
Supplementary Material486

Organization In Appendix A, we state some elementary probabilistic facts. The next two sections487

focus on proving our lemma on noisy location estimation. In Appendix B, we prove some critical488

lemmas used in the proof, and in Appendix C, we present the complete version of our location489

estimation algorithm, while addressing some typos in the main text. We mention some typos in490

footnotes and correct other minor typos without a mention.491

Moving forward, in Appendix D, we introduce an algorithm and prove a hardness result for the492

specific version of list-decodable mean estimation we consider, which differs from prior work. Finally,493

in Appendix E, we state the final guarantees we can get for the problem of list-decodable stochastic494

optimization, incorporating our lemma from Appendix D.495

A Elementary Probability Facts496

In this section, we recall some elementary lemmas from probability theory.497

Lemma A.1 (Hoeffding). Let X1, . . . Xn be independent random variables such that Xi 2 [ai, bi].498

Let Sn := 1
n

P
n

i=1 Xi, then for all t > 0499

Pr[|Sn �E[Sn]| � t] exp

✓
�

2n2
t
2

P
n

i=1(bi � ai)2

◆
.

Lemma A.2 (Multivariate Chebyshev). Let X1, . . . , Xm be independent random variables drawn500

from D where D is a distribution over Rd
such that EX⇠D[X] = 0 and EX⇠D[kXk

2] �
2
. Let501

Sm := 1
m

P
m

i=1 Xi, then for all t > 0502

Pr[kSmk � t] �
2
/mt

2
.

Proof. We first prove the following upper bound,503

Pr

2

48v kvk = 1.

������
1

m

X

i2[m]

Xi · v

������
> t

3

5 <
E[|
P

i2[m] Xi · v|
2]

m2 t2
<

E[
P

i,j
(Xi · v)(Xj · v)]

m2 t2

<

P
i,j

E[(Xi · v)(Xj · v)]

m2 t2
<

P
i
E[(Xi · v)2]

m2 t2
<

P
i
E[kXik

2]

m2 t2

<
m�

2

m2 t2
=

�
2

m t2
.

Since the inequality holds for all unit v, it also holds for the unit v in the direction of Sm, completing504

the proof.505

Fact A.3 (Inflation via conditional probability). Let y be a random variable with mean µ and variance506

�
2

and let ⇠ be an arbitrary random variable independent of y, then507

Pr[⇠ 2 (a, b)] < (1 + 2/A2) Pr[⇠ + y 2 (a+ µ� �A, b+ µ+ �A)

< (1 + 2/A2) Pr[⇠ + y 2 (a� |µ|� |�A|, b+ |µ|+ |�A|)] .

Proof. To do this, we inflate the intervals and use conditional probabilities.508

Pr[⇠ 2 (a, b)] = Pr[⇠ + y 2 (a+ µ� �A, b+ µ+ �A) | |y � µ| < �A]

=
Pr[⇠ + y 2 (a+ µ� �A, b+ µ+ �A) and |y � µ| < �A]

Pr[|y � µ| < �A]

< (1� 1/A2)�1 Pr[⇠ + y 2 (a+ µ� �A, b+ µ+ �A) and |y � µ| < �A]

< (1 + 2/A2) Pr[⇠ + y 2 (a+ µ� �A, b+ µ+ �A)] .

The second inequality above follows from observing that we are simply lengthening the interval.509

We will often use the second version for ease of analysis.510

13

B Useful Lemmas511

In this section, we present some helpful lemmas for the algorithm on noisy one-dimensional location512

estimation.513

To recap the setting: We can access samples from distributions ⇠ + y and ⇠ + y
0 + t. Here,514

Pr[⇠ = 0] > ↵, y and y
0 are distributions with zero mean and bounded variance, and t 2 R is an515

unknown translation. Our objective is to estimate the value of t.516

B.1 Useful Lemma for Rough Estimation517

Our algorithm for one-dimensional location estimation consists of two steps. In the first step, we518

obtain an initial estimate of the shift between the two distributions by computing pairwise differences519

of samples drawn from each distribution. This involves taking the median of the distribution of x+ y,520

where x is symmetric and y has mean 0 and bounded variance.521

The following lemma demonstrates that the median of this distribution is at most O(�↵�1/2), where522

� is the standard deviation of y. Furthermore, this guarantee cannot be improved.523

Fact B.1 (Median of Symmetric + Bounded-variance Distribution). Let x be a random variable524

symmetric around 0 such that ↵ 2 (0, 1), Pr[x = 0] � ↵. Let y be a random variable with mean 0525

and variance �
2
. If S is a set of O(1/↵2 log(1/�)) samples drawn from the distribution of x + y,526

|median(S)| O(�↵�1/2).527

This guarantee is tight in the sense that there exist distributions for x and y satisfying the above528

constraints, such that median(x+ y) can be as large as ⌦(�↵�1/2).529

Proof. We show that Pr[x+ y < �O(�/
p
↵)] < 0.5 and Pr[x+ y > O(�/

p
↵)] < 0.5, as a result,530

|median(x+ y)| < O(�/
p
↵). We will later transfer this guarantee to the uniform distribution over531

the samples.532

Applying Fact A.3 to the first probability, we see that Pr[x+ y < �O(�/
p
↵)] < (1 + ↵) Pr[x <533

�O(�/
p
↵)].534

Since Pr[x = 0] � ↵, we see that Pr[x < 0] 1/2� ↵,535

and so Pr[x+y < �O(�/
p
↵)] < (1+↵)(0.5�↵) = 0.5�↵+0.5↵�↵

2 = 0.5�0.5↵�↵
2
< 0.5.536

The upper bound follows similarly.537

Since Pr[x = 0] � ↵ and Pr[|y| < O(�/
p
↵)] � 1 � ↵, we see Pr[|x + y| < O(�/

p
↵)] � ↵/2.538

Hoeffding’s inequality (Lemma A.1) now implies that the empirical median also satisfies the above539

upper bound as long as the number of samples is greater than O(1)/↵2 log(1/�).540

