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1 Algorithm

Algorithm 1 PUe algorithm

Require: data χP ,χU , size n,nP ,nU , hyperparameter αe,π.
1: Step 1:
2: Compute ê(x) by minimizing π

nP

∑nP

i=1 L(g(x
P
i ),+1) + 1−π

nU

∑nU

i=1 L(g(x
U
i ),−1) +

αe|
∑

xi∈χP∪χU
e(xi)− nP | ;

3: Step 2:
4: Compute the weight of labeled samples: wP

i = π
˜̂e(xP

i )

5: Step 3:
6: for i = 1 . . . do
7: Shuffle (χP , χU ) into M mini-batches
8: for each mini-batch (χj

P , χ
j
U ) do

9: Compute the corresponding R̂PUe(g)

10: Use A to update θ with the gradient information ∇θR̂PUe(g)
11: end for
12: end for

2 Experiment Details

Table 1: Summary of used datasets and their corresponding models.

Dataset Input Size nP nU # TestingπP Positive Class true e(x) Model
MNIST 28× 28 2500 60,000 10,000 0.5 Even (0, 2, 4, 6 and 8) [.65,.15,.1,.07,.03] 6-layer MLP

CIFAR-10 3× 32× 32 1,000 50,000 10,000 0.4 Vehicles (0, 1, 8 and 9) [.72,.15,.1,.03] 13-layer CNN
Alzheimer3× 224× 224 769 5,121 1,279 0.5 Alzheimer’s Disease unknow ResNet-50

3 Complementary Experiment

LRe: Logistic regression estimation of propensity scores for PU learning.

According to paper [? ], it cannot estimate identifiable PS without making certain assumptions about
the data. But according to the formula we gave in the first question, it’s approximate. This is not
explained by the self-monitoring method. Results in the above table show that our scheme is better
than self-PU in the case of biased label datasets.
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Table 2: Supplemental Experiments on MINST

method labeled distripution ACC.(%) Prec.(%) Rec.(%) F1.(%) AUC.(%) AP.(%)
LRe [.65,.15,.10,.07,.03] 86.19(0.75) 92.94(0.64) 77.89(1.38) 84.75(0.93) 88.06(0.93) 88.72(1.09)

nnPUe [.65,.15,.10,.07,.03]92.45 (1.61)90.45 (2.26)94.73 (1.24)92.53 (1.55)92.48 (1.60)88.29 (2.43)
nnPU without normalize[.65,.15,.10,.07,.03] 90.95(1.61) 88.18(2.40) 94.38(2.74) 91.13(1.56) 91.00(1.61) 85.98(2.25)

Self-PU [.65,.15,.10,.07,.03] 90.08(0.47) 90.08 (0.47)89.35 (1.17)90.70 (1.73)90.00 (0.53)85.61 (0.69)
anchor [.65,.15,.10,.07,.03] 88.22(0.95) 94.66(1.41) 80.70(3.15) 87.06(1.37) 92.36(1.92) 93.37(2.33)

4 Proofs

4.1 error bound of bias

We may assume that the error of propensity scores estimated by the NN method is the same as that
estimated by the linear method. (In fact, the NN methods are usually more general, which may
produce results with less error.) That is, the estimate of the propensity score has a maximum error
ratio of β, with βe(xL

i ) ≤ ê(xL
i ) ≤ e(xL

i ). of the following shows that our regularization technique
can yield a smaller error ratio with respect to sample weights. Obviously, the sample xL

i has a sample
weight of 1

nê(xL
i )

. in (Formula 1) with an error bound of bias( 1
nê(xL

i )
) ≤ 1

ne(xL
i )
( 1β − 1).

