
CHAMMI: A benchmark for channel-adaptive models
in microscopy imaging

Appendix

Statement on ethical implications. The CHAMMI dataset collects, processes, and shares open-
access cellular microscopy images from publicly available sources. The CHAMMI benchmark
provides a standardized API for loading and processing the dataset, as well as training and evaluating
models on the benchmark. CHAMMI is under CC-BY 4.0 (Creative Commons Attribution 4.0
International Public) license. Please kindly ensure compliance with the Research Use Agreements
when accessing either the curated dataset or the original datasets. Additionally, any bias inherent in
the original datasets might be reflected in the curated CHAMMI dataset as well. The authors confirm
that they bear all responsibility in case of violation of rights.

A CHAMMI: additional details

The CHAMMI dataset contains single-cell resolution microscopy images curated from three main
sources, with different sets of ground truth labels for each source dataset. A summary of the dataset
is provided in Fig. 1 [1, 2].

A.1 Data sources

We describe the full license of the original datasets and the URL for download.

1. WTC-11 [3]
License: Research Use Agree
URL: open.quiltdata.com/b/allencell/packages/aics/hipsc_single_cell_image_dataset

2. HPA [4]
License: CC-BY 3.0
URL: www.kaggle.com/competitions/hpa-single-cell-image-classification/data

3. Cell Painting [5–7]
License: CC0 1.0 Universal
URL-1: bbbc.broadinstitute.org/BBBC022
URL-2: github.com/broadinstitute/cellpainting-gallery

A.2 Data processing

WTC-11 dataset. The original dataset contains 214,037 human induced pluripotent stem cells from
25 isogenic cell lines. Each cell line contains fluorescent tagging for one protein via CRISPR/Cas9
gene editing to reference a cellular compartment. We selected 65,103 cells by filtering for cells
with fluorescent-protein (FP) taggings for one of seven cellular compartments: nuclear speckles,
mitochondria, microtubules, Golgi apparatus, nucleoplasm, cytosol, and endoplasmic reticulum (ER).
We used the max z-channel projection of the three fluorescent channels to project the 3D images into
2D planes. Cell segmentation was performed using the masks provided by the original authors [3],
which were obtained with the Allen Cell and Strucutre Segmenter [8]. We then normalize the images
into between 0 and 255 pixel intensity and unfolded the three channels by concatenation. These result
in 65,103 single-cell, single-channel images of size 1122 x 238.

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.

https://www.allencell.org/terms-of-use.html
https://open.quiltdata.com/b/allencell/packages/aics/hipsc_single_cell_image_dataset
https://www.kaggle.com/competitions/hpa-single-cell-image-classification/data
https://bbbc.broadinstitute.org/BBBC022
https://github.com/broadinstitute/cellpainting-gallery


Figure 1: A dataset information card styled after nutrition labels, constructed based on [1, 2].

2



Table 1: Information about selected compound treatments for Cell Painting images. Effect: the
ability of the compound to induce morphological changes. Strong means that the compound induces
significant morphological changes, and vice versa. Concentration: the selected concentration of
the compound in each source dataset. MOA: ground truth annotation [12] of mechanism of action.
Present in: the training and/or testing sets the label is present in.

Concentration
(mmol/L))

Broad ID Name Effect BBBC022 CDRP LINCS MOA Present in

BRD-A29260609 acebutolol weak 2.68 5.00 3.33 adrenergic receptor antagonist Train, Task 1, 2, 3
BRD-K11129031 gemfibrozil weak 3.99 5.00 3.33 lipoprotein lipase activator Task 4
BRD-K04185004 oxybuprocaine medium 2.90 2.90 3.33 local anesthetic Train, Task 1, 2, 3
BRD-K62310379 fluticasone-propionate medium 2.00 2.00 1.11 glucocorticoid receptor agonist Task 4
BRD-K21680192 mitoxantrone strong 1.93 1.93 1.11 topoisomerase inhibitor Train, Task 1, 2, 3
BRD-K77947974 fluspirilene strong 5.26 5.26 3.33 dopamine receptor antagonist Task 4

HPA. The original dataset is used in the Kaggle competition ‘Human Protein Atlas - Single Cell
Classification’ [9] and is composed of field-of-view images with cells from 28 cell lines. The cells
were treated with fluorescent dyes that bind to the nucleus, microtubules, endoplasmic reticulum
(ER), and a protein of interest, resulting in four-channel images. Cell segmentation is performed
using the HPA-Cell-Segmentation algorithm [10] recommended in the Kaggle challenge. We take the
bounding box with the mask and crop the images to 512x512 around the center of the cell. We then
normalized the images to 0 and 255 pixel intensity. We also filtered for cells with subcellular protein
localizations in one of seven cellular compartments: nuclear speckles, mitochondria, microtubules,
Golgi apparatus, nucleoplasm, cytosol, and ER. Finally, we unfolded the four-channel images by
concatenation. These procedures result in 66,936 single-cell images of size 2048x512.