To see that this is tight, consider the distribution centered at 0, whose density function is 2/(y + 2)3541

in the range [1,1), and is 0 otherwise.542

Call this Dy�3 . Observe that PrDy�3 [z > t] < O(1)
R1
t

y
�3

dy = C/t
2.543

Let x be a symmetric distribution whose distribution takes the value 0 with probability ↵ and takes544

the values ±↵
�1/2100C1/2 + 10 with probability 0.5(1� ↵).545

We show that the median of the distribution of x + y where y is drawn from Dy�3 , is larger than546

⌦(↵�1/2).547

To see this, we show that the probability that x+ y takes a value smaller than 100↵�1/2
C

1/2 is less548

than half, implying that the median has to be larger than this quantity.549

x takes three values. Note that y + 100↵�1/2
C

1/2 + 12 places no mass in the region550

(�1, 100↵�1/2
C

1/2 + 10]. So to estimate the probability that x + y takes a value smaller than551

100↵�1/2
C

1/2 + 10, we only need to consider contributions from the other two possible values. By552

14

choosing ↵ small enough, so that 100↵�1/2
C

1/2
> 10, we see553

Pr[x+ y < 100↵�1/2
C

1/2 + 10]

< 0.5(1� ↵) Pr[y < 200↵�1/2
C

1/2 + 20] + ↵Pr[y < 100↵�1/2
C

1/2 + 10]

< 0.5(1� ↵)(1� C/(200↵�1/2
C

1/2 + 20)2) + ↵(1� C/(100↵�1/2
C

1/2 + 10)2)

< 0.5(1� ↵)(1� ↵
1/2

/(400)2) + ↵

< 0.5 + 0.5↵� ↵
1/2

/8 · (4002) .

We are done when 0.5↵� ↵
1/2

/8 · (4002) < 0, this happens for ↵1/2
< 2/(8 · (4002)).554

B.2 Useful Lemma for Finer Estimation555

In the second step of our location-estimation lemma, we refine the estimate of t. To do this, we first556

re-center the distributions based on our rough estimate, so that the shift after re-centering is bounded.557

Then, we identify an interval I centered around 0 such that, when conditioning on ⇠+ z falling within558

this interval, the expected value of ⇠ + z remains the same as when conditioning on ⇠ falling within559

the same interval. This expectation will help us get an improved estimate, which we use to get an560

improved re-centering of our original distributions, and repeat the process.561

To identify such an interval, we search for a pair of bounded-length intervals equidistant from the562

origin (for e.g. (�10�,�5�) and (5�, 10�)) that contain very little probability mass. By doing so,563

when z is added to ⇠, the amount of probability mass shifted into the interval (�5�, 5�) z remains564

small.565

In this subsection, we prove Lemma B.2, which states that any positive sequence which has a finite566

sum must eventually have one small element. The lemma also gives a concrete upper bound on which567

element of the sequence satisfies this property.568

Lemma B.2. ai � 0 for all i and
P1

i=1 ai < C for some constant C. Also, suppose we have569

⌘ 2 [0, 1]. Then there is an i such that 1 L < i < (C/a0 + L)1/⌘ such that iai < ⌘
P

i

j=1 aj .570

Consider a partition of the reals into length L intervals. In our proof, we will use Lemma B.2 on the571

sequence ai, where ai corresponds to an upper bound on the mass of ⇠ contained in the i-th intervals572

equidistant from the origin on either side, and the mass that crosses them (i.e., the mass of ⇠ that is573

moved either inside or out of the interval when z is added to it).574

We need the following calculation to prove Lemma B.2.575

Notation: For integer i � 1 and ⌘ 2 (0, 1), define (i� ⌘)! := ⇧i

j=1(j � ⌘).576

Fact B.3. Let Ak := 1 +
P

k�1
t=1

⌘(t�1)!
(t�⌘)! . Then, for k � 2, Ak = (k � 1)!/(k � 1� ⌘)!.577

Proof. We prove this by induction. By definition, our hypothesis holds for A2 because A2 =578

1 + ⌘/(1� ⌘) = 1/(1� ⌘) = (2� 1)!/(2� 1� ⌘)!. Suppose it holds for all 2 t k. We then579

show that it holds for t = k + 1.580

Ak+1 = 1 +
kX

t=1

⌘(t� 1)!

(t� ⌘)!
= Ak +

⌘ (k � 1)!

(k � ⌘)!

=
(k � 1)!

(k � 1� ⌘)!
+

⌘ (k � 1)!

(k � ⌘)!
=

(k � 1)!

(k � 1� ⌘)!

✓
1 +

⌘

k � ⌘

◆

=
(k � 1)!

(k � 1� ⌘)!

k

k � ⌘
=

k!

(k � ⌘)!
.

581

Proof of Lemma B.2 Let U = (C/a0 + L)1/⌘ and suppose towards a contradiction that there is582

no such i that satisfies the lemma. Specifically, all integers i 2 [1, U], we will assume that for583

iai � ⌘
P

i

j=1 aj . We then show that this implies i1�⌘
ai � ⌘a0 for all i in the range.584

15

Consider the inductive hypothesis on t given by at � ⌘
(t�1)!
(t�⌘)! · a0. The base case when t = 1 is true585

since a1 � ⌘a0/(1 � ⌘) by our assumption. Suppose the inductive hypothesis holds for integers586

t 2 [1, k � 1]. We show this for t = k below.587

ak �
⌘

k � ⌘

k�1X

t=0

at

�
a0⌘

k � ⌘

1 +

k�1X

t=1

⌘(t� 1)!

(t� ⌘)!

!

= a0⌘
(k � 1)!

(k � ⌘)!
.

The final equality follows from Fact B.3 which states that (k� 1)!/(k� 1� ⌘)! = 1+
P

k�1
t=1

⌘(t�1)!
(t�⌘)! .588

Simplifying this further, we see that since (i� ⌘) � i exp(�⌘/i) for all i 2 [1, k],589

ak � a0⌘
(k � 1)!

(k � ⌘)!

� a0⌘
(k � 1)!

k! exp(�⌘/k)

� a0⌘ (1/k) (1/ exp(�⌘(
kX

i=1

1/i)))

� a0⌘ (1/k) (1/ exp(�⌘ log(k)/20))

� (a0/2)⌘ (1/k1�⌘/20) .

Finally, observe that590

C =
UX

i=L

ai > a0⌘

UX

i=L

(1/i1�⌘/20)

> a0⌘

Z
U

L

(1/x1�⌘) dx

= a0(U
⌘
� L

⌘).

