normalizing flow had high accuracy. Even if the projection was required, the difference between the
flow output and the projected action was small as we show empirically. We also highlight that for
policy update, we use the flow mapped action without using any projection, which enables end-to-end
training of the policy.

Other RL algorithms While our work focuses on DDPG, it can be extended to other RL algorithms
such as SAC or PPO. This is possible because the normalizing flows enable the computation of
log probabilities of actions, which is required during training in SAC or PPO. This showcases an
additional advantage of using the normalizing flow model in our work compared to other generative
models.

7

𝑠
Original policy

𝜇𝜃(𝑠)

Normalizing flow model

𝑎
𝑎

𝑓𝜓(𝑎, 𝑠)

𝐝𝐨𝐦𝑓𝜓 𝒞(𝑠)

𝑎
𝑎

(a)

𝑠 𝑎 𝑎 𝑄(𝑠, 𝑎; 𝜙)

𝜃 𝜓

(b)
Figure 2: (a) Policy network; (b) The reversed gradient path of θ (in blue). Nodes denote variables
and edges denote operations. Paths in black are detached for θ. The green block is a negative loss
(assuming a minimization task).

4 Experiments

Environments We evaluate our proposed approach on four continuous control RL tasks in the
MuJoCo environment [31] and one resource allocation problem that has been used in previous
works [4, 18].

• Reacher: The agent is required to navigate a 2-DoF robot arm to reach a target. The agent’s
actions (a1, a2) ∈ R2 are 2D. The action space is subject to a nonlinear convex constraint
a21 + a22 ≤ 0.05.

• Half Cheetah: The task is to make the cheetah run forward by applying torque on the joints. An
action is a 6-dimensional vector (v1, v2, ...v6), bounded by [−1, 1]. The constraint is defined as∑6
i=1 |viwi| ≤ 20 where wi is the velocity, which can be observed as part of the state.

• Hopper and Walker2d: The task involves controlling a robot to hop or walk forward by applying
torques to its hinges. An action is a n-dimensional vector (v1, ..., vn), bounded by [−1, 1] where
n is the number of hinges on the robot (3 for Hopper and 6 for Walker2d). The constraint is
defined as

∑n
i=1 max{wivi, 0} ≤ 10 where wi is the angular velocity of the ith hinge, observed

in the state.
• Bike Sharing System (BSS): The environment consists of m bikes and n stations, each with a

capacity c. At every RL step, the agent allocates m bikes among n stations based on previous al-
location and demand while adhering to capacity constraints. The agent’s action a = (a1, a2, ..an)
must satisfy

∑n
i=1 ai = m and 0 ≤ ai ≤ c. We evaluate our approach on a specific scenario

with n = 5, m = 150, and c = 35 as in [18]. It poses a significant challenge due to the large
combinatorial action space of 1515.

Baselines We compare our approach FlowPG with the following two baselines.

• DDPG+P: DDPG+Projection is an extension of the vanilla DDPG [17], which introduces an
additional step to ensure feasible actions. Invalid actions are projected onto the feasible action
space by solving an optimization problem.

• NFWPO [18] : This algorithm efficiently explores feasible action space by using the Frank-Wolf
method, and is also state-of-the-art approach for ACRL.

Learning the Normalizing Flows We employ different techniques to generate random samples
from the valid action set in each environment. For the Reacher and Half Cheetah environments,
we utilize HMC to generate random samples. Specifically, we generate 1 million random samples
for training, which could take up to 5 minutes based on the constraint. HMC is more efficient than
rejection sampling and a comparison is available in Appendix A. In the Reacher and Half Cheetah
environments, all samples generated by HMC are valid actions, which shows the effectiveness of
HMC compared to traditional rejection sampling which only produces 3.93%, 4.70% valid actions
respectively. For the BSS environment, we use a PSDD to sample valid actions and obtain all valid
actions from the PSDD to train the flow. Additional information on compiling the linear constraints
into a PSDD and statistics about the PSDD are provided in the Appendix A.

We apply batch gradient descent to train the conditional flow with Adam optimizer and a batch size
of 5000. For Reacher, Half Cheetah, Hopper and Walker2d environments, we train the model for 5K
epochs. For BSS environment, we train for 20K epochs. Further details about the training the flow
such as learning rates, and neural network architecture of the model are provided in the Appendix B.

