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Generally speaking, there are three ways to evaluate the effectiveness of a representation learning3

scheme: 1) use reconstruction error for a direct evaluation; 2) use ablation studies to investigate the4

impact of hyperparameter selection and different components of the proposed network structure; and5

3) use downstream tasks like classification accuracy for an indirect evaluation. Since Cross-Scale6

MAE is essentially a self-supervised representation scheme, we follow similar standards. This7

supplement provides additional quantitative and qualitative (visual) results complementing results8

presented in the main paper to provide further validation of the claims made. Specifically,9

• In Sec. A., we provide both visual and quantitative comparisons (in MSE and SSIM) of the10

reconstruction performance between baseline and Cross-Scale MAE.11

• In Sec. B., we provide further ablation studies of Cross-Scale MAE on the effect of different12

masking strategies.13

• An interesting question we asked ourselves is if the performance gain of the proposed Cross-14

Scale MAE also generalizes to natural images. In Sec. C., we investigate the performance of15

Cross-Scale MAE in natural images, using CoCo as training and test sets. We also study its16

generalization capacity across the different domains of natural imagery and remote sensing17

imagery.18

• In Sec. D., we elaborate on the details of the deployment of xFormers as an efficient19

backbone (See Sec. 4.3 in the main paper) with further studies regarding the memory20

efficiency of different attention types.21

A. Direct Evaluation through Multiscale Reconstruction Performance22

In this section, we analyze the multiscale reconstruction performance of the proposed Cross-Scale23

MAE. We compare it with SatMAE, a baseline model, and demonstrate the improvements achieved24

by Cross-Scale MAE. Both models were pre-trained on the fMoW-RGB dataset, and we assessed25

their capabilities in handling images at different scales.26

To assess the reconstruction performance, we employ the Mean Squared Error (MSE) and the27

Structural Similarity Index (SSIM) [8, 5] metrics. These metrics quantify the structural difference28

between images, with a higher SSIM value and lower MSE value indicating better performance.29

Fig. 1 demonstrates the improvements achieved across different scales. The first column represents30

the original input image before masking, while the second column displays the input with a 75%31

mask applied. The third column exhibits the reconstruction results of the baseline model, while32

the last column showcases the improved reconstruction achieved by our model, Cross-Scale MAE.33

Additionally, the corresponding SSIM metric is presented alongside each reconstruction. The red34

and green boxes over the raw image in the first row showcase the crop locations of the images in the35

second and third rows, respectively.36

We observe a significant reduction in artifacts within the masked portions of the reconstructed images.37

The artifacts in these regions indicate the presence of uninformative or distorted latent representations.38

This observation implies that such regions would be ineffective for representation learning and might39

even negatively impact downstream models attempting to learn from these representations. Notably,40

at the full scale (first row), our model demonstrates a 38% improvement in the SSIM metric. At a41

40% scale (second row), we observe an 18% improvement. Finally, at a 25% scale (last row), our42

model showcases a 35% improvement.43

To further illustrate the effectiveness of Cross-Scale MAE, we provide additional visualizations44

in Fig. 2. These samples showcase individual images cropped to random scales, highlighting the45

superior reconstruction achieved by our model compared to the baseline.46

To comprehensively evaluate the performance in a multiscale scenario, we present the average47

metrics over the fMoW-RGB testing set in Fig. 3. Each input image is evaluated 25 times with48

different random crop scales and masks. This procedure ensures a robust assessment of our model’s49

performance in a multiscale context.50
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Figure 1: Comparison of Cross-Scale MAE and SatMAE reconstructions at different scales

Figure 2: Reconstruction samples with random scales (fMoW test set)
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Figure 3: Average metrics comparison of Cross-Scale MAE and SatMAE (fMoW test set)