If a0(U⌘
� L

⌘) > C, we have a contradiction, since
P1

i=L
ai < C. This follows when U >591

(C/a0 + L)1/⌘ .592

C Noisy Location Estimation593

In this section, we state and prove the guarantees of our algorithms for noisy location estimation594

(Lemma 3.1 and Lemma 3.5).595

C.1 One-dimensional Noisy Location Estimation596

Throughout the technical summary and some parts of the proof, we make the assumption that the597

variables y and y
0 were bounded. Extending this assumption to bounded-variance distributions598

requires significant effort.599

Our algorithm for one-dimensional noisy location estimation (Algorithm 4) can be thought of as a600

two-step process. The first step involves a rough initial estimation algorithm, while the second step601

employs an iterative algorithm that progressively refines the estimate by a factor of ⌘ in each iteration.602

Due to space limitations and for ease of exposition, the algorithm we present in the main body is a603

sketch of the refinement procedure.604

In this Algorithm 4 , we introduce the definition of P̂ (the empirical estimate of P̃ (·)), which is an605

upper bound on the probability mentioned earlier. This probability can be calculated using samples606

16

from ⇠ + z and ⇠ + z
0. Additionally, we incorporate the iterative refinement process within the607

algorithm.608

Algorithm 4 One-dimensional Location Estimation: Shift1D(S1, S2, ⌘,�,↵)

Input: Sample sets S1, S2 ⇢ Rd of size m, ↵, ⌘ 2 (0, 1), � > 0

1. Let T = O(log1/⌘(1/↵)). For j 2 {1, 2}, partition Sj into T equal pieces, S(i)
j

for i 2 [T].
2. D = {a� b | a 2 S

(1)
1 , b 2 S

(1)
2 }.

3. t0(1) := median(D).
4. Set A = O(1/

p
↵).

5. Repeat steps 6 to 12, for i going from 2 to T :
6. S(i)

1 := S
(i)
1 � t

0
r
(i� 1).

7. For j 2 {1, 2}

P̂j(i) := O(1) Pr
x⇠S

(i)
j

[|x| 2 A�(i� 5, i+ 5)]

+O(1)
i�1X

j=1

(1/(i� j)2) Pr
x⇠S

(i)
j

[|x| 2 Aj� +A�[�4, 5).]

8. Let P̂ (i) = P̂1(i) + P̂2(i).
9. Identify an integer k 2 [1/(↵⌘), (O(1)/↵⌘)1/⌘] such that

P̂ (k) ⌘

X

j2{1,2}

Pr
x⇠S

(i)
j

[|x| 2 A�k]±O(⌘/i).

10. t0(i) := t
0(i� 1) +E

z⇠S
(i)
1
[z | |z| A�k]�E

z⇠S
(i)
2
[z | |z| A�k].

12. A := ⌘A.
11. Return t

0(T)

Lemma C.1 (One-dimensional location-estimation). There is an algorithm (Algorithm 4) which,609

given poly((O(1)/⌘↵)1/⌘, log(1/�⌘↵)) samples of the form ⇠ + y + t and ⇠ + y
0
, where t 2 R is610

an unknown translation, runs in time ˜poly((O(1)/⌘↵)1/⌘, log(1/�⌘↵)) and recovers t
0

such that611

|t� t
0
| O(⌘�).612

Proof. Our proof is based on the following claims:613

Claim C.2 (Rough Estimate). There is an algorithm which, given m = O((1/↵4) log(1/�))614

samples of the kind ⇠+ y+ t and ⇠+ y
0
, where t 2 R is an unknown translation, returns t

0
r

satisfying615

|t
0
r
� t| < O(�↵�1/2). 2616

Claim C.3 (Fine Estimate). Suppose z, z
0

have means bounded from above by A�

and variances at most �
2

and suppose ↵ 2 (0, 1) and ⌘ 2 (0, 1/2). Then in

poly((O(1)/↵⌘)1/⌘, log(1/�⌘↵)) samples and poly((O(1)/↵⌘)1/⌘, log(1/�⌘↵)) time, it is possible

to recover k 2 [1/⌘↵, (O(1)/⌘↵)O(1/⌘)] such that

bE[⇠ + z | |⇠ + z| A�k]� bE[⇠ + z
0
| |⇠ + z

0
| A�k] = E[z]�E[z0]± ⌘ (A�).

Using Claim 3.2, we first identify a rough estimate t
0
r

satisfying |t
0
r
� t| < O(�↵�1/2). This allows617

us to re-center y0. Let the re-centered distribution be denoted by z
0 = y

0 and z = y + t� t
0
r
. Then z618

and z
0 are such that E[z] and E[z0] are both at most O(�↵�1/2) in magnitude, and have variance at619

most �2.620

Claim 3.4 then allows us to estimate t0
f

such that |(E[z]�E[z0])�t
0
f
| = |t�t

0
r
�t

0
f
| ⌘ O(�↵�1/2).621

Setting t
0 = t

0
r
+ t

0
f

, we see that our estimate t
0 is now ⌘ times closer to t compared to t

0
r
.622

2Typo in main body: Missing ↵�1/2 term.

17

To refine this estimate further, we can obtain fresh samples and re-center using t
0 instead of t0

r
.623

Repeating this process O(log1/⌘(1/↵)) = O(log⌘(↵)) times is sufficient to obtain an estimate that624

incurs an error of ⌘ · ⌘
log⌘(↵

1/2)
·O(�↵�1/2) O(⌘�).625

This results in a runtime and sample complexity that is only O(log1/⌘(1/↵)) times the runtime and626

sample complexity required by Claim 3.4. This amounts to the final runtime and sample complexity627

being poly((O(1)/↵⌘)1/⌘, log(1/�⌘↵)).628

We now prove Claim 3.2 and Claim 3.4.629

Claim 3.2 shows that the median of the distribution of pairwise differences of ⇠ + y + t and ⇠ + y
0630

estimates the mean up to an error of �↵�1/2.631

Proof of Claim 3.2 Let ⇠̃ be a random variable with the same distribution as ⇠ and independently632

drawn. We have independent samples from the distributions of ⇠ + y + t and ⇠ + y
0. Applying633

Fact B.1 to these distributions, we see that if we have at least O(1/↵4) log(1/�) samples from the634

distribution of (⇠ � ⇠̃) + (y � y
0) + t, these samples will have a median of t±O(�/

p
↵).635

Proof of Claim 3.4 To identify such a k, the idea is to ensure that E[⇠ + z | |⇠ + z| A�k] =636

E[⇠ + z | |⇠| A�k]±O(A⌘�) = E[⇠ | |⇠| A�k] +E[z]±O(A⌘�), and similarly for z0. The637

theorem follows by taking the difference of these equations.638

Before we proceed, we will need the following definitions: let P (i, z) be defined as follows:639

P (i, z) := Pr[|⇠| 2 A�(i� 1, i+ 1)]

+ Pr[|⇠| < Ai�, |⇠ + z| > Ai�] + Pr[|⇠| > Ai�, |⇠ + z| < Ai�] .