8

Decision boundary Feasible actions Infeasible actions

1.0 0.5 0.0 0.5 1.0

a1

1.0

0.5

0.0

0.5

1.0

a 2

Latent Space (a)

0.2 0.0 0.2
a1

0.2

0.1

0.0

0.1

0.2

a 2

Action Space (a)

(a) WGAN

1.0 0.5 0.0 0.5 1.0

a1

1.0

0.5

0.0

0.5

1.0

a 2

Latent Space (a)

0.2 0.0 0.2
a1

0.2

0.1

0.0

0.1

0.2

0.3

a 2

Action Space (a)

(b) VAE

1.0 0.5 0.0 0.5 1.0

a1

1.0

0.5

0.0

0.5

1.0

a 2

Latent Space (a)

0.2 0.1 0.0 0.1 0.2
a1

0.2

0.1

0.0

0.1

0.2

a 2

Action Space (a)

(c) Normalizing Flow (Ours)

Figure 3: Mapping between a uniform distribution and action space of Reacher with constraint a2
1 + a2

2 ≤ 0.05

The source code of our implementation is publicly available1. To evaluate the accuracy of the flow
model, we sample 100K random points from the uniform distribution [−1, 1], and then apply the flow.
We measure the accuracy based on whether the output lies within the feasible action region. Our flow
model was able to produce 99.98%, 97.25%, 87.89%, 86.58% and 85.56% accuracy respectively for
Reacher, Half Cheetah, Hopper, Walker2d and BSS environments. Further, we compute the average
recall over all uniformly sampled states to obtain the recall of our flow model using Equation 9. The
achieved recall rates for our trained normalizing flow models were 97.85%, 78.01%, 81.61%, 83.58%,
and 82.35% respectively for Reacher, Half Cheetah, Hopper, Walker2d and BSS environments. More
details such as time are available in Table 1 in Appendix B.

Comparing with other generative models We conduct an ablation study comparing two other
generative models VAE and WGAN (which is more stable than GAN) in Reacher domain. We first
evaluated the accuracy by calculating the percentage of valid actions among 100k generated actions.
The accuracy rates were as follows: Normalizing flows: 99.98%; WGAN 98%; VAE: 83%. We then
considered the recall rate. Our flow model can achieve a recall rate of 97.85%. In contrast, recall
rate cannot be computed in a straightforward fashion in VAE and WGAN since determining the
corresponding latent action for a given valid action is not possible [21]. Nonetheless, we still can
visualize the coverage of VAE and WGAN. In Figure 3, we can see that the feasible region is not fully
covered in both VAE and WGAN models, while it is well covered in the normalizing flow model.

Results We present the empirical results of our approach and the baselines on three different
environments to show the effectiveness of our method in terms of low constraint violations and
achieving fast training speeds. We report results using ten different random seeds. To make a
fair comparison, we keep the architectures of our policy network (with the exception of the Tanh
layer and the normalizing flow model) and the critic network identical to those used in the baseline
approaches. For the detailed pseudo-code of our approach and the neural network architectures along
with hyperparameters, please refer to the appendix.

Figure 4(a) shows the average return of all three approaches over the training steps. Our approach
achieves a comparable average return to NFWPO in the challenging Half Cheetah, Hopper and
Walker2d environments. Additionally, our approach outperforms the other two approaches in terms
of average return in the Reacher and BSS environments. We note that DDPG+P suffers from the zero
gradient issue, leading to convergence to a lower average return.

In Figure 4(b), we present the cumulative constraint violations before projection for all three ap-
proaches over the training steps, with the y-axis represented in log-scale. In all environments, except
for the more challenging Walker2d, our approach demonstrates the fewest cumulative constraint
violations before projection. In the Reacher and Half Cheetah environments, it notably reduces
the violations by an order of magnitude. Moreover, although our approach sometimes generates
infeasible actions, they tend to be located near the feasible region, which can be inferred from
the average magnitude of constraint violations. To quantify the magnitude of constraint violations,
we consider a constrained set C defined with m inequality constraints and n equality constraints:
{x|x ∈ Rd, fi(x) ≤ 0, hj(x) = 0, i = 1, . . . ,m, j = 1, . . . , n}. We define the magnitude of con-
straint violations as CV (x) =

∑m
i=1 max(fi(x), 0) +

∑n
j=1 max(||hj(x)| − ϵ|, 0), where ϵ = 0.1

represents the error margin for the equality constraint. Figure 4(c) illustrates the average magnitude
of constraint violations over training steps, with the y-axis presented in log-scale. Our approach
exhibits the lowest average magnitude of constraint violations in all environments except Hopper and

