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Abstract

Learning curve extrapolation aims to predict model performance in later epochs
of training, based on the performance in earlier epochs. In this work, we ar-
gue that, while the inherent uncertainty in the extrapolation of learning curves
warrants a Bayesian approach, existing methods are (i) overly restrictive, and/or
(ii) computationally expensive. We describe the first application of prior-data
fitted neural networks (PFNs) in this context. A PFN is a transformer, pre-trained
on data generated from a prior, to perform approximate Bayesian inference in a
single forward pass. We propose LC-PFN, a PFN trained to extrapolate artificial
right-censored learning curves generated from a parametric prior proposed in prior
art using MCMC. We demonstrate that LC-PFN can approximate the posterior
predictive distribution over learning curves more accurately than MCMC, while
being over 10 000 times faster. We also show that the same LC-PFN achieves
competitive performance extrapolating a total of 20 000 real learning curves from
four learning curve benchmarks (LCBench, NAS-Bench-201, Taskset, and
PD1) that stem from training a wide range of model architectures (MLPs, CNNs,
RNNs, and Transformers) on 53 different datasets with varying input modalities
(tabular, image, text, and protein data). Finally, we investigate its potential in the
context of model selection and find that a simple LC-PFN based predictive early
stopping criterion obtains 2 - 6× speed-ups on 45 of these datasets, at virtually no
overhead.

1 Introduction

Learning curve extrapolation [Mohr and van Rijn, 2022] aims to predict how much a machine
learning model will improve with more training, e.g., to determine how much more training data
to collect [Cortes et al., 1993, Frey and Fisher, 1999, Leite and Brazdil, 2004, Kolachina et al.,
2012], or to define an early stopping criterion in online learning [Yao et al., 2007]. Learning curve
extrapolation has recently been widely studied to speed up automated machine learning (AutoML)
and hyperparameter optimization (HPO) of deep neural networks, by discarding non-promising
configurations early [Swersky et al., 2014, Domhan et al., 2015, Klein et al., 2017, Baker et al., 2017,
Chandrashekaran and Lane, 2017, Gargiani et al., 2019, Wistuba et al., 2022].
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Despite these efforts, learning curve extrapolation is not yet widely adopted in practice, e.g., state-of-
the-art multi-fidelity hyperparameter optimization techniques, such as BOHB [Falkner et al., 2018],
still rely on successive halving [Li et al., 2017], i.e., the crude heuristic that learning curves mostly
do not cross each other.

One reason for this is that, while many learning curves are well-behaved, some exhibit chaotic
behavior and are intrinsically difficult to predict accurately [Choi et al., 2018]. In this setting, Bayesian
approaches [Swersky et al., 2014, Domhan et al., 2015, Klein et al., 2017, Wistuba et al., 2022],
which also quantify the reliability of their extrapolation, show great potential. However, existing
methods for Bayesian inference either (i) put strong restrictions on the prior, and are incapable of
modeling the variable nature of learning curves, or (ii) are too computationally expensive, limiting
their practical applicability. Furthermore, most of this related work focuses on demonstrating the
potential that learning curve extrapolation has to accelerate downstream AutoML/HPO tasks, yet fails
to fully investigate the quality of the extrapolations themselves, and to quantify the approach’s ability
to handle the heterogeneity of real-world learning curves, e.g., varying performance metrics, curve
shapes, divergence, heteroscedastic noise, etc.

In this work, we investigate the potential of learning curve extrapolation using prior-data fitted
networks (PFNs), a meta-learned approximate Bayesian inference method recently proposed by
Müller et al. [2022]. PFNs combine great flexibility with efficient and accurate approximation of the
posterior predictive distribution (PPD) in a single forward pass of a transformer [Vaswani et al., 2017]
trained on artificial data from the prior only. As PFNs are a promising alternative to Markov Chain
Monte Carlo (MCMC) for approximating Bayesian inference, we compare our approach (LC-PFN)
to the MCMC approach for learning curve extrapolation of Domhan et al. [2015], taking into account
both the quality and the cost of PPD approximation.

In summary, our contributions are as follow:

• We are the first to apply PFNs to an extrapolation task, introducing LC-PFN, the first PFN
for learning curve extrapolation.

• We demonstrate that LC-PFN can be more than 10 000× faster than MCMC while still
yielding better probabilistic extrapolations.

• We show that LC-PFN does not only yield better probabilistic extrapolations on prior
samples, but also on real learning curves of a wide range of architectures (MLPs, CNNs,
RNNs, Transformers) on varying input modalities (tabular, image, text and protein data).

• We demonstrate the practical usefulness of LC-PFN to construct an early stopping criterion
that achieves 2 - 6× speedups over baselines.

• To facilitate reproducibility and allow others to build on our work, we open-source all code,
data, and models used in our experiments at https://github.com/automl/lcpfn.

2 Related work

Learning curves and how to use them for decision-making has been an active research area, as
recently surveyed by Mohr and van Rijn [2022]. Most related work considers point estimates of
the curve or a specific property thereof [Cortes et al., 1993, Frey and Fisher, 1999, Kolachina et al.,
2012, Baker et al., 2017, Kaplan et al., 2020], or follows a non-Bayesian approach to quantify
uncertainty [Chandrashekaran and Lane, 2017, Gargiani et al., 2019].

Only a few works have explored Bayesian learning curve extrapolation. For example, the Freeze-
Thaw Bayesian optimization method Swersky et al. [2014] used a Gaussian process (GP) as a joint
model of learning curves and hyperparameters to decide what learning run to continue for a few
epochs (or whether to start a new one). The model is then dynamically updated to fit the partial
learning curve data. Training data grows quickly since each performance observation of the curve
is treated as a datapoint, making exact GPs intractable, and thus the work relies on approximate
GPs. Furthermore, their approach makes strong (prior) assumptions. On top of the standard GP
assumptions, they used a specialized kernel assuming exponential growth to improve extrapolation.
Domhan et al. [2015] proposed a less restrictive parametric prior (see Section 3.2 for more details) and
used the gradient-free MCMC method from Foreman-Mackey et al. [2013] as approximate inference
method. While MCMC is a very general approach, it can be sensitive to its hyperparameters (e.g.,
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burn-in period, chain length, etc.) and, as we will show in Section 4, generating sufficient samples
to reliably approximate the PPD may impose significant overhead. Klein et al. [2017] extended
this parametric prior to also capture the effect of hyperparameter settings. In particular, they used
a Bayesian neural network with a specialized learning curve layer, and trained this network using
gradient-based MCMC on learning curve data from previously tested hyperparameter settings. While
this approach is able to predict learning curves of previously unseen configurations, conditioning on
the current partial learning curve requires retraining the Bayesian neural network online, which is
costly. Recently, DyHPO [Wistuba et al., 2022] followed a similar dynamic HPO setup as Swersky
et al. [2014], but used deep GPs [Damianou and Lawrence, 2013]. While deep GPs relax some of
the standard GP assumptions, extrapolation abilities were not thoroughly analyzed, and DyHPO
only predicts one epoch into the future. Finally, it is worth noting that, except for Domhan et al.
[2015], all the aforementioned probabilistic approaches [Swersky et al., 2014, Klein et al., 2017,
Chandrashekaran and Lane, 2017, Gargiani et al., 2019, Wistuba et al., 2022] utilize meta-learning
across the learner’s hyperparameter settings. While this is an interesting line of work, it limits
applicability, and introduces confounding factors. We will therefore consider a simpler and more
general setting in this work (see Section 3.1). Indeed, akin to the approach of Domhan et al.
[2015], we operate without the assumption of access to data from previous runs employing different
hyperparameter settings, nor do we assume the ability to generalize across these settings. Our results
highlight that prior-data fitted networks (PFNs) offer a significantly more efficient and practical
alternative to Markov Chain Monte Carlo (MCMC) methods. As categorized by Mohr and van Rijn
[2022], Domhan et al. [2015] is the only comparable prior work within this category. This underlines
the novelty and importance of our approach in the context of advancing current methodologies.

While we are the first to apply PFNs [Müller et al., 2022] to learning curve extrapolation, PFNs
have previously been applied in different settings: Hollmann et al. [2023] used them to meta-learn a
classifier for tabular data; Müller et al. [2023] as a surrogate model for Bayesian optimization; and
most recently concurrent work by Dooley et al. [2023] as a zero-shot time series forecaster.

