
Appendix of MotionGPT

This appendix provides qualitative comparison results (Sec. A), additional experiments (Sec. B) on
the components of MotionGPT models, inference time (Sec. C), statistics on motion vocabulary
(Sec. D), evaluations on hyperparameters (Sec. E), user study (Sec. F), a protocol for the uniform
evaluation (Sec. G), and more implementation details (Sec. H) of MotionGPT models . Please note
evaluations on our training scheme (Sec. B.2), elaborations on the difference of T2M-GPT (Sec. B.6),
implementation details of motion completion (Sec. B.7), and more metric definitions (Sec. G).

Video. We have provided supplemental videos on Project Page. In these supplemental videos, we
show 1) comparisons of text-to-motion, 2) comparisons of motion captioning, and 3) more results on
motion prediction and other tasks. We suggest watching this video for dynamic motion results.

Code is available on GitHub Repo. We provide the process of the training and evaluation of
MotionGPT models, the pre-trained models and the demo scripts. The live demo is on Huggingface.

A Qualitative Results

We visualize some qualitative results on the comparison of text-to-motion (cf. Fig. 4), motion-to-text
(cf. Fig. 6), and our result gallery on multiple tasks (cf. Fig. 5).

T2M-GPT

Ours

Real

“a person walks forward, stops, turns directly 
to their right, then walks forward again.”

“a person walks forward, then jogs back 
and forth across the floor before returning 

to their original position.”

“a person walks backwards, then turns 
around then walks backwards again.”

MDM

Figure 4: Comparison on text-driven motion generation. The provided state-of-the-art methods
are under the same training and inference setting on HumanML3D [2]. The red words and boxes
highlight the misaligned motions. The results demonstrate that our motion-language per-training
shows promising text understanding for motion generation.
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“ Randomly describe the motion of someone.”

“ A man appears to be doing the waltz dance.”

Text-to-Motion Task
“A man walks in a s-shape.”“A person gets pushed 

to their left.”
“A person bends over and picks things up with 
both hands individually, then walks forward.”

“ The persons high hands are dropped down, he claps 
once and then proceeds by walking up to get seated.”

“A person has both arms spread out and starts 
walking in a circle. ”

“ The person was holding something 
turned around and sat it down.”

“A person walks forward then does a 
backwards z-shape movement to its 
left side. then back to the right.”

“A person catches a ball, winds up 
and throws the ball then stops 

standing sideways.”

Motion-to-Text Task

Textual Question-to-Answer Task

“ A person stretches out its left arm then moves it back to its side.”
“ The person walks in a curved path to the left then stops, turns around and follows the same path 

back to the way they came and turning around to their original starting position.”

Motion Completion

Figure 5: Gallery for the results of our unified MotionGPT. More samples are from our best model for
text-to-motion synthesis, motion captioning, and textual question-to-answer task. The supervision of
MotionGPT relies on our instruction-based motion-language dataset (cf. Sec. G) based on previous
motion datasets [2, 6]. We recommend the dynamic visualization in our supplemental video.
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Ours

TM2T “a person walk forward then turn 
around and walk back”

“a person takes two steps forward then turns to 
their right 180 degrees and takes two steps away.”

“a person walk in a curved line”

“a person walks in a semi-circular
pattern, tip-toeing.”

“a person raise their arm to 
their chest multiple time”

“a person pretends to be a bear.”

Real “a person walks backwards, then turns 
around then walks backwards again.”

“a man starts to walk straight then 
walks to the right.”

“ person is acting like a 
grizzly bear.”

Input
Motions

Figure 6: Comparison of the state-of-the-art method on motion captioning task. All provided methods
are under the same training and inference setting on HumanML3D [2]. The results demonstrate that
our text descriptions correspond better to the motion and have correct grammar. The orange words
indicate the matching results, while the red marks the incorrect grammar.

B Additional Experiments

We conduct several experiments to continue the evaluations of MotionGPT models. We first evaluate
the text-to-motion results on KIT dataset (Sec. B.1). Then we evaluate the hyperparameters of motion
tokenizer V (Sec. B.2). After that, we study the effectiveness of the training scheme (Sec. B.2). We
also provide the elaboration on the difference of T2M-GPT (Sec. B.6), implementation details of
motion completion (Sec. B.7).