Cell Painting. The original dataset consists of three sources: BBBC022 [7], CDRP [5], and
LINCS [6]. Images are acquired using the Cell Painting protocol, with six fluorescent dyes staining
eight cellular compartments. BBBC022 and CDRP are both compound-screening datasets tested on
U2OS cells, including 1600 and 30616 single-dose compounds respectively. LINCS is a compound
screen of 1249 drugs across six doses on A549 cells. Among the common compounds between
the three datasets, we selected six single-dose compounds and DMSO negative control to include
in CHAMMI. Of the six compounds, two of each are shown to have weak, median, and strong
morphological effects on cell morphology compared to the negative control (Tab. 1). We ensured that
all six compounds have different mechanisms of action and that the selected concentrations across
the three datasets have minimal differences. CellProfiler [11] is used to segment the cells, with global
Otsu thresholding in the nucleus channel, followed by cell body segmentation with the watershed
method in the ER/RNA channel. We cropped the images to size 160x160 centered on the nucleus of
each cell without masking so as to preserve the context of single cells. We then unfolded the five
channels to get 88, 245 images of size 800× 160.

A.3 Data sampling and splitting

Due to the biological nature of microscopic images, many of the standard classification tasks involve
using inherently imbalanced datasets. This is the case for the three datasets we have chosen as well.
While it is possible to balance the data by upsampling or downsampling images, we decided to
preserve the original distribution of classes so as to simulate a real-life biological application setting.
Meanwhile, we keep the ratio of classes and other biological annotations consistent across training
and testing. Results confirm that supervised models were able to learn both the majority and minority
classes with high accuracy under this configuration. Additionally, we ensure that the ratio between
the size of each testing set and the combined training set has a ratio between 1:9 and 1:4. We choose
to be more flexible about the training over testing ratios due to the small sample size of certain classes
and the comparatively much larger sample size of others.

WTC-11. This subset of CHAMMI uses cell cycle stages as the classification label, which results in
an inherent imbalance of data. Natural cells spend approximately 90% of their time in interphase,
which means that the majority of cells captured in an image will be in interphase. We preserve the
original distribution of labels in our dataset by random sampling images within classes into training
and testing to ensure that the ratio between all the classes is consistent. Additionally, since the protein
channel of each image contains FP taggings for one of seven cellular compartments (see Section

3



Figure 2: ChannelReplication model architecture. For a multi-channel image (e.g., WTC in this
example), each channel is replicated to form a 3-channel image as the input for the ConvNeXt [13]
model. The final representation of the multi-channel image is the concatenation of the feature output
of each channel.

A.2), we also used stratified random sampling to ensure a consistent ratio of FP-tagged cellular
compartments across training and testing sets.

HPA. The HPA images in CHAMMI use subcellular protein localization as the classification label,
which is also inherently imbalanced. Since proteins can localize at multiple locations, and a few
compartments host much more proteins than others, the original HPA images are multi-labeled
and have inherent label imbalance. We first filtered for images with only one cellular localization
annotation (to ensure single-labeled data) that is in the list of the seven chosen cellular compartments.
After filtering, the remaining images come from 18 different cell lines. We then stratified them into
training and testing sets to keep the label and cell line ratio consistent across sets.

CP. The Cell Painting images in CHAMMI use compound treatment as the classification label, which
is also imbalanced. Since we selected two strong, median, and weak effect compounds, the number
of viable cells surviving the strong treatment is bound to be lower than the number of cells surviving
the weak treatment. Additionally, Cell Painting images are known to be affected by the batch effect
of plates and datasets, which means images taken from different plates can look very different despite
having similar cell morphology. Therefore, we used stratified sampling to ensure that the ratio of
labels, source dataset, and plates is consistent across training and testing sets.

B Experiments

In this section, we present the experimental details including model architecture, hyperparameter
tuning, training schedule, etc. The code we used for training and evaluating models is publicly
available at https://github.com/chaudatascience/channel_adaptive_models

B.1 Model architecture

In all experiments, we used a ConvNeXt [13] model pre-trained on ImageNet 22K [14] as the
backbone. We considered three extensions of the convolutional network and adapted two previously
proposed strategies as potential solutions to the channel-adaptive problem. See Fig. 2-Fig. 8 for an
illustration of the different architectures.

B.2 Representation learning

In this experiment, we employ ConvNeXt [13] as the underlining backbone for our baseline models.
While the initial layers may differ across models, all of them share the same backbone architecture. To
extract the image representations, we remove the classifier head and only keep the feature extractor.