1https://github.com/rlr-smu/flow-pg

9

FlowPG NFWPO DDPG+P

0 0.5 1 1.5 2 2.5 3
12

10

8

6
Re

ac
he

r

(a) Average Return

0 0.5 1 1.5 2 2.5 3

100

101

102

103

104

105

(b) Cumulative Constraint Violations

0 0.5 1 1.5 2 2.5 3
10 5

10 4

10 3

10 2

10 1

100

(c) Magnitude of Constraint Violations

0 0.5 1 1.5 2 2.5 3
0

100

200

300

400

m
in

ut
es

(d) Elapsed Time

0 2 4 6

0

2000

4000

6000

Ha
lf

Ch
ee

ta
h

0 2 4 6

100

102

104

106

0 2 4 6
10 3

10 2

10 1

100

101

0 2 4 6
0

200

400

600

m
in

ut
es

0 2 4 6 8 10
0

1000

2000

3000

4000

Ho
pp

er

0 2 4 6 8 10

100

102

104

0 2 4 6 8 10
10 4

10 3

10 2

10 1

100

0 2 4 6 8 10
0

500

1000

1500

0 2 4 6 8 10

0

1000

2000

3000

4000

5000

W
al

ke
r2

d

0 2 4 6 8 10

101

102

103

104

105

106

0 2 4 6 8 10

10 3

10 2

10 1

100

101

0 2 4 6 8 10
0

200

400

600

800

1000

1200

0 2 4 6 8 10
Steps (×105)

18000

17000

16000

15000

BS
S

0 2 4 6 8 10
Steps (×105)

102

103

104

105

106

0 2 4 6 8 10
Steps (×105)

100

101

102

0 2 4 6 8 10
Steps (×105)

0

250

500

750

1000

1250

m
in

ut
es

Figure 4: Training curves for the Reacher, Half Cheetah, and BSS environments are displayed in
columns from left to right, showcasing the Average Return(↑), Cumulative Constraint Violations(↓),
Average Magnitude of Constraint Violations(↓), and Time Elapsed(↓).

Walker2d. In the Reacher, Half Cheetah, Hopper and Walker2d environments, the average magnitude
of constraint violations is close to zero, indicating that the invalid actions are very close to the feasible
region. In the BSS environment, our approach shows slightly higher average magnitude due to the
integer property of the actions. The low number of cumulative constraint violations and lower average
magnitude of constraint violations demonstrate the effectiveness of our learned flow model.

In Figure 4(d), we show the runtime of the training process. Our approach demonstrates a significantly
faster training time compared to NFWPO, with a speed improvement of 2∼3 times. This speed
advantage is attributed to the fact that NFWPO requires computationally expensive QP solutions
to determine the policy update direction within the feasible action space. In contrast, our approach
utilizes the learned normalizing flow model to generate valid actions, with the flow model parameters
frozen during the policy update. Although DDPG+P shows a faster runtime, it comes at the expense
of a lower average return and higher constraint violations.

5 Conclusion

In this work, we present a novel approach called FlowPG based on Normalizing Flows to address
action constraints in RL. The architecture of FlowPG allows the policy network to generate actions
within the feasible action region. Furthermore, our experimental results demonstrate that FlowPG
effectively handles action constraints and outperforms the previous best method by significantly
reducing the number of constraint violations while having faster training speeds.

10

Acknowledgement

This research/project is supported by the National Research Foundation Singapore and DSO National
Laboratories under the AI Singapore Programme (AISG Award No: AISG2- RP-2020-017).

References
[1] Aaron D Ames. Human-inspired control of bipedal walking robots. IEEE Transactions on

Automatic Control, pages 1115–1130, 2014.

[2] Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural
networks. In International Conference on Machine Learning, pages 136–145, 2017.

[3] Michael Betancourt. A Conceptual Introduction to Hamiltonian Monte Carlo. arXiv preprint
arXiv:1701.02434, 2018.

[4] Abhinav Bhatia, Pradeep Varakantham, and Akshat Kumar. Resource constrained deep rein-
forcement learning. In International Conference on Automated Planning and Scheduling, pages
610–620, 2019.

[5] Arthur Choi. The PyPSDD Package. https://github.com/art-ai/pypsdd, 2018.

[6] Arthur Choi, Weijia Shi, Andy Shih, and Adnan Darwiche. Compiling neural networks into
tractable boolean circuits. AAAI Spring Symposium on Verification of Neural Networks, 2017.

[7] Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, and Yuval
Tassa. Safe exploration in continuous action spaces. arXiv preprint arXiv:1801.08757, 2018.