B.1 Text-to-Motion on KIT dataset.

Following the same procedure on HumanML3D[2] dataset, We train a 220M MotionGPT base model
on the KIT[10] dataset without any pre-training. We evaluate this model under the same settings
of [2]. Most results are borrowed from their own paper of the benchmark in [2]. Tab. 7 shows that
MotionGPT achieves comparable performance compared to the previous state-of-the-arts.

Methods RPrecision↑ FID↓ MMDist↓ Diversity→ MModality↑
Top1 Top2 Top3

Real 0.424±.005 0.649±.006 0.779±.006 0.031±.004 2.788±.012 11.08±.097 -

TM2T[3] 0.280±.005 0.463±.006 0.587±.005 3.599±.153 4.591±.026 9.473±.117 3.292±.081

MDM[14] 0.164±.004 0.291±.004 0.396±.004 0.497±.021 9.191±.022 10.85±.109 1.907±.214

MLD[17] 0.390±.008 0.609±.008 0.734±.007 0.404±.027 3.204±.027 10.80±.117 2.192±.071

T2M-GPT [19] 0.416±.006 0.627±.006 0.745±.006 0.514±.029 3.007±.023 10.92±.108 1.570±.039

MotionGPT (Ours) 0.366±.005 0.558±.004 0.680±.005 0.510±.016 3.527±.021 10.35±.084 2.328±.117

Table 7: We involve KIT [10]dataset and evaluate the methods on the text-driven motion generation
task. Please refer to Tab. 3 for more details on metrics and notations.

B.2 Ablation on Motion Tokenizer.

We ablate the motion tokenizer V of our MotionGPT models, studying the size K of motion codebooks.
We also compare this VQ-VAE with other VAE models in previous works [8, 9, 17], as shown in
Tab. 13. This comparison demonstrates the improvement of VQ-VAE on motion reconstruction. With
this ablation studies on the codebook size K, we thus select K = 512 for most experiments.
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Method Reconstruction

MPJPE↓ PAMPJPE↓ ACCL↓ FID↓ DIV→
Real - - - 0.002 9.503

VPoser-t [8] 75.6 48.6 9.3 1.430 8.336
ACTOR [9] 65.3 41.0 7.0 0.341 9.569
MLD-1 [17] 54.4 41.6 8.3 0.247 9.630

MotionGPT (Ours) 55.8 40.1 7.5 0.067 9.675

K = 256 76.4 51.3 10.0 0.187 9.496
K = 512 55.8 40.1 7.5 0.067 9.675
K = 1024 60.3 44.0 8.6 0.086 9.677
K = 2048 78.9 51.4 10.5 0.141 9.597

Table 8: Evaluation of our motion tokenizer on the motion part of HumanML3D [2] dataset. We follow
MLD [17] to evaluate our VQ-VAE model V: MPJPE and PAMPJPE are measured in millimeter.
ACCL indicates acceleration error. We evaluate FID and Diversity the same as Tab. 3. The baselines
of VPoser-t [8] and ACTOR [9] are borrowed from MLD. K indicates the codebook size, and
K = 512 shows the best performance of motion reconstruction.

B.3 Effectiveness of Training Scheme

Motion-Language Pre-training vs Instructions Tuning. We have provided the illustration of our
training scheme in Fig. 3 and the evaluation in Tab. 6. We further ablate this training scheme on
the base MotionGPT model, by evaluating the motion-language pre-training (the second step) and
instruction tuning (the third step). As shown in Tab. 9, we train these models with the same 600K
iterations. Compared to other training combinations, the full-stage MotionGPT achieves higher
performance on most motion tasks.

