
A Theory of Link Prediction via
Relational Weisfeiler-Leman on Knowledge Graphs

Xingyue Huang
Department of Computer Science

University of Oxford
Oxford, UK.

xingyue.huang@cs.ox.ac.uk

Miguel Romero
Department of Computer Science

Universidad Católica de Chile
& CENIA Chile
mgromero@uc.cl

İsmail İlkan Ceylan
Department of Computer Science

University of Oxford
Oxford, UK.

ismail.ceylan@cs.ox.ac.uk

Pablo Barceló
Inst. for Math. and Comp. Eng.
Universidad Católica de Chile

& IMFD Chile & CENIA Chile
pbarcelo@uc.cl

Abstract

Graph neural networks are prominent models for representation learning over
graph-structured data. While the capabilities and limitations of these models are
well-understood for simple graphs, our understanding remains incomplete in the
context of knowledge graphs. Our goal is to provide a systematic understanding
of the landscape of graph neural networks for knowledge graphs pertaining to
the prominent task of link prediction. Our analysis entails a unifying perspec-
tive on seemingly unrelated models and unlocks a series of other models. The
expressive power of various models is characterized via a corresponding relational
Weisfeiler-Leman algorithm. This analysis is extended to provide a precise logical
characterization of the class of functions captured by a class of graph neural net-
works. The theoretical findings presented in this paper explain the benefits of some
widely employed practical design choices, which are validated empirically.

1 Introduction

Graph neural networks (GNNs) [27, 12] are prominent models for representation learning over graph-
structured data, where the idea is to iteratively compute vector representations of nodes of an input
graph through a series of invariant (resp., equivariant) transformations. While the landscape of GNNs
is overwhelmingly rich, the vast majority of such models are instances of message passing neural
networks [11] which are well-studied, leading to a theoretical understanding of their capabilities
and limitations [34, 21]. In turn, our understanding is rather limited for GNN models dedicated to
learning over knowledge graphs, which are applied in a wide range of domains.

To make our context precise, we first consider an extension of message passing neural networks with
relation-specific message functions, which we call relational message passing neural networks. Two
prominent examples of this framework are RGCN [28] and CompGCN [32], and their expressive
power has recently been characterized through a dedicated relational Weisfeiler-Leman test [4].

While offering principled means for learning over knowledge graphs, the standard relational message
passing framework is tailored for computing unary node representations and therefore models of this
class are better suited for node-level tasks (e.g., node/entity classification). Actually, it is well-known
that even a good node-level representation might not necessarily induce a good edge representation,

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

hindering the applicability of such models for the crucial task of link prediction [39]. This has led
to the design of GNN architectures specifically tailored for link prediction over knowledge graphs
[30, 40, 33, 18], for which our understanding remains limited.

The goal of this paper is to offer a theory of the capabilities and limitations of a class of relational
GNN architectures which compute pairwise node representations to be utilized for link prediction.
Although most such architectures can be seen to be subsumed by higher-order message passing
neural networks that compute pairwise representations on nodes, the inherently quadratic behavior of
the latter justifies local approximations which align better with models used in practice. Of particular
interest to us is Neural Bellman-Ford Networks (NBFNets) [40], which define a message passing
approach inspired by the Bellman-Ford algorithm. We argue in salient detail that the crucial insight of
this approach is in leveraging the idea of computing conditional pairwise-node representations, which
leads to more expressive models at a more reasonable computational cost, given its local nature.

Building on this fundamental aspect, we define conditional message passing neural networks, which
extend traditional ones by a conditional message passing paradigm: every node representation
is conditional on a source node and a query relation, which allows for computing pairwise node
representations. This framework strictly contains NBFNets and allows for a systematic treatment
of various other models. Through a careful study of this framework, we can explain the conceptual
differences between different models along with their respective expressive power.

Our contributions can be summarized as follows:

• We introduce conditional message passing neural networks which encode representations of nodes
v conditioned on a (source) node u and a query relation q, yielding pairwise node representations.
We discuss the model design space, including a discussion on different initialization regimes and
the presence of global readout functions in each layer of the network.

• We define a relational Weisfeiler-Leman algorithm (building on similar works such as Barceló
et al. [4]), and prove that conditional message passing neural networks can match the expressive
power of this algorithm. This study reveals interesting insights about NBFNets, suggesting that
their strong empirical performance is precisely due to the expressive power, which can be matched
by other instances of this framework.

• Viewing conditional message passing neural networks (with or without global readouts) as clas-
sifiers over pairs of nodes, we give logical characterizations of their expressive power based on
formulas definable in some binary variants of graded modal logic [8, 19]. This provides us with a
declarative and well-studied formal counterpart of C-MPNNs.

• We conduct an experimental analysis to verify the impact of various model choices, particularly
pertaining to initialization, history, message computation, and global readout functions. We also
conduct both inductive and transductive experiments on various real-world datasets, empirically
validating our theoretical findings.

2 Related work and motivation

Early GNNs for knowledge graphs are relational variations of message passing neural networks.
A prototypical example is the RGCN architecture [28], which extends graph convolutional net-
works (GCNs) [17] with relation-specific message functions. CompGCN [32] and several other
architectures [37] follow this line of work with differences in their aggregate, update, and message
functions. These architectures encode unary node representations and typically rely on a pairwise
decoder function to predict the likelihood of a link which is known to be suboptimal for link pre-
diction [39]. There is a good understanding of the expressive power of these architectures [4]: we
generalize these results in Section 3, since they form the basis for the rest of our results.

A different approach is given for single-relational graphs by SEAL [38], where the idea is to encode
(labeled) subgraphs (instead of nodes). GraIL [30] extends this idea to knowledge graphs, and one
important virtue of these models is that they are inductive even if there are no node features in
the input graph. The idea is to use a form of labeling trick [39] based on pairwise shortest path
distances in sampled subgraphs, but these architectures suffer from scalability issues. More recent
inductive architectures integrate ideas from earlier path-based link prediction approaches [24, 14]
into modern GNN architectures, resulting in proposals such as PathCon [33], Geodesic GNNs [18],
and NBFNets [40]. Our study is very closely related to NBFNets which is inspired by the generalized

2

version of the Bellman-Ford algorithm for finding shortest paths. These architectures aggregate over
relational paths by keeping track of conditional pairwise-node representations. While NBFNets can
be intuitively seen as the neural counterpart of the generalized Bellman-Ford algorithm, they do not
provably align with this algorithm since the “semiring assumption” is invalidated through the use of
non-linearities (which is explicit in Zhu et al. [40]). This leaves open many questions regarding the
capabilities and limitations of these architectures.

In this paper, we argue that the key insight behind architectures such as NBFNets is in locally
computing pairwise representations through conditioning on a source node, and this has roots in
earlier works, such as ID-GNNs [36]. To formally study this, we introduce conditional message
passing neural networks as a strict generalization of NBFNets [40] and related models such as
NeuralLP [35], or DRUM [25]. Through this abstraction, we theoretically study the properties
of a large class of models in relation to local variants of relational Weisfeiler-Leman algorithms.
Broadly, our study can be seen as the relational counterpart of the expressiveness studies conducted
for GNNs [34, 21, 3], particularly related to higher-order GNNs [21], which align with higher-order
dimensional variants of the WL test. Our characterization relies on local versions of higher-order WL
tests [22], albeit not in a relational context. This can be seen as a continuation and generalization of
the results given for relational message passing neural networks [4] to a broader class of models.

3 Background

3.1 Knowledge graphs and invariants

Knowledge graphs. A knowledge graph is a tuple G = (V,E,R, c), where V is a set of nodes,
E ⊆ R× V × V is a set of labeled edges, or facts, R is the set of relation types and c : V → D is a
node coloring. When D = Rd, we also say that c is a d-dimensional feature map, and typically use x
instead of c. We write r(u, v) to denote a labeled edge, or a fact, where r ∈ R and u, v ∈ V . The
neighborhood of a node v ∈ V relative to a relation r ∈ R is defined as Nr(v) := {u | r(u, v) ∈ E}.

Graph invariants. We define k-ary graph invariants following the terminology of Grohe [13], for
which we first define isomorphism over knowledge graphs. An isomorphism from a knowledge
graph G = (V,E,R, c) to a knowledge graph G′ = (V ′, E′, R, c′) is a bijection f : V → V ′ such
that c(v) = c′(f(v)) for all v ∈ V , and r(u, v) ∈ E if and only if r(f(u), f(v)) ∈ E′, for all
r ∈ R and u, v ∈ V . A 0-ary graph invariant is a function ξ defined on knowledge graphs such that
ξ(G) = ξ(G′) for all isomorphic knowledge graphs G and G′. For k ≥ 1, a k-ary graph invariant is
a function ξ that associates with each knowledge graph G = (V,E,R, c) a function ξ(G) defined on
V k such that for all knowledge graphs G and G′, all isomorphisms f from G to G′, and all k-tuples
of nodes v ∈ V k, it holds that ξ(G)(v) = ξ(G′)(f(v)). If k = 1, this defines a node invariant, or
unary invariant, and if k = 2, this defines a binary invariant, which is central to our study.

Refinements. A function ξ(G) : V k → D refines a function ξ′(G) : V k → D, denoted as
ξ(G) ⪯ ξ′(G), if for all v,v′ ∈ V k, ξ(G)(v) = ξ(G)(v′) implies ξ′(G)(v) = ξ′(G)(v′). We call
such functions equivalent, denoted as ξ(G) ≡ ξ′(G), if ξ(G) ⪯ ξ′(G) and ξ′(G) ⪯ ξ(G). A k-ary
graph invariant ξ refines a k-ary graph invariant ξ′, if ξ(G) refines ξ′(G) for all knowledge graphs G.

3.2 Relational message passing neural networks

We introduce relational message passing neural networks (R-MPNNs), which encompass several
known models such as RGCN [28] and CompGCN [32]. The idea is to iteratively update the feature
of a node v based on the different relation types r ∈ R and the features of the corresponding neighbors
in Nr(v). In our most general model we also allow readout functions, that allow further updates to
the feature of v by aggregating over the features of all nodes in the graph.

Let G = (V,E,R,x) be a knowledge graph, where x is a feature map. An R-MPNN computes
a sequence of feature maps h(t) : V → Rd(t), for t ≥ 0. For simplicity, we write h

(t)
v instead of

h(t)(v). For each node v ∈ V , the representations h(t)
v are iteratively computed as:

h(0)
v = xv

h(t+1)
v = UPD

(
h(f(t))
v ,AGG({{MSGr(h

(t)
w)| w ∈ Nr(v), r ∈ R}}, READ({{h(t)

w | w ∈ V }})
)
,

3

where UPD, AGG, READ, and MSGr are differentiable update, aggregation, global readout, and
relation-specific message functions, respectively, and f : N → N is a history function1, which is
always non-decreasing and satisfies f(t) ≤ t. An R-MPNN has a fixed number of layers T ≥ 0, and
then, the final node representations are given by the map h(T) : V → Rd(T).

The use of a readout component in message passing is well-known [5] but its effect is not well-
explored in a relational context. It is of interest to us since it has been shown that standard GNNs can
capture a larger class of functions with global readout [3].

An R-MPNN can be viewed as an encoder function enc that associates with each knowledge graph
G a function enc(G) : V → Rd(T), which defines a node invariant corresponding to h(T). The final
representations can be used for node-level predictions. For link-level tasks, we use a binary decoder
decq : Rd(T) × Rd(T) → R, which produces a score for the likelihood of the fact q(u, v), for q ∈ R.

In Appendix A.1 we provide a useful characterization of the expressive power of R-MPNNs in terms
of a relational variant of the Weisfeiler–Leman test [4]. This characterization is essential for the rest
of the results that we present in the paper.

4 Conditional message passing neural networks

R-MPNNs have serious limitations for the task of link prediction [39], which has led to several
proposals that compute pairwise representations directly. In contrast to the case of R-MPNNs, our
understanding of these architectures is limited. In this section, we introduce the framework of
conditional MPNNs that offers a natural framework for the systematic study of these architectures.

Let G = (V,E,R,x) be a knowledge graph, where x is a feature map. A conditional message
passing neural network (C-MPNN) iteratively computes pairwise representations, relative to a fixed
query q ∈ R and a fixed node u ∈ V , as follows:

h
(0)
v|u,q = INIT(u, v, q)

h
(t+1)
v|u,q = UPD(h

f(t)
v|u,q,AGG({{MSGr(h

(t)
w|u,q, zq)| w ∈ Nr(v), r ∈ R}}), READ({{h(t)

w|u,q | w ∈ V }})),

where INIT, UPD, AGG, READ, and MSGr are differentiable initialization, update, aggregation, global
readout, and relation-specific message functions, respectively, and f is the history function. We
denote by h

(t)
q : V × V → Rd(t) the function h

(t)
q (u, v) := h

(t)
v|u,q, and denote zq to be a learnable

vector representing the query q ∈ R. A C-MPNN has a fixed number of layers T ≥ 0, and the final
pair representations are given by h

(T)
q . We sometimes write C-MPNNs without global readout to

refer to the class of models which do not use a readout component.

Intuitively, C-MPNNs condition on a source node u in order to compute representations of (u, v)
for all target nodes v. To further explain, we show a visualization of C-MPNNs and R-MPNNs
in Figure 1 to demonstrate the differences in the forward pass. Contrary to the R-MPNN model
where we carry out relational message passing first and rely on the binary decoder to compute a
query fact q(u, v), the C-MPNN model first initializes all node representations with the zero vector
except the representation of the node u which is assigned a vector with non-zero entry. Following the
initialization, we carry out relational message passing and decode the hidden state of the target node
v to obtain the output, which yields the representation of v conditioned on u.

Observe that C-MPNNs compute binary invariants, provided that the initialization INIT is a binary in-
variant. To ensure that the resulting model computes pairwise representations, we require INIT(u, v, q)
to be a nontrivial function in the sense that it needs to satisfy target node distinguishability: for all
q ∈ R and v ̸= u ∈ V , it holds that INIT(u, u, q) ̸= INIT(u, v, q).

This is very closely related to the Labeling Trick proposed by Zhang et al. [39], which is an initializa-
tion method aiming to differentiate a set {u, v} of target nodes from the remaining nodes in a graph.
However, the Labeling Trick only applies when both the source u and target nodes v are labeled.
Recent state-of-the-art models such as ID-GNN [36] and NBFNet [40] utilize a similar method, but
only with the source node u labeled differently in initialization. Our definition captures precisely this,
and we offer a theoretical analysis of the capabilities of the aforementioned architectures accordingly.

1The typical choice is f(t) = t, but other options are considered in the literature, as we discuss later.

4

u v

q

G

Input Graph

hu hv

Message Passing

decq(,) → R

zq 0

INIT(u, v, q)

hv|u,q

Message Passing

dec() → R

Encoder Decoder

R-MPNN

C-MPNN

Figure 1: Visualization of R-MPNN and C-MPNN. The dashed arrow is the target query q(u, v).
Arrow colors indicate distinct relation types, while node colors indicate varying hidden states. R-
MPNN considers a unary encoder and relies on a binary decoder, while C-MPNN first initializes
binary representation based on the target query q(u, v), and then uses a unary decoder.

One alternative is to directly learn pairwise representations following similar ideas to those of higher-
order GNNs, but these algorithms are not scalable. Architectures such as NBFNets represent a
trade-off between computational complexity and expressivity. The advantage of learning conditional
representations hv|u,q is to be able to learn such representations in parallel for all v ∈ V , amortizing
the computational overhead; see Zhu et al. [40] for a discussion. We have also carried out a runtime
analysis comparison among different classes of models in Appendix B.

4.1 Design space and basic model architectures

To specify a C-MPNN architecture, we need to specify the functions INIT, AGG, MSGr, f , and
READ. In the following, we consider three initialization functions {INIT1, INIT2, INIT3}, two aggrega-
tion functions {sum,PNA}, three message functions {MSG1

r,MSG2
r,MSG3

r}, two history functions
{f(t) = t, f(t) = 0}, and either sum global readout or no readout term.