[8] Adnan Darwiche. Sdd: A new canonical representation of propositional knowledge bases. In
International Joint Conference on Artificial Intelligence, pages 819–826, 2011.

[9] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. In
International Conference on Learning Representations, 2016.

[10] Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval Research
Logistics Quarterly, 3:95–110, 1956.

[11] Kurt Otto Friedrichs. The identity of weak and strong extensions of differential operators.
Transactions of the American Mathematical Society, 55:132–151, 1944.

[12] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In International Conference on Machine Learning, pages 2052–2062,
2019.

[13] Leonard Jaillet and Josep M. Porta. Path Planning Under Kinematic Constraints by Rapidly
Exploring Manifolds. IEEE Transactions on Robotics, 29(1):105–117, 2013.

[14] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv
preprint arXiv:1412.6980, 2017.

[15] Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative Flow with Invertible 1x1 Convo-
lutions. In Advances in Neural Information Processing Systems, 2018.

[16] Doga Kisa, Guy Van Den Broeck, Arthur Choi, and Adnan Darwiche. Probabilistic sentential
decision diagrams. In Principles of Knowledge Representation and Reasoning, pages 558–567,
2014.

[17] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
In International Conference on Learning Representations, 2016.

[18] Jyun-Li Lin, Wei Hung, Shang-Hsuan Yang, Ping-Chun Hsieh, and Xi Liu. Escaping from
zero gradient: Revisiting action-constrained reinforcement learning via frank-wolfe policy
optimization. In Uncertainty in Artificial Intelligence, pages 397–407, 2021.

11

https://github.com/art-ai/pypsdd

[19] Jiajing Ling, Kushagra Chandak, and Akshat Kumar. Integrating knowledge compilation with
reinforcement learning for routes. In International Conference on Automated Planning and
Scheduling, pages 542–550, 2021.

[20] Jiajing Ling, Moritz Lukas Schuler, Akshat Kumar, and Pradeep Varakantham. Knowledge com-
pilation for constrained combinatorial action spaces in reinforcement learning. In International
Conference on Autonomous Agents and Multiagent Systems, pages 860–868, 2023.

[21] Tianci Liu and Jeffrey Regier. An Empirical Comparison of GANs and Normalizing Flows for
Density Estimation. arXiv preprint arXiv:2006.10175, 2021.

[22] Bogdan Mazoure, Thang Doan, Audrey Durand, Joelle Pineau, and R Devon Hjelm. Leveraging
exploration in off-policy algorithms via normalizing flows. In Conference on Robot Learning,
pages 430–444, 2020.

[23] Robert T. McGibbon. Pyhmc: Hamiltonian Monte Carlo in Python. https://github.com/
rmcgibbo/pyhmc, 2023.

[24] Wannes Meert. PySDD Package. https://github.com/wannesm/PySDD, 2017.

[25] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, pages 529–533, 2015.

[26] Tu-Hoa Pham, Giovanni De Magistris, and Ryuki Tachibana. Optlayer-practical constrained
optimization for deep reinforcement learning in the real world. In International Conference on
Robotics and Automation, pages 6236–6243, 2018.

[27] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
International conference on machine learning, pages 1530–1538, 2015.

[28] Weijia Shi, Andy Shih, Adnan Darwiche, and Arthur Choi. On tractable representations of
binary neural networks. In International Conference on Principles of Knowledge Representation
and Reasoning, pages 882–892, 2020.

[29] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International Conference on Machine Learning,
pages 387–395, 2014.

[30] Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization.
In International Conference on Learning Representations, 2019.

[31] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based
control. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033, 2012.

[32] Vassilios Tsounis, Mitja Alge, Joonho Lee, Farbod Farshidian, and Marco Hutter. DeepGait:
Planning and Control of Quadrupedal Gaits Using Deep Reinforcement Learning. IEEE
Robotics and Automation Letters, 5(2):3699–3706, 2020.

[33] Patrick Nadeem Ward, Ariella Smofsky, and Avishek Joey Bose. Improving exploration in
soft-actor-critic with normalizing flows policies. arXiv preprint arXiv:1906.02771, 2019.

[34] Christina Winkler, Daniel E. Worrall, Emiel Hoogeboom, and Max Welling. Learning likeli-
hoods with conditional normalizing flows. arXiv preprint arXiv:1912.00042, 2019.

[35] Jing Zhang, Chi Zhang, Wenjia Wang, and Bing-Yi Jing. Apac: Authorized probability-
controlled actor-critic for offline reinforcement learning. arXiv preprint arXiv:2301.12130,
2023.