3 Methods

3.1 Bayesian learning curve extrapolation

Let yt ∈ [0, 1] represent the model performance (e.g., validation accuracy) at training step
t ∈ {1, . . . ,m}. The problem we consider in this paper can be formulated as follows: Given a
partial learning curve y1, . . . , yT up to some cutoff T , and a prior distribution p(y) over learning
curves, approximate the posterior predictive distribution (PPD) q(yt′ | y1, . . . , yT ) for T < t′ ≤ m.
We will further assume that we can calculate the relative probability density of p(y), a requirement for
MCMC, and that we can generate samples from p(y), a requirement for PFNs. Figure 1 provides an
illustration of Bayesian learning curve extrapolation, showcasing the posterior predictive distributions
(PPDs) of the extrapolated curves generated by LC-PFN and MCMC, along with a few representative
curves sampled from the prior distribution p(y).

Figure 1: (Left) Visualization of Bayesian learning curve extrapolation. The plot shows the median
and the 90% confidence interval of the PPDs inferred using MCMC and LC-PFN, given two partial
empirical learning curves of 10 and 20 epochs, respectively, and the prior described in Section 3.2.
(Right) Example of learning curves sampled from the prior p(y).
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While the fixed ranges for yt and t are well-suited for modeling particular learning curves (e.g., accu-
racy over epochs), they also are restrictive. In Appendix A, we discuss the invertible normalization
procedure we apply to support extrapolating, possibly diverging, iteration-based learning curves
across a broad range of performance metrics (e.g., log loss).

3.2 Learning curve prior

Following Domhan et al. [2015], we model y as a linear combination of K basis growth curves fk,
each parameterized by θk, and i.i.d. additive Gaussian noise with variance σ2, i.e.,

yt ∼ N (fcomb(t|ξ), σ2) with fcomb(t|ξ) =
K∑

k=1

wk · fk(t|θk),

where we assume our model parameters

ξ = (w1, . . . , wK ,θ1, . . . ,θK , σ2)

to be random variables with prior p(ξ). Here, Domhan et al. [2015] assumed an uninformative prior
(i.e., p(ξ) ∝ 1), with the exception of some hard constraints. We adopt a strictly more informative
prior, because (i) the original prior puts almost all probability mass on parameterizations yielding
invalid learning curves, e.g., yt /∈ [0, 1]; and (ii) we cannot practically sample from this prior having
unbounded support, a requirement for PFNs.1 Specifically, to mimic realistic learning curves we use
bounded uniform weight priors wk ∼ U (0, 1), a low-noise prior log(σ2) ∼ N (−8, 2), only allow
curves with values in [0, 1] and, like Domhan et al. [2015], only accept curves whose last value is
higher than its first. Putting all of these together, our prior distribution thus takes the form:

p(ξ) ∝

(
K∏

k=1

p(wk) · p(θk)

)
× p(σ2)× 1(fcomb(1|ξ) < fcomb(m|ξ))×

(
m∏
t=1

1(fcomb(t|ξ) ∈ [0, 1])

)
.

Finally, we limit ourselves to three parametric families of learning curves (K = 3, see Table 1).2
These basis curves were chosen to capture a variety of growth trends and convergence behavior. We
show examples of curves sampled from this prior in Figure 1 (right).

Table 1: Formulas of the three parametric basis curves and priors over their parameters.
Reference name Formula fk(t) Prior p(θk)

pow3 c− at−α c ∼ U(0, 1.25) a ∼ U(90.6, 0.6) log(α) ∼ N (0, 4)

Janoschek α− (α− β)e−κtδ α ∼ U(0, 1) β ∼ U(0, 2) log(κ) ∼ N (−2, 1) log(δ) ∼ N (0, 0.25)
ilog2 c− a

log(t+1) c ∼ U(0, 1) a ∼ U(90.5, 0.5)

3.3 Prior-data fitted networks (PFNs)

In this paper, we propose to use prior-data fitted networks (PFNs, Müller et al., 2022) instead of
MCMC for learning curve extrapolation. PFNs are neural networks trained to perform approximate
Bayesian prediction for supervised learning settings. That is, PFNs are trained to predict some output
y ∈ R, conditioned on an input t and a training set Dtrain of given input-output examples. The PFN is
trained for this task with samples obtained from a prior over datasets p(D). The loss function for train-
ing a PFN qθ with parameters θ is the cross entropy ℓθ = E(t,y)∪Dtrain∼p(D)[9log qθ(y|t,Dtrain)]
for predicting the hold-out example's label y, given t and Dtrain. Müller et al. [2022] proved that
minimizing this loss over many sampled tasks (t, y) ∪Dtrain directly coincides with minimizing the
KL divergence between the PFN's predictions and the true PPD. In essence, the PFN meta-learns to
perform approximate posterior inference on (meta-train) synthetic tasks sampled from the prior, and
at inference time also does so for a (meta-test) real task.

1Note that the probability density of p(yt) is well-defined, a requirement for MCMC, but not for PFNs.
2We found that adding additional curves did not improve predictive performance significantly, and made the

MCMC baseline even more expensive and less stable. Klein et al. [2017] also limited themselves to five basis
curves for similar reasons.
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Figure 2: A visualization of our LC-PFN model on the task of predicting an accuracy over epochs
curve. D represents the epoch accuracies up to epoch 3 (= T ′). Attention between test and training
positions is shown using red and blue arrows, respectively. Plots based on Müller et al. [2022].

3.4 PFNs for Learning Curve Extrapolation (LC-PFNs)

To apply PFNs to learning curve extrapolation, we train them on learning curves sampled from a
given prior over learning curves (in our case, the prior defined in Section 3.2). Specifically, the
training set we condition on is the available partial learning curve up to some varying cutoff point
T ′, i.e., Dtrain = {(t′, yt′)}T

′

t′=1, the input we condition on is the epoch t ∈ {T ′ + 1, . . . ,m} to
predict for, and the desired output y is the value of the learning curve at epoch t. During training, we
randomly sample the cutoff points T ′ ∼ U(0,m 9 1) for every batch in order to learn to predict for
initial learning curves of varying sizes. Figure 2 illustrates the information flow in a LC-PFN during
learning curve extrapolation.

LC-PFN architecture and hyperparameters We use the PFN architecture proposed by Müller
et al. [2022] and visualized in Figure 2 (a). That is, we use a sequence Transformer [Vaswani et al.,
2017] and treat each pair (t, y) (for train) and t (for test) as a separate position/token. We encode
these using a simple linear layer. We do not use positional encoding such that we are permutation
invariant. Furthermore, the attention matrix is masked such that every position only attends to the
training positions. This way training examples can attend to each other, but the test examples do not
influence each other's predictions. Note that the output of the PFN with parameters θ is a distribution
qθ(y|t,Dtrain). Following Müller et al. [2022], we discretize qθ in a finite number of bins whose
probability mass is predicted by the PFN, as is shown in Figure 2 (b). The size of each bin is set such
that, under the prior, yt is equally likely to fall in each bin. The number of bins is a hyperparameter
that we set to 1 000. The LC-PFN model further inherits hyperparameters from the Transformer,
including the number of layers (nlayers), number of heads (nheads), embedding size (emsize),
and hidden size (nhidden). We use four heads, a hidden size of 1 024, and conduct a thorough
ablation study to investigate the effects of the number of layers and embedding size on the final
performance, exploring a grid of values (see Table 2). We use a standard training procedure for all
experiments, employing the Adam optimizer [Kingma and Ba, 2015] (learning rate 0.0001, batch
size 100) with cosine annealing [Loshchilov and Hutter, 2017] with a linear warmup over the first
25% epochs of the training. Finally, we set m = 100, implying LC-PFN is trained for extrapolating
sequences of up to 100 training steps (e.g., epochs). We found that most curves are shorter in practice,
and when longer sequences are encountered, we subsample them as described in Appendix B.