This will help us bound the final error terms that arise in the calculation. We will need the following640

upper bound on P (i, z) + P (i, z0).641

Claim C.4. There exists a function P̃ : N ! R+
satisfying:642

1. For all i 2 N, P̃ (i) � P (i, z) + P (i, z0) which can be computed using samples from ⇠ + z643

and ⇠ + z
0
.644

2. There is a k 2 [(1/↵⌘), (C/↵+ 1/↵⌘)1/⌘] such that kP̃ (k) < ⌘
P

k

j=1 P̃ (k).645

3.
P

k

j=1 P̃ (k) = O(Pr[|⇠ + z| A�k] + Pr[|⇠ + z
0
| A�k]).646

4. With probability 1� �, for all i < (O(1)/⌘↵)O(1)/⌘
, P̃ (i) can be estimated to an accuracy647

of less than O(⌘/i) by using poly((O(1)/⌘↵)1/⌘, log(1/�↵⌘)) samples from ⇠ + z and648

⇠ + z
0
.649

We defer the proof of Claim C.4 to Appendix C.2, and continue with our proof showing that650

E[⇠ + z | |⇠ + z| A�k] ⇡ E[⇠ | |⇠| A�k] for k satisfying the conclusions of Claim C.4. To this651

end, observe the following for f(⇠, z) being either 1 or ⇠ + z.652

|E[f(⇠, z) 1(|⇠| �i)]�E[f(⇠, z) 1(|⇠ + z| �i)]|

 |E[f(⇠, z) 1(|⇠ + z| > �i) 1(|⇠| �i)]|+ |E[f(⇠, z) 1(|⇠ + z| �i) 1(|⇠| > �i)]|.

By setting f(⇠, z) := 1 and considering the case where i = k satisfies the conclusions of Claim C.4,653

we can bound the “error terms"654

Pr[|⇠ + z| A�k and |⇠| > A�k] and Pr[|⇠ + z| > A�k and |⇠| A�k] in terms of P̃ (k).655

Furthermore, P̃ (k) itself is upper bounded by O(⌘/k)(Pr[|⇠ + z| A�k] + Pr[|⇠ + z
0
| A�k]) as656

per Item 2 and Item 3. Putting these facts together, we have that657

|Pr[|⇠| A�k]� Pr[|⇠ + z| A�k]|

= O(⌘/k)(Pr[|⇠ + z| A�k] + Pr[|⇠ + z
0
| A�k]).

18

A similar claim holds for the distribution over z0. An application of the triangle inequality now658

implies659

|Pr[|⇠ + z
0
| A�k]� Pr[|⇠ + z| A�k]|

= O(⌘/k) (Pr[|⇠ + z| A�k] + Pr[|⇠ + z
0
| A�k]).

If |A�B| < ⌧(A+B) it follows that (1� ⌧)/(1+ ⌧) < A/B < (1+ ⌧)/(1� ⌧). For ⌧ 2 (0, 1/2],660

this means A = ⇥(B). Applying this to our case, we can conclude that Pr[|⇠ + z
0
| A�k] =661

⇥(Pr[|⇠ + z| A�k]). Substituting this equivalence back into the previous expression, we obtain:662

|Pr[|⇠| A�k]� Pr[|⇠ + z| A�k]| = O(⌘/k) (Pr[|⇠ + z| A�k]) . (1)

Similarly, when f(⇠, z) := ⇠ + z, we need to control the error terms: E[(⇠ + z) 1(|⇠ + z| 663

A�k) 1(|⇠| > A�k)] and E[(⇠ + z) 1(|⇠ + z| > A�k) 1(|⇠| A�k)].664

Observe that (⇠ + z) 1(|⇠ + z| A�k) 1(|⇠| > A�k) has a nonzero value with probability at most665

E[1(|⇠ + z| A�k) 1(|⇠| > A�k)] < P̃ (k). Also, the magnitude of (⇠ + z) in this event is at most666

A�k. Putting these together, we get that667

|E[(⇠ + z) 1(|⇠ + z| A�k) 1(|⇠| > A�k)]| < A�kP̃ (k) < O(A�⌘)
kX

j=1

P̃ (j).

Unfortunately, we cannot use the same argument to bound E[(⇠+z) 1(|⇠+z| > A�k) 1(|⇠| A�k)],668

since |⇠ + z| is no longer bounded by A�k in this event. However, we can break the sum ⇠ + z as669

follows: ⇠ + z = ⇠ + z1(|z| > A�k) + z1(|z| A�k). This allows us to get the following bound:670

E[(⇠ + z) 1(|⇠ + z| > A�k) 1(|⇠| A�k)]

< 2A�kP̃ (k) +E[z 1(|z| > A�k) 1(|⇠ + z| > A�k) 1(|⇠| A�k)]

< 2A�kP̃ (k) +E[z 1(|z| > A�k)]

< 2A�kP̃ (k) +A�/k

< O(A⌘�

kX

j=1

P̃ (j)) +O(A⌘�↵),

where the third inequality follows by an application of Chebyshev’s inequality, and the final inequality671

follows by choosing k � 1/(⌘↵).672

Putting everything together, we see673

E[(⇠ + z) 1(|⇠ + z| A�k)] = E[(⇠ + z) 1(|⇠| A�k)]±O(A�⌘↵+A�⌘

kX

j=1

P̃ (j)). (2)

To finally compute the conditional probability, we use Equation (1) and Equation (2) to get674