Initialization. We consider the following natural variants for initialization:
INIT1(u, v, q) = 1u=v ∗ 1, INIT2(u, v, q) = 1u=v ∗ zq, INIT3(u, v, q) = 1u=v ∗ (zq + ϵu),

where ∗ represents element-wise multiplication, the function 1u=v(v) is the indicator function which
returns the all-ones vector 1 if u = v and the all-zeros vector 0 otherwise with corresponding size.

Clearly, both INIT1 and INIT2 satisfy target node distinguishability assumption if we assume zq has
no zero entry, where INIT2, in addition, allows query-specific initialization to be considered. Suppose
we further relax the condition to be target node distinguishability in expectation. Then, INIT3 can
also distinguish between each conditioned node u given the same query vector zq by adding an error
vector ϵu sampled from N (0, 1) to the conditioned node’s initialization.

Aggregation. We consider sum aggregation and Principal Neighborhood Aggregation (PNA) [7].

Message. We consider the following variations of message functions:

MSG1
r(h

(t)
w|u,q, zq) = h

(t)
w|u,q ∗W

(t)
r zq,

MSG2
r(h

(t)
w|u,q, zq) = h

(t)
w|u,q ∗ b

(t)
r ,

MSG3
r(h

(t)
w|u,q, zq) = W (t)

r h
(t)
w|u,q,

where W
(t)
r are relation-specific transformations. MSG1

r computes a query-dependent message,
whereas MSG2

r and MSG3
r are analogous to message functions of CompGCN and RGCN, respectively.

5

History. In addition, we can set f , which intuitively is the function that determines the history of
node embeddings to be considered. By setting f(t) = t, we obtain a standard message-passing
algorithm where the update function considers the representation of the node in the previous iteration.
We can alternatively set f(t) = 0, in which case we obtain (a generalization of) NBFNets.

Readout. We consider a standard readout which sums the representations and applies a linear
transformation on the resulting representations. Alternatively, we consider the special case, where we
omit this component (we discuss a dedicated readout operation in our empirical analysis later).

A simple architecture. Consider a basic C-MPNN architecture with global readout, which, for a
query relation q ∈ R and a fixed node u, updates the representations as:

h
(0)
v|u,q = 1u=v ∗ zq

h
(t+1)
v|u,q = σ

(
W

(t)
0

(
h
(t)
v|u,q +

∑
r∈R

∑
w∈Nr(v)

MSG1
r(h

(t)
w|u,q, zq)

)
+W

(t)
1

∑
w∈V

h
(t)
w|u,q

)
,

where W
(t)
0 ,W

(t)
1 are linear transformations followed by a non-linearity σ.

5 Characterizing the expressive power

5.1 A relational Weisfeiler-Leman characterization

To analyze the expressive power of C-MPNNs, we introduce the relational asymmetric local 2-WL,
denoted by rawl2. In this case, we work with knowledge graphs of the form G = (V,E,R, c, η),
where η : V × V → D is a pairwise coloring. We say that η satisfies target node distinguishability
if η(u, u) ̸= η(u, v) for all u ̸= v ∈ V . The notions of isomorphism and invariants extend to this
context in a natural way. For each t ≥ 0, we update the coloring as:

rawl
(0)
2 (u, v) = η(u, v),

rawl
(t+1)
2 (u, v) = τ

(
rawl

(t)
2 (u, v), {{(rawl(t)2 (u,w), r) | w ∈ Nr(v), r ∈ R)}}

)
,

where τ injectively maps the above pair to a unique color, which has not been used in previous
iterations. Observe that rawl(t)2 defines a binary invariant, for all t ≥ 0.

The test is asymmetric: given a pair (u, v), we only look at neighbors of (u, v) obtained by changing
the second coordinate of the pair. In contrast, usual versions of (local) k-WL are symmetric as
neighbors may change any coordinate. Interestingly, this test characterizes the power of C-MPNNs in
terms of distinguishing pairs of nodes.

Theorem 5.1. Let G = (V,E,R,x, η) be a knowledge graph, where x is a feature map and η is a
pairwise coloring satisfying target node distinguishability. Let q ∈ R be any query relation. Then:

1. For all C-MPNNs with T layers and initializations INIT with INIT ≡ η, and 0 ≤ t ≤ T , we have
rawl

(t)
2 ⪯ h

(t)
q .

2. For all T ≥ 0 and history function f , there is a C-MPNN without global readout with T layers
and history function f such that for all 0 ≤ t ≤ T , we have rawl

(t)
2 ≡ h

(t)
q .

The idea of the proof is as follows: we first show a correspondent characterization of the expressive
power of R-MPNNs in terms of a relational variant of the WL test (Theorem A.1). This result
generalizes results from Barceló et al. [4]. We then apply a reduction from C-MPNNs to R-MPNNs,
that is, we carefully build an auxiliary knowledge graph (encoding the pairs of nodes of the original
knowledge graph) to transfer our R-MPNN characterization to our sought C-MPNN characterization.

Note that the lower bound (item (2)) holds even for the basic model of C-MPNNs (without global
readout) and the three proposed message functions from Section 4.1. The expressive power of C-
MPNNs is independent of the history function as in any case it is matched by rawl2. This suggests that
the difference between traditional message passing models using functions f(t) = t and path-based
models (such as NBFNets [40]) using f(t) = 0 is not relevant from a theoretical point of view.

6

5.2 Logical characterization

We now turn to the problem of which binary classifiers can be expressed as C-MPNNs. That is, we
look at C-MPNNs that classify each pair of nodes in a knowledge graph as true or false. Following
Barceló et al. [3], we study logical binary classifiers, i.e., those that can be defined in the formalism
of first-order logic (FO). Briefly, a first-order formula ϕ(x, y) with two free variables x, y defines
a logical binary classifier that assigns value true to the pair (u, v) of nodes in knowledge graph G
whenever G |= ϕ(u, v), i.e., ϕ holds in G when x is interpreted as u and y as v. A logical classifier
ϕ(x, y) is captured by a C-MPNN A if over every knowledge graph G the pairs (u, v) of nodes that
are classified as true by ϕ and A are the same.

A natural problem then is to understand what are the logical classifiers captured by C-MPNNs. Fix
a set of relation types R and a set of pair colors C. We consider knowledge graphs of the form
G = (V,E,R, η) where η is a mapping assigning colors from C to pairs of nodes from V . In this
context, FO formulas can refer to the different relation types in R and the different pair colors in C.
Our first characterization is established in terms of a simple fragment of FO, which we call rFO3

cnt,
and is inductively defined as follows: First, a(x, y) for a ∈ C, is in rFO3

cnt. Second, if φ(x, y) and
ψ(x, y) are in rFO3

cnt, N ≥ 1 is a positive integer, and r ∈ R, then the formulas

¬φ(x, y), φ(x, y) ∧ ψ(x, y), ∃≥Nz (φ(x, z) ∧ r(z, y))

are also in rFO3
cnt. Intuitively, a(u, v) holds inG = (V,E,R, η) if η(u, v) = a, and ∃≥Nz (φ(u, z)∧

r(z, v)) holds in G if v has at least N incoming edges labeled r ∈ R from nodes w for which φ(u,w)
holds in G. We use the acronym rFO3

cnt as this logic corresponds to a restriction of FO with three
variables and counting. We can show the following result which is the first of its kind in the context
of knowledge graphs:

Theorem 5.2. A logical binary classifier is captured by C-MPNNs without global readout if and only
if it can be expressed in rFO3

cnt.

The idea of the proof is to show a logical characterization for R-MPNNs (without global readout) in
terms of a variant of graded modal logic called rFO2

cnt (Theorem A.11), which generalizes results
from Barceló et al. [3] to the case of multiple relations. Then, as in the case of Theorem 5.1, we apply
a reduction from C-MPNNs to R-MPNNs (without global readout) using an auxiliary knowledge
graph and a useful translation between the logics rFO2

cnt and rFO3
cnt.

Interestingly, arbitrary C-MPNNs (with global readout) are strictly more powerful than C-MPNNs
without global readout in capturing logical binary classifiers: they can at least capture a strict
extension of rFO3

cnt, denoted by erFO3
cnt.

Theorem 5.3. Each logical binary classifier expressible in erFO3
cnt can be captured by a C-MPNN.

Intuitively speaking, our logic rFO3
cnt from Theorem 5.2 only allows us to navigate the graph by

moving to neighbors of the “current node”. The logic erFO3
cnt is a simple extension that allows

us to move also to non-neighbors (Proposition A.15 shows that this logic actually gives us more
power). Adapting the translation from logic to GNNs (from Theorem A.11), we can easily show that
C-MPNNs with global readout can capture this extended logic.

The precise definition of erFO3
cnt together with the proofs of Theorems 5.2 and 5.3 can be found in

Appendices A.3 and A.4, respectively. Let us stress that rFO3
cnt and erFO3

cnt correspond to some
binary variants of graded modal logic [8, 19]. As in Barceló et al. [3], these connections are exploited
in our proofs.

5.3 Locating rawl2 in the relational WL landscape

Let us note that rawl2 strictly contains rwl1, since intuitively, we can degrade the rawl2 test to compute
unary invariants such that it coincides with rwl1. As a result, this allows us to conclude that R-MPNNs
are less powerful than C-MPNNs. The rawl2 test itself is upper bounded by a known relational variant
of 2-WL, namely, the relational (symmetric) local 2-WL test, denoted by rwl2. Given a knowledge

7

graph G = (V,E,R, c, η), this test assigns pairwise colors via the following update rule:

rwl
(t+1)
2 (u, v) = τ

(
rwl

(t)
2 (u, v), {{(rwl(t)2 (w, v), r) | w ∈ Nr(u), r ∈ R)}},

{{(rwl(t)2 (u,w), r) | w ∈ Nr(v), r ∈ R)}}
)

This test and a corresponding neural architecture, for arbitrary order k ≥ 2, have been recently
studied in Barceló et al. [4] under the name of multi-relational local k-WL.

rwl+2 rawl+2

rwl2 rawl2

Proposition A.19 Proposition A.17

Proposition A.18

Figure 2: Expressiveness hierarchy:
A → B iff A ⪯ B. By Proposi-
tion A.20, rwl2 and rawl+2 are incom-
parable. The case of rwl+2 ⪯ rawl+2
is analogous to Proposition A.18.

This helps us to locate the test rawl2 within the broader WL hi-
erarchy, but it does not align perfectly with the practical setup:
one common practice in link prediction is to extend knowledge
graphs with inverse relations [40, 35, 25, 32] which empiri-
cally yields stronger results and hence is used in most practical
setups. However, the effect of this choice has never been quan-
tified formally. We formally explain the benefits of this design
choice, showing that it leads to provably more powerful mod-
els. The idea is to consider tests (and architectures) which are
augmented with the inverse edges: we write rawl+2 and rwl+2
to denote the corresponding augmented tests and prove that
it results in more expressive tests (and hence architectures)
in each case, respectively. The precise tests and propositions,
along with their proofs can be found in Appendix A.5. We
present in Figure 2 the resulting expressiveness hierarchy for
all these tests.

6 Experimental evaluation

We experiment on knowledge graph benchmarks and aim to answer the following questions: Q1.
What is the impact of the history function on the model performance? In particular, do models with
f(t) = t perform comparably to those with f(t) = 0 as our theory suggests? Q2. How do the
specific choices for aggregation and message functions affect the performance? Q3. What is the
impact of the initialization function on the performance? What happens when the target identifiability
property does not hold? Q4. Do C-MPNNs outperform R-MPNNs empirically? Q5. Does the use of
a global readout, or a relational version affect the performance?

6.1 Experimental setup

Datasets. We use the datasets WN18RR [31] and FB15k-237 [9], for inductive relation prediction
tasks, following a standardized train-test split given in four versions [30]. We augment each fact
r(u, v) with an inverse fact r−1(v, u). There are no node features for either of the datasets, and the
initialization is given by the respective initialization function INIT. This allows all the proposed GNN
models to be applied in the inductive setup and to better align with the corresponding relational
Weisfeiler-Leman algorithms. The statistics of the datasets are reported in Table 5 of Appendix C.1.
The code for experiments is reported in https://github.com/HxyScotthuang/CMPNN.

Implementation. All models use 6 layers, each with 32 hidden dimensions. The decoder function
parameterizes the probability of a fact q(u, v) as p(v | u, q) = σ(f(h

(T)
v|u,q)), where σ is the sigmoid

function, and f is a 2-layer MLP with 64 hidden dimensions. We adopted layer-normalization [2]
and short-cut connection after each aggregation and before applying ReLU. For the experiments
concerning the message function MSG3

r , we follow the basis decomposition for the FB15k-237 dataset
with 30 basis functions for sum aggregation, and 15 for PNA aggregation. We ran the experiments
for 20 epochs on 1 Tesla T4 GPU. with mild modifications to accommodate all architectures studied
in this paper. We discard the edges that directly connect query node pairs to prevent overfitting. The
best checkpoint for each model instance is selected based on its performance on the validation set.
All hyperparameter details are reported in Table 6 of Appendix C.1.

Evaluation. We consider filtered ranking protocol [6]: for each test fact r(u, v), we construct 50
negative samples r(u′, v′), randomly replacing either the head entity or the tail entity, and we report
Hits@10, the rate of correctly predicted entities appearing in the top 10 entries for each instance list
prediction. We report averaged results of five independent runs for all experiments.

8

https://github.com/HxyScotthuang/CMPNN

Table 1: Inductive relation prediction with C-MPNNs using INIT2 initialization and no readout. The
best results for each category are shown in bold and the second best results are underlined.

Model architectures WN18RR FB15k-237
AGG MSGr f(t) v1 v2 v3 v4 v1 v2 v3 v4

sum MSG1
r 0 0.934 0.896 0.894 0.881 0.784 0.900 0.940 0.923

sum MSG1
r t 0.932 0.896 0.900 0.881 0.794 0.906 0.947 0.933

sum MSG2
r 0 0.939 0.906 0.881 0.881 0.734 0.899 0.911 0.941

sum MSG2
r t 0.937 0.906 0.865 0.884 0.728 0.883 0.929 0.931

sum MSG3
r 0 0.943 0.898 0.888 0.877 0.850 0.934 0.919 0.941

sum MSG3
r t 0.934 0.896 0.892 0.880 0.844 0.943 0.926 0.950

PNA MSG1
r 0 0.943 0.897 0.898 0.886 0.801 0.945 0.934 0.960

PNA MSG1
r t 0.941 0.895 0.904 0.886 0.804 0.949 0.945 0.954

PNA MSG2
r 0 0.946 0.900 0.896 0.887 0.715 0.896 0.887 0.886

PNA MSG2
r t 0.947 0.902 0.901 0.888 0.709 0.899 0.875 0.894

PNA MSG3
r 0 0.947 0.898 0.899 0.884 0.788 0.908 0.906 0.927

PNA MSG3
r t 0.944 0.897 0.894 0.882 0.795 0.916 0.908 0.926

6.2 Results for inductive link prediction with C-MPNN architectures

We report inductive link prediction results for different C-MPNN architectures in Table 1, all ini-
tialized with INIT2. Each row of Table 1 corresponds to a specific architecture, which allows us to
compare the model components. Note that while NBFNets [40] use different message functions for
different datasets, we separately report for each model architecture to specifically pinpoint the impact
of each model component.

History functions (Q1). First, we note that there is no significant difference between the models
with different history functions. Specifically, for any choice of aggregate and message functions, the
model which sets f(t) = t performs comparably to the one which sets f(t) = 0. This supports our
theoretical findings, which state that path-based message passing and traditional message passing
have the same expressive power. This may appear as a subtle point, but it is important for informing
future work: the strength of these architectures is fundamentally due to their ability to compute more
expressive binary invariants, which holds regardless of the choice of the history function.