4 Experiments

Our experiments aim to test the hypothesis that PFNs present a practical Bayesian approach to
learning curve extrapolation. To this end, we first compare our LC-PFN approach against the MCMC
approach of Domhan et al. [2015], using the same prior on samples generated from it (Section 4.1).
Then, we extend the comparison to four real-world learning curve benchmarks (Section 4.2). Finally,
we look beyond the quality of individual extrapolations and evaluate the potential of LC-PFN in the
context of predictive early stopping to accelerate model selection (Section 4.3).
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4.1 Extrapolating samples of the prior

The goal of this first experiment is to assess the ability of LC-PFNs and MCMC to approximate the
true posterior predictive distribution (PPD). To avoid artifacts due to out-of-distribution data, in this
experiment, we use curves sampled from the prior (defined in Section 3.2). Furthermore, we modified
the original implementation of MCMC [Domhan et al., 2015], to use the curve prior we proposed in
Section 3.2. In the following, we refer to this MCMC variant as MCMC-PP and denote the one using
the original prior [Domhan et al., 2015] as MCMC-OP (used in Section 4.2). Since the LC-PFN and
MCMC-PP methods are both (approximate) Bayesian inference methods, using the same prior, they
aim to approximate the same true target PPD, given a partial learning curve.

As a performance metric, we evaluate the log-likelihood (LL) of the unseen data (right-censored
curve) under the inferred PPD. We use this metric, also known as logarithmic score, to assess a
model’s ability to infer the remaining part of the curve based on the initial observed values. A benefit
of this metric is that it measures the quality of the PPD as a whole (rather than merely focusing on
the error associated to a specific PPD statistic) and, assuming data is generated by the prior, the exact
PPD maximizes this metric.

Table 2: Grid of hyperparameter values
evaluated for MCMC-PP and LC-PFN.

Hyperparameters

M
C
M
C
-
P
P nsamples ∈ [100, 250, 500, 1000, 2000, 4000]

nwalkers ∈ [26, 50, 100]
burn-in ∈ [0, 50, 100, 500]

thin ∈ [1, 10, 100]
L
C
-
P
F
N nb_data ∈ [100k, 1M, 10M]

emsize ∈ [128, 256, 512]
nlayers ∈ [3, 6, 12]

Importantly, we vary the cutoff, i.e., the percentage
of the observed curve used as input, to better assess
the model’s performance across different amounts of
available information. Furthermore, to allow a more
comprehensive comparison, we vary the hyperparam-
eters of both LC-PFN and MCMC-PP. For LC-PFN,
we vary the embedding size (emsize), the number
of layers (nlayers), and the total number of learn-
ing curves used during training (nb_data). For
MCMC-PP, we vary the number of chains generated
by the emcee [Foreman-Mackey et al., 2013] ensem-
ble sampler (nwalkers), the length of each chain
(burn-in + nsamples), the part of the chain omitted to account for mixing (burn-in), and the
sub-sample frequency (thin). The considered values for each hyperparameter are summarized in
Table 2.

We conducted the comparison on 10 000 sampled curves. Figure 1 shows a few curve examples, as
well as inferences using LC-PFN and MCMC-PP given the data of the first 10 - 20 epochs (cutoff).
We observe that both predicted median and uncertainties are indeed similar. More inference examples,
with different cutoffs can be found in Appendix C.4.

Results Figure 3 displays the average log-likelihood across MCMC-PP / LC-PFN inferences for
varying hyperparameters and a 10% cutoff. The log-likelihood is shown w.r.t. runtime, which is
measured as the average wall-clock time for a single inference on a single Intel(R) Xeon(R) Gold
6242 CPU. Note that this inference time includes both the fit and prediction times for MCMC variants.
Table 3 provides results on higher cutoffs (20%, 40%, 80%) and corresponding runtimes for three
variants of each method (M1-3, P1-3), labeled in Figure 3. Generally, the LC-PFN variants (left
side of figure 3) are significantly faster than MCMC-PP variants (right side). LC-PFN always ran
in less than 0.1 seconds while the best MCMC-PP (M3) took over 100 seconds. Figure 3 also offers
insights into the importance of LC-PFN and MCMC-PP hyperparameters. For MCMC-PP, both the
cost and quality of inference increase with longer chain lengths and higher cutoffs. For LC-PFN,
the inference cost increases with the model complexity which is closely related to the number of
trainable parameters. Inference quality positively correlates with model size (“larger is better”), and
the number of data LC-PFN was trained on. Among the hyperparameter grid we examined (Table 2),
except for the smallest model (P1), all LC-PFN variants that were trained on 10M samples produce
higher log-likelihood than the best MCMC-PP variant (M3). In particular, an LC-PFN (P2) with 3
layers, embedding size 256, trained on 10M samples achieved better performance (log-likelihood of
PPD) than the best MCMC-PP, but more than 15 000 times faster. We also find that while the runtime
of the best MCMC-PP can be reduced (with minor loss of quality) by using thinning (M2), the better
LC-PFN is still approximately 7 000 times faster. Finally, it is important to note that training the
largest LC-PFN (P3, 10M samples with 26M parameters) on the prior took approximately eight hours
(single CPU, single RTX2080 GPU), but this cost is incurred only once for all of our experiments.
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Figure 3: Runtime (lower is better) vs log-likelihood of the true curve under the PPD (higher is
better), with 10% of the curve observed. See Figure 9 in Appendix C.1 for higher cutoffs. Blue and
red markers correspond respectively to LC-PFN and MCMC-PP with varying hyperparameters values.
The M1-3 /P1-3 labels refer to the PFN / MCMC variants listed in Table 3. The horizontal dashed
line indicates the performance of the best MCMC variant.

Table 3: Comparison of three LC-PFN and MCMC-PP variants on prior curves in terms of log-
likelihood (higher is better) at 10%, 20%, 40%, and 80% cutoffs. Here, M1 corresponds to the
configuration used in Domhan et al. [2015]. Please refer to Table 5 for more comprehensive results.

Label Method Parameters 10% 20% 40% 80% Avg. Runtime (s)
M1 MCMC nsamples=2000, nwalkers=100, burn-in=500, thin=1 1.628 1.939 2.265 2.469 54.401
M2 MCMC nsamples=4000, nwalkers=100, burn-in=100, thin=100 1.641 1.958 2.277 2.477 45.160
M3 MCMC nsamples=4000, nwalkers=100, burn-in=500, thin=1 1.642 1.956 2.285 2.486 103.151

P1 PFN nb_data=10M, nlayers=3, emsize=128 1.58 1.99 2.28 2.43 0.004
P2 PFN nb_data=10M, nlayers=3, emsize=256 1.65 2.04 2.35 2.49 0.006
P3 PFN nb_data=10M, nlayers=12, emsize=512 1.76 2.13 2.40 2.52 0.050

4.2 Extrapolating real-world learning curves

While evaluation on data from the prior gives us a controlled setting to analyse quality and cost
of the PPD approximation, performance on real-world learning curves is essential for practical
usefulness. This second experiment aims to extend the previous comparison of MCMC and LC-PFN
to real-world learning curve benchmarks.

We consider the best-performing variants of LC-PFN and MCMC-PP according to the average log-
likelihood they obtained in the first experiment. For LC-PFN, the optimal variant (P3) features an
embedding size of 512 and 12 layers, resulting in a total of 26M trainable parameters, and is trained
on 10 million prior curves. For MCMC-PP, the optimal configuration (M3) involves a chain length of
4 500, 100 walkers, 500 burn-in samples, without thinning. As an additional baseline, we include
MCMC-OP, the original MCMC variant proposed by Domhan et al. [2015], which uses the original
hyperparameters and curve prior (11 basis curves and uninformative prior over the curve parameters).

Benchmarks To evaluate the generalization capabilities of our model, we consider a diverse
set of real-world curves. Our dataset comprises 20 000 learning curves, sourced from four dis-
tinct benchmarks: LCBench [Zimmer et al., 2021], NAS-Bench-201 [Dong and Yang, 2020],
Taskset [Metz et al., 2020] and PD1 [Wang et al., 2022], each contributing 5 000 curves, randomly
selected from specific subtasks. These benchmarks and subtasks were chosen to span a broad spec-
trum of supervised deep learning problems, training MLP (LCBench), CNN (NAS-Bench-201),
RNN (Taskset), and Transformer (PD1) architectures on input modalities ranging from tab-
ular data (LCBench), text (Taskset and PD1), protein sequence (PD1), to vision problems
(NAS-Bench-201). From LCBench and NAS-Bench-201 we use validation accuracy curves
whereas from Taskset and PD1 the log loss validation curves. In terms of curve length, LCBench
and Taskset cover 50 epochs, NAS-Bench-201 contains up to 200 epochs, and PD1 curves
have varying lengths (22 - 1414). Further details, including sample curves, on these benchmarks are
provided in Appendix B.
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(a) Average rank of log-likelihood values (lower is better) vs cutoffs

(b) Average rank of mean squared error (MSE) values (lower is better) vs cutoffs

Figure 4: Comparison of LC-PFN with two MCMC variants on three real-data benchmarks.