It is worth noting that the embedding vectors obtained from the backbone have a dimension of
7× 7× 768, which makes computing Euclidean distances computationally expensive. To address
this issue, we employ pooling techniques to reduce the dimensionality to a more manageable 768-
dimensional space. Although we use adaptive average pooling as our default method, we have
observed minimal differences when switching to other pooling methods such as adaptive max pooling
or combining both.

4

https://github.com/chaudatascience/channel_adaptive_models


Figure 3: FixedChannels model architecture. Each dataset has its own single network. Note that
the first convolutional layers of these networks are adjusted based on the specific number of input
channels presenting in each dataset (i.e., duplicating channel weights if needed).

Figure 4: Depthwise model architecture. A single convolutional filter is applied for each input
channel. The feature outputs from all channels are reduced to a single feature (channel reduction) as
the input to the shared backbone network. This enables the shared backbone to receive a fixed size of
input regardless of the number of input channels presenting in each dataset.

5



Figure 5: TargetParam model architecture. The network consists of individual convolutional
heads, each dedicated to a particular sub-dataset, along with a shared backbone. When processing a
multi-channel image, the image is assigned to a specific convolutional head based on its number of
channels. Although these heads receive images with varying number channels as input, they produce
features of the same size. These features are then fed through the shared backbone to obtain the final
representation.

Figure 6: SliceParam model architecture. The network consists of a channel bank and a shared
backbone. Each distinct channel within the dataset has its own filter within the channel bank. When
processing a multi-channel image, it is assigned to a specific convolutional layer that combines the
corresponding channel filters from the channel bank. The resulting output features whose sizes are
fixed, are then passed through the shared backbone to get the final representation.

6



Figure 7: HyperNet [15] model architecture. The network comprises a channel weights generator
network and a shared backbone. Each distinct channel within the dataset is represented by a trainable
channel embedding in the generator network. These embeddings are utilized to generate the weights
for the corresponding input channel. The weights for different channels are concatenated to form
a comprehensive set of weights used to process the image. The resulting features are then passed
through the shared backbone network, ultimately producing the final representation.

Figure 8: Template mixing [16, 17] model architecture. The network comprises a channel generator
with a set of templates, linear coefficients, and a shared backbone. Each distinct channel in the dataset
has a linear coefficient, which is a k-dimensional vector, where k is the number of templates. The
convolutional filter for each distinct channel is obtained by a linear combination of the templates
using its corresponding linear coefficient. As a result, a multi-channel image is assigned to a specific
convolutional layer generated by the channel generator. The resulting features are then fed into a
shared backbone, resulting in the final representation.

7



B.3 Loss functions

During the inference, our goal is to use the trained model to acquire a meaningful representation for
each input image, and the model can be used for both familiar and novel classes. To achieve this, we
employ the ProxyNCA++ loss, introduced by Teh et al. [18], which is formulated as follows:

LProxyNCA++ = − log

 exp
(
−d

(
xi

∥xi∥2
, f(xi)
∥f(xi)∥2

)
∗ 1

T

)
∑

f(a)∈A exp
(
−d

(
xi

∥xi∥2
, f(a)
∥f(a)∥2

)
∗ 1

T

)


Where d(xi, xk) is Euclidean squared distance computed on feature embedding, A denotes the set of
all proxies, and T is temperature. During the training process, each training class is represented as
a proxy. We compare input images to the proxies, with an objective to draw samples toward their
corresponding proxies while simultaneously pushing them away from all other proxies.

When the value of temperature T is equal to 1, we obtain a standard Softmax function. As T decreases,
it results in a more concentrated and peaky probability distribution. We perform fine-tuning of the
temperature by utilizing a low temperature setting, specifically ranging from 0.05 to 0.5.

To address the out-of-distribution (OOD) issues, we have also considered self-supervised ap-
proaches [19–25]. In our training process, each image undergoes two transformations, each involving
different operations such as random cropping, flipping, and TPS [26]. To incorporate self-supervised
learning, we adapted the SimCLR [19, 20] framework and introduced an extra loss term that enforces
similarity between positive pairs, where positive pairs are represented by different augmentations of
the same image. The self-supervised learning (SSL) loss is formulated as follows:

LSSL = − log
exp sim(xi, xj)/T∑2N
k=1 exp sim(xi, xk)/T

where N is the number of examples within a batch, sim(., .) denotes the cosine similarity between
two image representations. In addition, T is the temperature parameter, and {xi, xj} is a positive
pair (i.e., augmented from the same image). The final SSL loss is computed over all the positive pairs
in the training set. Note that since every image has two augmentations, the total number of examples
is 2N .

The combined loss is the combination of proxy loss and SSL loss, where α ∈ [0, 1]. We reported
results from experiments where α = 0.2.