E[(⇠ + z) | |⇠| A�k] =
E[(⇠ + z) 1(|⇠ + z| A�k)]±O(A�⌘↵+A�⌘

P
k

j=1 P̃ (j))

Pr[|⇠| A�k]

=
E[(⇠ + z) 1(|⇠ + z| A�k)]±O(A�⌘↵+A�⌘

P
k

j=1 P̃ (j))

(1 +⇥(⌘/k)) Pr[|⇠ + z| A�k]

= (1�⇥(⌘/k)) E[(⇠ + z) | |⇠ + z| A�k]

±O(1)
A�⌘↵+A�⌘Pr[|⇠ + z| A�k]

Pr[|⇠ + z| A�k]

= E[(⇠ + z) | |⇠ + z| A�k]±O(A⌘�) ,

where the second inequality is a consequence of Item 3, and the last is due to the fact that Pr[|⇠+z| 675

A�k] � ↵/2 whenever k > 2, which follows from an application of Fact A.3 while noting the fact676

that Pr[⇠ = 0] � ↵.677

Taking a difference for the above calculations for z and z
0, we see that,678

E[(⇠ + z) | |⇠ + z| A�k]�E[(⇠ + z
0) | |⇠ + z

0
| A�k] = E[z]�E[z0]±O(A⌘�).

19

Consider this final error, and let O(A⌘�) < CA⌘� for some constant C. Repeating the above679

argument initially setting ⌘ = ⌘
0
/C, where C is the constant gives us the guarantee we need.680

Finally, we estimate the runtime and sample complexity of our algorithm. The main bottleneck in our681

algorithm is the repeated estimation of P̃ (i) and estimation of E[(⇠ + z) | |⇠ + z| A�k].682

According to Item 4, each time we estimate P̃ (i) to the desired accuracy, we draw683

poly((O(1)/↵⌘)1/⌘, log(1/�⌘↵)) samples.684

An application of Hoeffding’s inequality (Lemma A.1) then allows us to estimate the con-685

ditional expectation E[(⇠ + z) | |⇠ + z| A�k] to an accuracy of ⌘A� by drawing686

poly((O(1)/↵⌘)1/⌘, log(1/�⌘↵)) samples as well. The exponential dependence here comes from687

the exponential upper bound on k.688

689

C.2 Proof of Claim C.4690

In this section, we prove the existence of P̃ (·) which is an upper bound on P (i, z) + P (i, z0), which691

we can estimate using samples from ⇠ + z and ⇠ + z
0.692

Proof of Claim C.4693

Proof of Item 1:694

Recall the definition of P (i, z).695

P (i, z) := Pr[|⇠| 2 A�(i� 1, i+ 1)]

+ Pr[|⇠| < Ai�, |⇠ + z| > Ai�] + Pr[|⇠| > Ai�, |⇠ + z| < Ai�] .

For Item 1 to hold, we need to define P̃ (i) to be an upper bound on P (i, z) + P (i, z0) which can be696

computed using samples from ⇠ + z and ⇠ + z
0. To this end, we bound P (i, z) as follows. First, note697

that we can adjust the endpoints of the intervals to get698

P (i, z) < 3Pr[|⇠| 2 A�(i� 1, i+ 1)]

+ Pr[|⇠| < A(i� 1)�, |⇠ + z| > Ai�] + Pr[|⇠| > A(i+ 1)�, |⇠ + z| < Ai�] .

Then, we partition the ranges in the definition above into intervals of length A� to get:699

P (i, z) < 3Pr[|⇠| 2 A�(i� 1, i+ 1)]

+
i�2X

j=1

Pr[|⇠| 2 Aj� + [0, A�), |⇠ + z| > Ai�]

+
i�1X

j=1

Pr[|⇠| > A(i+ 1)�, |⇠ + z| 2 Aj� + [0, A�)].

Next, an application of the triangle inequality to |⇠| 2 Aj� + [0, A�) and |⇠ + z| > Ai� implies700

that |z| � A(i � j � 1)�. Similarly, the same kind of argument when |⇠| > A(i + 1)� and701

|⇠ + z| 2 Aj� + [0, A�) demonstrates that |�z| = |⇠ + z � ⇠| � A(i� j)�. We then use Fact A.3702

to move from |⇠ + z| to |⇠| in the third term.703

P (i, z) < 3Pr[|⇠| 2 A�(i� 1, i+ 1)]

+
i�2X

j=1

Pr[|⇠| 2 Aj� +A�[0, 1), |z| � (i� j � 1)A�]

+O(1)
i�1X

j=1

Pr[|⇠| 2 Aj� +A�[�2, 3), |z| � (i� j)A�] .

20

An application of Chebyshev’s inequality to z, using the independence of z and ⇠, gives that704

P (i, z) < 3Pr[|⇠| 2 A�(i� 1, i+ 1)]

+O(1)
i�2X

j=1

(1/(i� j � 1)2) Pr[|⇠| 2 Aj� +A�[0, 1)]

+O(1)
i�1X

j=1

(1/(i� j)2) Pr[|⇠| 2 Aj� +A�[�2, 3)] .

Another application of Fact A.3 applied to (⇠ + z)� z then gives us705

P (i, z) < 3Pr[|⇠| 2 A�(i� 5, i+ 5)]

+O(1)
i�2X

j=1

(1/(i� j � 1)2) Pr[|⇠ + z| 2 Aj� +A�[�2, 3)]

+O(1)
i�1X

j=1

(1/(i� j)2) Pr[|⇠ + z| 2 Aj� +A�[�4, 5)].

Finally, extending all intervals so that they match, and observing that
P

i�2
j=1(1/(i� j � 1)2) Pr[|⇠ +706

z| 2 Aj� +A�[�2, 3)]
P

i�1
j=1(1/(i� j)2) Pr[|⇠ + z| < Aj� +A�[�4, 5)], we get707

P (i, z) < O(1) Pr[|⇠| 2 A�(i� 5, i+ 5)]

+O(1)
i�1X

j=1

(1/(i� j)2) Pr[|⇠ + z| 2 Aj� +A�[�4, 5)].