Our extensive evaluation demonstrates that Cross-Scale MAE excels in reconstructing multiscale51

images, surpassing the performance of the baseline model, SatMAE. The observed improvements52

and the mitigation of artifacts in masked portions indicate the superiority of Cross-Scale MAE in53

capturing meaningful representations and enhancing remote sensing image understanding in diverse54

scale conditions.55

B. More Ablation Study56

In this section, we investigate the impact of mask consistency and masking ratios on the model’s57

representation learning capacity.58

To assess the quality of the learned representations, we employ a non-parametric k-Nearest Neighbor59

(kNN) classification approach with zero-shot learning. This evaluation method measures the ability60

of the pre-trained model to produce semantically coherent representations, a desired characteristic for61

practical zero-shot classification tasks. Similar evaluation strategies have been employed in other62

notable works [9, 3, 2].63

In the following subsections, we conduct detailed analyses to examine the effects of mask consistency64

and masking ratios on the performance of Cross-Scale MAE. We employ the RESISC dataset and65

utilize the ViT-Base as the backbone architecture for the evaluations, same as used in the main paper.66

B.1. Effect of Mask Consistency67

In Cross-Scale MAE, we generate two scale augments from the raw image and have the option to68

apply either a consistent mask, where the patch location of the mask remains fixed across both scale69

images, or different masks with varying patch locations for each scale. In this section, we compare70

the performance of these two cases using kNN with k=20 on the representations with different scale71

ratios.72

Table 1: Effect of mask consistency in Cross-Scale MAE on RESISC

Masking Strategy kNN 25% kNN 50% kNN 100%
Consistent 0.762 0.812 0.824
Different 0.787 0.831 0.853

Table 1 presents the evaluation results, showcasing the effect of mask consistency on Cross-Scale73

MAE performance on the RESISC dataset. The table highlights the kNN accuracy for different scale74

ratios. Notably, we observe that inconsistent masks yield nearly a 2% improvement in performance.75

This improvement may be attributed to the introduction of additional variance during training,76

resulting in a more robust and invariant representation being learned by the model.77
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B.2. Effect of Masking Ratio and Training Time78

In addition to exploring the impact of mask consistency, we also investigate the effect of different79

masking ratios on the performance of Cross-Scale MAE. Table 2 reports the evaluation results using80

three different mask ratios: 60%, 75%, and 90%. The kNN accuracy for each mask ratio at various81

scale ratios is measured and compared.82

Table 2: Effect of Mask Ratio in Cross-scale MAE on RESISC
Masking Ratio KNN 25% KNN 50% KNN 100%

60% 0.7803 0.8322 0.8407
75% 0.787 0.831 0.853
90% 0.7524 0.7971 0.7977

We observe interesting patterns from the results presented in Table 2. A relatively low mask ratio83

of 60% still yields excellent performance for remote sensing images, demonstrating competent84

representation learning capabilities. However, employing a high mask ratio of 90% leads to decreased85

performance. This reduction may be attributed to the significant information loss caused by a high86

degree of masking, which affects the model’s ability to capture essential details and features.87

These findings highlight the importance of carefully selecting an optimal mask ratio to balance88

preserving relevant information and encouraging robust representation learning.89

Finally, we show the performance of Cross-Scale MAE with different backbones at different training90

epochs in Table 3.91

C. Evaluation on Natural Images (CoCo Dataset)92

To assess the generalization capabilities of Cross-Scale MAE, we evaluate by pre-training on the93

CoCo2017 dataset, focusing on natural images. This evaluation allows us to validate the effectiveness94

of our model beyond remote sensing images and examine its performance in a different domain. We95

pre-train the Cross-Scale MAE on the CoCo2017 dataset using the following parameter settings:96

ViT-Base as the backbone architecture, a base learning rate of 5× 10−3, a weight decay of 5× 10−3,97

and an input size of 128× 128. The model is trained for 400 epochs.98

C.1. Pre-Training Performance on CoCo Images99

We visualize the reconstruction results on the CoCo dataset in Fig.4 and present the corresponding100

evaluation metrics in Fig.5. We compare the performance of Cross-Scale MAE with the baseline101

model, MAE [4].102

From Fig.5, we observe that Cross-Scale MAE outperforms the baseline model in terms of both103