Metrics Our focus lies on the relative performance of MCMC and LC-PFN, as absolute perfor-
mance is significantly influenced by the choice of prior. We consider the log-likelihood and the mean
squared error (MSE) of the predictions as metrics. Here, the MSE is calculated w.r.t. the median of
the PPD.

For each benchmark, we report the average rank of these metrics to aggregate results from different
curves, as supposed to the average values. While the latter better captures performance differences,
it is very sensitive to outliers and scale-dependent. When computed in normalized space, it would
strongly depend on our choice of normalization parameters (see Appendix A).

Results For each benchmark, Figures 4a and 4b display the average rank obtained by each method
in terms of log-likelihood and MSE, respectively, where ranks are averaged across all 5 000 curves.
We do not include error bars as the standard errors are neglectable (less than 0.02). In summary, we
observe similar trends for both metrics on all benchmarks. LC-PFN is never truly outperformed by
MCMC-PP. On LCBench both methods rank similarly, with LC-PFN being slightly worse at high
cutoffs. LC-PFN ranks better on PD1, NAS-Bench-201, and Taskset. MCMC-OP performs
clearly worse on LCBench, Taskset, and PD1. On NAS-Bench-201, MCMC-OP performs best
for lower cutoffs, outperforming MCMC-PP, suggesting that NAS-Bench-201 curves are better
captured by the original prior. Figure 11 and Figure 12 in Appendix C.2 show the log-likelihoods
and MSEs, respectively, for all three methods, for each curve and cutoff, per benchmark, providing a
more detailed perspective.

4.3 Application: Extrapolation-based early stopping in model selection

Thus far, we have shown that LC-PFN produces extrapolations of similar or better quality to MCMC,
at a small fraction of the cost. However, these extrapolations are not perfect. In many cases, the
practical relevance of any errors can only be assessed in the context of a specific application.

In this final experiment, we thus consider a model selection setting where after every epoch of training
we have the choice between (i) continuing the current training, or (ii) stopping early (T < m) and
starting a new training run using a different training pipeline (e.g., model architecture, hyperparame-
ters, etc.). Here, we assume that runs cannot be resumed once stopped and that the order in which
training pipelines are to be considered is given. Our objective is to obtain high-quality models as
quickly as possible, by stopping suboptimal training runs as early as possible. This setting is also
known as vertical model selection [Mohr and van Rijn, 2022] and was also considered by Domhan
et al. [2015].
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Figure 5: Comparison of our LC-PFN based early stopping mechanism to naive baselines
no-stop (no stopping, train for the full budget m) and Patience(k) (stop training after k
epochs without improvement) for vertical model selection where runs are considered in a fixed order
and cannot be resumed. Shown is the anytime regret (lower is better) different approaches achieve
after a total number of training epochs, averaged per benchmark and across 40 orderings per task.

We consider the extrapolation-based termination criterion proposed by Domhan et al. [2015], but
use LC-PFN instead of MCMC to predict the likelihood Pr(yt′ > ybest | y1, . . . , yT ) that the current
run will at epoch t′ obtain a model better than the best obtained by any run thus far (ybest), for
T < t′ ≤ m and decide to stop the current run if that probability does not exceed some fixed
threshold δ (at any point). In our experiments, we use confidence level 1 − δ = 0.95 as Domhan
et al. [2015]. Note that this criterion can be applied at every step or only at specific cutoffs. To
simulate the effect of varying granularity, we consider a coarse-grained variant with 4 cutoffs
T ∈ {⌈0.1m⌉, ⌈0.2m⌉, ⌈0.4m⌉, ⌈0.8m⌉}, and a fine-grained variant with T ∈ {T | 1 < T < m}.
We investigate alternative choices for cutoffs and confidence levels in Appendix C.3.2.

Following Domhan et al. [2015], we compare against a black box approach no-stop that does not
implement early stopping. We further compare against a criterion Patience(k) that implements
the popular heuristic to terminate a training run when model performance did not improve for k epochs.
For evaluation, we consider the same benchmarks as in Section 4.2 (for details, see Appendix B).
We chose the total budget for model selection to correspond to 20 full runs (20m). For each task,
we consider the training runs in 40 different random orderings. This totals 2 120 model selection
experiments per method, spread across the 53 different tasks.

Results Figure 5 shows the anytime performance of all methods in our comparison, on each of
the benchmarks, in terms of regret. Here, regret is the absolute difference in performance between
the best model obtained thus far and the best model attained by any run on the task. Results are
averaged over the different run orderings. For LCBench, NAS-Bench-201, and Taskset results
are further averaged across all tasks (results for individual tasks can be found in Appendix C.3.1). The
shaded area corresponds to ± 1 standard error. On all benchmarks, except for NAS-Bench-201,
we observe that LC-PFN based termination criteria clearly perform best. Also, the fine-grained
variant performs better on average, suggesting that errors in inference are compensated for by the
time saved by stopping runs earlier. In terms of expected speed-up, this LC-PFN variant obtains
an expected regret lower than that obtained by no-stop, approximately 3.3× faster on LCBench
and Taskset. Looking at individual tasks, we note 2 - 6× speed-ups on all 3 PD1 tasks, all 12
Taskset tasks, and 30 of the 35 LCBench tasks (we obtain 1 - 2 × speed-ups on the remaining 5).
On NAS-Bench-201, we find that all termination criteria considered, including standard Patience
heuristics, fail on all 3 tasks; this is likely related to the particular shape of learning curves on this
benchmark, having an inflection point (see Figure 8 and Figure 19), not resembling any in the prior.
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Finally, in terms of overhead, the computational costs of the LC-PFN inferences per model selection
experiment range from 3 seconds (coarse-grained) up to 1 minute (fine-grained), and are negligible
compared to the cost of the 20 full training runs of deep neural networks.

5 Summary, limitations, and future research

We presented the first work using prior-data fitted networks (PFNs) for Bayesian learning curve
extrapolation. We show that our LC-PFN obtains qualitatively similar extrapolations, for a wide
variety of learning curves, more than 10 000× faster than the MCMC method proposed by Domhan
et al. [2015]. These inferences are now fast enough (under 100 milliseconds on CPU, and even less
on GPU), to be used in the context of online learning, at virtually no overhead. This opens up a
wide variety of possible applications, e.g., to speed up automated model selection in AutoML and
HPO by discarding poor configurations early. It would be interesting to integrate LC-PFN as a new
termination criterion in existing deep learning libraries.

Often, we also have more data available than a single partial learning curve, e.g., other curves on
the same task, their hyperparameters, and/or curves of the same method on a different task, and
meta-features. Previous work [Swersky et al., 2014, Klein et al., 2017, Wistuba et al., 2022, Ruhkopf
et al., 2022] has already exploited this, and we could explore the potential of using PFNs for few-shot
in-context meta-learning, by feeding the model multiple curves and hyperparameters as input.

While for a fair comparison to Domhan et al. [2015], reusing the original code, our prior (Section 3.2)
closely resembled the one of Domhan et al. [2015], future work could improve upon this prior and
overcome its limitations (e.g., on the NAS-Bench-201 tasks) by modelling divergence, slow start,
double-descent, correlated heteroscedastic noise, etc.

Finally, PFNs, unlike other Bayesian methods, must learn the prior from data, which implies that the
prior must be generative. Also, it suggests that high entropy priors may present challenges. Future
research should investigate these limitations and how to overcome them.
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A Learning curve normalization

Not all learning curves of interest may resemble those of the prior we described in Section 3.2. For
example, when minimizing the negative log-likelihood loss (log loss), learning curves will mostly
decrease (vs. increase), be convex (vs. concave), and could take values that exceed 1.0 (there is no
hard upper bound for log loss).

One approach would be to define a prior and train a specialized PFN for every performance measure.
In this work, we use a more general approach: We apply a normalization procedure that allows us
to accurately extrapolate a wide variety of learning curves using a single PFN, without retraining
or fine-tuning. We consistently apply this procedure to all inferences involving real learning curves
(i.e., the experiments described in Section 4.2 and Section 4.3), even if observations are naturally
constrained to [0, 1], e.g., accuracy curves.

