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Abstract

Positive-Unlabeled (PU) learning aims to achieve high-accuracy binary classi-
fication with limited labeled positive examples and numerous unlabeled ones.
Existing cost-sensitive-based methods often rely on strong assumptions that ex-
amples with an observed positive label were selected entirely at random. In
fact, the uneven distribution of labels is prevalent in real-world PU problems,
indicating that most actual positive and unlabeled data are subject to selection
bias. In this paper, we propose a PU learning enhancement (PUe) algorithm
based on causal inference theory, which employs normalized propensity scores
and normalized inverse probability weighting (NIPW) techniques to reconstruct
the loss function, thus obtaining a consistent, unbiased estimate of the classi-
fier and enhancing the model’s performance. Moreover, we investigate and
propose a method for estimating propensity scores in deep learning using reg-
ularization techniques when the labeling mechanism is unknown. Our exper-
iments on three benchmark datasets demonstrate the proposed PUe algorithm
significantly improves the accuracy of classifiers on non-uniform label distri-
bution datasets compared to advanced cost-sensitive PU methods. Codes are
available at https://github.com/huawei-noah/Noah-research/
tree/master/PUe and https://gitee.com/mindspore/models/
tree/master/research/cv/PUe.

1 Introduction

In the era of big data, deep neural networks have achieved outstanding performance across various
tasks, even surpassing human performance in many instances, particularly in traditional binary
classification problems. The success of these deep neural networks often hinges on supervised
learning using large quantities of labeled data. However, in reality, acquiring even binary labels can
be challenging. For instance, in recommendation systems, users’ multiple clicks on films may be
considered as positive samples. Nonetheless, all other films cannot be assumed uninteresting and
thus should not be treated as negative examples; instead, they should be regarded as unlabeled ones.

The same issue emerges in text classification, where it is typically more straightforward to define a
partial set of positive samples. However, due to the vast diversity of negative samples, it becomes
difficult or even impossible to describe a comprehensive set of negative samples that represent
all content not included in the positive samples. Similar situations occur in medical diagnostics,
malicious URL detection, and spam detection, where only a few labeled positives are available amidst
a plethora of unlabeled data. This scenario is a variant of the classical binary classification setup,
known as PU. In recent years, there has been a growing interest in this setting. Positive-Unlabeled
(PU) learning primarily addresses the challenge of learning binary classifiers solely from positive
samples and unlabeled data.
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In previous research, numerous PU algorithms have been developed, with cost-sensitive PU learning
emerging as a popular research direction. Methods such as [19, 18, 6] reweight positive and negative
risks by hyper-parameters and minimize it. In addition, Self-PU [4] introduces self-supervision to
nnPU through auxiliary tasks, including model calibration and distillation; ImbPU [23] oversamples
and modifies sample weights to address unbalanced data. Dist-PU[24] corrects the negative preference
of the classification model through prior information. PUSB [15] maintains the order-preserving
assumption. However, these methods necessitate the assumption that their checked set is uniformly
sampled from the population, or else the PU learning risk estimator ceases to be an unbiased or
consistent estimator, otherwise resulting in reduced model accuracy.

In reality, the labeled set is often biased and does not conform to the Selected Completely At Random
(SCAR) assumption [10, 3], which posits that the observed labeled examples are a random subset
of the complete set of positive examples. Consequently, it is essential to relax the assumption of
the labeled set and replace it with a more general assumption about the labeling mechanism: the
probability of selecting positive examples to be labeled depends on their attribute values, known as
the Selected At Random (SAR) assumption [10].

Labeled Positive Samples

Unlabeled Positive Samples

Proposed PUeTradition PU

Unlabeled Negative Samples

Classification Boundary

Figure 1: Our method and traditional PU
method classification diagram, our solution
uses reweighting to make the classification
plane more accurate.

The work most closely related to us is the paper [7]
by W Gerych et al. The focus of this article is to de-
velop a method for generating identifiable propensity
scores. Moreover, this paper proves that the general
propensity score is unidentifiable in any standard PU
data assumption except for the probability gap scenario.
In this paper, two sets of assumptions are proposed to
estimate propensity scores: one is Local Certainty and
the other is Probabilistic Gap. Under the local certainty
hypothesis, there is no overlap between the positive
and negative hypotheses, p(xP |y = 0) = 0. Under
the Probabilistic Gap assumption, it is assumed that
e = k ∗ p(y = 1|x) is linear and there is an anchor
point.

However, the above assumptions are too strict. We show
in the appendix that the estimated propensity scores can-
not be completely unbiased. To address the aforemen-
tioned problem, we propose a causal-inference-inspired
PU learning framework, termed PUe. Our approach aims to weight the original PU learning risk
estimator under biased conditions, thereby obtaining a new unbiased or consistent PUe learning
risk estimator, which is achieved through the inverse probability weighting technique of known
normalized propensity scores. Given that propensity scores for samples are typically unknown, we
apply regularization techniques to the deep learning classifier to estimate the propensity score of
each sample in the marker set. An illustration of the proposed method is shown in Figure 1. We also
provide an estimate of the generalization error bound for empirical risk minimization. Experimental
results demonstrate that the proposed PUe framework can be applied to advanced PU algorithms, such
as PUbN and Dist-PU, to enhance their performance in the SAR scenario. Our main contributions are
summarized as follows:

•We relax our assumption of local determinism.

•We use a deep learning model to estimate propensity scores instead of a linear model.

•Our propensity score estimation method can be extended to the case of negative classes (e.g. PUbNe).

•Our new algorithm can simply be coupled with most cost-sensitive algorithms to improve perfor-
mance. The PUe algorithm achieved superior results over existing solutions on standard benchmarks
(MNIST, CIFAR10) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.

2 Methodology

In this section, we conduct a thorough review of existing PU algorithms, examining their limitations
and challenges, particularly in the context of biased labeling scenarios that result in diminished
accuracy. To address these issues, we introduce a novel PUe algorithm, specifically designed to
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overcome the aforementioned limitations, thus enhancing the performance of PU algorithms under
biased labeling conditions.