MSE and SSIM. Additionally, in Fig.5, we notice that the baseline model exhibits more artifacts104

in the reconstruction results at the locations of the masked patches. In contrast, Cross-Scale MAE105

demonstrates a closer representation of the actual distribution of pixel values that should be present106

in those locations.107

C.2. Zero-Shot Performance on fMoW-RGB Images108

Furthermore, we evaluate the zero-shot reconstruction performance of Cross-Scale MAE on the109

fMoW-RGB dataset using the model pre-trained on CoCo. In this evaluation, we freeze the model110

trained on CoCo and reconstruct images from the fMoW-RGB dataset. It is important to note that111

the model has not seen any images from the fMoW-RGB dataset during its training. The zero-shot112

Table 3: Performance with different backbone and training epoch of Cross-Scale MAE (%)

Epochs 50 100 150 200 250 300
ViT-Base 63.72 74.13 75.42 77.73 78.55 79.25
ViT-Large 60.01 73.84 79.42 83.09 83.39 85.34
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Figure 4: Reconstruction performance on the CoCo Dataset

Figure 5: Multiscale reconstruction performance on the CoCo dataset

reconstruction results are displayed in Fig. 6. These results indicate that the learned representations by113

Cross-Scale MAE generalize well, as the zero-shot reconstruction still produces meaningful outputs114

on the fMoW-RGB dataset.115

The evaluation of natural images demonstrates the versatility of Cross-Scale MAE, showcasing its116

ability to capture meaningful representations and generalize effectively across different domains.117

These findings highlight the potential of our model to enhance image understanding and reconstruction118

tasks in various applications beyond remote sensing imagery.119

D. Timm vs. xFormers MAE Backbones120

This section presents the findings of an ablation study conducted as the initial step of our research.121

The study aimed to establish an efficient and flexible backbone for the final implementation by122

optimizing the original Masked Auto-Encoder for improved training time and a smaller memory123

footprint. The ultimate goal was to enable feasible end-to-end training and inference on a single124

GPU.125
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Figure 6: Zero-shot reconstruction in fMoW with Cross-Scale MAE pre-trained on CoCo

Initially, the MAE implementation relied on the Timm library for its various components. However,126

during our research, we came across the xFormers[7] library, which offers customizable building127

blocks and cutting-edge components yet to be available in mainstream libraries like PyTorch. xForm-128

ers claims to be built with efficiency in mind, delivering fast and memory-efficient performance[7].129

D.1. Baseline Efficiency Benchmark130

We re-implemented the original MAE using this library to evaluate the potential benefits of using131

xFormers. This allowed us to compare the performance of the Timm implementation against the132

xFormers implementation based on PyTorch 1.13.1. Additionally, we considered the recently released133

PyTorch 2.0.0, which promised improved efficiency and optimizations for transformer models. It is134

important to note that xFormers did not yet support the newly released PyTorch version during our135

experiments.136

We conducted several benchmark experiments to evaluate the performance of the original Timm137

implementation using PyTorch 1.13.1 and PyTorch 2.0.0 against our xFormers implementation on138

PyTorch 1.13.1. These evaluations were performed on an NVIDIA RTX A6000 GPU.139
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Table 4: Time/Step - 224 × 224, patch16, batch256

Model Timm (1.13.1) xFormers (1.13.1) Timm (2.0.0)
ViT-Base 0.4849 0.4144 0.4685
ViT-Large 0.7939 0.7143 0.7584

Table 5: Memory Usage - 224× 224, patch16, batch256

Model Timm (1.13.1) xFormers (1.13.1) Timm (2.0.0)
ViT-Base 22639 19020 22223
ViT-Large 34225 30739 32974

The results revealed the superior performance of xFormers when working with an input resolution140

of 224x224. Comparing memory usage and time per step, xFormers outperformed the Timm141

implementation on PyTorch 1.13.1. Specifically, the Vision Transformer (ViT) Base achieved142

a 17% increase in speed, while ViT Large demonstrated an 11% improvement with xFormers.143