Size Pre-training Instruction Tuning Text-to-Motion Motion-to-Text Motion Prediction Motion In-between

R TOP3 ↑ FID ↓ DIV → MMDist↓ Bleu@4↑ Cider↑ FID ↓ DIV → FID ↓ DIV →
Real - - 0.797 0.002 9.503 2.901 - - 0.002 9.503 0.002 9.503

Base " % 0.722 0.365 9.407 2.821 12.47 29.2 - - - -
Base " " 0.700 0.160 9.411 3.019 11.42 28.2 0.905 8.972 0.214 9.560

Base % " 0.607 0.324 9.563 3.374 10.92 27.7 1.643 8.829 0.323 9.628

Table 9: Evaluation of the training scheme on the base MotionGPT models. We evaluate the results
with the proposed evaluation protocols in Sec. G. Please refer to Tab. 2 for metrics and the details.

Instructions Tuning vs Task-Specific Tuning. While our unified instruction-tuned MotionGPT
model has demonstrated competitive performance across various motion-related tasks, further fine-
tuning can always enhance its performance on specific tasks. Therefore, we focus on the text-to-
motion task and motion in-between task as illustrative examples to showcase the performance of
the model before and after fine-tuning. By comparing the results in Tab. 10, we can assess the
effectiveness of fine-tuning in improving task-specific performance.

Insturct tuned Fine tuned Text-to-Motion Motion In-between

R TOP1↑ FID↓ DIV→ FID ↓ DIV↑ ADE↓

" % 0.435 0.160 9.411 0.214 9.560 3.762

" " 0.492 0.232 9.528 0.209 9.378 3.281

Table 10: Evaluation of new task tuning of different size models on HumanML3D [2] dataset.
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B.4 Different Backbone of Language Model

The first language model that we used to build MotionGPTs is LLaMA-13B [15]. However, it
shows insufficient performance and low training efficiency. We assume the reason is the limited
dataset size compared to the large parameters and language data of LLaMA. We tried a smaller
size decoder-only backbone GPT2-Medium [12] and provide the results in Tab. 11. Then, we thus
chose T5-770M, a small but common language model, as our final backbone, because many previous
vision-language multimodal works, like Unified-IO and BLIP, have chosen T5, this encoder-decoder
architecture. It shows a strong power to address multi-modal tasks. In addition, the decoder-only
model has the advantage for self-supervised without pair data while we have paired data which this
advance is greatly weakened. We are still working on collecting a large motion dataset for larger
motion-language models.

Backbone Type Parameters Text-to-Motion Motion-to-Text Motion Prediction Motion In-between

R TOP3 ↑ FID ↓ DIV → MMDist↓ Bleu@4↑ Cider↑ FID ↓ DIV → FID ↓ DIV →
Real - - 0.797 0.002 9.503 2.901 - - 0.002 9.503 0.002 9.503

T5-Base Encoder-Decoder 220M 0.700 0.160 9.411 3.019 11.42 28.2 0.905 8.972 0.214 9.560
T5-Large Encoder-Decoder 770M 0.708 0.159 9.301 3.011 11.71 29.1 0.556 8.975 0.223 9.358

GPT2-Medium Decoder-only 355M 0.508 0.258 9.274 4.923 7.44 17.3 0.794 8.692 0.241 9.185

Table 11: Evaluation of different backbone of MotionGPTs on HumanML3D [11] dataset. Please
refer to Tab. 2 for metrics and the details.

B.5 Zero-shot and Failure Cases

Unlike the previous motion generators using the text encoder of CLIP [11] for conditions, please note
that MotionGPTs leverage language models to learn the motion-language relationship, instead of
relying on text features from CLIP. According to our zero-shot results (cf. Fig. 7) and performances
on multi-tasks (cf. Tab. 2), MotionGPTs establish robust connections between simple/complex texts
and simple motions in evaluations, but they fall short when it comes to complex-text to complex
motion translation.

“A man is scuttling quickly 
forward.”

“A person is performing rhythmic 
gymnastics with a ribbon apparatus.”

“A man hurdles barriers when 
quick running.”

Figure 7: We provide zero-shot cases and failure cases. Benefitting from strong language models,
MotionGPTs can understand unseen works in the text-to-motion training set, like “scuttling" and
“barriers", and generate correct motions based on the meaning of sentences. However, it still struggles
to generate unseen motions, like gymnastics, even if MotionGPTs understand the text inputs.