Lcombined = α× LSSL + (1− α)× LProxyNCA++

B.4 Implementation details

In our experiments, we utilize the ConvNeXt [13] tiny version, which is pretrained on the ImageNet
22k dataset [14]. We adapt the implementation from the repository provided by Hugging Face1. To
fine-tune the model, we run 15 epochs on a single GPU using the AdamW optimizer [27] with a
momentum of 0.9. The betas for AdamW are set to 0.9 and 0.999, and we apply a weight decay of
5× 10−4. Our batch size is set to 128. Note that when training on CHAMMI, each batch consists of
images from all three datasets. This mixing training ensures that the model can effectively leverage
the shared information presenting across the datasets throughout the training phase.

To determine the optimal learning rate, we sweep over some values in a range of values from
1.0 × 10−6 to 1.0 × 10−3 on a logarithmic scale. We use a cosine schedule to gradually reduce
the learning rate to 1.0 × 10−7 at the end of the training process. As our objective, we utilize the
ProxyNCA++ loss [18] function.

MIRO [28]: To compute the regularization term in MIRO, we extract intermediate outputs by each
model block, i.e., stem output, stage 1, 2, and 3 from ConvNeXt [13] backbone. The final loss is a
linear combination of ProxyNCA++ loss [18] and the regularization term scaled by coefficient weight
λ. We incorporate the implementation of the authors 2 into our codebase.

SWAD [29]: We utilize the implementation of SWAD 3 from the Pytorch library.
1https://github.com/huggingface/pytorch-image-models
2https://github.com/kakaobrain/miro
3pytorch.org/blog/pytorch-1.6-now-includes-stochastic-weight-averaging

8



Table 2: Task-wise F1 scores on the validation set of CHAMMI. Average scores are computed by taking
the mean of F1 score within each source dataset (see Section C), and then averaging across datasets. OOD:
out-of-distribution (i.e. generalization tasks).

Average OOD WTC HPA CP

Model Mean WTC HPA CP Task1 Task2 Task1 Task2 Task3 Task1 Task2 Task3 Task4

ChannelReplication 0.344 0.422 0.336 0.275 0.594 0.422 0.560 0.418 0.254 0.839 0.478 0.223 0.122
FixedChannels - Trained 0.500 0.648 0.592 0.259 0.649 0.648 0.807 0.763 0.421 0.660 0.481 0.230 0.066

FixedChannels - Fine-tuned 0.614 0.861 0.741 0.240 0.881 0.861 0.950 0.932 0.551 0.941 0.484 0.123 0.112

Depthwise - Trained 0.517 0.652 0.644 0.256 0.689 0.652 0.849 0.813 0.475 0.673 0.478 0.224 0.065
Depthwise - Fine-tuned 0.616 0.854 0.737 0.258 0.880 0.854 0.934 0.918 0.557 0.927 0.520 0.172 0.081
TargetParam - Trained 0.496 0.590 0.623 0.273 0.695 0.590 0.837 0.794 0.452 0.717 0.508 0.234 0.077

TargetParam - Fine-tuned 0.622 0.843 0.760 0.264 0.879 0.843 0.945 0.925 0.594 0.946 0.512 0.174 0.107
SliceParam - Trained 0.457 0.568 0.546 0.256 0.616 0.568 0.770 0.690 0.403 0.646 0.475 0.222 0.071

SliceParam - Fine-tuned 0.592 0.751 0.742 0.282 0.844 0.751 0.927 0.902 0.582 0.902 0.573 0.202 0.072
HyperNet [15] - Trained 0.537 0.661 0.671 0.278 0.726 0.661 0.887 0.858 0.483 0.720 0.517 0.247 0.069

HyperNet [15] - Fine-tuned 0.616 0.846 0.745 0.257 0.864 0.832 0.941 0.912 0.584 0.923 0.542 0.180 0.077
Template mixing [16] - Trained 0.466 0.565 0.577 0.257 0.631 0.565 0.808 0.741 0.413 0.671 0.468 0.227 0.075

Template mixing [16] - Fine-Tuned 0.615 0.823 0.743 0.279 0.855 0.823 0.939 0.919 0.566 0.906 0.542 0.202 0.094

Compute resources: For this study, each experiment was run on a single NVIDIA RTX A6000
(48GB RAM) and three Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz.

B.5 Evaluation

In the testing stage, we use a one nearest-neighbor (1-NN) algorithm with cosine similarity as the
distance metric to predict the label for each test sample. The computations were performed using
Faiss 4, a software framework designed to facilitate efficient searching for similarities and clustering
of dense vectors.

For tasks H_Task3 and C_Task4, test images do not share labels with the training images, so we apply
a leave-one-out strategy. Specifically, we organize the test data into sub-groups based on non-label
annotations (e.g. cell type, source dataset). Each sub-group includes samples from all label classes in
the testing set. During the evaluation, we hold out one sub-group for prediction and compute 1-NN
search on both training images and non-holdout testing images. Note that this strategy still keeps the
test data out of training deep learning models to prevent data leakage. H_Task3 uses cell type for
sub-group division in the leave-out procedure since there are 17 cell lines in this test set; C_Task4
uses plate ID since cells in this test set come from four different plates. Since the models were not
trained on images with the novel test labels, leave-out tasks are significantly harder than the other
standard nearest-neighbor tasks due to distribution shifts.