Step 1: Normalize the partial learning curve: Let yoi be the ith performance observation. We start
by normalizing it using a generalized logistic sigmoid transform yi = gλ(y

o
i ), that is re-parametrized

by the following five parameters (λ):

min? A Boolean specifying that we expect learning to minimize the performance measure. E.g., this
would be true for error rate and log loss, and false for accuracy.

lhard, uhard These are possibly infinite hard lower / upper bounds for model performance. This would,
e.g., be 0 / 1 for accuracy and error rate; and 0 / +∞ for log loss.

lsoft, usoft These are finite soft lower/upper bounds for model performance. They specify the range in
which we expect performance values (that we care to distinguish between) to lie in practice.
For accuracy and error rate, one could set these equal to the hard bounds, whereas for log loss
one could, e.g., use an estimate of the loss for the untrained network (i.e., at epoch 0) as usoft
and lsoft = lhard, or if available, choose lsoft to be an optimistic estimate of performance at
convergence (e.g., state-of-the-art). Narrower ranges will result in more accurate inferences.

Specifically, we perform a linear transformation, followed by a logistic sigmoid, another linear
transform, and a minimization conditional reflection around 1

2 , i.e.,

gλ(y
o
i ) = cr0.5

(
c

1 + e−a(x−b)
+ d

)
where

cr0.5(y) =

{
1− y if min?
y if ¬min?

a =
2

usoft − lsoft
b = −usoft + lsoft

usoft − lsoft

c =
1 + e−a(uhard−b) + e−a(lhard−b) + e−a(uhard+lhard−2b)

e−a(lhard−b) − e−a(uhard−b)
d =

−c

1 + e−a(lhard−b)

Note that for λ = (False, 9∞,−1, 1,∞) this reduces to the canonical logistic sigmoid yi =
1

1+e−yo
i

.
This transform will be approximately linear (shape preserving) for yoi ∈ [lsoft, usoft], and the tails of the
sigmoid will gradually squish values outside this range to [0, 1], supporting unbounded performance
measures. Figure 6 visualizes this projection in general, and provides examples for accuracy with
λ = (False, 0, 0, 1, 1) and log loss with λ = (True, 0, 0, log(10),∞).

Step 2: Infer using normalized data: Next, we perform Bayesian learning curve extrapolation on
the normalized partial curve y, with our usual prior p(y), resulting in an approximation of the PPD
in the transformed space.

Step 3: Inverse transform the PPD: Finally, we can obtain the property of interest of the PPD in
the original space by applying the inverse transform, given by

g9λ(y
p
i ) =

log(
cr0.5(y

p
i )−d

c−(cr0.5(y
p
i )−d)

)− b

a
We use order-based statistics (e.g., median or other percentiles) in our experiments, to which we can
simply apply g9λ directly since it is a monotonic transform. For other statistics (e.g., mean, variance)
we may need to resort to Monte Carlo estimation, applying g9λ to samples of the PPD.
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Figure 6: left: The generic logistic sigmoid transformation described in Appendix A. and used
to normalize learning curves to support a wide range of possibly unbounded performance metrics.
middle/right: An example of the normalization for curves maximizing accuracy / minimizing log
loss, using the transformation.

Figure 7: Sample of 10 curves taken i.i.d. from the prior (Section 3.2). (Right) The same sample
after applying the inverse transformation g9λ to obtain samples from the log loss prior as described in
Appendix A, using the transform shown in Figure 6 (right).

By applying a given normalization, we effectively transform our prior, i.e., p(yo) = g9λ(p(y)). To get
some intuition of what that prior looks like, we can sample from p(yo) by applying g9λ to samples of
our prior p(y), which is useful for fine-tuning the parameters of this transformation. Figure 7 (right)
shows samples of the log loss prior for λ = (True, 0, 0, log(10),∞).

B Detailed benchmark description

To evaluate the generalization capabilities of LC-PFN, we consider a diverse set of real-world
curves. The reduce computational cost and improve reproducibility, we source these from four
existing benchmarks that provide a collection of learning curves for a wide variety of supervised
learning tasks. In what follows, we describe each of these benchmarks in more detail, the subset
of tasks and curves we considered, and any preprocessing we did. Table 4 provides an overview
of the characteristics of each benchmark and Figure 8 (a) visualizes the curves selected from each
benchmark.

LCBench provides learning curve data for 2 000 configurations of AutoPytorch [Zimmer et al.,
2021] trained for 50 epochs on 35 tabular classification datasets from the AutoML benchmark [Gijs-
bers et al., 2019]. All of these configurations use momentum SGD to train an MLP, but with varying
number of layers and units per layer, and varying optimization hyperparameters (batch size, learning
rate, momentum, L2 regularization, dropout rate). In Section 4.2, we consider a subset of 5 000
curves selected uniformly at random from all 70 000 validation accuracy curves in the benchmark. In
Section 4.3, we consider all 2 000 validation accuracy curves, for every task, in 40 different orderings.

NAS-Bench-201 is a benchmark for Neural Architecture Search methods [Dong and Yang,
2020]. It provides learning curve data for training 15 625 different architectures for 200 epochs on
three different image classification datasets (CIFAR-10, CIFAR-100, and ImageNet16-120) for three
different random seeds. Other aspects of the training pipeline (e.g., optimizer, hyperparameters)
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Table 4: Overview of the characteristics of the real-world learning curve benchmarks we used in
Section 4.2 and Section 4.3. For each benchmark, the last columns list the normalization parameters
used (see Appendix A), where y0 corresponds to the performance of the untrained model.

benchmark #
subtasks

model
architecture

input modality
(datasets)

length
(# epochs)

metric
(split) min? lhard lsoft usoft uhard

LCBench 35 MLP Tabular Classification (OpenML) 50 accuracy
(val) False 0 0 1 1

NAS-Bench-201 3 CNN Image Classification (Cifar-10,
Cifar-100, ImageNet16-120) 200 error rate

(val) True 0 0 1 1

Taskset 12 RNN Text Classification
(Sentiment Analysis - IMDB) 50 log loss

(val) True 0 0 y0 +∞

PD1 3 Transformer Text (Language Modeling - lm1b) 38 log loss
(val) True 0 3.46 y0 +∞

Transformer Text (Translation - WMT) 1414 log loss
(val) True 0 1.68 y0 +∞

Transformer Protein sequences (UniRef50) 22 log loss
(val) True 0 2.60 y0 +∞

are fixed. We use the validation error rate curves provided through the Syne Tune [Salinas et al.,
2022] interface to this benchmark. As discussed in Section 3.4, the LC-PFN we consider is trained to
extrapolate curves up to length 100 (m).3 To handle the 200 epoch curves from NAS-Bench-201,
we chose to subsample them, feeding only every second observation into the LC-PFN. In Section 4.2,
we consider a subset of 5 000 curves selected uniformly at random from all 140 625 error rate curves
in the benchmark. In Section 4.3, we consider all 46 875 error rate curves, for each of the three
datasets, in 40 different orderings.

Taskset [Metz et al., 2020] provides a total of roughly 29 million learning curves for over 1 162
different deep learning tasks. Here, a task is defined as optimizing a given neural network architecture
for a given supervised learning problem, and the curves correspond to using 5 different optimizers,
using 1 000 different hyperparameter settings, and 5 different random seeds. Following Wistuba et al.
[2022], we only use the validation log loss curves of a small subset of 12 tasks, that consider training
different RNN architectures, with varying architectural parameters, for 50 epochs on the IMDB
sentiment analysis dataset [Maas et al., 2011], a binary text classification task. As our objective
was to evaluate the robustness of our approach, we avoided excluding ill-behaved (e.g., diverging)
curves. However, upon inspecting the data, we found that on some of these tasks up to 90% of
the curves fail to significantly improve upon the initial model performance, some of which diverge
almost instantly. In combination with the normalization procedure described in Appendix A, the
majority of curves are effectively mapped onto the same narrow range, producing a constant trend (at
0 in case of divergence). While this is reasonable in practice, and both LC-PFN and MCMC variants
predict this constant trend with very high confidence, it does create a bias in our evaluation towards
methods excelling at extrapolating poor curves. To eliminate and investigate this bias, we selected
the 5 000 curves used in Section 4.2, such that 2 500 are taken from the top 10% best4 curves per task,
and 2 500 from the 90% others. In Figure 4, we compared methods on the “good” curves only, an
evaluation on the 2 500 “bad” curves is presented in Figure 8 (b). In Section 4.3, we do not make this
distinction and consider all 25 000 curves per task, in 40 different random orderings.