B.6 Difference between T2M-GPT

We introduce the difference between T2M-GPT [19] to show our unified framework. T2M-GPT
investigates a generative framework based on VQ-VAE and Transformer for motion generation only.
They incorporate language information by leveraging CLIP [11] to extract text embedding as motion
generation conditions, which is similar to most previous work, such as MDM [14], MLD [17], and
MotionDiffuse [20]. However, our MotionGPTs are based on the pre-trained language model so
it naturally leverages the strong language generation and zero-shot transfer abilities of pre-trained
language models. Benefiting from the motion-language vocabulary, MotionGPT thus generates both
human language and human motion in a unified model.
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B.7 Implementation details of Motion Completion

Please note that MDM[14] accomplish motion in-between task in their paper through masked motion
“in-painting” which fix the first and last 25% of the motion, leaving the model to generate the
remaining 50% in the middle. To achieve the motion prediction task with MDM, we fix the first
20% of the motion and then generate the remaining. All our results are computed by utilizing their
provided pre-trained model. To compare with MDM in Tab. 5 on both motion in-between and motion
prediction tasks, we evaluate our MotionGPT with the same setting during the inference.

C Inference Time

We provide a detailed study on inference time with our different model sizes below. Due to our
auto-regressive model for motion generation, we use Frames Per Second (FPS) to evaluate our time
costs. All the time costs are evaluated on 8 Tesla V100 using one batch size. Tab. 12 shows that any
size of our MotionGPTs can support real-time human animations and come up to hundreds of FPS.

Models Backbone Parameters FPS ↑
MotionGPT Small 60 M 421.31
MotionGPT Base 220 M 222.69
MotionGPT Large 770 M 119.75

Table 12: Evaluation of inference time costs on text-driven motion generation. We evaluate the
Frames Per Second (FPS) by averaging our generated frames for each second. We show the time
costs on different model sizes. Under the same 1 Tesla V100, the smaller model size gets the faster
FPS. All models can support real-time motion animation applications.

D Motion Vocabulary

D.1 Statistics on Motion Vocabulary

We visualize the usage of each "word" in our motion vocabulary Vm item generated by our motion
tokenizer V . We sample all motions from the whole test set of HumanML3D dataset [2] and count
each "word". In Fig. 8, it shows the utilization of our motion codebook, which seems to be a concise
but informative motion vocabulary.
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Figure 8: The statistics of each "word" in different sizes of motion vocabulary Vm. From left to right,
the vocabulary size is K = 256, 512, 1024. (cf . Tab. 13, K = 512 for the best motion quality.)

D.2 Visualization of Motion Vocabulary

As shown in Fig. 9, we visualize these motion tokens in motion vocabulary and their corresponding
localized spatial-temporal contexts, depicted within 4-frame motion segments.
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Figure 9: We visualize these motion tokens in motion vocabulary Vm and their corresponding
localized spatial-temporal contexts, depicted within 4-frame motion segments.

Downsampling Reconstruction

MPJPE↓ PAMPJPE↓ ACCL↓ FID↓ DIV→
l = 1 76.2 49.5 19.5 0.421 9.613
l = 2 52.6 37.7 9.5 0.135 9.722
l = 4 55.8 40.1 7.5 0.067 9.675
l = 8 62.7 45.3 8.7 0.223 9.584

Table 13: Evaluation of our motion tokenizer on the motion part of HumanML3D [2] dataset.
We follow MLD [17] to evaluate our VQ-VAE model V: MPJPE and PAMPJPE are measured in
millimeter. ACCL indicates acceleration error. We evaluate FID and Diversity the same as Tab. 3.
The baselines of VPoser-t [8] and ACTOR [9] are borrowed from MLD. K indicates the codebook
size, and K = 512 shows the best performance of motion reconstruction.