4.2 error ratio

In our approach, Sample xL
i has a weight of π

1

ê(xL
i

)∑
j

1

ê(xL
j

)

.P (γe(xL
i ) < ê(xL

i ) ≤ e(xL
i )) = α where

the set of samples is S1 .P (βe(xL
i ) < ê(xL

i ) ≤ γe(xL
i )) = 1 − α where the set of samples is

S2.β < γ < 1 and
∑

i∈S1

1
e(xL

i )
=

∑
i∈S2

1
e(xL

i )
= B. So that

∑
j

1
e(xL

j )
= 2B = Np. For xL

i ∈ S1,

we have 1
e(xL

i )
≤ 1

ê(xL
i )

< 1
γe(xL

i )
. For xL

i ∈ S2, we have 1
γe(xL

i )
≤ 1

ê(xL
i )

< 1
βe(xL

i )
, so we can

get B(1 + 1
γ ) ≤

∑
j

1
ê(xL

j )
< B( 1γ + 1

β ) and we have bias(π
1

ê(xL
i

)∑
j

1

ê(xL
j

)

) ≤max[ 1
ne(xL

i )
( 2
(1+γ) −

1), 1
ne(xL

i )
(1− 2

1
β+ 1

γ

), 1
ne(xL

i )
( 2
(1+ 1

γ )β
− 1), 1

ne(xL
i )
(1− 2

γ
β+1 )] <

1
ne(xL

i )
( 1β − 1) and obviously we

have 2
(1+γ) < 2

(1+ 1
γ )β

< 1
β , 0 < 1 − 2

γ
β+1 < 1 − 2

1
β+ 1

γ

< 1 − β < 1
β − 1, which shows that our

regularization technique has a smaller error ratio with respect to sample weights.

4.3 expectation

One understanding is that, according to the PS definition, each labeled sample xP
j corresponds to

1
e(xP

j )
positive samples. So

∑np

j=1
1

e(xP
j )

= Np it’s true. Because P (x|s = 1) = P (x, y = 1|s = 1),
we have

EP (x|s=1)
1

P (s=1|x,y=1)

=
∑

P (x, y = 1|s = 1) 1
P (s=1|x,y=1)

=
∑ P (s=1|x,y=1)P (x,y=1)

P (s=1)
1

P (s=1|x,y=1)

=
∑ P (x,y=1)

P (s=1) = n
nP

∑
P (x, y = 1)

= n
nP

NP

n = NP

nP
.

It indicates that
∑np

j=1
1

e(xP
j )

= Np.

4.4 PUbN

The PUbN formula is as follows:
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Let σ(x) = p(s = +1|x), however, the σ(x) is actually unknown,we should replace σ(x) by its
estimate σ̂(x).We can get the classification risk of PUbN (RPUbN (g)), as the following expression:

RPUbN (g) = πRP (g,+1) + ρRbN (g,−1) + R̄s=−1,η,σ̂(g)

where R̄s=−1,η,σ̂(g) = Ex∼p(x)[1σ̂(x)≤ηL(−g(x))(1 − σ̂(x))]

+πEx∼pP (x)[1σ̂(x)>ηL(−g(x)) 1−σ̂(x)
σ̂(x) ] +ρEx∼pbN (x)[1σ̂(x)>ηL(−g(x)) 1−σ̂(x)

σ̂(x) ]

Then RbN (g,−1) and R̄s=−1,η,σ̂(g) can also be approximated from data by R̂bN (g,−1) =
1

nbN

∑nbN

i=1 L(g(xbN
i ),−1) ˆ̄Rs=−1,η,σ̂(g) = 1

nU

∑nU

i=1[1σ̂(xU
i )≤ηL(g(x

U
i ),−1)(1 − σ̂(xU

i ))]

+ π
nP

∑nP

i=1[1σ̂(xP
i )>ηL(g(x

P
i ),−1)

1−σ̂(xP
i )

σ̂(xP
i )

] + ρ
nbN

∑nbN

i=1 [1σ̂(xbN
i )>ηL(g(x

bN
i ),−1)

1−σ̂(xbN
i )

σ̂(xbN
i )

]

R̂PUbN,η,σ̂(g) = πR̂P (g,+1) + ρR̂bN (g,−1) + ˆ̄Rs=−1,η,σ̂(g)

4.5 PUbNe

Our PUbNe formula is as follows:

R̂PUbNê,η,σ̂(g) = πR̂ê
P (g,+1) + ρR̂ê

bN (g,−1) + ˆ̄Rê
s=−1,η,σ̂(g)

,where R̂ê
bN (g,−1) =

∑nbN

i=1
1

˜̂e(xbN
i )

L(g(xbN
i ),−1) and

ˆ̄Rê
s=−1,η,σ̂(g) = 1

nU

∑nU

i=1[1σ̂(xU
i )≤ηL(g(x

U
i ),−1)(1 − σ̂(xU

i ))]