PD1 is a recent benchmark that Wang et al. [2022] describe as collecting “a large multi-task
hyperparameter tuning dataset by training tens of thousands of configurations of near-state-of-the-art
models on popular image and text datasets, as well as a protein sequence dataset”. We access this
benchmark through the synetune [Salinas et al., 2022] library interface, which provides learning
curve data for 23 tasks, where the number of curves provided, as well as the curve length, varies
per task. Here, we limit our selection to log loss curves for the three tasks that consider training
Transformer architectures for 22 epochs on language modeling (lm1b), 1414 epochs on translation
(WMT), and 38 epochs on protein sequences (UniRef50). To handle the very long learning curves
on the translation task, we subsample these aggressively, feeding only every 14th observation into
the LC-PFN. In Section 4.2, we select 5 000 curves from these three tasks uniformly at random. In
Section 4.3, we consider all curves per task, in 40 different random orderings. Finally, we use the
optimal loss achieved by any of the runs as lsoft > 0 in our normalization. While unknown in practice,
we do not expect qualitative differences in evaluation if a rough estimate were to be used instead.

3This was our first choice of m and we retained it throughout the project. We do not anticipate serious issues
when scaling m up to 1 000, except for increased training times.

4Curves are ranked based on the lowest validation loss obtained at any point during training.
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(a) Learning curves sourced from each benchmark

(b) Quality of curves vs. quality of extrapolations on Taskset (average rank, lower is better)

Figure 8: (a) Illustration showing the 5 000 curves used for each of the four benchmarks in our
experiments in Section 4.2. All curves are shown after normalization and subsampling, and a random
subset of individual curves is highlighted. For Taskset, “good” / “bad” curves (top 10% / bottom
90% in their task) are shown in green / red, respectively. (b) Average rank of Log-likelihood and
MSE values on Taskset curves for the three methods (LC-PFN, MCMC-PP, and MCMC-OP). The two
leftmost plots show results on the 5 000 sampled Taskset curves. The two rightmost plots provide
the same comparison, but specifically for the 2500 “bad” curves. Here, we observe that MCMC-PP
performs better on the “bad” curves, which we believe can be attributed to the discretization of the
PPD in 1000 bins, limiting the maximal confidence / accuracy of LC-PFN, since the majority of
these curves are quasi-constant (fall in the same bin) after normalization.

C Additional analyses

C.1 Extrapolating samples of the prior

C.1.1 Detailed results of section 4.1

Figure 9 provides a visual representation of the log-likelihood values on prior curves for higher
cutoffs, similar to Figure 3. As expected, the difference in log-likelihood values between LC-PFN
and MCMC-PP decreases as more points of the curve are observed. The detailed results can be
found in Table 5. Both Figure 9 and Table 5 clearly demonstrate that certain variants of LC-PFN,
particularly those trained with 10M examples, consistently outperform the best variant of MCMC-PP
across all considered cutoffs.
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Figure 9: Comparison of LC-PFN and MCMC-PP with varying hyperparameters values on prior
curves in terms of average runtime (lower is better) and average log-likelihood (higher is better) for
different cutoff values (20%, 40%, 80%)

Table 5: Comparison of the 25 best LC-PFN and MCMC-PP variants on prior curves in terms of
log-likelihood (higher is better) at 10%, 20%, 40%, and 80% cutoffs. Values in brackets correspond
to one standard error.