E Evaluation of Hyperparameters

E.1 Evaluation of Different Down-sample Rate

We selected the down-sample rate based on the frames-per-second (FPS) of the HumanML3D and
KIT-ML datasets, which is 20 fps. Therefore, down-sampling by a factor of 4 to achieve 5 fps can
ensure distinctiveness in motion frames, and prevents redundancy, and acceleration training. This
choice was also made to ensure a fair comparison, as we utilized the same down-sample rate as
T2M-GPT. As shown in , we provide an ablation study on these parameters, where a factor of 4
achieves the best Frechet Inception Distance (FID) in motion reconstructions.

E.2 Evaluation of Different Sampling Strategies

We conduct experiments to investigate the impact of different sampling strategies on the generation
results. Specifically, we compare the use of greedy search, which selects the most probable token
at each step, with sampling from the probability distribution and adopting beam search, which is
evaluated in previous language models [13]. Beam search expands the search space for improved
sequence probability matching. The results in Tab. 14 demonstrate that while avoiding sampling and
using beam search can slightly improve generation quality, they also significantly reduce the diversity
of generated motions from the same text description.
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Method Sample #beams R Precision FID↓ MM Dist↓ Diversity→ MModality↑Top 3↑
Real - - 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -

MotionGPT

- 0.780±.002 0.224±.009 3.076±.009 9.492±.056 -
2 0.780±.002 0.199±.008 3.083±.007 9.512±.063 -
3 0.781±.002 0.179±.008 3.099±.009 9.516±.064 -
4 0.782±.002 0.160±.007 3.092±.010 9.536±.060 -

MotionGPT

✓ - 0.778±.002 0.232±.008 3.096±.008 9.528±.071 2.008±.084

✓ 2 0.780±.002 0.194±.008 3.091±.010 9.508±.063 1.140±.064

✓ 3 0.780±.002 0.190±.008 3.089±.011 9.529±.061 0.929±.055

✓ 4 0.780±.002 0.182±.008 3.093±.008 9.537±.059 0.803±.044

Table 14: Evaluations on hyperparameters for MotionGPT generations. We study the influence of
two hyperparameters: sample stands for sampling from distribution; #beams means the number of
beams for beam search, where empty means no beam search.

F User Study

We achieve a detailed user study to evaluate our model’s performance. For text-to-motion assessment,
we generated motions for 80 HumanML3D [2] test set descriptions, comparing MotionGPTs with
MDM [14] and T2M-GPT [19], alongside GT. Semantic and realism studies presented text-video pairs
to participants, asking which motion corresponded better or was more realistic, respectively. In the
motion-to-text study, we visualized 50 GT motions with GT descriptions and generated corresponding
textual descriptions using TM2T [3] and our method. Each participant addressed a batch of questions
randomly from all questions, and 19 unqualified participants among a total of 110 samples were
identified and excluded by 2 ’catch trials’ questions. Each video pairs were reviewed by multiple
participants, with a majority vote determining superior methods. Equal scores were assigned for
tied results. As shown in Fig. 10, in both two tasks, our MotionGPT was preferred over the other
state-of-the-art methods and even competitive with the ground truth.

54% 57%53% 56%

48% 49%

0%
25%
50%
75%
100%

Which of the two motions is more realistic? Which of the two motions corresponds better to the text prompt?
MotionGPT vs MDM MotionGPT vs T2M-GPT MotionGPT  vs GT

48%

55%

0%
25%
50%
75%
100%

Which description can better describe the motion?
MotionGPT vs GT MotionGPT vs TM2T

Figure 10: User Study. We investigate our motion quality and the alignment with test descriptions.
The left part is the user study for text-to-motion. The right part is for motion captioning.

G Evaluation Protocols on the Uniform Motion-Language Generation.

We propose a protocol to evaluate our unified MotionGPT on multiple motion-language generation
tasks. Upon previous datasets [2, 10, 6], we build an instruction motion-language dataset, which is
composed of 14 core tasks (Fig. 11) for now. As shown in Tab. 15, each core task has dozens of
instruction prompts (Tab. 15). We will release the pre-processed dataset.
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Figure 11: Protocols for multiple motion-language tasks. For each task, we follow Tab. 15 to process
the previous datasets [6, 2] into the instruction-based data.

Task Input Output

Text-to-Motion
Give me a motion that corresponds to [caption].