2.1 Review of PU classification

In standard PN classification, let x ∈ Rd and y ∈ {+1,−1} be the input samples and its corre-
sponding labels. We are given positive data and negative data that are sampled independently from
pP (x) = p(x|y = +1) and pN (x) = p(x|y = −1) as χP = {xP

i }
nP
i=1 and χN = {xN

i }nN
i=1. We

denote the class prior probability as π = p(y = 1), where we follow the convention to assume π as
known throughout the paper [16]. In fact, in the paper [14] by S Jain et al., it is pointed out that class
prior can be estimated in the case of the proportion of classes that are biased in the labelling data. Let
g : Rd → R be the binary classifier and θ be its parameter and the L : R × {+1,−1} → R+ be a
loss function.

Let us denote by RP (g,+1) = Ex∼pP (x)[L(g(x,+1))], RN (g,−1) = Ex∼pN (x)[L(g(x,−1))].
RP (g,+1) is the expected risk loss of a positive sample and RN (g,−1) is the expected risk loss of a
negative sample.

The risk of classifier g, R̂PN (g) can be approximated by:

R̂PN (g) = πR̂P (g,+1) + (1− π)R̂N (g,−1), (1)

where R̂P (g,+1) = 1
nP

∑nP

i=1 L(g(x
P
i ),+1) and R̂N (g,−1) = 1

nN

∑nN

i=1 L(g(x
N
i ),−1). By

minimizing R̂PN (g). We obtain the ordinary empirical risk minimizer ĝPN .

In standard PU classification, instead of N data χN , we only have a set of U samples drawn from the
marginal density p(x), χU = {xU

i }
nU
i ∼ p(x). Because of the fact p(x) = πpP (x)+(1−π)pN (x),

we have the unbiased risk estimator, which key idea is to use the following equality:

(1− π)RN (g,−1) = RU (g,−1)− πRP (g,−1). (2)

where RU (g,−1) = Ex∼p(x)[L(g(x),−1)] and RP (g,−1) = Ex∼pP (x)[L(g(x),−1)]. As a result,
we can approximate the unbiased classification risk (1) by:

R̂uPU (g) = πR̂P (g,+1) + R̂U (g,−1)− πR̂P (g,−1), (3)

where R̂P (g,−1) = 1
nP

∑nP

i=1 L(g(x
P
i ),−1) and R̂U (g,−1) = 1

nU

∑nU

i=1 L(g(x
U
i ),−1). By mini-

mizing R̂PU (g) we obtain the ordinary empirical risk minimizer ĝPU .

In theory, the risk (1 − π)RN (g,−1) = RU (g,−1) − πRP (g,−1) is also positive. However, if
the model of g is too flexible, R̂PU (ĝPU ) indeed goes negative and the model severely overfits the
training data. We can use the non-negative risk estimator for PU learning to alleviate overfitting[16]:

2.2 PU Classification in Biased Scenarios

PU learning mostly assumes that it runs under an ideal situation, that is, all labeled samples are
selected completely at random from all positive samples, which is also called The Selected Completely
At Random (SCAR).

Defintion 1. SCAR(Selected Completely At Random [6]): Labeled examples are selected com-
pletely at random, independent from their attributes, from the positive distribution. The propensity
score e(x), which is the probability for selecting a positive example, is constant and equal to the label
frequency:

e(x) = p(s = 1|x, y = 1) = p(s = 1|y = 1) = c. (4)

However, many PU learning applications suffer from labeling bias. The Selected Completely At
Random (SCAR) assumption does not conform to realtity. For example, whether someone clicks
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on a sponsored search ad is influenced by the position in which it is placed. Similarly, whether a
patient with a disease will see a doctor depends on his socio-economic status and the severity of his
symptoms. The Selected At Random (SAR) assumption, is the most general assumption about the
labeling mechanism: the probability for selecting positive examples to be labeled depends on its
attribute values [1].

Defintion 2. SAR(Selected At Random [3]): The labeling mechanism depends on the values of the
attributes of the example. However given the attribute values, it does not depend on the probability
of the example being positive. Instead of assuming a constant probability for all positive examples
to be labeled, it assumes that the probability is a function of a subset of an example’s attributes:
e(x) = p(s = 1|x, y = 1).

In biased labeling scenarios, the accuracy of common PU algorithms decreases significantly. So we
need to develop the PUe algorithm. The mathematical representation of equation is exactly the same
as that of the propensity score in causal inference. Causal inference is the process of determining
the actual and independent effects (effects) of a given phenomenon (cause) within a larger system.
Causality inference can give evidence of causality model established by causal reasoning. Causal
inference is therefore fundamentally a missingdata problem [13], which is very similar to the PU
problem. The PU problem is essentially a classification problem of missing negative labels.

What we’re actually using here is reverse causal reasoning. In general, we study the average causal
effect of a treatment. However, we first complete the causal analysis of the processing (i.e. selection)
and the label itself, and then use the known causal analysis, combined with the selected samples
and the unselected samples to determine the distribution of positive samples. In this paper, accept
processing means that the sample is selected for labeled. And the result is refers to whether the
sample itself is a positive sample. Without noise in the detection, whether the sample itself is a
positive sample is determined at the time when the sample is generated, and the behavior of selecting
is performed after the sample is generated. In causal inference, what happens after the result is
produced has no effect on the result, i.e. whether the sample is selected has a causal effect on the
label value is 0. In essence, individual causality is also 0. Based on such a simple causality, we use
the method of reweighting the sample to estimate the positive probability of the sample.

Since the causal effect of the labeling mechanism on the sample category is zero, known causality
can be utilized to improve the performance in the case of biased PU problems. Rubin Causal Model
of (RCM) [12] causal inference are extensively used within Statistics, Political Science, Economics,
and Epidemiology for reasoning about causation. Due to the presence of confounders, estimating the
average treatment effect directly using the average of observed treatment/control outcomes would
include a spurious effect, which is called selection bias, brought by the confounders. A key concept
in RCM is balancing score [11], reweighting samples by which is one of the most effective methods
to overcome selection bias. Besides, propensity score is a special case of balancing score. The
propensity score is defined as the conditional probability of treatment given background variables
[22]. Propensity score is one of the core concepts of assignment mechanism in RCM. Propensity
scores play a central role in observational studies of causality. Propensity scores can be used to
reduce selection bias by equating groups based on these covariates, which is called inverse propensity
weighting (IPW) [21].