Message functions (Q2). We highlight that there is no significant difference between different
message functions on WN18RR, which is unsurprising: WN18RR splits contain at most 11 relation
types, which undermines the impact of the differences in message functions. In contrast, the results on
FB15k-237 are informative in this respect: MSG2

r clearly leads to worse performance than all the other
choices, which can be explained by the fact that MSG2

r utilizes fewer relation-specific parameters.
Importantly, MSG3

r appears strong and robust across models. This is essentially the message function
of RGCN and uses basis decomposition to regularize the parameter matrices. Architectures using
MSG3

r with fewer parameters (see the appendix) can match or substantially exceed the performance
of the models using MSG1

r , where the latter is the primary message function used in NBFNets. This
may appear counter-intuitive since MSG3

r does not have a learnable query vector zq , but this vector is
nonetheless part of the model via the initialization function INIT2.

Aggregation functions (Q2). We experimented with aggregation functions sum and PNA. We do
not observe significant trends on WN18RR, but PNA tends to result in slightly better-performing ar-
chitectures. On FB15k-237, there seems to be an intricate interplay between aggregation and message
functions. For MSG1

r , PNA appears to be a better choice than sum. On the other hand, for both MSG2
r

and MSG3
r , sum aggregation is substantially better. This suggests that a sophisticated aggregation,

such as PNA, may not always be necessary since it can be matched (and even outperformed) with a
sum aggregation. In fact, the model with sum aggregation and MSG3

r is very closely related to RGCN
and appears to be one of the best-performing models across the board. This supports our theory since,
intuitively, this model can be seen as an adaptation of RGCN to compute binary invariants while
keeping the choices for model components the same as RGCN.

9

Table 2: Results for inductive relation prediction on WN18RR and FB15k-237 using no readout,
global readout and relation-specific readout, respectively. We use C-MPNN architecture with
AGG = PNA, MSG = MSG1

r , and INIT = INIT2.
Model architectures WN18RR FB15k-237

READ v1 v2 v3 v4 v1 v2 v3 v4
no readout 0.941 0.895 0.904 0.886 0.804 0.949 0.945 0.954

global readout 0.946 0.890 0.881 0.872 0.799 0.897 0.942 0.864
relation-specific 0.932 0.885 0.882 0.874 0.835 0.959 0.953 0.960

We conducted further experiments to understand the differences in different initializations at Ap-
pendix C.2, confirming that the initializations that do not satisfy the target node distinguishabil-
ity criteria perform significantly worse (Q3). We could not include R-MPNNs (e.g., RGCN and
CompGCN) in these experiments, since these architectures are not applicable to the fully inductive
setup. However, we conducted experiments on transductive link prediction in Appendix D.1, and
carried out additional experiments on biomedical knowledge in Appendix D.2. In both experiments,
we observed that C-MPNNs outperform R-MPNNs by a significant margin (Q4).

6.3 Empirically evaluating the effect of readout

To understand the effect of readout (Q5), we experiment with C-MPNNs using INIT2, PNA, MSG1
r , and

f(t) = t. We consider three architectures: (i) no readout component, (ii) global readout component
(as defined earlier), and finally (iii) relation-specific readout. The idea behind the relation-specific
readout is natural: instead of summing over all node representations, we sum over the features of
nodes w which have an incoming q-edge (w ∈ V +

q) or an outgoing q-edge (w ∈ V −
q), where q is the

query relation, as:

READ({{h(t)
w|u,q | w ∈ V +

q }}, {{h(t)
w|u,q | w ∈ V −

q }}) = W
(t)
1

∑
w∈V +

q

h
(t)
w|u,q +W

(t)
2

∑
w∈V −

q

h
(t)
w|u,q.

We report all results in Table 2. First, we observe that the addition of global readout does not lead to
significant differences on WN18RR, but it degrades the model performance on FB15k-237 in two
splits (v2 and v4). We attribute this to having more relation types in FB15k-237, so a readout over
all nodes does not necessarily inform us about a relation-specific prediction. This is the motivation
behind the relation-specific readout: we observe that it leads to significant improvements compared
to using no readout (or a global readout) over all splits, leading to state-of-the art results. In contrast,
relation-specific readout does not yield improvements on the relationally sparse WN18RR. These
findings suggest that the global information can be very useful in practice, assuming the graph is rich
in relation types. We further conduct a synthetic experiment to validate the expressive power of using
global readout: architectures without global readout cannot exceed random performance, while those
using a global readout can solve the synthetic link prediction task (see Appendix E).

7 Outlook and limitations

We studied a broad general class of GNNs designed for link prediction over knowledge graphs with a
focus on formally characterizing their expressive power. Our study shows that recent state-of-the-art
models are at a ‘sweet spot’: while they compute binary invariants, they do so through some local
variations of higher-dimensional WL tests. This is precisely characterized within our framework. To
capture global properties, we propose readout components and show that their relational variant is
useful on datasets with many relation types. This study paints a more complete picture for our overall
understanding of existing models and informs future work on possible directions.

In terms of limitations, it is important to note that the presented approach has certain restrictions. For
instance, it is limited to binary tasks, such as link prediction. Thus, this approach does not directly
extend to higher arity tasks, e.g., link prediction on relational hypergraphs or predicting the existence
of substructures of size k in a knowledge graph. When considering local or conditional variations of
the k-WL algorithm, computational demands can become a significant challenge. Further research is
needed to explore potential optimizations for higher-order MPNNs that can enhance their performance
while preserving their expressive power.

10

8 Acknowledgement

The authors would like to acknowledge the use of the University of Oxford Advanced Research
Computing (ARC) facility in carrying out this work (http://dx.doi.org/10.5281/zenodo.22558). We
would also like to thank Google Cloud for kindly providing computational resources. Barceló is
funded by ANID–Millennium Science Initiative Program - CodeICN17002. Romero is funded by
Fondecyt grant 11200956. Barceló and Romero are funded by the National Center for Artificial
Intelligence CENIA FB210017, BasalANID.

References
[1] Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising

power of graph neural networks with random node initialization. In IJCAI, 2021.

[2] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. In CoRR,
2016.

[3] Pablo Barceló, Egor V. Kostylev, Mikaël Monet, Jorge Pérez, Juan L. Reutter, and Juan Pablo
Silva. The logical expressiveness of graph neural networks. In ICLR, 2020.

[4] Pablo Barceló, Mikhail Galkin, Christopher Morris, and Miguel Romero. Weisfeiler and leman
go relational. In LoG, 2022.

[5] Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, and Koray
Kavukcuoglu. Interaction networks for learning about objects, relations and physics. In
NIPS, 2016.

[6] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In NIPS, 2013.

[7] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. In NeurIPS, 2020.

[8] Maarten de Rijke. A note on Graded Modal Logic. In Stud Logica, 2000.

[9] Tim Dettmers, Minervini Pasquale, Stenetorp Pontus, and Sebastian Riedel. Convolutional 2D
knowledge graph embeddings. In AAAI, 2018.

[10] Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek. AMIE: As-
sociation rule mining under incomplete evidence in ontological knowledge bases. In WWW,
2013.

[11] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In ICML, 2017.

[12] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph
domains. In IJCNN, 2005.

[13] Martin Grohe. The logic of graph neural networks. In LICS, 2021.

[14] Aditya Grover and Jure Leskovec. Node2vec: Scalable feature learning for networks. In KDD,
2016.

[15] Daniel Scott Himmelstein, Antoine Lizee, Christine Hessler, Leo Brueggeman, Sabrina L Chen,
Dexter Hadley, Ari Green, Pouya Khankhanian, and Sergio E Baranzini. Systematic integration
of biomedical knowledge prioritizes drugs for repurposing. In eLife, 2017.

[16] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
In NeurIPS, 2020.

[17] Thomas Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

11

[18] Lecheng Kong, Yixin Chen, and Muhan Zhang. Geodesic graph neural network for efficient
graph representation learning. In NeurIPS, 2022.

[19] Carsten Lutz, Ulrike Sattler, and Frank Wolter. Modal logic and the two-variable fragment. In
CSL, 2001.

[20] Christian Meilicke, Manuel Fink, Yanjie Wang, Daniel Ruffinelli, Rainer Gemulla, and Heiner
Stuckenschmidt. Fine-grained evaluation of rule- and embedding-based systems for knowledge
graph completion. In IWSW, 2018.

[21] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and Leman go neural: Higher-order graph neural
networks. In AAAI, 2019.

[22] Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and leman go sparse: Towards
scalable higher-order graph embeddings. In NeurIPS, 2020.

[23] Martin Otto. Graded modal logic and counting bisimulation. In arXiv, 2019.

[24] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online learning of social repre-
sentations. In KDD, 2014.

[25] Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy Zhe Wang. Drum:
End-to-end differentiable rule mining on knowledge graphs. In NIPS, 2019.

[26] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
networks. In SDM, 2021.

[27] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 2009.

[28] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. In ESWC, 2018.

[29] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embed-
ding by relational rotation in complex space. In ICLR, 2019.

[30] Komal K. Teru, Etienne G. Denis, and William L. Hamilton. Inductive relation prediction by
subgraph reasoning. In ICML, 2020.

[31] Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and
text inference. In CVSC, 2015.

[32] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-based
multi-relational graph convolutional networks. In ICLR, 2020.

[33] Hongwei Wang, Hongyu Ren, and Jure Leskovec. Relational message passing for knowledge
graph completion. In KDD, 2021.

[34] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

[35] Fan Yang, Zhilin Yang, and William W Cohen. Differentiable learning of logical rules for
knowledge base reasoning. In NeurIPS, 2017.

[36] Jiaxuan You, Jonathan M. Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph
neural networks. In AAAI, 2021.

[37] Donghan Yu, Yiming Yang, Ruohong Zhang, and Yuexin Wu. Generalized multi-relational
graph convolution network. In ICML Workshop on Graph Representation Learning and Beyond,
2020.

[38] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In NeurIPS,
2018.

12

[39] Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of
using graph neural networks for multi-node representation learning. In NeurIPS, 2021.

[40] Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford
networks: A general graph neural network framework for link prediction. In NeurIPS, 2021.

13

A Proofs of technical statements

A.1 Expressive power of R-MPNNs

The expressive power of R-MPNNs has been recently characterized in terms of a relational variant of
the Weisfeiler–Leman test [4]. We define the relational local 1-WL test2, which we denote by rwl1.
Let G = (V,E,R, c) be a knowledge graph. For each t ≥ 0, the test updates the coloring as follows:

rwl
(0)
1 (v) = c(v),

rwl
(t+1)
1 (v) = τ

(
rwl

(t)
1 (v), {{(rwl(t)1 (v), r)| w ∈ Nr(v), r ∈ R}}

)
,

where τ injectively maps the above pair to a unique color, which has not been used in previous
iterations. Hence, rwl(t)1 defines a node invariant for all t ≥ 0.

The following result generalizes results from Barceló et al. [4].

Theorem A.1. Let G = (V,E,R, c) be a knowledge graph.

1. For all initial feature maps x with c ≡ x, all R-MPNNs with T layers, and 0 ≤ t ≤ T , it holds
that rwl(t)1 ⪯ h(t).

2. For all T ≥ 0 and history function f , there is an initial feature map x with c ≡ x and an R-
MPNN without global readout with T layers and history function f , such that for all 0 ≤ t ≤ T

we have rwl
(t)
1 ≡ h(t).

Intuitively, item (1) states that the relational local 1-WL algorithm upper bounds the power of any
R-MPNN A: if the test cannot distinguish two nodes, then A cannot either. On the other hand, item
(2) states that R-MPNNs can be as expressive as rwl1: for any time limit T , there is an R-MPNN that
simulates T iterations of the test. This holds even without a global readout component.
Remark A.2. A direct corollary of Theorem A.1 is that R-MPNNs have the same expressive power as
rwl1, independently of their history function.

In order to prove Theorem A.1, we define a variant of rwl1 as follows. For a history function
f : N → N (recall f is non-decreasing and f(t) ≤ t), and given a knowledge graphG = (V,E,R, c),
we define the rwl1,f test via the following update rules:

rwl
(0)
1,f (v) = c(v)

rwl
(t+1)
1,f (v) = τ

(
rwl

(f(t))
1,f (v), {{(rwl(t)1,f (v), r)| w ∈ Nr(v), r ∈ R}}

)
,

where τ injectively maps the above pair to a unique color, which has not been used in previous
iterations. Note that rwl1 corresponds to rwl1,id for the identity function id(t) = t.

We have that rwl(t)1,f is always a refinement of rwl(t−1)
1,f . Note that this is trivial for f(t) = t but not

for arbitrary history functions.

Proposition A.3. Let G = (V,E,R, c) be a knowledge graph and f be a history function. Then for
all t ≥ 0, we have rwl

(t+1)
1,f ⪯ rwl

(t)
1,f .

Proof. We proceed by induction on t. For t = 0, note that rwl
(1)
1,f (u) = rwl

(1)
1,f (v) implies

rwl
(f(0))
1,f (u) = rwl

(f(0))
1,f (v) and f(0) = 0. For the inductive case, suppose rwl(t+1)

1,f (u) = rwl
(t+1)
1,f (v),

for t ≥ 1 and u, v ∈ V . By injectivity of τ , we have that:

rwl
(f(t))
1,f (u) = rwl

(f(t))
1,f (v)

{{(rwl(t)1,f (w), r) | w ∈ Nr(u), r ∈ R}} = {{(rwl(t)1,f (w), r) | w ∈ Nr(v), r ∈ R}}.

2This test over single-relation graphs is often called color refinement [13]. In Barceló et al. [4] it is also
called multi-relational 1-WL.

14

By inductive hypothesis and the facts that f(t−1) ≤ f(t) (as f is non-decreasing) and rwl
(f(t))
1,f (u) =

rwl
(f(t))
1,f (v), we obtain rwl

(f(t−1))
1,f (u) = rwl

(f(t−1))
1,f (v). On the other hand, by inductive hypothesis,

we obtain that

{{(rwl(t−1)
1,f (w), r) | w ∈ Nr(u), r ∈ R}} = {{(rwl(t−1)

1,f (w), r) | w ∈ Nr(v), r ∈ R}}.

We conclude that rwl(t)1,f (u) = rwl
(t)
1,f (v).

As it turns out, rwl(t)1,f defines the same coloring independently of f :

Proposition A.4. Let G = (V,E,R, c) be a knowledge graph and f, f ′ be history functions. Then
for all t ≥ 0, we have that rwl(t)1,f ≡ rwl

(t)
1,f ′ .

Proof. We apply induction on t. For t = 0, we have rwl
(0)
1,f ≡ c ≡ rwl

(0)
1,f ′ . For the inductive

case, suppose rwl
(t)
1,f (u) = rwl

(t)
1,f (v), for t ≥ 1 and u, v ∈ V . Since f ′(t − 1) ≤ t − 1 and by

Proposition A.3, we have that rwl(f
′(t−1))

1,f (u) = rwl
(f ′(t−1))
1,f (v). The inductive hypothesis implies

that rwl(f
′(t−1))

1,f ′ (u) = rwl
(f ′(t−1))
1,f ′ (v). On the other hand, by injectivity of τ we have

{{(rwl(t−1)
1,f (w), r) | w ∈ Nr(u), r ∈ R}} = {{(rwl(t−1)

1,f (w), r) | w ∈ Nr(v), r ∈ R}}.

The inductive hypothesis implies that

{{(rwl(t−1)
1,f ′ (w), r) | w ∈ Nr(u), r ∈ R}} = {{(rwl(t−1)

1,f ′ (w), r) | w ∈ Nr(v), r ∈ R}}.

Summing up, we have that rwl(t)1,f ′(u) = rwl
(t)
1,f ′(v), and hence rwl

(t)
1,f ⪯ rwl

(t)
1,f ′ . The case rwl

(t)
1,f ′ ⪯

rwl
(t)
1,f follows by symmetry.

Now we are ready to prove Theorem A.1.