C Additional results and discussions

Task-level results. We provide the F1 scores on each task for trained and fine-tuned models in Tab. 2
and report the scores in the “Average OOD - Mean” column in Fig.4 of the main paper. Models
with the highest score for each column are printed in bold. We observe that all models benefit from
ImageNet pre-training. Channel adaptive models, which are computationally less costly during both
training and testing (Tab. 1 in the main paper), show comparable or superior performances as the
baseline models, with the fine-tuned TargetParam model achieving the highest score on average.

UMAP representation We evaluated the clustering of features extracted by each model with UMAP
visualizations and included the results for the TargetParam model on HPA data in Fig. 9. We trained
the UMAP with the CHAMMI HPA training set and projected the test sets without training. In
Fig. 9A, features are extracted with an off-the-shelf ChannelReplication model evaluated directly after
pre-training on ImageNet 22K without fine-tuning on CHAMMI. In Fig. 9B, the TargetParam model
is pre-trained on ImageNet and fine-tuned with CHAMMI. Each row represents cells from a training
or testing set of CHAMMI HPA, colored by their classification label (i.e., protein localization). We
observe clustering based on protein localization in the test sets in the fine-tuned TargetParam model
but not in the off-the-shelf model, which highlights the necessity of fine-tuning.

4https://github.com/facebookresearch/faiss

9



Figure 9: UMAP visualization of ChannelReplication and TargetParam features from the HPA subset
of CHAMMI. Each point represents a single cell and colors represent the classification labels (protein
localization). We compare the features extracted with off-the-shelf ChannelReplication model (A)
pre-trained on ImageNet 22K [14] and with fine-tuned TargetParam model (B) after training on
CHAMMI.

10



Figure 10: Heatmap of label-wise F1 score for each method. FixedChannels is the baseline model
consisting of three models trained separately on the three subsets of CHAMMI. The other models
are channel adaptive models trained on the combined training set of CHAMMI. All the models are
pre-trained on ImageNet 22K and finetuned on the CHAMMI training set. The task labels on the
x-axis follow the nomenclature of ‘Task_Label’, where ‘Task’ is the task name (e.g. C_Task1) and
‘Label’ is the classification label name (e.g. BRD-A29260609).

Class-level results We present the detailed class-level F1 scores as a heatmap in Fig. 10. On the
y-axis, each row represents one model plotted in ascending order by the mean F1 score reported in
Tab. 2. The models include SliceParam, Template Mixing, Depthwise, FixedChannels (baseline),
HyperNet, and TargetParam models. All the models included here are pre-trained and fine-tuned. On
the x-axis, each column represents one class from one task. Lighter color indicates a higher F1 score
and better performance for that class. We observe a pattern going from lighter to darker colors as we
move from Task 1 to later tasks within each dataset, indicating increased difficulty. Interestingly, the
M1M2 (prometaphase) class in WTC Task 1 and 2 shows notably lower performances compared to
the other classes in WTC. This is likely due to the fact that prophase cells are morphologically similar
to interphase cells (M0) and that class imbalance exists between M0 and M1M2 which we purposely
preserve to resemble what we observe in real-life. Overall, compared to the baseline FixedChannels,
TargetParam consistently shows similar and occasionally slightly better performances across classes.

Domain generalization results We evaluate the performance of baseline and channel adaptive models
on out-of-distributions CHAMMI tasks when trained with existing domain generalization strategies
SWAD and MIRO in Tab. 3. All the models are pre-trained on ImageNet 22K and fine-tuned on
CHAMMI training set. Compared to training without domain generalization strategies, TargetParam,
HyperNet, and Template mixing show improved overall performances with both SWAD and MIRO,
while FixedChannels, Depthwise, SliceParam improve with SWAD but not MIRO. Channel-adaptive
models also show comparable or better performances compared to the FixedChannels baseline when
trained with domain generalization strategies. For instance, HyperNet trained with MIRO outperforms
FixedChannels with MIRO in all but one task, and TargetParam trained with SWAD outperforms
baseline in three out of six tasks.

Data augmentation and loss functions We evaluate the TPS [26] transformation in comparison
to baseline random cropping and horizontal flips. Results in Tab. 4 indicate that TPS increased the
overall F1 score of all models (comparing “TPS” to “Baseline” within each model). As mentioned in
Tab. 1 of the main paper, the increase is up to 2% for HyperNet. Interestingly, using TPS decreases
the F1 score of CP dataset for channel-adaptive models but not for the FixedChannel model.