In causal inference, inverse probability weighting (IPW) [21] is a standard statistical technique about
propensity score for calculating statistics standardized to a pseudo-population different from that in
which the data was collected. Study designs with a disparate sampling population and population
of target inference are common in application. Weighting, when correctly applied, can potentially
improve the efficiency and reduce the bias of unweighted estimators. In the context of causal inference
and survey methodology, propensity scores are estimated (via methods such as logistic regression,
random forests, or others), using some set of covariates. These propensity scores are then used as
estimators for weights to be used with Inverse probability weighting methods. We incorporate the
propensity score when learning in a PU setting by using the propensity scores to reweight the data.
The examples are weighted with the inverse of their propensity score.

A crucial difference with the propensity score from causal inference is that our score is conditioned
on the class being positive. IPW cannot be applied when working with positive and unlabeled data,
because we have zero probability for labeling negative examples. But we can only do a weighting on
positive. For each labeled example (xi, s = 1), which has a propensity score ei, there are expected
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to be 1
ei

positive examples. So we can use normalized inverse probability weighting on positive to
emtimate the unbiased expectations on positive.

RP (g,+1) = Ex∼pP (x)[L(g(x,+1))] = Ec∈(0,1]{Ex∼pP (x)[L(g(x,+1))|e(x) = c]}. (5)

R̂e
P (g,+1) =

nP∑
i=1

1

ẽ(xP
i )

L(g(xP
i ),+1). (6)

Similarly, RP (g,−1) = Ex∼pP (x)[L(g(x,−1))] = Ec∈(0,1]{Ex∼pP (x)[L(g(x,−1))|e(x) = c]}.

R̂e
P (g,−1) =

nP∑
i=1

1

ẽ(xP
i )

L(g(xP
i ),−1), (7)

where e(xP
i ) is the true propensity scores of positive samples and ê(xP

i ) is the estimate of propensity
scores, while ẽ(xP

i ) and ˜̂e(xP
i ) is the normalized inverse probability weighting on positive samples.

We can use the real normalized propensity score of positive samples ẽ(xP
i ) to construct the PUe’s loss

function, or use the estimated normalized propensity score of positive samples ˜̂e(xP
i ) to construct the

loss function. Since then, we use ẽ(xP
i ) to represent them.

From the normalization, we can know the following formula:
∑nP

i=1
1

ẽ(xP
i )

= 1,
∑nP

i=1
1

˜̂e(xP
i )

= 1,

1
ẽ(xP

i )
=

1

e(xP
i

)∑nP
j=1

1

e(xP
j

)

, and 1
˜̂e(xP

i )
=

1

ê(xP
i

)∑nP
j=1

1

ê(xP
j

)

. Note,
∑nP

j=1
1

e(xP
j )

= NP , where NP means the

number of all positive data.

nP = nL is the number of labeled samples, NP is the number of positive samples, n is the number
of samples. It is clear that to be unbiased, we have to make Ep(x|y=1) = nP

NP
, which indicates

that
∑n

j=1 e(x) = nP . And Ep(x|s=1)
1

e(xP
j )

= NP . Since e(xN
i ) > 0, existing propensity score

estimation methods such as SAR-EM in [3] often underestimate the propensity score of positive
samples, which will cause co-directional bias or produce an unidentifiable result (overfitting) that all
labeled samples have a propensity score close to 1 and all unlabeled samples have a propensity score
close to 0.

The normalization technique is used to make the deviations no longer in the same direction (co-
directional error will produce worse results). Moreover, the maximum estimation error ratio of sample
weights is reduced. The regularization technique is used to alleviate the overfitting problem, and the
work does not assume a known propensity score or a positive sample distribution. After normalization

is used, θA <
1

ê(xL
i

)∑
j ê(xL

j )
< A/θ does not have such co-direction error, where

1

e(xL
i

)∑
j e(xL

j )
= A and

θ < P (y = 1|xL
i ) ≤ 1.

To calculate the unbiased PU loss in the biased scenario, we must know the propensity score of each
labeled sample. But this propensity score we usually don’t know. So we consider two cases: (1) the
true propensity scores we know and (2) we must estimate the propensity scores from data.

Case 1: Know the True Propensity Scores. In standard PN Classification, the true PN risk with real
class y of size n can be formulated as follows:

RPN (g|y) = πR̂P (g,+1) + (1− π)R̂N (g,−1) =
1

n

n∑
i=1

yiL(g(xi),+1) + (1− yi)L(g(xi),−1).

(8)

Defintion 3 (IPW). Given the propensity scores e and PU labels, the inverse probability weighting
estimator of R̂PUe(g) is:

R̂PUe(g) = πR̂e
P (g,+1) + R̂U (g,−1)− πR̂e

P (g,−1). (9)
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Figure 2: Overview of the PUe framework. Our goal is to estimate the propensity score of the labeled
samples and modify the sample weights using the normalized inverse probability weighting technique
to obtain the loss function uniformly unbiased estimator.

This estimator is unbiased.

E[R̂PUe(g)] = RPN (g|y) = 1

n

n∑
i=1

yiL(g(xi),+1) + (1− yi)L(g(xi),−1). (10)

When the propensity score is known, not only the loss function reconstructed by the PUe algorithm
is unbiased, the expectation of the PUe loss function is equal to the real PN loss function, but also
the difference between the PUe loss function value and the real PN loss function value is probability
bounded. However, in other PU algorithms where the label distribution is biased, the expectation of
the loss function is biased [3].

Theorem 1: Inverse Probability Weighting Error Bound. For any predicted classes ŷ and the
real class y, with probability 1− η, the inverse probability weighting estimator R̂PUe(g) does not

differ from the true PN loss function RPN (g|y) more than: |RPN (g|y)− R̂PUe(g)| ≤
√

L2
max ln 2

η

2n .

with Lmax is the maximum absolute value of cost function L(g, y).

Theorem 2: Error Bounds of Common PU Algorithm in Biased Scenarios. For any pre-
dicted classes ŷ and the real class y, with probability 1 − η, the inverse probability weight-
ing estimator R̂PU (g) does not differ from the true PN loss function RPN (g|y) more than:

|RPN (g|y)− R̂PU (g)| ≤ 2πLmax ∗ nu

nu+np
+

√
L2

max ln 2
η

2n .

In the biased scenario, the error bound of PU algorithm is larger than that of PUe algorithm.