We start with item (1). Take an initial feature map x with c ≡ x, an R-MPNN with T layers,
and history function f . It suffices to show that rwl(t)1,f ⪯ h(t), for all 0 ≤ t ≤ T . Indeed, by

Proposition A.4, we have rwl
(t)
1,f ≡ rwl

(t)
1,id ≡ rwl

(t)
1 , where id is the identity function id(t) = t, and

hence the result follows. We apply induction on t. The case t = 0 follows directly as rwl
(0)
1,f ≡

c ≡ x ≡ h(0). For the inductive case, assume rwl
(t)
1,f (u) = rwl

(t)
1,f (v) for t ≥ 1 and u, v ∈ V . By

injectivity of τ we have:

rwl
(f(t−1))
1,f (u) = rwl

(f(t−1))
1,f (v)

{{(rwl(t−1)
1,f (w), r) | w ∈ Nr(u), r ∈ R}} = {{(rwl(t−1)

1,f (w), r) | w ∈ Nr(v), r ∈ R}}.

By inductive hypothesis we have (recall f(t− 1) ≤ t− 1):

h(f(t−1))
u = h(f(t−1))

v

{{h(t−1)
w | w ∈ Nr(u)}} = {{h(t−1)

w | w ∈ Nr(v)}} for each r ∈ R.

This implies that {{MSGr(h
(t−1)
w) | w ∈ Nr(u)}} = {{MSGr(h

(t−1)
w) | w ∈ Nr(v)}}, for each r ∈ R,

and hence:

{{MSGr(h
(t−1)
w) | w ∈ Nr(u), r ∈ R}} = {{MSGr(h

(t−1)
w) | w ∈ Nr(v), r ∈ R}}.

We conclude that

h(t)
u = UPD

(
h(f(t−1))
u ,AGG({{MSGr(h

(t−1)
w) | w ∈ Nr(u), r ∈ R}}), READ({{h(t)

w | w ∈ V }})
)

= UPD
(
h(f(t−1))
v ,AGG({{MSGr(h

(t−1)
w) | w ∈ Nr(v), r ∈ R}}), READ({{h(t)

w | w ∈ V }})
)

= h(t)
v .

15

For item (2), we refine the proof of Theorem 2 from Barceló et al. [4], which is based on ideas
from Morris et al. [21]. In comparison with Barceló et al. [4], in our case, we have arbitrary adjacency
matrices for each relation type, not only symmetric ones, and arbitrary history functions, not only
the identity. However, the arguments still apply. Moreover, the most important difference is that
here we aim for a model of R-MPNN without global readout that uses a single parameter matrix,
instead of two parameter matrices as in Barceló et al. [4] (one for self-representations and the other
for neighbors representations). This makes the simulation of rwl1 more challenging.

We use models of R-MPNNs without global readout of the following form:

h(t+1)
v = sign

(
W (t)

(
h(f(t))
v +

∑
r∈R

∑
w∈Nr(v)

αrh
(t)
w

)
− b

)
,

where W (t) is a parameter matrix and b is the bias term (we shall use the all-ones vector b = 1). As
message function MSGr we use vector scaling, that is, MSGr(h) = αrh, where αr is a parameter of
the model. For the non-linearity, we use the sign function sign. We note that the proof also works for
the ReLU function, following arguments from Corollary 16 in Morris et al. [21].

For a matrix B, we denote by Bi its i-th column. Let n = |V | and without loss of generality assume
V = {1, . . . , n}. We will write features maps h : V → Rd for G = (V,E,R, c) also as matrices
H ∈ Rd×n, where the column Hv corresponds to the d-dimensional feature vector for v. Then we
can also write our R-MPNN model in matrix form:

H(t+1) = sign
(
W (t)

(
H(f(t)) +

∑
r∈R

αrH
(t)Ar

)
− J

)
,

where Ar is the adjacency matrix of G for relation type r ∈ R and J is the all-ones matrix of
appropriate dimensions.

Let Fts be the following n× n matrix:

Fts =

−1 −1 · · · −1 −1

1 −1
. . . −1

...
.

...

1
. . . −1 −1

1 1 · · · 1 −1

That is, (Fts)ij = −1 if j ≥ i, and (Fts)ij = 1 otherwise. Note that the columns of Fts are
linearly independent. We shall use the columns of Fts as node features in our simulation.

The following lemma is an adaptation of Lemma 9 from Morris et al. [21].

Lemma A.5. Let B ∈ Nn×p be a matrix such that p ≤ n, and all the columns are pairwise distinct
and different from the all-zeros column. Then there is a matrix X ∈ Rn×n such that the matrix
sign(XB − J) ∈ {−1, 1}n×p is precisely the sub-matrix of Fts given by its first p columns.

Proof. Let z = (1,m,m2, . . . ,mn−1) ∈ N1×n, where m is the largest entry in B, and b = zB ∈
N1×p. By construction, the entries of b are positive and pairwise distinct. Without loss of generality,
we assume that b = (b1, b2, . . . , bp) for b1 > b2 > · · · > bp > 0. As the bi are ordered, we can
choose numbers x1, . . . , xp ∈ R such that bi · xj < 1 if i ≥ j, and bi · xj > 1 if i < j, for all
i, j ∈ {1, . . . , p}. Let x = (x1, . . . , xp, 2/bp, . . . , 2/bp)

T ∈ Rn×1. Note that (2/bp) · bi > 1, for all
i ∈ {1, . . . , p}. Then sign(xb− J) is precisely the sub-matrix of Fts given by its first p columns.
We can choose X = xz ∈ Rn×n.

Now we are ready to show item (2). Let f be any history function and T ≥ 0. It suffices to show
that there is a feature map x with c ≡ x and an R-MPNN without global readout with T layers and
history function f such that rwl(t)1,f ≡ h(t), for all 0 ≤ t ≤ T . Indeed, by Proposition A.4, we have

rwl
(t)
1,f ≡ rwl

(t)
1,id ≡ rwl

(t)
1 , where id is the identity function id(t) = t, and then the result follows. We

conclude item (2) by showing the following lemma:

16

Lemma A.6. There is a feature map h(0) : V → Rn, and for all 0 ≤ t < T , there is a feature map
h(t+1) : V → Rn, a matrix W (t) ∈ Rn×n and scaling factors α(t)

r ∈ R, for each r ∈ R, such that:

• h(t) ≡ rwl
(t)
1,f .

• The columns of H(t) ∈ Rn×n are columns of Fts (recall H(t) is the matrix representation
of h(t)).

• H(t+1) = sign
(
W (t)

(
H(f(t)) +

∑
r∈R α

(t)
r H(t)Ar

)
− J

)
.

Proof. We proceed by induction on t. Suppose that the node coloring rwl
(0)
1,f ≡ c uses colors 1, . . . , p,

for p ≤ n. Then we choose h(0) (this is the initial feature map x in the statement of item (2)) such
that h(0)

v = Ftsc(v), that is, h(0)
v is the c(v)-th column of Fts. We have that h(0) satisfies the

required conditions.

For the inductive case, assume that h(t′) ≡ rwl
(t′)
1,f and the columns of H(t′) are columns of Fts, for

all 0 ≤ t′ ≤ t < T . We need to find h(t+1), W (t) and α(t)
r satisfying the conditions. Let M ∈ Rn×n

be the matrix inverse of Fts. If H(t′)
v is the i-th column of Fts, we say that v has color i at iteration

t′. Observe that for all 0 ≤ t′ ≤ t, we have

(MH(t′))iv =

{
1 if v has color i at iteration t′

0 otherwise.

In other words, the v-th column of MH(t′) is simply a one-hot encoding of the color of v at iteration
t′. For each r ∈ R we have

(MH(t)Ar)iv = |{w ∈ Nr(v) | w has color i at iteration t}|.

Hence the v-th column of MH(t)Ar is an encoding of the multiset of colors for the neighbor-
hood Nr(v), at iteration t. Let r1, . . . , rm be an enumeration of the relation types in R. Let
D ∈ R(m+1)n×n be the matrix obtained by horizontally concatenating the matrices MH(f(t)),
MH(t)Ar1 , . . . ,MH(t)Arm . Since H(f(t)) ≡ rwl

(f(t))
1,f and H(t) ≡ rwl

(t)
1,f , we have that

D ≡ rwl
(t+1)
1,f . Now note that D ≡ E, where

E = MH(f(t)) +

m∑
i=1

(n+ 1)iMH(t)Ari .

Indeed, Eiv is simply the (n + 1)-base representation of the vector
(Div,D(n+i)v,D(2n+i)v . . . ,D(mn+i)v), and hence Eu = Ev if and only if Du = Dv

(note that the entries of D are in {0, . . . , n}). In particular, E ≡ rwl
(t+1)
1,f .

Let p be the number of distinct columns of E and let Ẽ ∈ Nn×p be the matrix whose columns are
the distinct columns of E in an arbitrary but fixed order. We can apply Lemma A.5 to Ẽ and obtain a
matrix X ∈ Rn×n such that sign(XẼ − J) is precisely the sub-matrix of Fts given by its first p
columns. We choose H(t+1) = sign(XE−J) ∈ Rn×n, W (t) = XM ∈ Rn×n and α(t)

ri = (n+1)i.
Note that the columns of H(t+1) are columns of Fts, and that H(t+1) ≡ E ≡ rwl

(t+1)
1,f . Finally, we

have

H(t+1) = sign(XE − J)

= sign(X
(
MH(f(t)) +

m∑
i=1

(n+ 1)iMH(t)Ari

)
− J)

= sign(W (t)
(
H(f(t)) +

m∑
i=1

α(t)
ri H

(t)Ari

)
− J).

17

Note that our result applies to more complex message functions such as MSGr(h) = h ∗ br, where ∗
stands for element-wise multiplication and br is a vector parameter, and MSGr(h) = Wrh, where
Wr is matrix parameter, as they can easily express vector scaling. The first case has been used for
the model CompGCN [32], while the second case has been used for R-GCN [28].

A.2 Proof of Theorem 5.1

We recall the statement of the theorem:
Theorem 5.1. Let G = (V,E,R,x, η) be a knowledge graph, where x is a feature map, and η is a
pairwise coloring satisfying target node distinguishability. Let q ∈ R be any query relation. Then:

1. For all C-MPNNs with T layers and initialization INIT satisfying INIT ≡ η, and all 0 ≤ t ≤ T ,
we have rawl

(t)
2 ⪯ h

(t)
q .

2. For all T ≥ 0 and history function f , there is an C-MPNN without global readout with T layers
and history function f such that for all 0 ≤ t ≤ T , we have rawl

(t)
2 ≡ h

(t)
q .

We start by showing item (1) and (2) of the theorem for the case without global readout. As we explain
later, extending item (1) to include readouts is straightforward. In order to prove this particular case,
we apply a reduction to R-MPNNs and the relational local 1-WL. Before doing so we need some
auxiliary results.

Let G = (V,E,R, c, η) be a knowledge graph where η is a pairwise coloring. We denote by G2 the
knowledge graphG2 = (V ×V,E′, R, cη) whereE′ = {r((u,w), (u, v)) | r(w, v) ∈ E, r ∈ R} and
cη is the node coloring cη((u, v)) = η(u, v). Note that the coloring c is irrelevant in the construction.
Intuitively, G2 encodes the adjacency relation between pairs of nodes of G used in C-MPNNs. We
stress that G and G2 have the same relation type set R. If A is a C-MPNN and B is an R-MPNN, we
write h

(t)
A,G(u, v) := h

(t)
q (u, v) and h

(t)
B,G2((u, v)) := h(t)((u, v)) for the features computed by A

and B over G and G2, respectively. We sometimes write NH
r (v) to emphasize that the neighborhood

is taken over the knowledge graph H . Finally, we say that an initial feature map y for G2 satisfies
target node distinguishability if y((u, u)) ̸= y((u, v)) for all u ̸= v.

We have the following equivalence between C-MPNNs and R-MPNNs without global readout:
Proposition A.7. Let G = (V,E,R,x, η)3 be a knowledge graph where x is a feature map, and η is
a pairwise coloring. Let q ∈ R be any query relation. Then:

1. For every C-MPNN without global readout A with T layers, there is an initial feature map y
for G2 an R-MPNN without global readout B with T layers such that for all 0 ≤ t ≤ T and
u, v ∈ V , we have h

(t)
A,G(u, v) = h

(t)
B,G2((u, v)).

2. For every initial feature map y for G2 satisfying target node distinguishability and every R-
MPNN without global readout B with T layers, there is a C-MPNN without global readout A
with T layers such that for all 0 ≤ t ≤ T and u, v ∈ V , we have h

(t)
A,G(u, v) = h

(t)
B,G2((u, v)).

Proof. We start with item (1). The sought R-MPNN B has the same history function and the same
message, aggregation, and update functions as A for all the T layers. The initial feature map y is
defined as y((u, v)) = INIT(u, v, q), where INIT is the initialization function of A.

We show the equivalence by induction on t. For t = 0, we have h
(0)
A (u, v) = INIT(u, v, q) =

y((u, v)) = h
(0)
B ((u, v)). For the inductive case, take u, v ∈ V . We have

h
(t+1)
A (u, v) = UPD

(
h
(f(t))
A (u, v),AGG({{MSGr(h

(t)
A (u,w), zq)| w ∈ NG

r (v), r ∈ R}})
)

= UPD
(
h
(f(t))
B ((u, v)),AGG({{MSGr(h

(t)
B ((u,w)), zq)| (u,w) ∈ NG2

r ((u, v)), r ∈ R}})
)

= h
(t+1)
B ((u, v)).

For item (2), we take A to have the same history function and the same message, aggregation, and
update functions than B, for all the T layers, and initialization function INIT such that INIT(u, v, q) =
y((u, v)). The argument for the equivalence is the same as item (1).

3The pairwise coloring η does not play any role in the proposition.

18

Regarding WL algorithms, we have a similar equivalence:
Proposition A.8. Let G = (V,E,R, c, η) be a knowledge graph where η is a pairwise coloring. For
all t ≥ 0 and u, v ∈ V , we have that rawl(t)2 (u, v) computed over G coincides with rwl

(t)
1 ((u, v))

computed over G2 = (V × V,E′, R, cη).

Proof. For t = 0, we have rawl
(0)
2 (u, v) = η(u, v) = cη((u, v)) = rwl

(0)
1 ((u, v)). For the inductive

case, we have

rawl
(t+1)
2 (u, v) = τ

(
rawl

(t)
2 (u, v), {{(rawl(t)2 (u,w), r) | w ∈ NG

r (v), r ∈ R)}}
)

= τ
(
rwl

(t)
1 ((u, v)), {{(rwl(t)1 ((u,w)), r) | (u,w) ∈ NG2

r ((u, v)), r ∈ R)}}
)

= rwl
(t+1)
1 ((u, v)).

Now we are ready to prove Theorem 5.1.

For G = (V,E,R,x, η), we consider G2 = (V × V,E′, R, cη). We start with item (1). Let A be
a C-MPNN without global readout with T layers and initialization INIT satisfying INIT ≡ η and let
0 ≤ t ≤ T . Let y be an initial feature map for G2 and B be an R-MPNN without global readout
with T layers as in Proposition A.7, item (1). Note that y ≡ cη as y((u, v)) = INIT(u, v, q). We can
apply Theorem A.1, item (1) to G2, y and B and conclude that rwl(t)1 ⪯ h

(t)
B,G2 . This implies that

rawl
(t)
1 ⪯ h

(t)
A,G.

For item (2), let T ≥ 0 and f be a history function. We can apply Theorem A.1, item (2), to G2 to
obtain an initial feature map y with y ≡ cη and an R-MPNN without global readout B with T layers
and history function f such that for all 0 ≤ t ≤ T , we have rwl

(t)
1 ≡ h

(t)
B,G2 . Note that y satisfies

target node distinguishability since η does. Let A be the C-MPNN without global readout obtained
from Proposition A.7, item (2). We have that rawl(t)2 ≡ h

(t)
A,G as required.