In addition, we evaluated self-supervised learning (SSL) for solving the tasks in CHAMMI. Com-
pared to the baseline performance, using LSSL alone as the loss function severely undermines the
performances (“SSL” vs. “Baseline”, Tab. 4) of all models. When we combine TPS and LSSL,
the models continue to underperform. And finally, when we combine the supervised loss function
LProxyNCA++ and LSSL, as well as using the TPS transformation, the performance increased slightly
for FixedChannels, Template mixing, and HyperNet models, while staying the same or decreased for
the other models.

11



Table 3: Evaluation of existing generalization strategies SWAD [29] and MIRO [28] using fine-tuned
baseline and channel-adaptive models. Average scores are calculated in the same way as in Tab. 2

Average OOD WTC HPA CP

Model Overall WTC HPA CP Task2 Task2 Task3 Task2 Task3 Task4

FixedChannels 0.614 0.861 0.741 0.240 0.861 0.932 0.551 0.484 0.123 0.112
FixedChannels - MIRO 0.612 0.819 0.737 0.281 0.819 0.916 0.559 0.528 0.226 0.088

FixedChannels - SWAD 0.628 0.877 0.746 0.261 0.877 0.931 0.561 0.484 0.177 0.121

Depthwise 0.616 0.854 0.737 0.258 0.854 0.918 0.557 0.520 0.172 0.081
Depthwise - MIRO 0.596 0.821 0.724 0.243 0.821 0.902 0.546 0.509 0.154 0.065

Depthwise - SWAD 0.626 0.857 0.743 0.278 0.857 0.917 0.569 0.556 0.204 0.073
TargetParam 0.622 0.843 0.760 0.264 0.843 0.925 0.594 0.512 0.174 0.107

TargetParam - MIRO 0.625 0.877 0.748 0.251 0.877 0.928 0.567 0.533 0.131 0.088
TargetParam - SWAD 0.625 0.854 0.745 0.277 0.854 0.921 0.569 0.554 0.186 0.091

SliceParam 0.592 0.751 0.742 0.282 0.751 0.902 0.582 0.573 0.202 0.072
SliceParam - MIRO 0.567 0.673 0.748 0.280 0.673 0.900 0.597 0.545 0.202 0.094

SliceParam - SWAD 0.598 0.759 0.748 0.288 0.759 0.912 0.583 0.568 0.203 0.093
HyperNet [15] 0.616 0.846 0.745 0.257 0.846 0.922 0.568 0.508 0.170 0.093

HyperNet [15] - MIRO 0.629 0.842 0.756 0.289 0.842 0.922 0.590 0.583 0.186 0.098
HyperNet [15] - SWAD 0.632 0.856 0.741 0.298 0.856 0.922 0.560 0.582 0.192 0.119

Template mixing [16] 0.615 0.823 0.743 0.279 0.823 0.919 0.566 0.542 0.202 0.094
Template mixing [16] - MIRO 0.614 0.847 0.731 0.263 0.847 0.918 0.545 0.549 0.154 0.087

Template mixing [16] - SWAD 0.621 0.851 0.733 0.280 0.851 0.919 0.547 0.579 0.195 0.067

12



Table 4: Evaluation of TPS [26] transformation and SimCLR [19, 20] self-supervised learning (SSL)
framework using fine-tuned baseline and channel-adaptive models. See Section B.3 for more details
about TPS and the loss functions. “Baseline” condition: model used supervised ProxyNCA++ loss
(LProxyNCA++) and standard data transformation (without TPS). “TPS” and “SSL”: model trained with
either TPS or LSSL only. “TPS + SSL”: model trained with both TPS and LSSL. “TPS + 0.2 SSL”:
model trained with TPS and Lcombined, which consists of 0.2 SSL loss and 0.8 ProxyNCA++ loss.
Average scores are calculated in the same way as in Tabs. 2 and 3

.
Overall Score WTC HPA CP

Model Condition Overall WTC HPA CP Task2 Task2 Task3 Task2 Task3 Task4

FixedChannels Baseline 0.614 0.861 0.741 0.240 0.861 0.932 0.551 0.484 0.123 0.112
FixedChannels SSL 0.368 0.385 0.457 0.260 0.385 0.594 0.320 0.447 0.227 0.107
FixedChannels TPS 0.623 0.876 0.748 0.245 0.876 0.932 0.564 0.494 0.133 0.109
FixedChannels TPS + SSL 0.359 0.398 0.425 0.255 0.398 0.540 0.309 0.426 0.217 0.123
FixedChannels TPS + 0.2 SSL 0.633 0.879 0.766 0.253 0.879 0.920 0.613 0.499 0.164 0.097