Case 2: Estimate the Propensity Scores from Data. But in practice, the probability of the sample
being labeled is usually unknown. For example, in ad recommendation, we do not actually know the
probability of everyone clicking on the ad, that is, the propensity score is unknown. So in order to get
the loss function of PUe algorithm for the unknown label distribution, we must have an estimate ê of
the propensity score.
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R̂PUê(g) = πR̂ê
P (g,+1) + R̂U (g,−1)− πR̂ê

P (g,−1). (11)

In this case, the bias of the inverse probability weighting estimator is:

bias(R̂PUê(g)) = π

n∑
i=1

yi{(
1

NP
− ẽ(xi)

NP
˜̂e(xi)

) ∗ [L(g(xi),+1)− L(g(xi),−1)]}. (12)

From the bias, we can find that the propensity scores only need to be used accurately for positive
examples. Apparently, L(g(xi),+1)−L(g(xi),−1) < 0 for positive examples. And when incorrect
propensity score is close to 0 or 1 (especially tend towards 0), there will be a large bias. Overestimate
normalized inverse propensity scores.

Underestimated propensity scores are expected to result in a model with a higher bias. Lower
propensity scores result in learning models that estimate the positive class to be more prevalent than
it is, which results in a larger [L(g(xi),+1)− L(g(xi),−1)] for positive samples.

ê(x) = argmin
e

π1

nP

nP∑
i=1

L(e(xP
i ),+1) +

1− π1

nU

nU∑
i=1

L(e(xU
i ),−1) + αe|

∑
xi∈χP∪χU

e(xi)− nP |,

(13)

where π1 = nP

nP+nU
.

In reality, it is almost impossible to know the propensity score of the sample, which requires us to
estimate the propensity score of the sample. However, the traditional statistical estimation method
can not be used directly in deep neural network. This requires us to design a new method to estimate
sample propensity scores.

According to the paper [7]: In the Local Certainty scenario, we assume the relationship between the
observed features and the true class is a deterministic function f : X → Y , where X is the feature
space and Y = {0, 1}, while allowing the propensity score to be an arbitrary probability function.
but this assumption is too strong. In fact, we only need to have hypotheses |P (y = 1|x)− P (y =
0|x)| > θ and P (y = 1|xL) > P (y = 0|xL) to estimate the normalized propensity score well for
sample classification. (where L represents the labeled sample and is used to distinguish it from the
positive category.)

Otherwise, a linear function is usually used to estimate the propensity score in scenarios where the
local certainty scenario is not met. Our supplementary experiments in the supplemental materials
show that the probability function fitted using deep learning is better than the linear estimation in the
MNIST experiment.

We use labeled data as positive samples and unlabeled data as negative samples. We use binary
network and regularization technology to construct a scoring network e(x). Finally, the output of
the network passes through the sigmoid function to ensure that the output value is between 0 and
1. The score it outputs for each sample is the estimated probability of the sample being labeled
(propensity score). The purpose of introducing the regularization technique is to prevent overfitting.
Otherwise, the output value of the labeled sample is very close to 1 and the output value of the
unlabeled sample is very close to 0. This is not what we expect. The ideal propensity score value
should be far away from 0 and 1. Therefore, we introduce such a constraint in the classification loss
function by combining the nature of propensity scores, where the sum of propensity scores of all
samples is equal to the number of labeled samples: αe|

∑
xi∈χP∪χU

e(xi)− nP |.

where αe ajusts the importance of regular term.

Theoretically, for each labeled example (xi, s = +1), which has a porpensity score ei, there are
expected to be 1

ei
positive examples, and of which 1

ei
− 1 did not get selected to be labeled. Each

labeled example gets a weight 1
ei

and the negative example is added to the dataset that gets a negative
weight 1− 1

ei
.

According to [7, 3], P (Ŷ |E,L) = 1
n

∑n
i=1 si(

1
ei
δ1 + (1 − 1

ei
)δ0) + (1 − si)δ0, using Propensity

Sores For Classification. However, as discussed above, existing methods always underestimate
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Table 1: Comparative results on MNIST, CIFAR-10 and Alzheimer.

Dataset Method ACC (%) Prec. (%) Rec. (%) F1 (%) AUC (%) AP (%)

MNIST

uPU 85.17 (1.90) 78.38 (2.36) 96.69 (1.33) 86.55 (1.50) 85.34 (1.87) 77.41 (2.26)
nnPU 87.81 (1.65) 83.78 (2.14) 93.40 (1.68) 88.31 (1.51) 87.89 (1.63) 81.62 (2.28)
PUbN 87.07 (1.73) 83.43 (2.74) 92.21 (2.55) 87.55 (1.55) 87.14 (2.74) 80.70 (2.59)

Dist-PU 89.79 (0.59) 92.22 (1.67) 88.86 (1.48) 90.49 (0.47) 96.60 (0.30) 96.92 (0.21)
uPUe 92.28 (1.32) 89.41 (1.87) 95.71 (1.43) 92.44 (1.25) 92.33 (1.31) 87.69 (1.92)
nnPUe 92.45 (1.61) 90.45 (2.26) 94.73 (1.24) 92.53 (1.55) 92.48 (1.60) 88.29 (2.43)
PUbNe 94.70 (0.63) 97.16 (1.59) 91.33 (1.58) 94.46 (0.71) 94.66 (0.50) 93.18 (0.55)

Dist-PUe 92.57 (0.78) 93.02 (0.86) 90.58 (1.47) 92.77 (0.84) 97.13 (0.57) 97.43 (0.44)
uPUe’ 92.39 (1.36) 89.33 (1.87) 96.07 (1.70) 92.56 (1.30) 92.44 (1.87) 87.76 (1.93)

nnPUe’ 92.94 (1.27) 91.11 (1.84) 94.98 (2.38) 92.98 (1.29) 92.96 (1.27) 89.00 (1.77)
PUbNe’ 94.48 (0.93) 97.74 (0.46) 90.90 (2.10) 94.18 (1.06) 94.43 (0.95) 93.45 (1.00)

Dist-PUe’ 91.73 (0.95) 93.34 (0.42) 89.60 (2.38) 91.41 (1.11) 96.48 (1.54) 96.60 (1.37)