We now let P̃ (i, z) denote the final upper bound on P (i, z). The value of having P̃ (i, z) is that it can708

be computed using samples from ⇠ + z.709

P̃ (i, z) := O(1) Pr[|⇠| 2 A�(i� 5, i+ 5)]

+O(1)
i�1X

j=1

(1/(i� j)2) Pr[|⇠ + z| 2 Aj� +A�[�4, 5)] .

We defined P̃ (i) = P̃ (i, z) + P̃ (i, z0).710

Proof of Item 2:711

First observe that
P1

i=1 P̃ (i) < C for some constant C. It is clear that this is true of the first term,712

since every interval will get over-counted at most 10 times. To see that the second term can be713

bounded, observe that714

1X

i=1

i�1X

j=1

(1/(i� j)2) Pr[|⇠ + z| 2 Aj� +A�[�4, 5)]

<

1X

j=1

1X

i=1

(1/(i� j)2) Pr[|⇠ + z| 2 Aj� +A�[�4, 5)]

<

1X

j=1

Pr[|⇠ + z| 2 Aj� +A�[�4, 5)]
1X

i=1

(1/(i� j)2) = O(1) .

The first inequality follows by extending the limits of summation.715

The final inequality follows from the fact that the total probability is at most 1, every interval of size716

� gets over-counted at most finitely many times, and the fact that
P1

1 1/k2 = O(1).717

Item 2 now follows from the fact that P̃ (i), i � 1 is a positive sequence that sums to a finite quantity,718

and P̃ (1) � ↵/2, since the interval P̃ (1) upper bounds is contains at least a constant fraction of the719

mass of ⇠ at 0 that is moved by z, z
0, and Pr[⇠ = 0] � ↵.720

21

Applying Lemma B.2, we get our result.721

Proof of Item 3:722

Let k be such that Item 2 holds, i.e. kP̃ (k) < ⌘
P

k

j=1 P̃ (k), then the goal is to show
P

k

j=1 P̃ (k) =723

O(Pr[|⇠ + z| < A�k] + Pr[|⇠ + z
0
| < A�k]).724

We first consider the sum over i, of P̃ (i, z). It is easy to see that this is725

kX

i=1

P̃ (i, z) = O(1) Pr[|⇠ + z| A�(k + 5)]

+O(1)
kX

i=1

i�1X

j=1

(1/(i� j)2) Pr[|⇠ + z| 2 Aj� +A�[�4, 5)] .

The first term on the RHS is almost what we want. We now show how to bound the second term,726

kX

i=1

i�1X

j=1

(1/(i� j)2) Pr[|⇠ + z| 2 Aj� +A�[�4, 5)]

<

k�1X

j=1

kX

i=0;i 6=j

(1/(i� j)2) Pr[|⇠ + z| 2 Aj� +A�[�4, 5)]

=
k�1X

j=1

Pr[|⇠ + z| 2 Aj� +A�[�4, 5)]
kX

i=0;i 6=j

(1/(i� j)2)

< O(1)
k�1X

j=1

Pr[|⇠ + z| 2 Aj� +A�[�4, 5)]

< O(1) Pr[|⇠ + z| < A(k + 5)�] .

The first inequality holds since any pair of (i, j) that has a nonzero term in the first sum will also727

occur in the second sum, and all terms are non-negative.728

The second equality is just pulling the common j term out.729

The third inequality follows from the fact that
P1

i=1 1/i
2 = O(1).730

The fourth inequality follows from the fact that each �-length interval is overcounted at most a731

constant number of times.732

This allows us to bound
P

k

i=1 P̃ (i, z) by O(Pr[|⇠ + z| < A�(k + 5)]) overall. Similarly for733 P
k

i=1 P̃ (i, z0), we can obtain a bound of O(Pr[|⇠ + z
0
| < A�(k + 5)]). Putting these together, we734

see
P

k

i=1 P̃ (i) O(Pr[|⇠+ z| < A�(k+5)]+Pr[|⇠+ z
0
| < A�(k+5)]). Finally, to get the upper735

bound claimed in Item 3, observe that736

Pr[|⇠ + z| < A�(k + 5)] + Pr[|⇠ + z
0
| < A�(k + 5)]

= Pr[|⇠ + z| < A�(k � 4)] + Pr[|⇠ + z
0
| < A�(k � 4)]

+ Pr[|⇠ + z| 2 A�(k � 4, k + 5)] + Pr[|⇠ + z
0
| 2 A�(k � 4, k + 5)]

 Pr[|⇠ + z| < A�(k � 4)] + Pr[|⇠ + z
0
| < A�(k � 4)]

+ P̃ (k)

 Pr[|⇠ + z| < A�(k � 4)] + Pr[|⇠ + z
0
| < A�(k � 4)]

+O(⌘/k)(Pr[|⇠ + z| < A�(k + 5)] + Pr[|⇠ + z
0
| < A�(k + 5)]) .

Rearranging the inequality and by scaling ⌘ such that that O(⌘/k) 1/2, we see that Pr[|⇠ + z| <737

A�(k+5)]+Pr[|⇠+z
0
| < A�(k+5)] = O(Pr[|⇠+z| < A�(k�4)]+Pr[|⇠+z

0
| < A�(k�4)]) =738

O(Pr[|⇠ + z| < A�k] + Pr[|⇠ + z
0
| < A�k]), completing our proof of Item 3.739

Proof of Item 4:740

22

Finally, to see Item 4 holds, observe that 0 < P̃ (i) < O(1). Let B = (O(1)/⌘↵)1/⌘ denote the741

maximum index before which we can find a k such that kP̃ (k) ⌘
P

k

i=1 P̃ (i). Now, To estimate742

P̃ (i) empirically, we partition the interval (�BA�, BA�) into B intervals of length A� each, and743

estimate the probability of ⇠ + z falling in each interval. If we estimate each of these probabilities to744

an accuracy of ⌘/(100 B), we can estimate P̃ (i) to an accuracy of O(⌘/i).745

An application of Hoeffding’s inequality (Lemma A.1) tells us that each estimate will require746

O(B2
/⌘

2 log(1/�)) samples. Taking a union bound over all these intervals, we see that we will747

require O(B2
/⌘

2 log(B/�)) samples.748

Finally, another union bound over each i 2 [0, B] implies that we will need O(B2
/⌘

2 log(B2
/�))749

samples. Substituting the value of B back in, we see that this amounts to requiring750