Method Parameters 10% 20% 40% 80% Avg. Runtime (s)
MCMC-PP nsamples=2000, nwalkers=100, burn-in=500, thin=10 1.628 (0.01) 1.939 (0.011) 2.265 (0.01) 2.469 (0.009) 29.944 (7.6E-01)
MCMC-PP nsamples=2000, nwalkers=100, burn-in=500, thin=1 1.628 (0.01) 1.939 (0.011) 2.265 (0.01) 2.469 (0.009) 54.401 (3.1E-01)
MCMC-PP nsamples=4000, nwalkers=50, burn-in=0, thin=10 1.629 (0.01) 1.942 (0.011) 2.266 (0.009) 2.467 (0.009) 28.783 (6.2E-01)
MCMC-PP nsamples=4000, nwalkers=50, burn-in=0, thin=1 1.629 (0.01) 1.943 (0.011) 2.266 (0.009) 2.467 (0.009) 53.292 (4.3E-01)
MCMC-PP nsamples=4000, nwalkers=50, burn-in=50, thin=100 1.629 (0.01) 1.943 (0.011) 2.266 (0.009) 2.467 (0.009) 26.672 (7.3E-01)
MCMC-PP nsamples=4000, nwalkers=50, burn-in=100, thin=100 1.631 (0.01) 1.943 (0.011) 2.267 (0.009) 2.469 (0.009) 26.997 (7.4E-01)
MCMC-PP nsamples=4000, nwalkers=50, burn-in=50, thin=10 1.631 (0.01) 1.944 (0.011) 2.267 (0.009) 2.468 (0.009) 29.109 (6.3E-01)
MCMC-PP nsamples=4000, nwalkers=50, burn-in=50, thin=1 1.631 (0.01) 1.944 (0.011) 2.267 (0.009) 2.469 (0.009) 53.601 (4.2E-01)
MCMC-PP nsamples=4000, nwalkers=50, burn-in=100, thin=10 1.632 (0.01) 1.943 (0.011) 2.268 (0.01) 2.47 (0.009) 29.433 (6.4E-01)
MCMC-PP nsamples=4000, nwalkers=50, burn-in=100, thin=1 1.632 (0.01) 1.943 (0.011) 2.268 (0.01) 2.47 (0.009) 53.941 (4.2E-01)
MCMC-PP nsamples=4000, nwalkers=50, burn-in=500, thin=100 1.632 (0.01) 1.94 (0.012) 2.274 (0.01) 2.477 (0.009) 29.601 (8.2E-01)
MCMC-PP nsamples=4000, nwalkers=50, burn-in=500, thin=10 1.632 (0.01) 1.942 (0.011) 2.275 (0.01) 2.477 (0.009) 32.036 (7.1E-01)
MCMC-PP nsamples=4000, nwalkers=50, burn-in=500, thin=1 1.632 (0.01) 1.942 (0.011) 2.275 (0.01) 2.477 (0.009) 56.526 (3.4E-01)
MCMC-PP nsamples=4000, nwalkers=100, burn-in=0, thin=100 1.637 (0.01) 1.954 (0.011) 2.274 (0.01) 2.474 (0.009) 44.076 (1.4E+00)
MCMC-PP nsamples=4000, nwalkers=100, burn-in=0, thin=10 1.639 (0.01) 1.956 (0.011) 2.276 (0.01) 2.476 (0.009) 48.947 (1.2E+00)
MCMC-PP nsamples=4000, nwalkers=100, burn-in=0, thin=1 1.639 (0.01) 1.956 (0.011) 2.276 (0.01) 2.476 (0.009) 98.033 (9.9E-01)
MCMC-PP nsamples=4000, nwalkers=100, burn-in=50, thin=100 1.639 (0.01) 1.956 (0.011) 2.276 (0.01) 2.476 (0.009) 44.618 (1.4E+00)
MCMC-PP nsamples=4000, nwalkers=100, burn-in=50, thin=10 1.64 (0.01) 1.958 (0.011) 2.277 (0.01) 2.477 (0.009) 49.475 (1.2E+00)
MCMC-PP nsamples=4000, nwalkers=100, burn-in=50, thin=1 1.64 (0.01) 1.958 (0.011) 2.277 (0.01) 2.477 (0.009) 98.548 (1.0E+00)
MCMC-PP nsamples=4000, nwalkers=100, burn-in=100, thin=100 1.641 (0.01) 1.958 (0.011) 2.277 (0.01) 2.477 (0.009) 45.16 (1.4E+00)
MCMC-PP nsamples=4000, nwalkers=100, burn-in=100, thin=10 1.641 (0.01) 1.957 (0.011) 2.278 (0.01) 2.478 (0.009) 50.011 (1.2E+00)
MCMC-PP nsamples=4000, nwalkers=100, burn-in=100, thin=1 1.641 (0.01) 1.957 (0.011) 2.278 (0.01) 2.478 (0.009) 98.98 (1.1E+00)
MCMC-PP nsamples=4000, nwalkers=100, burn-in=500, thin=100 1.642 (0.01) 1.955 (0.011) 2.284 (0.01) 2.485 (0.009) 49.5 (1.6E+00)
MCMC-PP nsamples=4000, nwalkers=100, burn-in=500, thin=10 1.642 (0.01) 1.956 (0.011) 2.285 (0.01) 2.486 (0.009) 54.328 (1.3E+00)
MCMC-PP nsamples=4000, nwalkers=100, burn-in=500, thin=1 1.642 (0.01) 1.956 (0.011) 2.285 (0.01) 2.486 (0.009) 103.151 (1.1E+00)
LC-PFN Nb data=100k, nlayers=6, emsize=128 1.242 (0.001) 1.508 (0.001) 1.652 (0.001) 1.709 (0.002) 0.007 (4.6E-04)
LC-PFN Nb data=100k, nlayers=12, emsize=128 1.254 (0.001) 1.522 (0.001) 1.669 (0.001) 1.73 (0.002) 0.012 (8.3E-04)
LC-PFN Nb data=100k, nlayers=6, emsize=256 1.267 (0.002) 1.597 (0.001) 1.764 (0.001) 1.843 (0.002) 0.011 (8.2E-04)
LC-PFN Nb data=100k, nlayers=12, emsize=256 1.384 (0.001) 1.664 (0.001) 1.833 (0.001) 1.9 (0.002) 0.021 (1.6E-03)
LC-PFN Nb data=100k, nlayers=3, emsize=512 1.392 (0.001) 1.679 (0.001) 1.871 (0.001) 1.959 (0.002) 0.016 (1.4E-03)
LC-PFN Nb data=100k, nlayers=6, emsize=512 1.439 (0.001) 1.745 (0.001) 1.947 (0.001) 2.034 (0.002) 0.028 (2.5E-03)
LC-PFN Nb data=100k, nlayers=12, emsize=512 1.504 (0.001) 1.817 (0.001) 2.013 (0.001) 2.091 (0.002) 0.048 (4.2E-03)
LC-PFN Nb data=1M, nlayers=3, emsize=128 1.528 (0.001) 1.894 (0.001) 2.159 (0.001) 2.279 (0.002) 0.004 (2.8E-04)
LC-PFN Nb data=1M, nlayers=6, emsize=128 1.581 (0.001) 1.949 (0.001) 2.202 (0.001) 2.308 (0.002) 0.007 (4.6E-04)
LC-PFN Nb data=1M, nlayers=3, emsize=256 1.583 (0.001) 1.967 (0.001) 2.239 (0.001) 2.357 (0.002) 0.007 (5.0E-04)
LC-PFN Nb data=10M, nlayers=3, emsize=128 1.585 (0.001) 1.989 (0.001) 2.282 (0.002) 2.431 (0.003) 0.004 (2.8E-04)
LC-PFN Nb data=1M, nlayers=12, emsize=128 1.621 (0.001) 1.982 (0.001) 2.223 (0.001) 2.326 (0.002) 0.012 (8.2E-04)
LC-PFN Nb data=1M, nlayers=3, emsize=512 1.624 (0.001) 2.011 (0.001) 2.291 (0.001) 2.417 (0.002) 0.016 (1.4E-03)
LC-PFN Nb data=1M, nlayers=6, emsize=256 1.627 (0.001) 2.007 (0.001) 2.269 (0.001) 2.381 (0.002) 0.012 (8.7E-04)
LC-PFN Nb data=10M, nlayers=3, emsize=256 1.654 (0.001) 2.044 (0.001) 2.347 (0.002) 2.493 (0.003) 0.006 (4.7E-04)
LC-PFN Nb data=1M, nlayers=12, emsize=256 1.667 (0.001) 2.035 (0.001) 2.294 (0.001) 2.406 (0.002) 0.02 (1.5E-03)
LC-PFN Nb data=1M, nlayers=6, emsize=512 1.672 (0.001) 2.051 (0.001) 2.323 (0.001) 2.441 (0.002) 0.028 (2.4E-03)
LC-PFN Nb data=10M, nlayers=6, emsize=128 1.673 (0.001) 2.058 (0.001) 2.352 (0.001) 2.478 (0.003) 0.007 (4.6E-04)
LC-PFN Nb data=1M, nlayers=12, emsize=512 1.699 (0.001) 2.072 (0.001) 2.344 (0.001) 2.46 (0.002) 0.051 (4.6E-03)
LC-PFN Nb data=10M, nlayers=3, emsize=512 1.707 (0.001) 2.083 (0.001) 2.378 (0.002) 2.517 (0.003) 0.017 (1.4E-03)
LC-PFN Nb data=10M, nlayers=12, emsize=128 1.717 (0.001) 2.094 (0.001) 2.377 (0.001) 2.498 (0.003) 0.012 (8.1E-04)
LC-PFN Nb data=10M, nlayers=6, emsize=256 1.721 (0.001) 2.098 (0.001) 2.387 (0.002) 2.514 (0.003) 0.011 (8.2E-04)
LC-PFN Nb data=10M, nlayers=6, emsize=512 1.744 (0.001) 2.125 (0.001) 2.404 (0.002) 2.527 (0.003) 0.026 (2.3E-03)
LC-PFN Nb data=10M, nlayers=12, emsize=256 1.746 (0.001) 2.124 (0.001) 2.403 (0.001) 2.522 (0.003) 0.02 (1.5E-03)
LC-PFN Nb data=10M, nlayers=12, emsize=512 1.758 (0.001) 2.133 (0.001) 2.403 (0.002) 2.519 (0.003) 0.05 (4.5E-03)
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Figure 10: runtime vs log-likelihood values of MCMC-PP, using thinning 100, with different initial-
ization strategies and sample sizes (per walker), averaged across 1 000 curves generated i.i.d. from
the prior. The blue point represents LC-PFN, with the dotted line as a reference for its LL value. The
shaded areas correspond to ± 1 standard error.

C.1.2 Effect of MCMC chain length and initialization

In our experiments in Section 4.1 we observed that the quality of MCMC inference increases with
chain length. In particular, our best MCMC-PP variant (M3 in Figure 3), uses the same hyperparameter
settings as Domhan et al. [2015] (M1), but with a double as long chain (discounting the burn-in).
In this section, we investigate whether the chains considered are too short and whether increasing
chain lengths further will eventually cause MCMC-PP to outperform LC-PFN. To study this, we will
run MCMC-PP to collect up to 100 000 samples per walker (50× more than Domhan et al. [2015]).
To reduce the computational cost of this experiment, we only extrapolate 1 000 (instead of 10 000)
prior curves, on cutoff 10%, and use MCMC-PP with a 100-thinning strategy (M2). This variant is
more compute-efficient and the minor negative effect of thinning is expected to further decrease with
increasing chain length. Concurrently, we study the effect of initialization. There are different ways
of initializing MCMC chains and the chosen strategy can strongly affect performance if chains are
too short. Domhan et al. [2015] initializes the chain by setting the parameters for each of the K basis
curves to their Least-Squared Estimates (LSE). Weights are initialized to be 1

K . If this initial point
violates the constraints imposed by the prior, a default starting point is used instead. As an ablation,
we compare it to an initialization always starting at the default (default). As another ablation,
we compare to a strategy using the maximum a posteriori estimate (MAP) as a starting point instead,
which unlike LSE takes the likelihood under the prior into account.

Figure 10 shows the quality and cost of inferences for each of the initialization strategies when
collecting up to 100 000 samples (per walker). While these results clearly show that increasing
chain length continues to improve performance. The trends we observe, suggest that MCMC-PP
could eventually attain or even overtake the best LC-PFN. That being said, the best MCMC we
considered has 20 000× longer runtimes than that LC-PFN requires, yet it does not quite reach the
same performance, so outperforming it would require impractically long chains. When optimistically
extending the trends, we estimate to need at least 10× longer chains, and inference times of multiple
hours. In terms of initialization, we observe that MCMC performance for shorter chains indeed
more strongly depends on the initialization strategy, where the LSE strategy by Domhan et al. [2015]
does best for short chains, followed by MAP and default. When increasing chain length, we find
that differences get smaller and order reverses such that the fixed default initialization is best,
suggesting that greedy initialization (LSE, MAP) may hurt performance on some curves.