CIFAR-10

uPU 76.33 (1.76) 83.59 (0.65) 50.81 (5.57) 63.01 (4.35) 84.40 (3.12) 78.68 (2.22)
nnPU 82.47 (0.69) 75.30 (1.35) 83.68 (1.64) 79.25 (0.75) 90.01 (0.73) 85.22 (0.73)
PUbN 84.54 (0.54) 82.18 (1.38) 78.40 (2.70) 80.20 (0.99) 91.62 (0.27) 87.31 (0.40)

Dist-PU 84.45 (1.00) 80.90 (1.51) 80.04 (1.62) 80.46 (1.26) 90.89 (1.20) 85.67 (1.54)
uPUe 79.31 (0.90) 81.37 (2.16) 62.86 (5.02) 70.73 (2.58) 86.76 (0.82) 80.07 (1.56)
nnPUe 83.33 (1.04) 76.83 (2.75) 83.88 (2.86) 80.11 (0.85) 90.53 (0.79) 85.33 (1.36)
PUbNe 85.66 (0.58) 83.18 (1.63) 80.52 (2.29) 81.79 (0.66) 92.69 (0.74) 89.41 (1.24)

Dist-PUe 86.97 (0.62) 82.11 (1.69) 86.46 (2.00) 84.19 (0.76) 93.50 (0.66) 89.38 (1.78)
uPUe’ 79.11 (1.75) 85.11 (1.58) 57.92 (4.96) 68.80 (3.61) 86.57 (1.56) 81.56 (2.18)

nnPUe’ 84.24 (0.67) 78.40 (0.86) 83.66 (2.35) 80.92 (1.02) 91.35 (0.99) 87.15 (1.83)
PUbNe’ 87.02 (0.47) 83.84 (1.44) 83.78 (2.68) 83.76 (0.82) 93.80 (0.42) 90.69 (0.65)

Dist-PUe’ 86.17 (2.52) 80.97 (3.20) 85.57 (3.32) 83.19 (3.06) 92.65 (2.20) 88.22 (3.19)

Alzheimer

uPU 63.46 (1.72) 66.80 (3.45) 55.06 (9.83) 59.65 (4.70) 68.08 (2.16) 67.78 (2.22)
nnPU 69.19 (0.85) 65.46 (1.06) 81.46 (5.22) 72.48 (1.62) 73.50 (0.84) 68.74 (1.83)
PUbN 68.75 (0.96) 66.65 (2.04) 75.64 (5.58) 70.68 (1.52) 72.57 (0.63) 66.99 (0.80)

Dist-PU 69.74 (0.50) 67.74 (1.57) 75.69 (4.72) 71.37 (1.33) 74.34 (1.10) 69.53 (1.39)
uPUe 65.30 (3.36) 68.53 (1.99) 56.73 (11.93) 61.32 (7.58) 70.49 (3.99) 70.28 (3.09)
nnPUe 69.38 (0.56) 65.97 (0.68) 80.06 (2.77) 72.30 (0.91) 74.49 (0.34) 69.98 (0.60)
PUbNe 69.52 (0.85) 68.28 (1.28) 72.95 (1.99) 70.51 (0.82) 74.68 (1.08) 70.33 (0.98)

Dist-PUe 70.51 (0.62) 68.91 (1.00) 75.02 (2.26) 71.81 (0.83) 75.19 (0.69) 71.23 (2.08)

propensity scores. As a result, PU learning classification is performed by using the foregoing formula,
which reduces model classification performance.

We found that in cost-sensitive PU learning technique, the training instances are properly reweighted.
and a common way to score propensity is inverse probability weighting (a reweighting technique).
Conditionally, the two methods can be combined to solve the defects of the two methods themselves.
The disadvantage of the cost-sensitive PU learning technique is that the classification effect of the
application deteriorates when the labeled samples are biased. The propensity score is estimated by
the fact that the propensity score of positive samples is always underestimated, which leads to the
decline of the classification effect of the model. This is why we chose to couple with cost-sensitive
PU learning.

However, in practice, the disturbance of propensity score has a great influence on the results due to
the reciprocal, which makes the variance of our model large. We suggest that the existing prior class
π in PU algorithm is used, and the propensity score of samples is weighted by normalized inverse
probability, which is used as the weight of samples. This advantage is that there are many estimation
methods for the prior class [2], and that the error estimation of the propensity score of individual
samples is prevented from greatly affecting the model (the propensity score is close to 0), thereby
enhancing the robustness of the model and improving the accuracy.The loss function of the basic PUe
algorithm can be obtained as follows:

R̂PUê(g) = πR̂ê
P (g,+1) + R̂U (g,−1)− πR̂ê

P (g,−1). (14)

The main algorithm process of PUe is shown in Figure2. The specific algorithm process of PUe
is shown in supplementary material. In summary, the first step of PUe algorithm is to estimate the
propensity score of positive samples using regular binary classification. If the propensity score is
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known, the first step can be skipped. The second step is to modify positive sample weights with
normalized propensity scores. The third step is to use the PU algorithm (that is, PUe) with modified
weights to perform PU binary classification. We also consider the case where negative classes are
also selectively labeled and conduct related experiments (see PUbN), which are not mentioned in
other papers estimating propensity scores and applying them to PU learning.

3 Experiment

In this section, we experimented our idea on several popular PU methods and compare its performance
against the initial baseline methods.

Table 2: Ablation results on CIFAR-10 with ✓indicating the enabling of the corresponding loss term
and different labeled distripution.