Remark A.9. Note that item (2) holds for the basic model of C-MPNNs (without global readout),
presented in Section 4.1, with the three proposed message functions MSG1

r,MSG2
r,MSG3

r , as they can
express vector scaling.

Finally, note that the extension of item (1) in Theorem 5.1 to the case with global readouts is
straightforward. Indeed, we can apply exactly the same argument we used for the case without global
readout. As for two pairs of the form (u, v) and (u, v′) the global readout vectors are identical (to
READ({{h(t)

w|u,q | w ∈ V }})), this argument still works.

A.3 Proof of Theorem 5.2

We recall the statement of the theorem:
Theorem 5.2. A logical binary classifier is captured by C-MPNNs without global readout if and only
if it can be expressed in rFO3

cnt.

The proof is a reduction to the one-dimensional case, that is, R-MPNNs without global readout and a
logic denoted by rFO2

cnt. So in order to show Theorem 5.2 we need some definitions and auxiliary
results.

Fix a set of relation types R and a set of node colors C. We consider knowledge graphs of the form
G = (V,E,R, c) where c is a node coloring assigning colors from C. In this context, logical formulas
can refer to relation types from R and node colors from C. Following Barceló et al. [3], a logical
(node) classifier is a unary formula expressible in first-order logic (FO), classifying each node u on a
knowledge graph G according to whether the formula holds or not for u over G.

We define a fragment rFO2
cnt of FO as follows. A rFO2

cnt formula is either a(x) for a ∈ C, or one of
the following, where φ and ψ are rFO2

cnt formulas, N ≥ 1 is a positive integer and r ∈ R:

¬φ(x), φ(x) ∧ ψ(x), ∃≥Ny (φ(y) ∧ r(y, x)).

19

We remark that rFO2
cnt is actually the fragment of FO used in Barceló et al. [3] to characterize GNNs,

adapted to multiple relations. It is well-known that rFO2
cnt is equivalent to graded modal logic [8].

The following proposition provides useful translations from rFO2
cnt to rFO3

cnt and vice versa. Recall
from Section A.2, that given a knowledge graph G = (V,E,R, η) where η is a pairwise coloring,
we define the knowledge graph G2 = (V × V,E′, R, cη) where E′ = {r((u,w), (u, v)) | r(w, v) ∈
E, r ∈ R} and cη is the node coloring cη((u, v)) = η(u, v).
Proposition A.10. We have the following:

1. For all rFO3
cnt formula φ(x, y), there is a formula φ̃(x) in rFO2

cnt such that for all knowledge
graph G = (V,E,R, η), we have G, u, v |= φ if and only if G2, (u, v) |= φ̃.

2. For all formula φ(x) in rFO2
cnt, there is a rFO3

cnt formula φ̃(x, y) such that for all knowledge
graph G = (V,E,R, η), we have G, u, v |= φ̃ if and only if G2, (u, v) |= φ.

Proof. We start with item (1). We define φ̃(x) by induction on the formula φ(x, y):

1. If φ(x, y) = a(x, y) for color a, then φ̃(x) = a(x).

2. If φ(x, y) = ¬ψ(x, y), then φ̃(x) = ¬ψ̃(x).

3. If φ(x, y) = φ1(x, y) ∧ φ2(x, y), then φ̃(x) = φ̃1(x) ∧ φ̃2(x).

4. If φ(x, y) = ∃≥Nz (ψ(x, z) ∧ r(z, y)) then φ̃(x) = ∃≥Ny (ψ̃(y) ∧ r(y, x)).

Fix G = (V,E,R, η) and G2 = (V × V,E′, R, cη). We show by induction on the formula φ that
G, u, v |= φ if and only if G2, (u, v) |= φ̃.

For the base case, that is, case (1) above, we have that φ(x, y) = a(x, y) and hence G, u, v |= φ iff
η(u, v) = a iff cη((u, v)) = a iff G2, (u, v) |= φ̃.

Now we consider the inductive case. For case (2) above, we have φ(x, y) = ¬ψ(x, y). Then
G, u, v |= φ iff G, u, v ̸|= ψ iff G2, (u, v) ̸|= ψ̃ iff G2, (u, v) |= φ̃.

For case (3), we have φ(x, y) = φ1(x, y) ∧ φ2(x, y). Then G, u, v |= φ iff G, u, v |= φ1 and
G, u, v |= φ2 iff G2, (u, v) |= φ̃1 and G2, (u, v) |= φ̃2 iff G2, (u, v) |= φ̃.

Finally, for case (4), we have φ(x, y) = ∃≥Nz (ψ(x, z) ∧ r(z, y)). Assume G, u, v |= φ, then there
exist at least N nodes w ∈ V such that G, u,w |= ψ and r(w, v) ∈ E. By the definition of G2, there
exist at least N nodes in G2 of the form (u,w) such that G2, (u,w) |= ψ̃ and r((u,w), (u, v)) ∈ E′.
It follows that G2, (u, v) |= φ̃. On the other hand, suppose G2, (u, v) |= φ̃. Then there exist at least
N nodes (o, o′) in G2 such that G, (o, o′) |= ψ̃ and r((o, o′), (u, v)) ∈ E′. By definition of G2 each
(o, o′) must be of the form (o, o′) = (u,w) for some w ∈ V such that r(w, v). Then there are at least
N nodes w ∈ V such that G, u,w |= ψ and r(w, v) ∈ E. It follows that G, u, v |= φ.

Item (2) is similar. We define φ̃(x, y) by induction on the formula φ(x):

1. If φ(x) = a(x) for color a, then φ̃(x, y) = a(x, y).

2. If φ(x) = ¬ψ(x), then φ̃(x, y) = ¬ψ̃(x, y).

3. If φ(x) = φ1(x) ∧ φ2(x), then φ̃(x, y) = φ̃1(x, y) ∧ φ̃2(x, y).

4. If φ(x) = ∃≥Ny (ψ(y) ∧ r(y, x)) then φ̃(x, y) = ∃≥Nz (ψ̃(x, z) ∧ r(z, y)).

Following the same inductive argument from item (1), we obtain that G, u, v |= φ̃ if and only if
G2, (u, v) |= φ.

The following theorem is an adaptation of Theorem 4.2 from Barceló et al. [3]. The main difference
with Barceló et al. [3] is that here we need to handle multiple relation types.
Theorem A.11. A logical classifier is captured by R-MPNNs without global readout if and only if it
can be expressed in rFO2

cnt.

20

Proof. We start with the backward direction. Let φ(x) be a formula in rFO2
cnt for relation types R

and node colors C. Let φ1, . . . , φL be an enumeration of the subformulas of φ such that if φi is a
subformula of φj , then i ≤ j. In particular, φL = φ. We shall define an R-MPNN without global
readout Bφ with L layers computing L-dimensional features in each layer. The idea is that at layer
ℓ ∈ {1, . . . , L}, the ℓ-th component of the feature h

(ℓ)
v is computed correctly and corresponds to 1 if

φℓ is satisfied in node v, and 0 otherwise. We add an additional final layer that simply outputs the
last component of the feature vector.

We use models of R-MPNNs of the following form:

h(t+1)
v = σ

(
Wh(t)

v +
∑
r∈R

∑
w∈Nr(v)

Wrh
(t)
w + b

)
,

where W ∈ RL×L is a parameter matrix and b ∈ RL is the bias term. As message function MSGr we
use MSGr(h) = Wrh, where Wr ∈ RL×L is a parameter matrix . For the non-linearity σ we use the
truncated ReLU function σ(x) = min(max(0, x), 1). The ℓ-th row of W and Wr, and the ℓ-th entry
of b are defined as follows (omitted entries are 0):

1. If φℓ(x) = a(x) for a color a ∈ C, then Wℓℓ = 1.

2. If φℓ(x) = ¬φk(x) then Wℓk = −1, and bℓ = 1.

3. If φℓ(x) = φj(x) ∧ φk(x) then Wℓj = 1, Wℓk = 1 and bℓ = −1.

4. If φℓ(x) = ∃≥Ny (φk(y) ∧ r(y, x)) then (Wr)ℓk = 1 and bℓ = −N + 1.

Let G = (V,E,R, c) be a knowledge graph with node colors from C. In order to apply Bφ to G, we
choose initial L-dimensional features h(0)

v such that (h(0)
v)ℓ = 1 if φℓ = a(x) and a is the color of

v, and (h
(0)
v)ℓ = 0 otherwise. In other words, the L-dimensional initial feature h

(0)
v is a one-hot

encoding of the color of v. It follows from the same arguments than Proposition 4.1 in Barceló et al.
[3] that for all ℓ ∈ {1, . . . , L} we have (h

(t)
v)ℓ = 1 if G, v |= φℓ and (h

(t)
v)ℓ = 0 otherwise, for all

v ∈ V and t ∈ {ℓ, . . . , L}. In particular, after L layers, Bφ calculates h(L)
v such that (h(L)

v)L = 1 if
G, v |= φ and (h

(L)
v)L = 0 otherwise. As layer L + 1 extracts the L-th component of the feature

vector, the result follows.

For the forward direction, we follow the strategy of Theorem 4.2 from Barceló et al. [3]. Given a
knowledge graph G = (V,E,R, c) and a number L ∈ N, we define the unravelling of v ∈ V at
depth L, denoted UnrLG(v) is the knowledge graph having:

• A node (v, u1, . . . , ui) for each directed path ui, . . . , u1, v in G of length i ≤ L.

• For each r ∈ R, a fact r((v, u1, . . . , ui), (v, u1, . . . , ui−1)) for all facts r(ui, ui−1) ∈ E
(here u0 := v).

• Each node (v, u1, . . . , ui) is colored with c(ui), that is, the same color as ui.

Note that the notion of directed path is defined in the obvious way, as for directed graphs but ignoring
relation types. Note also that UnrLG(v) is a tree in the sense that the underlying undirected graph is a
tree.

The following proposition is a trivial adaptation of Observation C.3 from Barceló et al. [3]. We
write UnrLG(v) ≃ UnrLG′(v′) if there exists an isomorphism f from UnrLG(v) to UnrLG′(v′) such that
f(v) = v′.

Proposition A.12. Let G and G′ be two knowledge graphs and v and v′ be nodes in G and G′,
respectively. Then, for all L ∈ N, we have that rwl(L)

1 (v) on G coincides with rwl
(L)
1 (v′) on G′ if and

only if UnrLG(v) ≃ UnrLG′(v′).

As a consequence of Theorem A.1, we obtain:

21

Proposition A.13. Let G and G′ be two knowledge graphs and v and v′ be nodes in G and G′,
respectively, such that UnrLG(v) ≃ UnrLG′(v′) for all L ∈ N. Then for any R-MPNN without global
readout with T layers, we have that h(T)

v on G coincides with h
(T)
v′ on G′.

Finally, the following theorem follows from Theorem C.5 in Barceló et al. [3], which in turn follows
from Theorem 2.2 in Otto [23]. The key observation here is that the results from Otto [23] are actually
presented for multi-modal logics, that is, multiple relation types.

Theorem A.14. [23] Let α be a unary FO formula over knowledge graphs. If α is not equivalent to
a rFO2

cnt formula, then there exist two knowledge graphs G and G′, and two nodes v in G and v′ in
G′ such that UnrLG(v) ≃ UnrLG′(v′) for all L ∈ N and such that G, v |= α but G′, v′ ̸|= α.

Now we are ready to obtain the forward direction of the theorem. Suppose that a logical classifier α
is captured by an R-MPNN without global readout B with T layers, and assume by contradiction
that α is not equivalent to a rFO2

cnt formula. Then we can apply Theorem A.14 and obtain two
knowledge graphs G and G′, and two nodes v in G and v′ in G′ such that UnrLG(v) ≃ UnrLG′(v′) for
all L ∈ N and such that G, v |= α but G′, v′ ̸|= α. Applying Proposition A.13, we have that h(T)

v

on G coincides with h
(T)
v′ on G′, and hence B classifies either both v and v′ as true over G and G′,

respectively, or both as false. This is a contradiction.

Now Theorem 5.2 follows easily. Let α be a logical binary classifier and suppose it is captured by a
C-MPNN without global readout A. By Proposition A.7,item (1), we know that A can be simulated
by a R-MPNN without global readout B over G2. In turn, we can apply Theorem A.11 and obtain
a formula φ in rFO2

cnt equivalent to B. Finally, we can apply the translation in Proposition A.10,
item (2), and obtain a corresponding formula φ̃ in rFO3

cnt. We claim that φ̃ captures A. Let G be a
knowledge graph and u, v two nodes. We have that G, u, v |= φ̃ iff G2, (u, v) |= φ iff B classifies
(u, v) as true over G2 iff A classifies (u, v) as true over G.

The other direction is obtained analogously following the reverse translations.

A.4 Proof of Theorem 5.3

We recall the statement of the theorem:
Theorem 5.3. Each logical binary classifier expressible in erFO3

cnt can be captured by a C-MPNN.

We start by formally defining the logic erFO3
cnt, which is a simple extension of rFO3

cnt from Sec-
tion 5.2. Fix a set of relation types R and a set of pair colors C. Recall we consider knowledge graphs
of the form G = (V,E,R, η) where η is a mapping assigning colors from C to pairs of nodes from
V . The logic erFO3

cnt contains only binary formulas and it is defined inductively as follows: First,
a(x, y) for a ∈ C, is in erFO3

cnt. Second, if φ(x, y) and ψ(x, y) are in erFO3
cnt, N ≥ 1 is a positive

integer, and r ∈ R, then the formulas

¬φ(x, y), φ(x, y) ∧ ψ(x, y), ∃≥Nz (φ(x, z) ∧ r(z, y)), ∃≥Nz (φ(x, z) ∧ ¬r(z, y))

are also in erFO3
cnt. As expected, a(u, v) holds in G = (V,E,R, η) if η(u, v) = a, and

∃≥Nz (φ(u, z) ∧ ℓ(z, v)) holds in G, for ℓ ∈ R ∪ {¬r | r ∈ R}, if there are at least N nodes
w ∈ V for which φ(u,w) and ℓ(w, v) hold in G.

Intuitively, erFO3
cnt extends rFO3

cnt with negated modalities, that is, one can check for non-neighbors
of a node. As it turns out, erFO3

cnt is strictly more expressive than rFO3
cnt.

Proposition A.15. There is a formula in erFO3
cnt that cannot be expressed by any formula in rFO3

cnt.

Proof. Consider the following two knowledge graphs G1 and G2 over R = {r} and colors C =
{Green}. The graph G1 has two nodes u and v and one edge r(u, v). The graph G2 has three nodes
u, v and w and one edge r(u, v) (hence w is an isolated node). In both graphs, all pairs are colored
Green.

We show first that for every formula φ(x, y) in rFO3
cnt, it is the case that G1, u, n |= φ iff G2, u, n |=

φ, for n ∈ {u, v}. We proceed by induction on the formula. For φ(x, y) = Green(x, y), we have

22

that G1, u, n |= φ and G2, u, n |= φ and hence we are done. Suppose now that φ(x, y) = ¬ψ(x, y).
Assume G1, u, n |= φ for n ∈ {u, v}. Then G1, u, n ̸|= ψ, and by inductive hypothesis, we
have G2, u, n ̸|= ψ and then G2, u, n |= φ. The other direction is analogous. Assume now that
φ(x, y) = ψ1(x, y) ∧ ψ2(x, y). Suppose G1, u, n |= φ for n ∈ {u, v}. Then G1, u, n |= ψ1 and
G1, u, n |= ψ2, and by inductive hypothesis, G2, u, n |= ψ1 and G2, u, n |= ψ2. Then G2, u, n |= φ.
The other direction is analogous. Finally, suppose that φ(x, y) = ∃≥Nz(ψ(x, z) ∧ r(z, y)). Assume
that G1, u, n |= φ for n ∈ {u, v}. Then there exist at least N nodes w ∈ Nr(n) in G1 such that
G1, u, w |= ψ. Since Nr(u) = ∅, we have n = v. As Nr(v) = {u}, we have w = u. Since the
neighborhood Nr(v) is the same in G1 and G2, and by the inductive hypothesis, we have that there
are at least N nodes w ∈ Nr(v) in G2 such that G2, u, w |= ψ. This implies that G2, u, v |= φ. The
other direction is analogous.