C.2 Extrapolating real-world learning curves

In addition to the average rank plots presented in Section 4.2, we also perform pairwise comparisons
of the log-likelihood and mean squared error values among the different methods (LC-PFN and
MCMC variants). This approach allows for a more detailed analysis, as it compares the absolute values
of the metrics. Unlike the rank plots, these pair and curvewise plots provide insights into outliers
which thus further enhance our understanding of the results.
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(a) PFN vs MCMC with our prior (MCMC-PP)

(b) PFN vs MCMC as in Domhan et al. [2015] (MCMC-OP)

Figure 11: Pairwise comparison of log-likelihood (higher is better) between PFN and MCMC.

Figure 11 presents a pairwise comparison of the log-likelihood values between our PFN method and
the two variants of MCMC, per curve, considering different cutoff values on the four benchmark
datasets. Figure 12 presents the same comparison based on mean squared error (MSE).

We observe that LC-PFN compares favorably to MCMC-PP on PD1 and NAS-Bench-201 tasks.
Both methods demonstrate comparable performance on the Taskset dataset. However, it is worth
noting that for some curves of the LCBench dataset, MCMC-PP obtains very high log-likelihood
and low MSE scores, while LC-PFN falls short in this aspect. We believe this discrepancy can be
attributed to the fact that the LCBench dataset contains a significant number of constant curves (see
Figure 8a) that fall within the same bin of the discretized PPD, effectively limiting the the maximal
confidence / accuracy of LC-PFN. Looking at MSE specifically, we find that for some LCBench
curves, at high cutoffs, LC-PFN obtains very high errors, while MCMC-PP does not. Upon closer
inspection, we found that these curves quickly converge to a value close to the optimal accuracy,
and while LC-PFN captures this trend for lower cutoffs, it suddenly fails for larger cutoffs (see 5th
example in Figure 18). This can likely be explained by the fact that these curves are not adequately
captured by the prior proposed in Section 3.2 and this seems to be one of the few cases where
LC-PFN generalizes poorly out of distribution.

When comparing with MCMC-OP, we observe that MCMC-OP has relatively few outliers in terms of
log-likelihood, both in the positive and negative sense. This can likely be explained by the prior of
MCMC-OP, which is more flexible (i.e. has higher entropy) than ours and making MCMC-OP thus
less confident about its predictions. However, MCMC-OP performs clearly worse in terms of MSE,
suggesting that the median of the high entropy PPDs produced by this method do not provide a good
point estimate.
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(a) PFN vs MCMC with our prior (MCMC-PP)

(b) PFN vs MCMC as in Domhan et al. [2015] (MCMC-OP)

Figure 12: Pairwise comparison of MSE values (lower is better) between PFN and MCMC.

C.3 Application: Extrapolation-based early stopping in model selection

In what follows, we further analyze and discuss our experiments described in Section 4.3.

C.3.1 Results on individual tasks

While Figure 5 shows the results of our early stopping experiments for each PD1 task, results for
the three remaining benchmarks are summarized by averaging them across all tasks. Since this may
hide task-dependent variation and outliers, we have a closer look at the performance on individual
tasks. Figure 13 shows the results for each of 35 LCBench tasks. Here, we observe that relative
performances vary per task. The aggressive Patience(k) (i.e., low k) baselines perform best on
some tasks, but fail on others. The LC-PFN based termination criteria consistently perform well on
each task, obtaining a 2-6× speed-up (w.r.t. the final performance of no-stop) on 30 of the 35
tasks, and no significant slow-down on the remaining five. Figure 14 shows the results for each of
the 3 NAS-Bench-201 tasks. Here, we observe failure on all 3 tasks, where the degree of failure
seems correlated with the complexity of the image classification task. Figure 15 shows the results for
each of the 12 Taskset tasks. Here, the LC-PFN based termination criteria consistently perform
well, obtaining 2-6× speed-ups on all 12 tasks. We conclude that Figure 5 accurately reflects relative
performances on all four benchmarks.
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Figure 13: Average anytime regret (lower is better) obtained by all early stopping criteria for 40 run
orderings for each of the 35 LCBench tasks.
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Figure 14: Average anytime regret (lower is better) obtained by all early stopping criteria for 40 run
orderings for each of the 3 NAS-Bench-201 tasks.

Figure 15: Average anytime regret (lower is better) obtained by all early stopping criteria for 40 run
orderings for each of the 12 Taskset tasks.
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C.3.2 Parameter sensitivity analysis

In our comparison in Figure 5, we considered two variants of the LC-PFN based termination criterion,
varying the frequency at which it is applied, and found the fine-grained strategy, applying it every
epoch, to perform best. However, many variants of this scheme exist, and in what follows we
investigate the impact of some of our other choices on performance.

Confidence level: In our experiments, we terminate a training run if we are confident it will not
improve upon the best model seen so far. Following prior art [Domhan et al., 2015], we adopted a
confidence threshold of 0.95. Figure 16 (a) shows the anytime performance of variants using lower
(0.90) and higher (0.99, 0.999) confidence levels. We observe that all of these perform relatively well,
suggesting some degree of robustness. The speed-ups obtained using higher confidence levels are
mostly lower (up to 2×), but more consistent. In particular, we only observe minimal slow-down on
NAS-Bench-201 at confidence level 0.999, and higher confidences are also beneficial for the PD1
protein sequence (UniRef50) task.

Minimal cutoff: While we apply our predictive termination criterion every epoch, we do not apply
it “as of the first epoch”, but only after two observations are available (T ≥ 2). Since LC-PFN’s
predictions are conditioned on the partial curve only, it will predict the prior for T = 0. Beyond not
allowing us to discriminate between runs, it introduces a potential failure mode for easy tasks (many
training runs obtain models close to the theoretical optimum) and LC-PFN (unaware of task hardness)
will terminate runs before they even began because it is very unlikely to obtain a better model under
the prior. Figure 16 (b) shows the anytime performance of variants that apply the criterion as soon as
one, three, four, or five observations are made. We find that a choice of one (instead of two) only
negatively impacts performance on LCBench (containing some very easy tasks). A minimal cutoff
of two works well on all benchmarks, with minor slow-downs for the higher minimal cutoffs.

C.4 Qualitative plots of learning curve extrapolation

To complement the quantitative evaluation in the main paper, we provide examples of extrapolations,
at the four different cutoffs, for seven curves from the prior (Figure 17), LCBench (Figure 18),
NAS-Bench-201 (Figure 19), Taskset (Figure 20), and PD1 (Figure 21). The plots show
the median and two-sided 90% confidence interval of the PPDs inferred using the LC-PFN and
MCMC-PP variant considered in Section 4.2. We observe that while the quality of the extrapolations
produced by LC-PFN varies strongly, they are mostly logical, given the data observed and the prior
used, and we find that the inferences of MCMC-PP are rarely preferable.

D Breakdown computational cost

Overall, reproducing all our experiments in the main paper requires approximately 163 CPU days and
60 GPU hours on our systems (GPU: NVIDIA (R) GeForce (R) RTX 2080, CPU: Intel(R) Xeon(R)
CPU E5-2630 v4 @ 2.20GHz). These costs break down as follows:

• Section 4.1 entails 80 CPU days to run all MCMC-PP variants on the 10 000 sampled curves.
The overall prediction time of LC-PFN is negligible (<1 hr for each variant). However, for
LC-PFN, there is an initial training cost, which amounts to approximately 60 GPU hours to
train all 27 LC-PFN variants.

• Section 4.2 requires 80 CPU days to run the MCMC algorithm on the considered real curve
benchmarks.

• Section 4.3 involves a maximum of 3 CPU days to replicate the early stopping results on all
the benchmarks for both LC-PFN and the baselines.
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(a) Varying confidence levels (1− δ)

(b) Varying minimal cutoff (≤ T )

Figure 16: Parameter sensitivity analysis of our fine-grained LC-PFN based termination criterion in
terms of the average regret (lower is better).
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Figure 17: Extrapolations of 7 different curves from the prior at 10, 20, 40, and 80 cutoff
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Figure 18: Extrapolations of 7 different curves from LCBench at 10%, 20%, 40%, and 80% cutoff
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Figure 19: Extrapolations of 7 different curves from NAS-Bench-201 at 10%, 20%, 40%, and 80%
cutoff
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Figure 20: Extrapolations of 7 different curves from Taskset at 10%, 20%, 40%, and 80% cutoff
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Figure 21: Extrapolations of 7 different curves from PD1 at 10%, 20%, 40%, and 80% cutoff
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