Regarding memory efficiency, xFormers showcased a 19% enhancement for ViT Base and an 11%144

improvement for ViT Large. It is worth noting that PyTorch 2.0.0 also provided some speed and145

memory improvements at this input resolution, often falling between the performance of Timm and146

xFormers on PyTorch 1.13.1.147

Table 6: Time/Step - 128 ×128, patch16, batch512

Model Timm (1.13.1) xFormers (1.13.1) Timm (2.0.0)
ViT-Base 0.2948 0.2820 0.2796
ViT-Large 0.5245 0.5047 0.4986

Table 7: Memory Usage - 128 ×128, patch16, batch512

Model Timm (1.13.1) xFormers (1.13.1) Timm (2.0.0)
ViT-Base 12213 12003 11805
ViT-Large 20891 21060 19601

When utilizing an input size of 128 × 128, the performance differences were subtle. The original148

Timm implementation on PyTorch 2.0.0 exhibited a slight advantage over the xFormers imple-149

mentation on PyTorch 1.13.1. The time per step showed a mere 1% improvement with the Timm150

implementation on PyTorch 2.0.0. In terms of memory usage, there was an approximate 7% improve-151

ment with the Timm implementation on PyTorch 2.0.0 compared to the xFormers implementation on152

PyTorch 1.13.1. Although present, these differences were less substantial than those when using a153

higher input resolution.154

The results of the ablation study underscored the significance of using xFormers as the backbone for155

our final implementation. Not only did xFormers provide enhanced flexibility through its customizable156

building blocks and cutting-edge components, but it also demonstrated superior speed and memory157

efficiency performance.158

D.2. Effect of Attention Type159

Our experiments primarily used the Scaled Dot Product (SDP) attention mechanism, a common160

choice for transformer architectures. However, attention mechanisms can significantly influence161

a model’s efficiency and reconstruction accuracy. The initial implementation, using the Timm162

library, only supported SDP attention. In contrast, the xFormers library—our final choice for163

implementation—provides an expanded selection of attention mechanisms, allowing for a more164

comprehensive examination of how different attention types affect model performance and efficiency.165

The Fourier Mix attention [6], which integrates the generalized Fourier integral theorem into the166

dot-product attention step of the standard transformer, showed significant improvements in both167

speed and memory consumption. Compared to SDP attention, Fourier Mix attention was 34% faster168

and consumed approximately 44% less memory. Incorporating Fourier Mix attention addresses the169
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Figure 7: Memory efficiency of different attention types

traditional SDP attention’s limitations, capturing complex interactions among the features of the170

queries and keys more effectively and reducing redundancy between attention heads [6].171

On the other hand, the Local attention [1] mechanism provided only a minor speed improvement but172

also slightly increased memory consumption for our current architecture. Local attention offers a173

novel approach to managing long sequences by dividing attention into global and local components174

to facilitate the efficient processing of long input sequences. Due to this, we suspect this mechanism’s175

benefits would be a lot more noticeable in even larger architectures with much larger embedding176

dimensions.177

Figure 8: Performance comparison of attention types in Cross-Scale MAE
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Following these observations, we further tested the Fourier Mix and Local attention mechanisms,178

assessing their reconstruction performance against the SDP attention baseline. As shown in Figure 8,179

both Fourier Mix and Local attention mechanisms demonstrated a 10% improvement in the Structural180

Similarity Index (SSIM) metric, a method for comparing image similarities essential for multiscale181

performance. These attention mechanisms also significantly improved the Mean Squared Error (MSE)182

metric, which quantifies the average squared differences between estimated and actual values.183

Our findings underscore the potential of exploring alternative attention mechanisms to enhance184

efficiency and performance. The xFormers library, with its diverse attention options, provides an185

opportunity to tailor attention mechanism selection to specific applications, leading to substantial186

performance gains.187
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