Now consider the erFO3
cnt formula φ(x, y) = ∃≥2z(Green(x, z) ∧ ¬r(z, y)). We claim that there

is no rFO3
cnt formula equivalent to φ(x, y). By contradiction, suppose we have such an equivalent

formula φ′. As shown above, we have G1, u, v |= φ′ iff G2, u, v |= φ′. On the other hand, by
definition, we have that G1, u, v ̸|= φ and G2, u, v |= φ. This is a contradiction.

Now we are ready to prove Theorem 5.3. We follow the same strategy as in the proof of the backward
direction of Theorem A.11.

Let φ(x, y) be a formula in erFO3
cnt, for relation types R and pair colors C. Let φ1, . . . , φL be an

enumeration of the subformulas of φ such that if φi is a subformula of φj , then i ≤ j. In particular,
φL = φ. We will construct a C-MPNN Aφ with L layers computing L-dimensional features in each
layer. At layer ℓ ∈ {1, . . . , L}, the ℓ-th component of the feature h

(ℓ)
v|u,q will correspond to 1 if φℓ is

satisfied on (u, v), and 0 otherwise. The query relation q plays no role in the construction, that is, for
any possible q ∈ R the output of Aφ is the same. Hence, for simplicity, in the remaining of the proof
we shall write h

(t)
v|u instead of h(t)

v|u,q. We add an additional final layer that simply outputs the last
component of the feature vector.

We use models of C-MPNNs of the following form:

h
(t+1)
v|u = σ

(
W0h

(t)
v +

∑
r∈R

∑
w∈Nr(v)

Wrh
(t)
w|u +W1

∑
w∈V

h
(t)
w|u + b

)
,

where W0,W1 ∈ RL×L are parameter matrices and b ∈ RL is the bias term. As message function
MSGr we use MSGr(h) = Wrh, where Wr ∈ RL×L is a parameter matrix . For the non-linearity σ
we use the truncated ReLU function σ(x) = min(max(0, x), 1). The ℓ-th row of W0, W1 and Wr,
and the ℓ-th entry of b are defined as follows (omitted entries are 0):

1. If φℓ(x, y) = a(x, y) for a color a ∈ C, then (W0)ℓℓ = 1.

2. If φℓ(x, y) = ¬φk(x, y) then (W0)ℓk = −1, and bℓ = 1.

3. If φℓ(x, y) = φj(x, y) ∧ φk(x, y) then (W0)ℓj = 1, (W0)ℓk = 1 and bℓ = −1.

4. If φℓ(x, y) = ∃≥Nz (φk(x, z) ∧ r(z, y)) then (Wr)ℓk = 1 and bℓ = −N + 1.

5. If φℓ(x, y) = ∃≥Nz (φk(x, z)∧¬r(z, y)) then (Wr)ℓk = −1, (W1)ℓk = 1 and bℓ = −N + 1.

Let G = (V,E,R, η) be a knowledge graph with pair colors from C. In order to apply Aφ to G,
we choose the initialization INIT such that L-dimensional initial features h(0)

v|u satisfy (h
(0)
v|u)ℓ = 1

if φℓ = a(x, y) and η(u, v) = a and (h
(0)
v|u)ℓ = 0 otherwise. That is, the L-dimensional initial

feature h
(0)
v|u is a one-hot encoding of the color of (u, v). Using the same arguments as in the proof

of Theorem A.11, we have (h
(t)
v|u)ℓ = 1 if G, u, v |= φℓ and (h

(t)
v|u)ℓ = 0 otherwise, for all u, v ∈ V

and t ∈ {ℓ, . . . , L}. In particular, after L layers, Aφ calculates h
(L)
v|u such that (h(L)

v|u)L = 1 if

G, u, v |= φ and (h
(L)
v|u)L = 0 otherwise. As layer L+ 1 extracts the L-th component of the feature

vector, the result follows.
Remark A.16. We note that in Barceló et al. [3], it is shown that a more expressive graded modal
logic (with more expressive modalities) can be captured by R-MPNNs in the context of single-relation

23

graphs. It is by no means obvious that an adaption of this logic to the multi-relational case is captured
by our C-MPNNs. We leave as an open problem to find more expressive logics that can be captured
by C-MPNNs.

A.5 Proofs of the results from Section 5.3

First, recall the definition of rawl2. Given a knowledge graph G = (V,E,R, c, η), we have

rawl
(0)
2 (u, v) = η(u, v),

rawl
(t+1)
2 (u, v) = τ

(
rawl

(t)
2 (u, v), {{(rawl(t)2 (u,w), r) | w ∈ Nr(v), r ∈ R)}}

)
Note that rawl2, and hence C-MPNNs, are one-directional: the neighborhood Nr(v) only considers
facts in one direction, in this case, from neighbors to v. Hence, a natural extension is to consider
bi-directional neighborhoods. Fortunately, we can define this extension by simply applying the same
test rawl1 to knowledge graphs extended with inverse relations. We formalize this below.

For a test T, we sometimes write T(G, u, v), or T(G, v) in case of unary tests, to emphasize
that the test is applied over G, and T(G) for the node/pairwise coloring given by the test. Let
G = (V,E,R, c, η) be a knowledge graph. We define its augmented knowledge graph to be
G+ = (V,E+, R+, c, η), where R+ is the disjoint union of R and {r− | r ∈ R}, and

E+ = E ∪ {r−(v, u) | r(u, v) ∈ E, u ̸= v}.

We define the augmented relational asymmetric local 2-WL test on G, denoted by rawl+2 , as

rawl+2
(t)
(G, u, v) = rawl

(t)
2 (G+, u, v),

for all t ≥ 0 and u, v ∈ V . As we show below, rawl+2 is strictly more powerful than rawl2.
Proposition A.17. The following statements hold:

1. For all t ≥ 0 and all knowledge graphs G, we have rawl+2
(t)
(G) ⪯ rawl2

(t)(G).

2. There is a knowledge graph G and nodes u, v, u′, v′ such that rawl+2
(1)

(G, u, v) ̸=
rawl+2

(1)
(G, u′, v′) but rawl2

(t)(G, u, v) = rawl2
(t)(G, u′, v′) for all t ≥ 1.

Proof. To prove rawl+2 (G) ⪯ rawl2(G) first, we consider induction on iteration t. The base case for
t = 0 is trivial by the assumption, so it is enough to consider the inductive step. We need to show
that for some k,

rawl+2
(k+1)

(u, v) = rawl+2
(k+1)

(u′, v′) =⇒ rawl
(k+1)
2 (u, v) = rawl

(k+1)
2 (u′, v′)

By the definition of rawl+2
(k+1)

(u, v), rawl+2
(k+1)

(u′, v′) and the injectivity of τ , it holds that

rawl+2
(k)

(u, v) = rawl+2
(k)

(u′, v′)

{{(rawl+2
(k)

(u, x), r) | x ∈ N+
r (v), r ∈ R+}} = {{(rawl+2

(k)
(u′, x′), r′) | x′ ∈ N+

r′ (v
′), r′ ∈ R+}}

Because all inverse relations r− are newly introduced, so it is impossible to be mixed with r, we can
split the second equation into the following equations:

{{(rawl+2
(k)

(u, x), r) | x ∈ Nr(v), r ∈ R}} = {{(rawl+2
(k)

(u′, x′), r′) | x′ ∈ Nr′(v
′), r′ ∈ R}}

{{(rawl+2
(k)

(u, y), r−) | y ∈ Nr−(v), r ∈ R}} = {{(rawl+2
(k)

(u′, y′), r′−) | y′ ∈ Nr′−(v
′), r ∈ R}}

By the inductive hypothesis and unpacking the first equation, we can further imply that

{{(rawl(k)2 (u, x), r) | x ∈ Nr(v), r ∈ R}} = {{(rawl(k)2 (u′, x′), r′) | x′ ∈ Nr′(v
′), r′ ∈ R}}

Thus, By definition of rawl(k+1)
2 (u, v), rawl(k+1)

2 (u′, v′) it holds that

rawl
(k+1)
2 (u, v) = rawl

(k+1)
2 (u′, v′)

24

For the counterexample, we consider a relational graph with two types of relation G′ =
(V ′, E′, R′, c, η) such that V ′ = {u, v, v′}, E′ = {r1(v, u), r2(v′, u)}, and R′ = {r1, r2}. Let the

initial pairwise labeling η for node pairs (u, v) and (u′, v) satisfy rawl+2
(0)

(u, v) = rawl+2
(0)

(u, v′)

and rawl
(0)
2 (u, v) = rawl

(0)
2 (u, v′). For such graph G′, we consider node pair (u, v) and (u, v′). For

rawl
(t)
2 where t ≥ 0, we show by induction that rawl(t)2 (u, v) = rawl

(t)
2 (u, v′). The base case is trivial

by assumption. The inductive step shows that by the inductive hypothesis,

rawl
(t+1)
2 (u, v) = τ(rawl

(t)
2 (u, v), {{}})

= τ(rawl
(t)
2 (u, v′), {{}})

= rawl
(t+1)
2 (u, v′)

On the other hand, we have

rawl+2
(1)

(u, v) = τ(rawl+2
(0)

(u, v), {{(rawl+2
(0)

(x, v), r−1)}})

̸= rawl+2
(1)

(u, v′) = τ(rawl+2
(0)

(u, v′), {{(rawl+2
(0)

(x, v′), r−2))}})

We can also extend C-MPNNs with bi-directionality in an obvious way, obtaining augmented C-
MPNNs. By applying Theorem 5.1 to the augmented graph G+, we obtain the equivalence between
augmented C-MPNNs and the test rawl+2 directly. In turn, Proposition A.17 implies that augmented
C-MPNNs are strictly more powerful that C-MPNNs in distinguishing nodes in a graph.

Recall the definition of rwl2. Given a knowledge graph G = (V,E,R, c, η), we have

rwl
(t+1)
2 (u, v) =τ

(
rwl

(t)
2 (u, v), {{(rwl(t)2 (w, v), r) | w ∈ Nr(u), r ∈ R)}},

{{(rwl(t)2 (u,w), r) | w ∈ Nr(v), r ∈ R)}}
)

We define the augmented version rwl+2 in an obvious way, that is,

rwl+2
(t)
(G, u, v) = rwl

(t)
2 (G+, u, v),

for all t ≥ 0 and u, v ∈ V .

We will drop the notation of G during the proof when the context is clear for simplicity.

Proposition A.18. For all t ≥ 0 and all knowledge graph G, let rwl(0)2 (G) ≡ rawl
(0)
2 (G). The

following statements hold:

1. For every t > 0, it holds that rwl(t)2 (G) ⪯ rawl
(t)
2 (G).

2. There is a knowledge graph G and pair of nodes (u, v) and (u′, v′) such that rawl(t)2 (G, u, v) =

rawl
(t)
2 (G, u′, v′) for all t ≥ 0 but rwl(1)2 (G, u, v) ̸= rwl

(1)
2 (G, u′, v′).

Proof. First, we show rwl
(t)
2 (G) ⪯ rawl

(t)
2 (G) and proceed by induction on t. The base case for t = 0

is trivial by assumption. For the inductive step, given that we have rwl(k+1)
2 (u, v) = rwl

(k+1)
2 (u′, v′),

by the definition of rwl(k+1)
2 (u, v) and rwl

(k+1)
2 (u′, v′), and as τ is injective, it holds that

rwl
(k)
2 (u, v) = rwl

(k)
2 (u′, v′)

{{(rwl(k)2 (x, v), r) | x ∈ Nr(u), r ∈ R}} = {{(rwl(k)2 (x′, v′), r′) | x′ ∈ Nr′(u
′), r′ ∈ R}}

{{(rwl(k)2 (u, x), r) | x ∈ Nr(v), r ∈ R}} = {{(rwl(k)2 (u′, x′), r′) | x′ ∈ Nr′(v
′), r′ ∈ R}}

Now, by the inductive hypothesis we have rawl
(k)
2 (u, v) = rawl

(k)
2 (u′, v′). We can further transform

the last equation by applying the inductive hypothesis again after unpacking the multiset. This results
in

{{(rawl(k)2 (u, x), r) | x ∈ Nr(v), r ∈ R}} = {{(rawl(k)2 (u′, x′), r′) | x′ ∈ Nr′(v
′), r′ ∈ R}}

25

u v

x u′r

Figure 3: Graph G′ as the counter-example in Proposition A.18. It is also shown in Proposition A.20
to prove rawl+2

(t)
(u, v) = rawl+2

(t)
(u′, v′) for all t ≥ 0 but rwl(1)2 (u, v) ̸= rwl

(1)
2 (u′, v′).

v x u v

v′ u x′ u′ v′r2

r1

r1

r2

Figure 4: Two counterexamples shown in Proposition A.17 and A.19. The left graph G′ is to show
rawl

(t)
2 (u, v) = rawl

(t)
2 (u′, v′) for all t ≥ 0 but rawl+(1)

2 (u, v) ̸= rawl
+(1)
2 (u′, v′), whereas the right

graph G′′ is to show rwl
(t)
2 (u, v) = rwl

(t)
2 (u′, v′) for all t ≥ 0 but rwl+(1)

2 (u, v) ̸= rwl
+(1)
2 (u′, v′).

Thus, it holds that rawl
(k+1)
2 (u, v) = rawl

(k+1)
2 (u′, v′) by definition of rawl

(k+1)
2 (u, v) and

rawl
(k+1)
2 (u′, v′).

For counter-example, we show the case for t ≥ 0. Consider a relational graph G′ = (V ′, E′, R, c, η)
such that V ′ = {u, u′, v, x}, E′ = {r(x, u′)}, and R = {r} with the initial labeling η for node pairs
(u, v) and (u′, v) satisfies rwl(0)2 (u, v) = rwl

(0)
2 (u′, v) and rawl

(0)
2 (u, v) = rawl

(0)
2 (u′, v). For such

graph G′, we consider node pair (u, v) and (u′, v). For rawl(t)2 where t ≥ 0, we show by induction
that rawl(t)2 (u, v) = rawl

(t)
2 (u′, v). The base case is trivial by assumption. The inductive step shows

that by the inductive hypothesis:

rawl
(t+1)
2 (u, v) = τ(rawl

(t)
2 (u, v), {{}})

= τ(rawl
(t)
2 (u′, v), {{}})

= rawl
(t+1)
2 (u′, v)

On the other hand, we have

rwl
(1)
2 (u, v) = τ(rwl

(0)
2 (u, v), {{}}, {{}})

̸= rwl
(1)
2 (u, v′) = τ(rwl

(0)
2 (u, v′), {{(rwl(0)2 (x, v′), r))}}, {{}})

Proposition A.19. For all t ≥ 0 and all knowledge graph G, let rwl+2
(0)

(G) ≡ rwl
(0)
2 (G). The

following statements hold:

1. For every t > 0, rwl+2
(t)
(G) ⪯ rwl

(t)
2 (G)

2. There is a knowledge graphG′′ and pair of nodes (u, v) and (u′, v′) such that rwl(t)2 (G′′, u, v) =

rwl
(t)
2 (G′′, u′, v′) for all t ≥ 0 but rwl+(1)

2 (G′′, u, v) ̸= rwl
+(1)
2 (G′′, u′, v′).