(O(1)/⌘↵)2/⌘ log(1/⌘↵�) samples.751

Estimating P̃ (i) will take time polynomial in the number of samples, and so we take time752

Õ(O(1)/⌘↵)O(1)/⌘).753

C.3 High-dimensional Noisy Location Estimation754

In this section, we explain how to use our one-dimensional location estimation algorithm to get an755

algorithm for noisy location estimation in d dimensions.756

The algorithm performs one-dimensional location estimation coordinate-wise, after a random rotation.757

We need to perform such a rotation to ensure that every coordinate has a known variance bound of758

�/
p
d.759

Algorithm 5 High-dimensional Location Estimation: ShiftHighD(S1, S2, ⌘,�,↵)

input: Sample sets S1, S2 ⇢ Rd of size m, ⌘ 2 (0, 1), � > 0, ↵

1. Sample Ri,j i.i.d. from the uniform distribution over {±1/
p
d} for i, j 2 [d]

2. Represent S1 and S2 in the basis given by the rows of R: r1, . . . , rd.
3. for i 2 [d] do

v
0
i
:= Shift1D(S1 · ei, S2 · ei, ⌘, O(�/

p
d),↵)

end
4. Change the representation of v0 back to the standard basis.
5. Probability Amplification: Repeat steps 1-4, T := O(log(1/�)) times to get C := {v

0
1, . . . , v

0
T
}

6. Find a ball of radius O(⌘�) centered at one of the v
0
i

containing > 90% of C. If such a vector
exists, set v0 to be this vector. Otherwise set v0 to be an arbitrary element of C.
5. Return v

0.

Lemma C.5 (Location Estimation). Let yi := ⇠+zi for i 2 {1, 2} where Pr[⇠ = 0] � ↵ and zi ⇠ Di760

are distributions over Rd
satisfying EDi [x] = 0 and EDi [kxk

2] �
2
. Let v 2 Rd

be an unknown761

shift. There is an algorithm (Algorithm 5), which draws m = poly((O(1)/⌘↵)1/⌘, log(1/�✏↵))762

samples each from y1 and y2 + v, runs in time poly(d, (O(1)/⌘↵)1/⌘, log(1/�✏↵)) and returns v
0763

satisfying kv
0
� vk O(⌘�) with probability 1� �.764

Proof. Consider a matrix R whose entries Ri,j are independently drawn from the uniform distribution765

over ±1/
p
d. and whose diagonals are 1/

p
d.766

Our goal is to show that with probability at least 99%, the standard deviation of each coordinate of767

Rz is bounded by O(�/
p
d), i.e., the standard deviation of Rz · ei is at most O(�/

p
d) for all integer768

i in [d].769

We can then amplify this probability to ensure that the algorithm fails with a probability that is770

exponentially small.771

23

To see this, observe that Rz · ei = ri · z, and so Ez[ri · z] = 0.772

E
z
[(ri · z)

2] =
X

p2[d],q2[d]

Ri,pRi,q E[zpzq]

=
dX

i=1

E[z2
i
]/d+ 2

X

p,q2[d],p<q

Ri,pRi,q E[zpzq]

 (�2
/d) + 2

X

p,q2[d],p<q

Ri,pRi,q E[zpzq] .

We now bound the second term with probability 99% via applying Chebyshev’s inequality. Observe773

that E[zpzq]
q
E[z2

p
]E[z2

q
] �

2. Since Ri,p and Ri,q are drawn independently and p 6= q, we see774

that the variables Ri,pRi,q and Ri,lRi,m pairwise independent for pairs (p, q) 6= (l,m), this implies775

Pr[|
P

p,q2[d],p<q
Ri,pRi,q E[zpzq]| > T] O(�4)

d d2T 2 . By choosing T = O(�2
/d), we see that the776

right-hand side above is at most 0.001/d.777

A union bound over all the coordinates then tells us that with probability 99%, the variance of each778

coordinate is at most O(�2
/d).779

Then, for each coordinate i, we can identify v
0
i
= vi ± O(⌘�/

p
d) through an application of780

Lemma 3.1. Putting these together with probability at least 99%, we find v
0 satisfying kv

0
� vk

2
781

O(⌘2�2).782

Changing between these basis representations maintains the quality of our estimate since the new783

basis contains unit vectors nearly orthogonal to each other. With high probability, the inner products784

between these are around O(1/
p
d) for every pairwise comparison, so R approximates a random785

rotation.786

Probability Amplification: The current guarantee ensures that we obtain a good candidate with a787

constant probability of success. However, for the final algorithmic guarantee, we need a higher788

probability of success. To achieve this, we modify the algorithm as follows:789

1. Run the algorithm T times, each time returning a candidate v
0
i

that is, with probability 99%,790

within O(⌘�) distance from the true solution.791

2. Construct a list of candidates C = {v
0
1, . . . , v

0
T
}.792

3. Identify a ball of radius O(�⌘) centered at one of the v
0
i

that contains at least 90% of the793

remaining points.794

4. Return the corresponding v
0
i

as the final output.795

5. If no such v
0
i

exists, return any vector from C.796

Let E denote the event that a point is within O(⌘�) to the true solution.797

This will succeed with probability 1 � exp(�T). To see why, observe the chance that we re-798

cover (2/3)T vectors outside the event E is less than (0.01)2/3 T
�

T

2/3T

�
< (0.047)T

�
T

T/2

�
<799

(0.047)T (2T /
p
T) < (0.095)T .800

D List-Decodable Mean Estimation801

This section presents an algorithm for list-decodable mean estimation when the inlier distribution802

follows D�. Here, D� represents a set of distributions over Rd defined as D� := {D | ED[|x �803

ED[x]|2] �
2
}. In our setting, we receive samples from ⇠ + z, where Pr[⇠ = 0] > ↵, where ↵ can804

be close to 0. Our objective is to estimate the mean with a high degree of precision.805

Note that the guarantees provided by prior work do not directly apply to our setting. Prior work806

examines a more aggressive setting where arbitrary outliers are drawn with a probability of 1� ↵.807