Depthwise Baseline 0.616 0.854 0.737 0.258 0.854 0.918 0.557 0.520 0.172 0.081
Depthwise SSL 0.205 0.185 0.231 0.198 0.185 0.261 0.202 0.280 0.221 0.094
Depthwise TPS 0.622 0.877 0.755 0.235 0.877 0.920 0.591 0.496 0.113 0.097
Depthwise TPS + SSL 0.204 0.176 0.236 0.199 0.176 0.270 0.203 0.266 0.228 0.104
Depthwise TPS + 0.2 SSL 0.608 0.818 0.754 0.251 0.818 0.917 0.592 0.506 0.170 0.078

SliceParam Baseline 0.592 0.751 0.742 0.282 0.751 0.902 0.582 0.573 0.202 0.072
SliceParam SSL 0.259 0.267 0.283 0.226 0.267 0.341 0.226 0.335 0.251 0.093
SliceParam TPS 0.600 0.775 0.751 0.275 0.775 0.913 0.588 0.574 0.177 0.075
SliceParam TPS + SSL 0.264 0.274 0.291 0.227 0.274 0.339 0.244 0.344 0.243 0.094
SliceParam TPS + 0.2 SSL 0.600 0.758 0.767 0.276 0.758 0.901 0.633 0.544 0.210 0.074

TargetParam Baseline 0.622 0.843 0.760 0.264 0.843 0.925 0.594 0.512 0.174 0.107
TargetParam SSL 0.247 0.194 0.307 0.239 0.194 0.375 0.240 0.351 0.256 0.109
TargetParam TPS 0.628 0.842 0.779 0.262 0.842 0.935 0.623 0.513 0.167 0.105
TargetParam TPS + SSL 0.241 0.201 0.297 0.225 0.201 0.363 0.231 0.334 0.242 0.100
TargetParam TPS + 0.2 SSL 0.618 0.822 0.759 0.275 0.822 0.935 0.583 0.564 0.161 0.100

Template mixing Baseline 0.615 0.823 0.743 0.279 0.823 0.919 0.566 0.542 0.202 0.094
Template mixing SSL 0.230 0.224 0.251 0.215 0.224 0.291 0.211 0.313 0.239 0.093
Template mixing TPS 0.616 0.818 0.760 0.270 0.818 0.910 0.610 0.536 0.189 0.084
Template mixing TPS + SSL 0.237 0.253 0.248 0.210 0.253 0.284 0.212 0.301 0.237 0.092
Template mixing TPS + 0.2 SSL 0.621 0.822 0.754 0.286 0.822 0.899 0.610 0.551 0.215 0.090

HyperNet Baseline 0.616 0.846 0.745 0.257 0.846 0.922 0.568 0.508 0.170 0.093
HyperNet SSL 0.200 0.174 0.225 0.202 0.174 0.255 0.195 0.266 0.233 0.106
HyperNet TPS 0.630 0.854 0.761 0.276 0.854 0.926 0.595 0.556 0.156 0.118
HyperNet TPS + SSL 0.202 0.172 0.232 0.202 0.172 0.273 0.191 0.260 0.241 0.105
HyperNet TPS + 0.2 SSL 0.632 0.855 0.756 0.283 0.855 0.923 0.589 0.563 0.189 0.097

13



References
[1] Jack Bandy and Nicholas Vincent. Nutrition label template for

dataset documentation. https://www.overleaf.com/latex/templates/
nutrition-label-template-for-dataset-documentation/gxzpbfmncyfp. Accessed: 2023-06-
07.

[2] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wallach,
Hal Daumé Iii, and Kate Crawford. Datasheets for datasets. Communications of the ACM, 64(12):
86–92, 2021.

[3] Matheus P Viana, Jianxu Chen, Theo A Knijnenburg, Ritvik Vasan, Calysta Yan, Joy E Arakaki, Matte
Bailey, Ben Berry, Antoine Borensztejn, Eva M Brown, et al. Integrated intracellular organization and its
variations in human ips cells. Nature, pages 1–10, 2023.

[4] Peter J Thul, Lovisa Åkesson, Mikaela Wiking, Diana Mahdessian, Aikaterini Geladaki, Hammou Ait Blal,
Tove Alm, Anna Asplund, Lars Björk, Lisa M Breckels, et al. A subcellular map of the human proteome.
Science, 356(6340):eaal3321, 2017.

[5] Mark-Anthony Bray, Sigrun M Gustafsdottir, Mohammad H Rohban, Shantanu Singh, Vebjorn Ljosa,
Katherine L Sokolnicki, Joshua A Bittker, Nicole E Bodycombe, Vlado Dančík, Thomas P Hasaka, et al. A
dataset of images and morphological profiles of 30 000 small-molecule treatments using the cell painting
assay. Gigascience, 6(12):giw014, 2017.

[6] Gregory P Way, Ted Natoli, Adeniyi Adeboye, Lev Litichevskiy, Andrew Yang, Xiaodong Lu, Juan C
Caicedo, Beth A Cimini, Kyle Karhohs, David J Logan, et al. Morphology and gene expression profiling
provide complementary information for mapping cell state. Cell systems, 13(11):911–923, 2022.