12

https://github.com/rmcgibbo/pyhmc
https://github.com/rmcgibbo/pyhmc
https://github.com/wannesm/PySDD

Appendix A Sample Generation

HMC: We used Python implementation [23] of Hamiltonian Monte Carlo algorithm for sample
generation of Reacher and Half-Cheetah environments. We set the starting point as the origin(0D)
and used default hyperparameters such as ϵ = 0.2, decay = 0.9.

PSDD: In the BSS environment, since there are capacity constraints, restricting each component of
the action to the range of [1, 35], we can represent each component of the action as 6-bit integers
using Natural Binary Coded Decimal (NBCD). Specifically, we express ai, i = 1, . . . , 5 as a sum of
its binary bits: ai =

∑6
j=1 2

6−j × aji , where a1i , . . . , a
6
i are Boolean variables representing each bit

of ai. By employing this encoding, we can convert the local constraint 1 ≤ ai ≤ 35 and the global
constraint

∑5
i=1 ai = 150 into Pseudo-Boolean (PB) constraints by substituting each variable with

its binary representation.

To compile these PB constraints, we utilize the method described in [6] to convert each constraint
into a Sentential Decision Diagram (SDD). The SDDs are then conjoined using the package [24] to
create a final SDD. The resulting SDD has a node count of 733, indicating the number of decision
nodes, and a model count of 23751, which is the total number of valid actions.

To obtain a Probabilistic Sentential Decision Diagram (PSDD), we parameterize the final SDD. The
resulting PSDD has a node count of 802 and a size of 3138. Here, the node count refers to the number
of decision nodes in the PSDD, while the size refers to the total number of decompositions.

Efficiency: To measure the efficiency of sample generation , we employ a success rate metric, defined
as the percentage of valid actions per 100 generated sample points. In both two domains, the HMC
method achieves a success rate of 100%. For the rejection sampling, the success rates are 3.93% and
4.7% in the Reacher and Half Cheetah domains, respectively. Figure 5 shows the density of generated
sample points within the feasible region. HMC method results in a significantly higher number of
data points uniformly distributed across the feasible region. It indicates that HMC is more efficient in
sample generation when compared to the rejection sampling method.

When action space constraints are expressed as (in)equalities (such as in the BSS environment),
generating valid actions through either rejection sampling or HMC becomes challenging (e.g.,
rejection/HMC sampling does not produce any action that satisfies all (in)equality constraints within
a practical time limit). The advantage of using PSDDs lies in their ability to represent a probability
distribution over all valid actions, which implies any sampled action from PSDD is guaranteed to
satisfy the constraint. Furthermore, PSDD enables fast sampling of actions with complexity linear in
its size and can easily represent uniform distribution over the feasible action space (Section 3.2 in
main paper).

0.2 0.1 0.0 0.1 0.2
a1

 Success Rate: 100.00%

0.2

0.1

0.0

0.1

0.2

a 2

HMC

0.2 0.1 0.0 0.1 0.2
a1

 Success Rate: 3.93%

0.2

0.1

0.0

0.1

0.2

a 2

Rejection Sampling

1.0 0.5 0.0 0.5 1.0
v1

 Success Rate: 100.00%

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

v 2

HMC

1.0 0.5 0.0 0.5 1.0
v1

 Success Rate: 4.70%

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

v 2

Rejection Sampling

0

20

40

60

80

100

120

0

1

2

3

4

5

6

7

8

9

0

100

200

300

400

500

600

700

0

5

10

15

20

25

Reacher (a2
1 + a2

2 0.05) Half Cheetah (
6

i = 1
|viwi| 20)

Figure 5: Density map of generated valid actions using HMC and Rejection Sampling methods.

Appendix B Training RealNVP

RealNVP [9] was defined using 6 coupling layers as shown in Figure 7. We implemented k and
t components as multi-layer perceptrons with 2 hidden layers of size 256 and ReLU activation
functions. We used a uniform distribution with range [−1, 1]D as the latent distribution. For the
training purpose, we mollified it with Gaussian Noise of µ = 0 and σ = 0.01. We used Adam
Optimizer [14] for learning the neural network parameters with the learning rate of 10−5. The trained
Flow models were able to produce results mentioned in Table 1. Even when they produce infeasible