[motion]Demonstrate a sequence of movements that depict [caption].
I need a human motion that conveys [caption]. Can you generate it for me?

Text-to-Motion w/ length Give me a motion that lasts for approximately [frames] frames. The caption is: [caption]. [motion]Please create a motion that lasts [seconds] seconds and illustrates [caption].

Length-to-Motion Show me a motion that lasts for no more than [frames] frames. [motion]Create a motion that has a duration of [seconds] seconds.

Radnom Motion Give me motions as you like. [motion]Produce actions that are not prescribed.

Motion-to-Text Give me a summary of the motion being displayed in [motion] using words. [caption]Describe the motion illustrated in [motion] in natural language.

Motion-to-Text w/ length Describe the movement portrayed in [motion]that lasts [frames] frames. [caption]What is happening in [motion] for a length of [seconds] seconds?

Motion-to-Length What is the duration of [motion]’s gestures in frames? There are [frames] frames in the motion.
What is the total duration of [motion]’s body movements in seconds? The motion lasts for [seconds] seconds.

Caption-to-Length How many frames are expected for the motion that matches [caption]? The duration is estimated to be around [frames] frames.
Given [caption], provide the anticipated second duration for the corresponding motion. The motion has a length of [seconds] seconds.

Length-to-Caption What are some possible physical gestures that could be made in [frames] frames? [caption]What motion could be performed in [seconds] seconds?

Random Caption Depict a motion as like you have seen it. [caption]Describe the motion of someone randomly.

Table 15: Some examples of prompt templates in our uniform evaluation protocols.

Metric Definitions: We provide more details of evaluation metrics as follows. Our evaluation metrics
can roughly divide to five classes including text-motion matching, generation diversity, linguistic
quality, motion quality, and time cost. For the first two classes, [17] has already claims clearly and
for the linguistic metrics including BLUE [7], Rouge [4], Cider [16], and BertScore [21], you can
refer to their own papers for details. Here we focus on the explaination of the rest metrics.

Motion Quality. FID, MPJPE, PAMPJPE [1], ACCL have been clearly explained in [17]. Thus here
we focus on the Average Displacement Error (ADE) and Final Displacement Error (FDE) refaccuracy
of the predicted motion. Following previous motion prediction work[18, 22, 5], ADE is defined as
average L2 distance between the ground truth and predicted motion of the whole sequence and FDE
is the L2 distance between the ground truth and predicted motion in the last frame.

Time Costs. To evaluate the computing efficiency of our models, especially the inference efficiency,
we calculate average Frames Per Second (FPS) when generating motions. In our case, we calculate
FPS on the test set of HumanML3D [2], set the batch size to one, and ignore the time cost for model
and dataset loading parts.

H Details on MotionGPT Models

H.1 Implementation Details

Besides the MotionGPt with 220M parameters, we implement a smaller model that reduces the model
dimension with dmodel = 512, dff = 2048 with only 6 layers in encoder and decoder, as well as a
larger model with 770 million parameters, which increases the model dimensions with dmodel = 1024,
dff = 4096, dkv = 64, 24 layers for each transformer. Except for the training iterations during the
instruction tuning stage, the other settings are the same. Please refer to Tab. 16 for more details.
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MotionGPT Small Base Large
Backbone Flan-T5-Small Flan-T5-Base Flan-T5-Large
Training Batch Size 64 16 4
Model Size 60M 220M 770M
Pre-training - Iterations 300K 300K 300K
Pre-training - Learning Rate 2e-4 2e-4 2e-4
Instruction Tuning - Iterations 200K 300K 400K
Instruction Tuning - Learning Rate 1e-4 1e-4 1e-4

Motion Vocabulary Number Vm 512 512 512
Motion Codebook Dimension 512 512 512

Table 16: Hyperparameters for different MotionGPTs. We train these models on 64 Tesla V100 GPUs.
The smaller model size lowers the computational requirements and thus provides faster inference (cf.
Sec. C). According to Tab. 6, the base MotionGPT model is the best one for overall tasks. However,
we believe this could be caused by the small amount of current motion datasets. The large model
could achieve the best performance when the amount of data comes up to millions or even billions.
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