method αe labeled distripution ACC (%) Prec. (%) Rec. (%) F1 (%) AUC (%) AP (%)
Dist-PUe ✓ [.25,.25,.25,.25] 91.79 (0.86) 89.02 (2.63) 90.78 (1.81) 89.84 (0.92) 97.11 (0.52) 95.38 (1.18)
Dist-PUe [.25,.25,.25,.25] 91.30 (0.80) 89.22 (1.56) 89.05 (1.93) 89.11 (1.03) 96.64 (0.53) 94.85 (0.77)
Dist-PU [.25,.25,.25,.25] 91.88 (0.52) 89.87 (1.09) 89.84 (0.81) 89.85 (0.62) 96.92 (0.45) 95.49 (0.72)
Dist-PUe ✓ [.10,.10,.30,.50] 91.50 (0.32) 89.07 (1.15) 89.78 (0.97) 89.41 (0.34) 96.67 (0.14) 95.64 (0.26)
Dist-PUe [.10,.10,.30,.50] 90.40 (0.66) 88.86 (3.15) 87.14 (0.74) 87.89 (0.74) 95.71 (0.40) 94.19 (0.65)
Dist-PU [.10,.10,.30,.50] 90.79 (0.72) 91.31 (1.54) 85.12 (2.44) 88.07 (1.07) 95.81 (0.83) 91.28 (2.35)
Dist-PUe ✓ [.72,.15,.10,.03] 86.97 (0.62) 82.11 (1.69) 86.46 (2.00) 84.19 (0.76) 93.50 (0.66) 89.38 (1.78)
Dist-PUe [.72,.15,.10,.03] 86.44 (0.67) 82.19 (1.54) 84.45 (1.78) 83.28 (0.82) 92.90 (0.63) 88.39 (1.32)
Dist-PU [.72,.15,.10,.03] 84.45 (1.00) 80.90 (1.51) 80.04 (1.62) 80.46 (1.26) 90.89 (1.20) 85.67 (1.54)
Dist-PUe ✓ [.08,.86,.02,.04] 88.15 (1.22) 88.05 (2.69) 81.70 (5.41) 84.56 (2.23) 94.46 (1.01) 92.79 (1.09)
Dist-PUe [.08,.86,.02,.04] 86.39 (2.11) 84.47 (3.51) 81.05 (4.32) 82.62 (2.77) 92.42 (2.25) 89.84 (2.40)
Dist-PU [.08,.86,.02,.04] 86.74 (1.58) 86.56 (2.51) 79.30 (4.60) 82.65 (2.48) 93.30 (1.32) 91.08 (1.69)

3.1 Experimental settings

Datasets. We conducted experiments on two benchmarks commonly used in PU learning: MNIST
for parity classification and CIFAR-10 [17] for vehicle class recognition. And on the simulated
datasets of MNIST and CIFAR-10, we know the propensity score of the sample a priori, and we
compare our proposed method with the ideal propensity to know the propensity score.Moreover, we
tested our method on the Alzheimer’s dataset 2 used to identify Alzheimer’s disease in order to test
the performance of our proposed method in real-world scenarios. More information is displayed in
supplementary material.

Baselines. We mainly consider four common PU learning methods, including uPU, nnPU, PUbN,
and Dist-PU.

Evaluation metrics. For each model, we counted six commonly used indicators of the test set results,
including accuracy (ACC), Precision (Prec.), Recall (Rec.), F1, Area Under ROC Curve (AUC) and
Average Precision (AP). Accuracy (ACC) is the main index for a more comprehensive comparison.
The experiments are repeated with six random seeds, and the mean and standard deviation of each
index were recorded.

Implementation details. All the experiments are run by PyTorch. Backbones of each dataset are
summarized in supplementary material. The training batch size is set as 256 for MNIST and CIFAR-
10, while 128 for Alzheimer. We use Adam as the optimizer with a cosine annealing scheduler, where
the initial learning rate is set as 5×10−3; while weight decay is set as 5×10−3. PU learning methods
first experiences a warm-up phase of 60 epochs, and then trains another 60 epochs with depth, where
the value of α is searched in the range of [0, 20].

2Dubey, S. Alzheimer’s Dataset. Available online:
https://www.kaggle.com/tourist55/ alzheimers-dataset-4-class-of-images
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3.2 Comparision with state-of-the-art methods

Competitors. We compare our method with 4 competitive baseline PU algorithms including uPU
[5], nnPU [16], PUbN [9], and Dist-PU [24]. Due to the space limitation, the detailed descriptions
are provided in supplementary material.

Results. The results on all the datasets are recorded in Tab.1. It shows that in most metrics, our
proposed PU+e method significantly outperforms our competitors on all biased datasets, improving
the performance of the original PU method by about 1% to 5%. This proves the effectiveness of our
proposed method. In addition, some observations can be made: (1) A model with a known propensity
score is not necessarily the best (who has e’ in Tab1), but a model with an estimated propensity score
can perform better in many cases. This is a conclusion that is consistent with causal inference[8].
(2) In the ablation study, the performance of the PU+e algorithm is comparable to that of the most
advanced PU algorithm, even when the labels are evenly distributed.

3.3 Ablation studies

Effectiveness of hyper-parameters. Ablation experiments were conducted to verify the validity of
hyperparameters, which is shown in Figure3. It can be seen that the PUe algorithm is sensitive to
hyperparameters and does not change monotonically. When αe = 15, the PUe algorithm has the best
performance. Therefore, in order to obtain the best performance of the PUe algorithm, fine adjustment
is required. When the best performance is achieved remains to be further studied. However, the
overall performance of Cifar-10 is better than that of the original Dist-PU algorithm.
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Figure 3: Influences of different αe on CIFAR-10 by Dist-PUe.

Effectiveness of labeled samples
distribution. The deviation of la-
bel data distribution will signifi-
cantly affect the promotion effect
of our proposed model in Tab.2.
In general, when the distribution
of labeled samples is more biased,
the improvement effect of our pro-
posed method is more obvious.
However, when the distribution
deviation is very large, the lifting
effect of our model is weakened.
This is because the number of la-
beled samples for some classes is
too small or not labeled. As a re-
sult, the propensity score is close
to 0, which affects the model per-
formance. On the Cifar10 dataset,
our algorithm improves the accu-
racy of the Dist-PU algorithm by
up to 2.5%.