+π
∑nP

i=1[
1

˜̂e(xP
i )
1σ̂(xP

i )>ηL(g(x
P
i ),−1)

1−σ̂(xP
i )

σ̂(xP
i )

] +ρ
∑nbN

i=1 [
1

˜̂e(xbN
i )

1σ̂(xbN
i )>ηL(g(x

bN
i ),−1)

1−σ̂(xbN
i )

σ̂(xbN
i )

]

4.6 unbiased

E[R̂PUe(g)]

= E[πR̂e
P (g,+1) + R̂U (g,−1)− πR̂e

P (g,−1)]

= E[
1

n

nP∑
i=1

1

e(xP
i )

(
L(g(xP

i ),+1)− L(g(xP
i ),−1)

)
+

1

n

n∑
i=1

L(g(xi),−1)]

= E[
1

n

nP∑
i=1

1

e(xP
i )

L(g(xP
i ),+1) +

(
1− 1

e(xP
i )

)
L(g(xP

i ),−1) +
1

n

n∑
i=1

(1− si)L(g(xi),−1)]

= E[
1

n

n∑
i=1

si
1

e(xP
i )

L(g(xP
i ),+1) + si

(
1− 1

e(xP
i )

)
L(g(xP

i ),−1) + (1− si)L(g(xi),−1)]

=
1

n

n∑
i=1

yiei
1

e(xi)
L(g(xi),+1) + yiei

(
1− 1

e(xi)

)
L(g(xi),−1) + (1− yiei)L(g(xi),−1)

=
1

n

n∑
i=1

yiL(g(xi),+1) + yi (ei − 1)L(g(xi),−1) + (1− yiei)L(g(xi),−1)

=
1

n

n∑
i=1

yiL(g(xi),+1) + (1− yi)L(g(xi),−1)

= RPN (g|y).

(1)

The change of R̂PUe(g) will be no more than Lmax/n if some xi ∈ χP ∪ χU is replaced, and
McDiarmid’s inequality gives us:

Pr{|R̂PUe(g)−RPN (g|y)| ≥ ϵ} = Pr{|R̂PUe(g)− E[R̂PUe(g)| ≥ ϵ} ≤ 2 exp

(
− 2ϵ2

n(Lmax/n)2

)
.
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And make the right side of the previous formula equal to η:

2 exp

(
− 2ϵ2

n(Lmax/n)2

)
= η

⇐⇒ exp

(
2ϵ2

n(Lmax/n)2

)
=

2

η

⇐⇒ 2ϵ2

L2
max/n

= ln

(
2

η

)

⇐⇒ 2ϵ2 =
L2
max ln

(
2
η

)
n

⇐⇒ ϵ =

√√√√L2
max ln

(
2
η

)
2n

Equivalently, with probability at least 1− η,

|R̂PUe(g)−RPN (g|y)| = |R̂PUe(g)− E[R̂PUe(g)]| ≤

√
L2
max ln

2
η

2n
. (2)

And because we know the expressions of R̂PUe(g) and R̂uPU (g):

R̂PUe(g) = πR̂e
P (g,+1) + R̂U (g,−1)− πR̂e

P (g,−1), (3)

R̂PU (g) = πR̂P (g,+1) + R̂U (g,−1)− πR̂P (g,−1), (4)

Since we know that
∑nP

j=1
1

e(xP
j )

= NP , we can get the following formula:

|R̂PUe(g)− R̂PU (g)|

= π|R̂e
P (g,+1)− R̂e

P (g,−1)−
(
(R̂P (g,+1)− R̂P (g,−1)

)
|

≤ 1

n
|
nP∑
i=1

(
1

e(xP
i )

− NP

np
)L(g(xP

i ),+1)|+ 1

n
|
nP∑
i=1

(
1

e(xP
i )

− NP

np
)L(g(xP

i ),−1)|

≤ 2

n
NPLmax = 2πLmax

(5)

Then, we can prove:

|RPN (g|y)− R̂PU (g)|
≤ |RPN (g|y)− R̂PUe(g)|+ |R̂PUe(g)− R̂PU (g)|

≤ 2πLmax +

√
L2
max ln

2
η

2n
.

(6)
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