[7] Sigrun M Gustafsdottir, Vebjorn Ljosa, Katherine L Sokolnicki, J Anthony Wilson, Deepika Walpita,
Melissa M Kemp, Kathleen Petri Seiler, Hyman A Carrel, Todd R Golub, Stuart L Schreiber, et al.
Multiplex cytological profiling assay to measure diverse cellular states. PloS one, 8(12):e80999, 2013.

[8] Jianxu Chen, Liya Ding, Matheus P Viana, HyeonWoo Lee, M Filip Sluezwski, Benjamin Morris, Melissa C
Hendershott, Ruian Yang, Irina A Mueller, and Susanne M Rafelski. The allen cell and structure segmenter:
a new open source toolkit for segmenting 3d intracellular structures in fluorescence microscopy images.
BioRxiv, page 491035, 2018.

[9] Casper Winsnes abd Emma Lundberg abd Maggie, Phil Culliton, Trang Le, UAxelsson, and Wei Ouyang.
Human protein atlas - single cell classification, 2021. URL https://kaggle.com/competitions/
hpa-single-cell-image-classification.

[10] Hpa-cell-segmentation. https://github.com/CellProfiling/HPA-Cell-Segmentation, 2022.

[11] Anne E Carpenter, Thouis R Jones, Michael R Lamprecht, Colin Clarke, In Han Kang, Ola Friman,
David A Guertin, Joo Han Chang, Robert A Lindquist, Jason Moffat, et al. Cellprofiler: image analysis
software for identifying and quantifying cell phenotypes. Genome biology, 7:1–11, 2006.

[12] The drug repurposing hub, 2017. URL https://clue.io/repurposing.

[13] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A
convnet for the 2020s. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2022.

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009.

[15] David Ha, Andrew Dai, and Quoc Le. Hypernetworks. In International Conference on Learning Represen-
tations (ICLR), 2016.

[16] Pedro Savarese and Michael Maire. Learning implicitly recurrent CNNs through parameter sharing. In
International Conference on Learning Representations (ICLR), 2019.

[17] Bryan A. Plummer, Nikoli Dryden, Julius Frost, Torsten Hoefler, and Kate Saenko. Neural parameter
allocation search. In International Conference on Learning Representations (ICLR), 2022.

[18] Eu Wern Teh, Terrance DeVries, and Graham W Taylor. Proxynca++: Revisiting and revitalizing proxy
neighborhood component analysis. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXIV 16, pages 448–464. Springer, 2020.

14

https://www.overleaf.com/latex/templates/nutrition-label-template-for-dataset-documentation/gxzpbfmncyfp
https://www.overleaf.com/latex/templates/nutrition-label-template-for-dataset-documentation/gxzpbfmncyfp
https://kaggle.com/competitions/hpa-single-cell-image-classification
https://kaggle.com/competitions/hpa-single-cell-image-classification
https://github.com/CellProfiling/HPA-Cell-Segmentation
https://clue.io/repurposing


[19] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pages
1597–1607. PMLR, 2020.

[20] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E Hinton. Big self-
supervised models are strong semi-supervised learners. Advances in neural information processing systems,
33:22243–22255, 2020.

[21] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised
visual representation learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 9729–9738, 2020.

[22] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena Buchatskaya,
Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your
own latent-a new approach to self-supervised learning. Advances in neural information processing systems,
33:21271–21284, 2020.

[23] Cheng Jiang, Xinhai Hou, Akhil Kondepudi, Asadur Chowdury, Christian W Freudiger, Daniel A Orringer,
Honglak Lee, and Todd C Hollon. Hierarchical discriminative learning improves visual representations of
biomedical microscopy. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 19798–19808, 2023.

[24] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 9650–9660, 2021.

[25] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre
Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning robust visual
features without supervision. arXiv preprint arXiv:2304.07193, 2023.

[26] Zhixian Tang, Kun Chen, Mingyuan Pan, Manning Wang, and Zhijian Song. An augmentation strategy
for medical image processing based on statistical shape model and 3d thin plate spline for deep learning.
IEEE Access, 7:133111–133121, 2019.

[27] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[28] Junbum Cha, Kyungjae Lee, Sungrae Park, and Sanghyuk Chun. Domain generalization by mutual-
information regularization with pre-trained models. In Computer Vision–ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXIII, pages 440–457. Springer,
2022.

[29] Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, and Sungrae
Park. Swad: Domain generalization by seeking flat minima. Advances in Neural Information Processing
Systems, 34:22405–22418, 2021.

15


	CHAMMI: additional details
	Data sources
	Data processing
	Data sampling and splitting

	Experiments
	Model architecture
	Representation learning
	Loss functions
	Implementation details
	Evaluation

	Additional results and discussions