These outliers might not have the additive structure we have.808

24

Recall the definition of an (↵,�, s)-LDME algorithm:809

Definition D.1 (Algorithm for List-Decodable Mean Estimation). Algorithm A is an (↵,�, s)-LDME810

algorithm for D (a set of candidate inlier distributions) if with probability 1� �A, it returns a list L811

of size s such that minµ̂2Lkµ̂�Ex⇠D[x]k � for D 2 D when given mA samples of the kind z+ ⇠812

for z ⇠ D and Pr[⇠ = 0] � ↵. If 1� ↵ is a sufficiently small constant less than 1/2, then s = 1.813

We now prove Fact 2.1 which we restate below for convenience.814

Fact D.2 (List-decoding algorithm). There is an (↵, ⌘�, Õ((1/↵)2/⌘
2

))-LDME
3

algorithm for the815

inlier distribution belonging to D� which runs in time Õ(d(1/↵)2/⌘
2

) and succeeds with probability816

1� �. Conversely, any algorithm which returns a list, one of which makes an error of at most O(⌘�)817

in `2 norm to the true mean, must have a list whose size grows exponentially in 1/⌘.818

If 1 � ↵ is a sufficiently small constant less than half, then the list size is 1 to get an error of819

O(
p
1� ↵ �).820

Proof. Algorithm: Consider the following algorithm:821

1. If ↵ < c and ⌘ >
p
↵: Run any stability-based robust mean estimation algorithm from [10]822

and return a singleton list containing the output of the algorithm.823

2. Otherwise, for integer each i 2 [1, 100(1/↵)2/⌘
2

log(1/�)2] sample 1/⌘2 samples and let824

their mean be µi.825

3. Return the list L = {µi | i 2 [1, 100(1/↵)2/⌘
2

log(1/�)2]}.826

If the algorithm returns in the first step, then the guarantees follow from the guarantees of the827

algorithm for robust mean estimation from [10] (Proposition 1.5 on page 4).828

Otherwise, observe that the probability that every one of 1/⌘2 samples drawn is an inlier, is ↵1/⌘2

.829

Hence, with probability 1� � we see that if we draw 1/⌘2 samples O((1/↵)2/⌘
2

log(1/�)2) times,830

there are at least O(log(1/�)) sets of samples containing only inliers. Then, the mean of one of these831

concentrates to an error of O(⌘�) by an application of Lemma A.2. More precisely, Lemma A.2832

ensures that with probability 99%, the mean of a set of 1/⌘2 inliers concentrates up to an error of833

O(⌘�). Repeating this log(1/�) times, and hence get our result.834

Hardness: To see that the list size must be at least exp(1/⌘), consider the set of inlier distributions835

given by {Ds | s 2 {±1}d} where each Ds is defined as follows: Ds is a distribution over Rd such836

that each coordinate independently takes the value si with probability 1/d, and 0 otherwise.837

Each Ds defined above belongs to Dp
1�1/d

since Ex⇠Ds [x] = s/d and838

�
2 := E

x⇠Ds

[kx� s/dk
2] =

dX

i=1

E
xi⇠(Ds)i

[(xi � si/d)
2]

=
dX

i=1

(1� 1/d)(1/d)2 + (1/d)(1� 1/d)2 = (1� 1/d).

We will set the oblivious noise distribution for each Ds to be �Ds. Our objective is to demonstrate839

that the distribution of Ds �Ds is the same for all s and is independent of s. This means that we840

cannot identify s by seeing samples from Ds �Ds.841

Then, since the means of Ds and D
0
s

for any distinct pair s, s0 2 {±1}d differ by at least 1/d, if we842

set d = 1/⌘ we see that there are 21/⌘ possible different values of the original mean, each pair being843

at least ⌘ far apart, which is larger than ⌘�
2 = ⌘(1� ⌘).844

We can assume, without loss of generality, that s = 1, where 1 represents the all-ones vector. Each845

coordinate of Ds can be viewed as a random coin flip, taking the value 0 with probability 1� 1/d846

and 1 with probability 1/d.847

3Typo in main body: ⌘ instead of the correct ⌘�.

25

The probability of obtaining the all-zeros vector is given by (1� 1/d)d, which approaches a constant848

value for sufficiently large d, and so, Prx⇠Ds [x = 0] � 0.001, i.e., the ↵ for the oblivious noise is at849

least a constant. In fact, it can be as large as 1/e > 0.35 for large enough d.850

Let the oblivious noise be �D. Now, consider the distribution of x + y, where x follows the851

distribution D and y follows the distribution �D. If we focus on the first coordinate, x1 + y1, we852

observe that it follows a symmetric distribution over {�1, 0, 1} which does not depend on s1. Also,853

each coordinate exhibits the same distribution, and they are drawn independently of one another.854

Hence, the final distribution is independent of s, so we get our result.855

E Proof of Corollary 4.2856

Below, we restate Corollary 4.2 for convenience.857

Corollary E.1. Given access to oblivious noise oracle O↵,�,f , a (O(⌘�), ✏)-inexact-learner AG858

running in time TG, there exists an algorithm that takes poly((1/↵)1/⌘
2

, (O(1)/⌘)1/⌘, log(TG/�⌘↵))859

samples, runs in time TG · poly(d, (1/↵)1/⌘
2

, (O(1)/⌘)1/⌘, log(1/⌘↵�)), and with probability 1� �860

returns a list L of size Õ((1/↵)1/⌘
2

) such that minx2Lkrf(x)k O(⌘�) + ✏. Additionally, the861

exponential dependence on 1/⌘ in the list size is necessary.862

Proof. This follows by substituting the guarantees of Fact 2.1 for the algorithm AME in Theorem 1.4.863

864

26

	Introduction
	Our Contributions
	Related Work
	Technical Overview

	Preliminaries
	Location Estimation
	Algorithmic Results for Stochastic Optimization
	Proof of thm:LDSOreducetoLDMEinformal: List-decodable Stochastic Optimization LDME
	Proof of thm:LDMEreducetoLDSOinformal: LDME List-Decodable Stochastic Optimization

	Conclusion
	Elementary Probability Facts
	Useful Lemmas
	Useful Lemma for Rough Estimation
	Useful Lemma for Finer Estimation

	Noisy Location Estimation
	One-dimensional Noisy Location Estimation
	Proof of claim:tildeP
	High-dimensional Noisy Location Estimation

	List-Decodable Mean Estimation
	Proof of corr:substituteldme