4 Conclusion

In this paper, a new PU learning method, namely PUe, is proposed from the perspective of propensity
score for the PU learning with biased labels in deep learning. The PUe algorithm can enhance the
original cost-sensitive PU algorithm, improve the prediction precision in the case of biased sample
labeling, and has the degenerate ability, and the prediction precision in the case of unbiased labeling
is not lower than that of the original PU algorithm. PUe consistently outperforms state-of-the-art
methods on most metrics on real-world biased labeled datasets, including MNIST, CIFAR-10, and
Alzheimer’s. We hope that the proposed propensity score estimation scheme for deep learning can
also provide some inspiration for other weakly supervised scenarios, especially those where the label
distribution is unknown.
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A Algorithm

Algorithm 1 PUe algorithm

Require: data χP ,χU , size n,nP ,nU , hyperparameter αe,π.
1: Step 1:
2: Compute ê(x) by minimizing π

nP

∑nP

i=1 L(g(x
P
i ),+1) + 1−π

nU

∑nU

i=1 L(g(x
U
i ),−1) +

αe|
∑

xi∈χP∪χU
e(xi)− nP | ;

3: Step 2:
4: Compute the weight of labeled samples: wP

i = π
˜̂e(xP

i )

5: Step 3:
6: for i = 1 . . . do
7: Shuffle (χP , χU ) into M mini-batches
8: for each mini-batch (χj

P , χ
j
U ) do

9: Compute the corresponding R̂PUe(g)

10: Use A to update θ with the gradient information ∇θR̂PUe(g)
11: end for
12: end for

B Experiment Details

Table 3: Summary of used datasets and their corresponding models.

Dataset Input Size nP nU # TestingπP Positive Class true e(x) Model
MNIST 28× 28 2500 60,000 10,000 0.5 Even (0, 2, 4, 6 and 8) [.65,.15,.1,.07,.03] 6-layer MLP

CIFAR-10 3× 32× 32 1,000 50,000 10,000 0.4 Vehicles (0, 1, 8 and 9) [.72,.15,.1,.03] 13-layer CNN
Alzheimer3× 224× 224 769 5,121 1,279 0.5 Alzheimer’s Disease unknow ResNet-50

C Complementary Experiment

Table 4: Supplemental Experiments on MINST

method labeled distripution ACC.(%) Prec.(%) Rec.(%) F1.(%) AUC.(%) AP.(%)
LRe [.65,.15,.10,.07,.03] 86.19(0.75) 92.94(0.64) 77.89(1.38) 84.75(0.93) 88.06(0.93) 88.72(1.09)

nnPUe [.65,.15,.10,.07,.03]92.45 (1.61)90.45 (2.26)94.73 (1.24)92.53 (1.55)92.48 (1.60)88.29 (2.43)
nnPU without normalize[.65,.15,.10,.07,.03] 90.95(1.61) 88.18(2.40) 94.38(2.74) 91.13(1.56) 91.00(1.61) 85.98(2.25)

Self-PU [.65,.15,.10,.07,.03] 90.08(0.47) 90.08 (0.47)89.35 (1.17)90.70 (1.73)90.00 (0.53)85.61 (0.69)
anchor [.65,.15,.10,.07,.03] 88.22(0.95) 94.66(1.41) 80.70(3.15) 87.06(1.37) 92.36(1.92) 93.37(2.33)

LRe: Logistic regression estimation of propensity scores for PU learning.

According to paper [7], it cannot estimate identifiable PS without making certain assumptions about
the data. But according to the formula we gave in the first question, it’s approximate. This is not
explained by the self-monitoring method. Results in the above table show that our scheme is better
than self-PU in the case of biased label datasets.

D Proofs

D.1 error bound of bias

We may assume that the error of propensity scores estimated by the NN method is the same as that
estimated by the linear method. (In fact, the NN methods are usually more general, which may
produce results with less error.) That is, the estimate of the propensity score has a maximum error
ratio of β, with βe(xL

i ) ≤ ê(xL
i ) ≤ e(xL

i ). of the following shows that our regularization technique
can yield a smaller error ratio with respect to sample weights. Obviously, the sample xL

i has a sample
weight of 1

nê(xL
i )

. in (Formula 1) with an error bound of bias( 1
nê(xL

i )
) ≤ 1

ne(xL
i )
( 1β − 1).
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D.2 error ratio

In our approach, Sample xL
i has a weight of π

1

ê(xL
i

)∑
j

1

ê(xL
j

)

.P (γe(xL
i ) < ê(xL

i ) ≤ e(xL
i )) = α where

the set of samples is S1 .P (βe(xL
i ) < ê(xL

i ) ≤ γe(xL
i )) = 1 − α where the set of samples is

S2.β < γ < 1 and
∑

i∈S1

1
e(xL

i )
=

∑
i∈S2

1
e(xL

i )
= B. So that

∑
j

1
e(xL

j )
= 2B = Np. For xL

i ∈ S1,

we have 1
e(xL

i )
≤ 1

ê(xL
i )

< 1
γe(xL

i )
. For xL

i ∈ S2, we have 1
γe(xL

i )
≤ 1

ê(xL
i )

< 1
βe(xL

i )
, so we can

get B(1 + 1
γ ) ≤

∑
j

1
ê(xL

j )
< B( 1γ + 1

β ) and we have bias(π
1

ê(xL
i

)∑
j

1

ê(xL
j

)

) ≤max[ 1
ne(xL

i )
( 2
(1+γ) −

1), 1
ne(xL

i )
(1− 2

1
β+ 1

γ

), 1
ne(xL

i )
( 2
(1+ 1

γ )β
− 1), 1

ne(xL
i )
(1− 2

γ
β+1 )] <

1
ne(xL

i )
( 1β − 1) and obviously we

have 2
(1+γ) < 2

(1+ 1
γ )β

< 1
β , 0 < 1 − 2

γ
β+1 < 1 − 2

1
β+ 1

γ

< 1 − β < 1
β − 1, which shows that our

regularization technique has a smaller error ratio with respect to sample weights.

D.3 expectation

One understanding is that, according to the PS definition, each labeled sample xP
j corresponds to

1
e(xP

j )
positive samples. So

∑np

j=1
1

e(xP
j )

= Np it’s true. Because P (x|s = 1) = P (x, y = 1|s = 1),
we have

EP (x|s=1)
1

P (s=1|x,y=1)

=
∑

P (x, y = 1|s = 1) 1
P (s=1|x,y=1)

=
∑ P (s=1|x,y=1)P (x,y=1)

P (s=1)
1

P (s=1|x,y=1)

=
∑ P (x,y=1)

P (s=1) = n
nP

∑
P (x, y = 1)

= n
nP

NP

n = NP

nP
.

It indicates that
∑np

j=1
1

e(xP
j )

= Np.