13

0.0004 0.0005 0.0006 0.0007
L2 norm

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

Pe
rc

en
ta

ge
 o

f i
nf

ea
sib

le
 a

ct
io

ns

(a) Reacher

0.0 0.5 1.0 1.5
L2 norm

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

Pe
rc

en
ta

ge
 o

f i
nf

ea
sib

le
 a

ct
io

ns

(b) Half Cheetah

0.0 0.5 1.0 1.5
L2 norm

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

Pe
rc

en
ta

ge
 o

f i
nf

ea
sib

le
 a

ct
io

ns

(c) BSS

Figure 6: L2 distance from the infeasible actions to nearest feasible action.

k

ReLU

output x d

hidden x 256

hidden x 256

ReLU

Tanh

t

output x d

Affine Coupling Layer

split

x

-

exp

hidden x 256

hidden x 256

ReLU

ReLU

Figure 7: Affine Coupling Layers of RealNVP and t, k sub-component networks

Environment Accuracy Recall Training Time (minutes)
Reacher 99.98% 97.85% ∼ 10

Half Cheetah 97.25% 78.01% ∼ 120
Hopper 87.89% 81.61% ∼ 60

Walker2d 86.58% 83.58% ∼ 120
BSS 85.56% 82.35% ∼ 60

Table 1: Accuracy, recall of trained flow models and their training time

actions, they tend to be positioned closer to feasible regions. To measure that we filter infeasible
actions generated by the trained Flow model and measure the distance (L2 norm) to the nearest
feasible action. Figure 6 shows the histogram of the measured L2 norm. This shows that even when
our model produces infeasible actions, they are not far away from the feasible region. For example in
the Bike sharing environment(BSS) environment, most of the values are between 0 and 1, i.e. the
error value is no more than a single bike.

Appendix C Learning the RL-Model

We defined Actor and Critic networks as 2 hidden layer neural networks with 400 and 300 units
respectively as in Figure 8. For the activation function, we used the ReLU activation function. In the
final layer of the actor-network, the tanh activation function was used to map output to the [−1, 1]
range before passing it to the RealNVP. Adam [14] optimizer was used to train both Actor and Critic

14

Affine Coupling Layer

RealNVP

x 6

Actor

hidden x 400

hidden x 300

ReLU

ReLU

output x D

Tanh

(a)

Critic

hidden x 400

hidden x 300

ReLU

ReLU

output x 1

(b)

Figure 8: (a) Actor Network and (b) Critic Network

networks with a learning rate of 10−4 and 10−3 respectively. For the soft target update, we used
τ = 0.001. We used mini-batches of size 64 to train both Actor and Critic networks. We used
Gaussian noise with µ = 0 and σ = 0.1 as action noise for exploration. The replay buffer size was
106. The complete pseudo code of the FlowPG can be found in the Algorithm 1

Algorithm 1 FlowPG Algorithm
1: Input: Trained fψ
2: Randomly initialize critic network Q(s, a;ϕ) and actor µθ(s)
3: Initialize target network Q′ and µ′ with weights ϕ′ ← ϕ, θ′ ← θ
4: Initialize replay buffer B
5: for episode=1,. . . ,M do
6: Initialize the random noise generator N for action exploration
7: Reset the environment and retrieve initial state s1
8: for t=1,. . . ,T do
9: Select action ãt = µθ(st) +Nt based on current policy and exploration noise

10: Apply flow and get the environment action at = fψ(ãt, st)
11: if at is invalid then
12: at ← QP_Solver(at, st, C(st))
13: end if
14: Execute action at and observe reward rt and next state st+1

15: Store transition (st, at, rt, st+1) in B
16: Sample a random minibatch of N transitions (si, ai, ri, si+1) from B
17: yi = ri + γQ′(si+1, fψ(µθ′(si+1), si+1);ϕ

′)
18: Update critic by minimizing the loss: L = 1

N

∑
i(yi −Q(si, ai;ϕ))

2

19: Update actor policy using the sampled policy gradient:
20: ∇θJ(µθ) = 1

N

∑
i∇aQ(si, a;ϕ)∇ãfψ(ã, si)∇θµθ(si)|ã=µθ(si),a=fψ(ã,si)

21: Update target networks:
22: ϕ′ ← τϕ+ (1− τ)ϕ′
23: θ′ ← τθ + (1− τ)θ′
24: end for
25: end for

15

	Introduction
	Preliminaries
	Normalizing Flow for ACRL
	Learning Valid Action Mapping Using Normalizing Flows
	Generating Random Samples from the Valid Action Space
	Integrating DDPG with Normalizing Flows

	Experiments
	Conclusion
	Sample Generation
	Training RealNVP
	Learning the RL-Model