Proof. As before, we first prove rwl+2 (G) ⪯ rwl2(G) by induction on iteration t. The base case for
t = 0 is trivial by the assumption. By the inductive hypothesis,

rwl+2
(k)

(u, v) = rwl
+(k)
2 (u′, v′) =⇒ rwl

(k)
2 (u, v) = rwl

(k)
2 (u′, v′)

26

for some k. Thus, assuming rwl+2
(k+1)

(u, v) = rwl
+(k+1)
2 (u′, v′), by the definition of

rwl+2
(k+1)

(u, v) and rwl
+(k+1)
2 (u′, v′) and by the injectivity of τ , it holds that

rwl+2
(k)

(u, v) = rwl+2
(k)

(u′, v′)

{{(rwl+2
(k)

(x, v), r) | x ∈ N+
r (u), r ∈ R+}} = {{(rwl+2

(k)
(x′, v′), r′) | x′ ∈ N+

r′ (u
′), r′ ∈ R+}}

{{(rwl+2
(k)

(u, x), r) | x ∈ N+
r (v), r ∈ R+}} = {{(rwl+2

(k)
(u′, x′), r′) | x′ ∈ N+

r′ (v
′), r′ ∈ R+}}

By the similar argument in proving rawl+2 ⪯ rawl2, we can split the multiset into two equations by
decomposing N+

r (u) = Nr(u) ∪Nr−(u) and N+
r (v) = Nr(v) ∪Nr−(v). Thus, we have

{{(rwl+2
(k)

(x, v), r) | x ∈ Nr(u), r ∈ R}} = {{(rwl+2
(k)

(x′, v′), r′) | x′ ∈ Nr′(u
′), r′ ∈ R}}

{{(rwl+2
(k)

(y, v), r−) | y ∈ Nr−(u), r ∈ R}} = {{(rwl+2
(k)

(y′, v′), r′−) | y′ ∈ Nr′−(u
′), r′ ∈ R}}

{{(rwl+2
(k)

(u, x), r) | x ∈ Nr(v), r ∈ R}} = {{(rwl+2
(k)

(u′, x′), r′) | x′ ∈ Nr′(v
′), r′ ∈ R}}

{{(rwl+2
(k)

(u, y), r−) | y ∈ Nr−(v), r ∈ R}} = {{(rwl+2
(k)

(u′, y′), r′−) | y′ ∈ Nr′−(v
′), r′ ∈ R}}

By the inductive hypothesis and unpacking the first and the third equations, we can further imply that

rwl
(k)
2 (u, v) = rwl

(k)
2 (u′, v′)

{{(rwl(k)2 (x, v), r) | x ∈ Nr(u), r ∈ R}} = {{(rwl(k)2 (x′, v′), r′) | x′ ∈ Nr′(u
′), r′ ∈ R}}

{{(rwl(k)2 (u, x), r) | x ∈ Nr(v), r ∈ R}} = {{(rwl(k)2 (u′, x′), r′) | x′ ∈ Nr′(v
′), r′ ∈ R}}

This would results in rwl
(k+1)
2 (u, v) = rwl

(k+1)
2 (u′, v′) by the definition of rwl

(k+1)
2 (u, v) and

rwl
(k+1)
2 (u′, v′)

For the counter-example, we consider a relational graph G′′ = (V ′′, E′′, R′′, c, η) such that V ′′ =
{u, u′, v, v′, x, x′}, E′′ = {r1(u, x), r2(u′, x′)}, and R′′ = {r1, r2} . For such graph G′′, we set

the initial labeling η for node pairs (u, v) and (u′, v′) to satisfy rwl+2
(0)

(u, v) = rwl+2
(0)

(u′, v′) and
rwl

(0)
2 (u, v) = rwl

(0)
2 (u′, v′). For such graph G′′, we consider node pair (u, v) and (u′, v′).

Consider rwl(t)2 where t ≥ 0, we show by induction that rwl(t)2 (u, v) = rwl
(t)
2 (u′, v′). The base case

is trivial by assumption. The inductive step shows that by inductive hypothesis,

rwl
(t+1)
2 (u, v) = τ(rwl

(t)
2 (u, v), {{}}, {{}})

= τ(rwl
(t)
2 (u′, v′), {{}}, {{}})

= rwl
(t+1)
2 (u′, v′)

On the other hand, we have

rwl+2
(1)

(u, v) = τ(rwl+2
(0)

(u, v), {{(rwl+2
(0)

(x, v), r−1)}}, {{}})

̸= rwl+2
(1)

(u′, v′) = τ(rwl+2
(0)

(u′, v′), {{(rwl+2
(0)

(x′, v′), r−2))}}, {{}})

Proposition A.20. For all t ≥ 0 and all knowledge graph G, let rwl(0)2 (G) ≡ rawl+2
(0)

(G), then the
following statement holds:

1. There is a knowledge graph G and pair of nodes (u, v) and (u′, v′) such that rwl2
(t)(G, u, v) =

rwl2
(t)(G, u′, v′) for all t ≥ 0 but rawl+2

(1)
(G, u, v) ̸= rawl+2

(1)
(G, u′, v′).

2. There is a knowledge graph G′ and pair of nodes (u, v) and (u′, v′) such that

rawl+2
(t)
(G′, u, v) = rawl+2

(t)
(G′, u′, v′) for all t ≥ 0 but rwl(1)2 (G′, u, v) ̸= rwl

(1)
2 (G′, u′, v′).

Proof. To show rwl2(G) does not refine rawl+2 (G), we consider a relational graphG = (V,E,R, c, η)
such that V = {u, u′, v, v′, x, x′}, E = {r1(v, x), r2(v′, x′)}, and R = {r1, r2} . We let the initial

27

u v x

u′ v′ x′

r1

r2

Figure 5: Counterexample shown in Proposition A.20 to prove rwl2
(t)(u, v) = rwl2

(t)(u′, v′) for all

t ≥ 0 but rawl+2
(1)

(u, v) ̸= rawl+2
(1)

(u′, v′).

labeling η for node pairs (u, v) and (u′, v′) to satisfy rwl
(0)
2 (u, v) = rwl

(0)
2 (u′, v′) and rwl

(0)
2 (u, v) =

rwl
(0)
2 (u′, v′). For such graph G, we consider node pair (u, v) and (u′, v′). For rwl(t)2 where t ≥ 0,

we show by induction that rwl(t)2 (u, v) = rwl
(t)
2 (u′, v′). The base case is trivial by assumption. The

inductive step shows that by the inductive hypothesis,

rwl
(t+1)
2 (u, v) = τ(rwl

(t)
2 (u, v), {{}}, {{}})

= τ(rwl
(t)
2 (u′, v′), {{}}, {{}})

= rwl
(t+1)
2 (u′, v′)

On the other hand, we have

rawl+2
(1)

(u, v) = τ(rawl+2
(0)

(u, v), {{(rawl+2
(0)

(u, x), r−1)}})

̸= rawl+2
(1)

(u, v′) = τ(rawl+2
(0)

(u′, v′), {{(rawl+2
(0)

(u′, x′), r−2)}})

Finally, to show rawl+2 does not refine rwl2, we demonstrate the case for t ≥ 0. Consider a relational
graph G′ = (V ′, E′, R′, c, η) such that V ′ = {u, u′, v, x}, E′ = {r(x, u′)}, and R′ = {r}. We
let the initial labeling η for node pairs (u, v) and (u′, v) satisfy rwl

(0)
2 (u, v) = rwl

(0)
2 (u′, v) and

rawl+2
(0)

(u, v) = rawl+2
(0)

(u′, v). For such graph G′, we consider node pair (u, v) and (u′, v). For

rawl+2
(t)

where t ≥ 0, and show by induction that rawl+2
(t)
(u, v) = rawl+2

(t)
(u′, v). The base case is

trivial by assumption. The inductive step shows that by the inductive hypothesis,

rawl+2
(t+1)

(u, v) = τ(rawl+2
(t)
(u, v), {{}})

= τ(rawl+2
(t)
(u′, v), {{}})

= rawl+2
(t+1)

(u′, v)

On the other hand, we have

rwl
(1)
2 (u, v) = τ(rwl

(0)
2 (u, v), {{}}, {{}})

̸= rwl
(1)
2 (u, v′) = τ(rwl

(0)
2 (u, v′), {{(rwl(0)2 (x, v′), r))}}, {{}})

Note that the counter-example graph G′ here is identical to the one in Proposition A.18.

B Runtime analysis

In this section, we present the asymptotic time complexity of R-MPNN, C-MPNN, and a labeling-
trick-based relation prediction model GraIL [30] in Table 3, taken from Zhu et al. [40]. We also
consider 2-RN, the neural architecture from Barceló et al. [4] corresponding to rwl2 to showcase
an example of higher-order GNNs. We present both the complexity of a single forward pass of the
model as well as the amortized complexity of a single query to better reflect the practical use cases
and the advantages stemming from parallelizability. To avoid confusion, we take CompGCN [32] as
the example of R-MPNN, and basic C-MPNN, since specific architecture choices will impact the
asymptotic complexity of the model.

Notation. Given a knowledge graph G = (V,E,R, c), we have that |V |, |E|, |R| represents the size
of vertices, edges, and relation types, respectively. d is the hidden dimension of the model, and T is
the number of layers in the model.

28

Table 3: Model asymptotic runtime complexities. Observe that the amortized complexity of 2-RN
becomes obselete by the fact that its forward pass being prohibitive in practice (quadratic in |V |).

Model Complexity of a forward pass Amortized complexity of a query

R-MPNNs O(T (|E|d+ |V |d2)) O(T (|E|d
|R||V |2 + d2

|R||V | + d))

C-MPNNs O(T (|E|d+ |V |d2)) O(T (|E|d
|V | + d2))

GraIL O(T (|E|d2 + |V |d2)) O(T (|E|d2 + |V |d2))
2-RN O(T (|V ||E|d+ |V |2d2)) O(T (|E|d

|R||V | +
d2

|R| + d))

Runtime of C-MPNNs. Let us note that C-MPNNs subsume NBFNets. Indeed, if we consider
C-MPNNs without readout and set the history function as f(t) = 0, we obtain (a slight generalization
of) NBFNets, as stated in the paper. In terms of the runtime, C-MPNNs and NBFNets are comparable:
even though the readout component of C-MPNNs incurs a linear overhead, this is dominated by other
factors. Thus, as shown in Lemma 2 of Zhu et al. [40], the total complexity for a forward pass is
O(T (|E|d+ |V |d2)) to compute |V | queries at the same time, resulting an amortized complexity of
O(T (|E|d

|V | + d2)). See Zhu et al. [40] for detailed discussion and proof.

Comparison with R-MPNNs. As directly carrying out relational message passing in R-MPNN
for each triplet is costly, a common way to carry out link prediction task is to first compute all
node representations and then use a binary decoder to perform link prediction. This would result
in O(T (|E|d + |V |d2)) for a complete forward pass. Consequently, we obtain |R||V |2 triplets,
and since passing through binary decoder has a complexity of O(d), we have that the amortized
complexity for each query is O(T (|E|d

|R||V |2 + d2

|R||V | + d)). Although the complexity of a forward
pass for R-MPNN and C-MPNN are the same, we compute |R||V |2 queries with R-MPNN but only
|V | queries with C-MPNN, resulting difference in amortized complexity of a single query. However,
as discussed in Section 4, this comes at the cost of expressivity.

Comparison with the architectures using labeling trick. GraIL is an architecture using labeling
trick and we focus on this to make the comparison concrete. In terms of runtime, architectures
that rely on the labeling trick are typically slower, since they need to label both the source and the
target node, as we state in Section 4. This yields worse runtime complexity for these models, and
particularly for GraIL 4, with an amortized complexity of a query being the same as the one for a
forward pass, that is, O(T (|E|d2 + |V |d2)). In C-MPNNs, we only label the source node u, which
allows parallel comparison for all queries in the form q(u, ?): a single forward pass would compute
all hidden representations of these queries. With the labeling trick, |V | forward passes need to be
carried out as each time, both source u and target v need to be specified. See Zhu et al. [40] for
detailed discussion and proof.

Comparison with higher-order GNNs. Regarding higher-order GNNs, we take 2-RN, the neural
architecture from Barceló et al. [4] corresponding to rwl2. These higher-order models require
O((|V ||E|d + |V |2d2)) in each layer (assuming each message function takes O(d) as before) to
update all pairwise representations in a single forward pass, which is computationally prohibitive in
practice. This makes the study of the amortized complexity obselete, but we provide an analysis for
the sake of completeness. Similar to R-MPNN, we need an additional query-specific unary decoder
for the task of link prediction on knowledge graphs, resulting in O(d) complexity overhead. The
amortized complexity of a single query is thus O(T (|E|d

|R||V | +
d2

|R| + d)).

C Experiments on inductive link prediction

C.1 Details of the experiments reported in Section 6

In this section, we report the details of the experiments reported in the body of this paper. Specif-
ically, we report the performance of some baseline models (Table 4), dataset statistics (Table 5),
hyperparameters (Table 6), and the number of trainable parameters for each model variation (Table 7).

4Comparing to C-MPNN, the complexity for MSGr is different because GraIL utilizes RGCN as relational
message passing model, which needs O(d2) for linear transformation in its MSGr .

29

Table 4: Inductive relation prediction results. We use basic C-MPNN architecture with AGG = sum,
MSG = MSG1

r , and INIT = INIT2 with no readout component. All the baselines are taken from the
respective works.

Model WN18RR FB15k-237
v1 v2 v3 v4 v1 v2 v3 v4

NeuralLP[35] 0.744 0.689 0.462 0.671 0.529 0.589 0.529 0.559
DRUM [25] 0.744 0.689 0.462 0.671 0.529 0.587 0.529 0.559
RuleN [20] 0.809 0.782 0.534 0.716 0.498 0.778 0.877 0.856
GraIL [30] 0.825 0.787 0.584 0.734 0.642 0.818 0.828 0.893
C-MPNN 0.932 0.896 0.900 0.881 0.794 0.906 0.947 0.933

Table 5: Dataset statistics for the inductive relation prediction experiments. #Query* is the number
of queries used in the validation set. In the training set, all triplets are used as queries.

Dataset #Relation Train & Validation Test
#Nodes #Triplet #Query* #Nodes #Triplet #Query

WN18RR

v1 9 2,746 5,410 630 922 1,618 188
v2 10 6,954 15,262 1,838 2,757 4,011 441
v3 11 12,078 25,901 3,097 5,084 6,327 605
v4 9 3,861 7,940 934 7,084 12,334 1,429

FB15k-237

v1 180 1,594 4,245 489 1,093 1,993 205
v2 200 2,608 9,739 1,166 1,660 4,145 478
v3 215 3,668 17,986 2,194 2,501 7,406 865
v4 219 4,707 27,203 3,352 3,051 11,714 1,424

Table 6: Hyperparameters for inductive experiments with C-MPNN.

Hyperparameter WN18RR FB15k-237

GNN Layer Depth(T) 6 6
Hidden Dimension 32 32

Decoder Layer Depth 2 2
Hidden Dimension 64 64

Optimization Optimizer Adam Adam
Learning Rate 5e-3 5e-3

Learning

Batch size 8 8
#Negative Samples 32 32
Epoch 20 20
Adversarial Temperature 1 1

Table 7: Number of trainable parameters used in inductive relation prediction experiments for
C-MPNN architectures with INIT2 initialization .

Model architectures WN18RR FB15k-237
AGG MSGr v1 v2 v3 v4 v1 v2 v3 v4

sum MSG1
r 132k 144k 157k 132k 2,310k 2,564k 2,755k 2,806k

sum MSG2
r 21k 22k 22k 21k 98k 107k 113k 115k

sum MSG3
r 128k 141k 153k 128k 2,240k 2,488k 2,673k 2,722k

PNA MSG1
r 199k 212k 225k 199k 2,377k 2,632k 2,823k 2,874k

PNA MSG2
r 89k 89k 90k 89k 165k 174k 181k 183k

PNA MSG3
r 196k 208k 221k 196k 2,308k 2,555k 2,740k 2,790k

30

All of the model variations minimize the negative log-likelihood of positive and negative facts. We
follow the partial completeness assumption [10] by randomly corrupting the head entity or the tail
entity to generate the negative samples. We parameterize the conditional probability of a fact q(u, v)
by p(v | u, q) = σ(f(h

(T)
v|u,q)), where σ is the sigmoid function and f is 2-layer MLP. Following

RotatE [29], we adopt self-adversarial negative sampling by sampling negative triples from the
following distribution with α as the adversarial temperature:

L(v | u, q) = − log p(v | u, q)−
k∑

i=1

wi,α log(1− p(v′i | u′i, q))

where k is the number of negative samples for one positive sample and (u′i, q, v
′
i) is the i-th negative

sample. Finally, wi is the weight for the i-th negative sample, given by

wi,α := Softmax

(
log(1− p(v′i | u′i, q))

α

)
.