D.4 PUbN

The PUbN formula is as follows:

Let σ(x) = p(s = +1|x), however, the σ(x) is actually unknown,we should replace σ(x) by its
estimate σ̂(x).We can get the classification risk of PUbN (RPUbN (g)), as the following expression:

RPUbN (g) = πRP (g,+1) + ρRbN (g,−1) + R̄s=−1,η,σ̂(g)

where R̄s=−1,η,σ̂(g) = Ex∼p(x)[1σ̂(x)≤ηL(−g(x))(1 − σ̂(x))]

+πEx∼pP (x)[1σ̂(x)>ηL(−g(x)) 1−σ̂(x)
σ̂(x) ] +ρEx∼pbN (x)[1σ̂(x)>ηL(−g(x)) 1−σ̂(x)

σ̂(x) ]

Then RbN (g,−1) and R̄s=−1,η,σ̂(g) can also be approximated from data by R̂bN (g,−1) =
1

nbN

∑nbN

i=1 L(g(xbN
i ),−1) ˆ̄Rs=−1,η,σ̂(g) = 1

nU

∑nU

i=1[1σ̂(xU
i )≤ηL(g(x

U
i ),−1)(1 − σ̂(xU

i ))]

+ π
nP

∑nP

i=1[1σ̂(xP
i )>ηL(g(x

P
i ),−1)

1−σ̂(xP
i )

σ̂(xP
i )

] + ρ
nbN

∑nbN

i=1 [1σ̂(xbN
i )>ηL(g(x

bN
i ),−1)

1−σ̂(xbN
i )

σ̂(xbN
i )

]

R̂PUbN,η,σ̂(g) = πR̂P (g,+1) + ρR̂bN (g,−1) + ˆ̄Rs=−1,η,σ̂(g)

D.5 PUbNe

Our PUbNe formula is as follows:

R̂PUbNê,η,σ̂(g) = πR̂ê
P (g,+1) + ρR̂ê

bN (g,−1) + ˆ̄Rê
s=−1,η,σ̂(g)

,where R̂ê
bN (g,−1) =

∑nbN

i=1
1

˜̂e(xbN
i )

L(g(xbN
i ),−1) and
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ˆ̄Rê
s=−1,η,σ̂(g) = 1

nU

∑nU

i=1[1σ̂(xU
i )≤ηL(g(x

U
i ),−1)(1 − σ̂(xU

i ))]

+π
∑nP

i=1[
1

˜̂e(xP
i )
1σ̂(xP

i )>ηL(g(x
P
i ),−1)

1−σ̂(xP
i )

σ̂(xP
i )

] +ρ
∑nbN

i=1 [
1

˜̂e(xbN
i )

1σ̂(xbN
i )>ηL(g(x

bN
i ),−1)

1−σ̂(xbN
i )

σ̂(xbN
i )

]

D.6 unbiased

E[R̂PUe(g)]

= E[πR̂e
P (g,+1) + R̂U (g,−1)− πR̂e

P (g,−1)]

= E[
1

n

nP∑
i=1

1

e(xP
i )

(
L(g(xP

i ),+1)− L(g(xP
i ),−1)

)
+

1

n

n∑
i=1

L(g(xi),−1)]

= E[
1

n

nP∑
i=1

1

e(xP
i )

L(g(xP
i ),+1) +

(
1− 1

e(xP
i )

)
L(g(xP

i ),−1) +
1

n

n∑
i=1

(1− si)L(g(xi),−1)]

= E[
1

n

n∑
i=1

si
1

e(xP
i )

L(g(xP
i ),+1) + si

(
1− 1

e(xP
i )

)
L(g(xP

i ),−1) + (1− si)L(g(xi),−1)]

=
1

n

n∑
i=1

yiei
1

e(xi)
L(g(xi),+1) + yiei

(
1− 1

e(xi)

)
L(g(xi),−1) + (1− yiei)L(g(xi),−1)

=
1

n

n∑
i=1

yiL(g(xi),+1) + yi (ei − 1)L(g(xi),−1) + (1− yiei)L(g(xi),−1)

=
1

n

n∑
i=1

yiL(g(xi),+1) + (1− yi)L(g(xi),−1)

= RPN (g|y).

(15)

The change of R̂PUe(g) will be no more than Lmax/n if some xi ∈ χP ∪ χU is replaced, and
McDiarmid’s inequality gives us:

Pr{|R̂PUe(g)−RPN (g|y)| ≥ ϵ} = Pr{|R̂PUe(g)− E[R̂PUe(g)| ≥ ϵ} ≤ 2 exp

(
− 2ϵ2

n(Lmax/n)2

)
.

And make the right side of the previous formula equal to η:

2 exp

(
− 2ϵ2

n(Lmax/n)2

)
= η

⇐⇒ exp

(
2ϵ2

n(Lmax/n)2

)
=

2

η

⇐⇒ 2ϵ2

L2
max/n

= ln

(
2

η

)

⇐⇒ 2ϵ2 =
L2
max ln

(
2
η

)
n

⇐⇒ ϵ =

√√√√L2
max ln

(
2
η

)
2n

Equivalently, with probability at least 1− η,

|R̂PUe(g)−RPN (g|y)| = |R̂PUe(g)− E[R̂PUe(g)]| ≤

√
L2
max ln

2
η

2n
. (16)

15



And because we know the expressions of R̂PUe(g) and R̂uPU (g):

R̂PUe(g) = πR̂e
P (g,+1) + R̂U (g,−1)− πR̂e

P (g,−1), (17)

R̂PU (g) = πR̂P (g,+1) + R̂U (g,−1)− πR̂P (g,−1), (18)

Since we know that
∑nP

j=1
1

e(xP
j )

= NP , we can get the following formula:

|R̂PUe(g)− R̂PU (g)|

= π|R̂e
P (g,+1)− R̂e

P (g,−1)−
(
(R̂P (g,+1)− R̂P (g,−1)

)
|

≤ 1

n
|
nP∑
i=1

(
1

e(xP
i )

− NP

np
)L(g(xP

i ),+1)|+ 1

n
|
nP∑
i=1

(
1

e(xP
i )

− NP

np
)L(g(xP

i ),−1)|

≤ 2

n
NPLmax = 2πLmax

(19)

Then, we can prove:

|RPN (g|y)− R̂PU (g)|
≤ |RPN (g|y)− R̂PUe(g)|+ |R̂PUe(g)− R̂PU (g)|

≤ 2πLmax +

√
L2
max ln

2
η

2n
.

(20)
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