C.2 Experiments for evaluating the effect of initialization functions

Initialization functions (Q3). We argued that the initialization function INIT(u, v, q) needs to satisfy
the property of target node distinguishability to compute binary invariants. To validate the impact of
different initialization regimes, we conduct a further experiment which is reported in Table 8, with the
same experiment settings as in Section 6. In addition to the initialization functions INIT1, INIT2, INIT3

defined in Section 4.1, we also experiment with a simple function INIT0 which assigns 0 to all nodes.
As expected, using INIT0 initialization, results in a very sharp decrease in model performance in
WN18RR, but less so in FB15k-237. Intuitively, the model suffers more in WN18RR since there are
much fewer relations, and it is harder to distinguish node pairs without an initialization designed to
achieve this. Perhaps one of the simplest functions satisfying target node distinguishability criteria is
INIT1 = 1u=v ∗ 1, which pays no respect to the target query relation. Empirically, INIT1 achieves
strong results, showing that even the simplest function ensuring this property could boost the model
performance. Interestingly, the performance of models using INIT1 match or exceed models using
INIT2, even though the latter additionally has a relation-specific learnable query vector. Note, however,
that this shall not undermine the role of the learnable query relation: integrating the learnable query
vector either in the initialization function or in the message computation function seems to suffice.

Table 8: Inductive relation prediction of C-MPNN using AGG = sum, MSGr = MSG1
r , f(t) = t and

different initialization methods.
Initialization WN18RR FB15k-237
INIT(u, v, q) v1 v2 v3 v4 v1 v2 v3 v4

INIT0(u, v, q) 0.615 0.715 0.811 0.654 0.777 0.903 0.894 0.910
INIT1(u, v, q) 0.932 0.894 0.902 0.883 0.809 0.927 0.944 0.911
INIT2(u, v, q) 0.932 0.896 0.900 0.881 0.794 0.906 0.947 0.933
INIT3(u, v, q) 0.934 0.890 0.894 0.877 0.804 0.924 0.941 0.944

Random initialization (Q3). The idea of random node initialization is known to lead to more
expressive models [26, 1]. Inspired by this, we can incorporate varying degrees of randomization
to the initialization, satisfying the target node distinguishability property in expectation. The key
advantage is that the resulting models are still inductive and achieve a nontrivial expressiveness gain
over alternatives. In this case, the models with INIT3 perform closer to the models with INIT2, but we
do not see a particular advantage on these benchmarks.

D Experiments on transductive link prediction

We further conducted transductive link prediction experiments to empirically validate that C-MPNNs
are more expressive than R-MPNNs via the abstraction given by rawl2 and rwl1, respectively (Q4).

31

Table 9: Transductive knowledge graph completion task of C-MPNNs and R-MPNNs on WN18RR
and FB15k-237. Here, C-MPNN-basic refers to basic C-MPNN model without readout.

Model class Architectures WN18RR FB15k-237
MR MRR Hits@10 MR MRR Hits@10

R-MPNNs RGCN 3069 0.367 0.405 210 0.205 0.387
CompGCN 3590 0.433 0.519 217 0.334 0.514

C-MPNNs
NeuralLP − 0.435 0.566 − 0.240 0.362
DRUM − 0.486 0.586 − 0.343 0.516

C-MPNN-basic 687 0.534 0.643 121 0.400 0.583

Table 10: Dataset statistics for transductive experiments on WN18RR and FB15k-237.

Dataset #Nodes #Relation #Triplet
#Train #Valid #Test

WN18RR 40,943 11 86,835 3,034 3,134
FB15k-237 14,541 237 272,115 17,535 20,466

Table 11: Hyperparameters for transductive experiments on FB15k-237 and WN18RR with C-MPNN.

Hyperparameter WN18RR FB15k-237

GNN Layer Depth(T) 6 6
Hidden Dimension 32 32

Decoder Layer Depth 2 2
Hidden Dimension 64 64

Optimization Optimizer Adam Adam
Learning Rate 5e-3 5e-3

Learning

Batch size 8 8
#Negative Sample 32 32
Epoch 20 20
Adversarial Temperature 1 1

D.1 Experiments on WN18RR and FB15k-237

Datasets. We use two benchmark datasets for transductive link prediction experiments, namely
WN18RR [31] and FB15k-237 [9], with the provided standardized train-test split. Similar to the
inductive relation prediction experiments, we augment the fact r(u, v) with its inverse fact r−1(v, u).
The detailed data statistics are shown in Table 10.

Implementation. For basic C-MPNN without readout (denoted as C-MPNN-basic in Table 9), all
hyper-parameters used are reported in Table 11, and we adopt layer-normalization [2] and short-cut
connection after each aggregation and before applying ReLU. We also discard the edges that directly
connect query node pairs to prevent overfitting. For RGCN, we use two layers, each with a hidden
dimension of 100. We consider the same basis-decomposition trick with a basis number equal to 30.
In addition, we train the model with a learning rate of 0.1 and a dropout rate of 0.2, using Adam
optimizer for 10,000 epochs. For CompGCN, we use three layers, each with hidden dimension 200,
and adopt distmult scoring function as well as element-wise multiplication as a composition function.
During the training process, we consider a learning rate of 0.001 and a dropout rate of 0.1, using
Adam optimizer for 500 epochs. Additionally, since there are no node features for both of the datasets,
we initialize node representations using learnable embeddings with Xavier initialization for RGCN
and CompGCN. We take the results of NeuralLP from Yang et al. [35], and the results of DRUM
from Sadeghian et al. [25], respectively. The best checkpoint for each model instance is selected
based on its performance on the validation set. All experiments are performed on one NVIDIA V100
32GB GPU.

32

Evaluation. We consider filtered ranking protocol [6] with 1 negative sample per positive triplet, and
report Mean Rank(MR), Mean Reciprocal Rank(MRR), and Hits@10 for each model. We also report
averaged results of five independent runs for all experiments.

Results. From Table 9, it is evident that models under the class of C-MPNN consistently outperform
R-MPNN models across both datasets and all evaluation metrics, with only one exception on FB15k-
237 with NeuralLP. This aligns with our theoretical understanding, as C-MPNN models are inherently
more expressive than R-MPNNs. In particular, the C-MPNN-basic model stands out by achieving
the lowest MR and the highest values for both MRR and Hits@10, surpassing all other models by
a significant margin, underscoring its efficiency and robustness in transductive knowledge graph
completion tasks.

D.2 Experiments on biomedical datasets

To compare R-MPNNs and C-MPNNs on large-scale graphs, we carried out additional transductive
knowledge graph completion experiments on biomedical datasets: Hetionet [15] and ogbl-biokg [16].

Datasets. Hetionet [15] is a large biomedical knowledge graph that integrates data from 29 different
public databases, representing various biological connections and associations, and ogbl-biokg is a
large-scale biomedical knowledge graph dataset, developed as a part of the Open Graph Benchmark
(OGB) [16] suite. We have used the provided standardized train-test split for both datasets and
similarly augmented every fact r(u, v) with its inverse relation r−1(u, v). We present the detailed
dataset statistics in Table 13.

Implementation. We study the basic C-MPNN without readout, referred to as C-MPNN in the
Table 12, the epoch number is set to 1 due to the datasets being larger and denser, leading to longer
execution times for C-MPNN. All hyperparameters used for C-MPNN are reported in Table 14, and
we adopt layer-normalization [2] and short-cut connection after each aggregation and before applying
ReLU. We also discard the edges that directly connect query node pairs. For RGCN, we consider
a batch size of 65536, a learning rate of 0.001, and 100 epochs for both datasets. On Hetionet, we
use a hidden dimension size of 200, and a learning rate of 0.001 across 4 layers. On ogbl-biokg,
we consider a dimension size of 500, and a dropout rate of 0.2 across 2 layers. For CompGCN
on Hetionet, the parameters include a batch size of 65536, 100 epochs, a dimension size of 200,
a learning rate of 0.01, and a single layer. We adopt distmult scoring function and element-wise
multiplication as a composition function. On ogbl-biokg, CompGCN results cannot be reproduced to
the best of our effort due to an out-of-memory (OOM) error. The best checkpoint for each model
instance is selected based on its performance on the validation set. All experiments are performed on
one NVIDIA V100 32GB GPU. In addition, since there are no node features for both of the datasets,
we initialize node representations using learnable embeddings with Xavier initialization for RGCN
and CompGCN.

Evaluation. We consider filtered ranking protocol [6], but restrict our ranking to entities of the same
type. With each positive triplet, we use 32 number of negative samples and report the averaged results
of Mean Reciprocal Rank(MRR), Hits@1, and Hits@10 over five independent runs for each model.

Results. From Table 12, it is evident that C-MPNN outperforms R-MPNN on both datasets by a large
margin, despite the challenges posed by the large and dense nature of biomedical knowledge graphs.
These results are reassuring as they have further consolidated our theory, showing that the expressivity
gain of C-MPNNs compared to R-MPNNs has a significant impact on real-world biomedical datasets.

Table 12: Transductive experiments on biomedical knowledge graphs. We use basic C-MPNN
architecture with AGG = sum, MSG = MSG1

r , and INIT = INIT2 with no readout component. OOM
stands for out of memory.

Model Hetionet ogbl-biokg
MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

RGCN 0.120 0.067 0.228 0.636 0.511 0.884
CompGCN 0.152 0.083 0.292 OOM OOM OOM
C-MPNN 0.479 0.394 0.649 0.790 0.718 0.927

33

Table 13: Dataset statistics for transductive biomedical knowledge graph completion.

Dataset #Nodes #Node Type #Relation #Triplet
#Train #Valid #Test

Hetionet 47,031 11 24 1,800,157 225,020 225,020
ogbl-biokg 93,773 5 51 4,762,677 162,886 162,870

Table 14: Hyperparameters for the transductive experiments on biomedical knowledge graphs with
C-MPNN.

Hyperparameter Hetionet ogbl-biokg

GNN Layer Depth(T) 4 6
Hidden Dimension 32 32

Decoder Layer Depth 2 2
Hidden Dimension 32 32

Optimization Optimizer Adam Adam
Learning Rate 2e-3 2e-4

Learning

Batch size 64 8
#Negative Sample 32 32
Epoch 1 1
Adversarial Temperature 1 0.5

E Evaluating the power of global readout on a synthetic dataset

We constructed a synthetic experiment to showcase the power of global readout (Q5).

Dataset. We proposed a synthetic dataset TRI-SQR, which consists of multiple pairs of knowledge
graphs in form (G1, G2) s.t. G1 = (V1, E1, R, c1), G2 = (V2, E2, R, c2) where R = {r0, r1, r2}.
For each pair, we constructed as follows:

1. Generate an Erdos-Renyi graph Ginit with 5 nodes and a random probability p. We randomly
select one of the nodes as the source node u.

2. G1 is constructed by disjoint union Ginit with two triangles, one with edges relation of r1, and
the other with r2. The target query is r3(u, v) for all v in a triangle with an edge relation of r1.

3. Similarly, G2 is constructed by disjoint union another copy of Ginit with two squares, one with
edges relation of r1, and the other with r2. The target query is r3(u, v) for all v in a square with
an edge relation of r2.

One example of such a pair can be shown in Figure 6. We generate 100 graph pairs and assign 70
pairs as the training set and the remaining 30 pairs as the testing set (140 training graphs and 60
testing graphs). In total, there are 490 training triplets and 210 testing triplets.

Objective. For all node v /∈ Ginit, we want a higher score for all the links r0(u, v) if either v is in a
triangle consists of r1 relation or v is in a square consists of r2 relation, and a lower score otherwise.
For negative sampling, we choose counterpart triplets for each graph, that is, we take r0(u, v) for all
v in a triangle with an edge relation of r2 in G1 and in a square with an edge relation of r1 in G2.

Model architectures. We have considered two model architectures, namely C-MPNNs with INIT =
INIT2,AGG = sum,MSG = MSG2

r , and f(t) = t without sum global readout:

h
(0)
v|u,q = 1u=v ∗ zq,

h
(t+1)
v|u,q = σ

(
W

(t)
0

(
h
(t)
v|u,q +

∑
r∈R

∑
w∈Nr(v)

MSG2
r(h

(t)
w|u,q, zq

)))
,

34

u • •

• • • • • •

• •

G1

u • • • •

• • • • • •

• •

G2

r1

r1
r2

r2

r2

r1

r2

r1

r1

r2r1
r2

r2

r0

r0

r0

r1

r2
r1r2

r1

r2

r2

r1

r1

r1

r1

r2

r2

r2

r2

r0

r0

r0

r0

Figure 6: Construction of graph pair in TRI-SQR for global readout

and the same C-MPNN architecture with sum global readout:

h
(0)
v|u,q = 1u=v ∗ zq,

h
(t+1)
v|u,q = σ

(
W

(t)
0

(
h
(t)
v|u,q +

∑
r∈R

∑
w∈Nr(v)

MSG2
r(h

(t)
w|u,q, zq

))
+W

(t)
1

∑
w∈V

h
(t)
w|u,q

)
,

Design. We claim that C-MPNNs with sum readout can correctly predict all testing triplets, whereas
C-MPNNs without sum readout will fail to learn this pattern and achieve 50% as random guessing.
Theoretically, the TRI-SQR dataset is designed in such a way that any R-MPNN model assigns identi-
cal node representations to nodes in triangles and squares with the same relation type. Consequently,
any C-MPNN model without global readout will be unable to determine which graph betweenG1 and
G2 in the graph pair is being predicted, making it challenging to learn the conditional representation
hu|v,q. However, we anticipate that a C-MPNN model with sum readout can differentiate between
G1 and G2 in each pair, as it can access global information like the total number of nodes in the
graph. This allows it to accurately identify the graph being predicted in the graph pair, even when the
representations of the triangle and square with the same relation are identical. As a result, it can learn
the target rules and achieve 100% accuracy.

Experiment details. We configure each model variant with four layers and 32 hidden dimensions
per layer. We set a learning rate of 1e-4 for both models and train them for 500 epochs. Empirically,
we find that C-MPNN with global sum readout achieves 100% accuracy, while C-MPNN without
global sum readout reaches 50% accuracy as random guesses, which is consistent with our theoretical
expectations.

35

	Introduction
	Related work and motivation
	Background
	Knowledge graphs and invariants
	Relational message passing neural networks

	Conditional message passing neural networks
	Design space and basic model architectures

	Characterizing the expressive power
	A relational Weisfeiler-Leman characterization
	Logical characterization
	Locating rawl2 in the relational WL landscape

	Experimental evaluation
	Experimental setup
	Results for inductive link prediction with C-MPNN architectures
	Empirically evaluating the effect of readout

	Outlook and limitations
	Acknowledgement
	Proofs of technical statements
	Expressive power of R-MPNNs
	Proof of Theorem 5.1
	Proof of Theorem 5.2
	Proof of Theorem 5.3
	Proofs of the results from sec:beyond-rawl

	Runtime analysis
	Experiments on inductive link prediction
	Details of the experiments reported in sec: inductive-experiment
	Experiments for evaluating the effect of initialization functions

	Experiments on transductive link prediction
	Experiments on WN18RR and FB15k-237
	Experiments on biomedical datasets

	Evaluating the power of global readout on a synthetic dataset

