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Abstract

Recent works have shown that diffusion models can learn essentially any distribu-
tion provided one can perform score estimation. Yet it remains poorly understood
under what settings score estimation is possible, let alone when practical gradient-
based algorithms for this task can provably succeed.
In this work, we give the first provably efficient results along these lines for one
of the most fundamental distribution families, Gaussian mixture models. We
prove that gradient descent on the denoising diffusion probabilistic model (DDPM)
objective can efficiently recover the ground truth parameters of the mixture model
in the following two settings:

1. We show gradient descent with random initialization learns mixtures of two
spherical Gaussians in d dimensions with 1/poly(d)-separated centers.

2. We show gradient descent with a warm start learns mixtures of K spherical
Gaussians with Ω(

√
log(min(K, d)))-separated centers.

A key ingredient in our proofs is a new connection between score-based methods
and two other approaches to distribution learning, the expectation-maximization
(EM) algorithm and spectral methods.

1 Introduction

In recent years diffusion models [SSDK+20, SDWMG15, SE19] have emerged as a powerful frame-
work for generative modeling and now form the backbone of notable image generation systems like
DALL·E 2 [RDN+22], Imagen [SCS+22], and Stable Diffusion [RBL+22]. At the heart of this
framework is a reduction from distribution learning to denoising or score estimation. That is, in
order to generate new samples from a data distribution q given a collection of independent samples, it
suffices to learn the score function, i.e., the gradient of the log-density of the data distribution when
convolved with varying levels of noise (see Section 1.3). A popular and well-studied objective for
score matching is the denoising diffusion probabilistic model (DDPM) objective due to [HJA20].
Optimizing this objective amounts to solving the following type of problem: given a noisy observation
x̃ of a sample x from q, estimate the mean of the posterior distribution over x.

While a number of theoretical works [DBTHD21, BMR22, CLL22, DB22, LLT22, LWYL22, Pid22,
WY22, CCL+23b, CDD23, LLT23, CCL+23a, LWCC23, BDD23] have established rigorous con-
vergence guarantees for diffusion models under mild assumptions on the data distribution, these
works assume the existence of an oracle for score estimation and leave open whether one can actually
provably implement such an oracle for interesting families of data distributions. In practice, the
algorithm of choice for score estimation is simply to train a student network via gradient descent
(GD) to fit a set of examples (x, x̃). We thus ask:

Are there natural data distributions under which GD provably achieves accurate score estimation?
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In this work, we consider the setting where q is given by a mixture of Gaussians. Concretely, we
assume that there exist centers µ∗1, . . . , µ

∗
K ∈ Rd such that

q =
1

K

K∑
i=1

N (µ∗i , Id) .

We answer the above question in the affirmative for this class of distributions:
Theorem 1 (Informal, see Theorems 7 and 13). Gradient descent on the DDPM objective with
random initialization efficiently learns the parameters of an unknown mixture of two spherical
Gaussians with 1/poly(d)-separated centers.
Theorem 2 (Informal, see Theorem 16). When there is a warm start of the centers, gradient
descent on the DDPM objective efficiently learns the parameters an unknown mixture of K spherical
Gaussians with Ω(

√
log(min(K, d)))-separated centers.

The DDPM objective is described in Algorithm 1. The term “efficiently” above means that both the
running time and sample complexity of our algorithm is polynomial in the dimension d, the inverse
accuracy 1/ε, and the number of components K. In the informal discussion, we often work with
population gradients for simplicity, but in our proofs we show that empirical estimates of the gradient
suffice (full details can be found in the Appendix).

Algorithm 1: GMMDENOISER(t, {µ(0)
i }Ki=1, H)

Input: Noise scale t, initialization {µ(0)
i }Ki=1, number of gradient descent steps H

1 Initialize the parameters for the score estimate at θ(0)t = {µ(0)
i,t }Ki=1 (see Eq. (9) for how the

estimate sθ depends on the parameters θ, and Eq. (8) for the definition of µ(0)
i,t )

2 Run gradient descent on the DDPM objective Lt(sθt) for H steps where

Lt(sθt) = E
[∥∥∥sθt(Xt) +

Zt√
1− exp(−2t)

∥∥∥2] ,
3 return θ

(H)
t = {µ(H)

i,t }Ki=1 where θ
(H)
t denotes the parameters after H steps of GD.

We refer to Section 1.3 for a formal description of the quantities used in Algorithm 1. Note that
there are by now a host of different algorithms for provably learning mixtures of Gaussians (see
Section 1.1). For instance, it is already known that expectation-maximization (EM) achieves the
quantitative guarantees of Theorems 1 and 2 [DTZ17, XHM16, KC20, SN21], and in fact even
stronger guarantees are known via the method of moments. Unlike works based on the method of
moments however, our algorithm is practical. And unlike works based on EM, it is based on an
approach which is empirically successful for a wide range of realistic data distributions. Furthermore,
as we discuss in Section 1.2, the analysis of Algorithm 1 leverages an intriguing and, to our knowledge,
novel connection from score estimation to EM, as well as to another notable approach for learning
mixture models, namely spectral methods. Roughly speaking, at large noise levels, the gradient
updates in Algorithm 1 are essentially performing a type of power iteration, while at small noise
levels, the gradient updates are performing the “M” step in the EM algorithm.

1.1 Related work

Theory for diffusion models. A number of works have given convergence guarantees for DDPMs
and variants [DBTHD21, BMR22, CLL22, DB22, LLT22, LWYL22, Pid22, WY22, CCL+23b,
CDD23, LLT23, LWCC23, BDD23, CCL+23a]. These results show that, given an oracle for accurate
score estimation, diffusion models can learn essentially any distribution over Rd (e.g. [CCL+23b,
LLT23, CLL22] show this for arbitrary compactly supported distributions). Additionally, two recent
works [EAMS22, MW23] have used Eldan’s stochastic localization [Eld13, Eld20], which is a
reparametrization in time and space of the reverse SDE for DDPMs, to give sampling algorithms for
certain distributions arising in statistical physics. As we discuss next, these works are end-to-end in
that they also give provable algorithms for score estimation via approximate message passing, though
the statistical task they address is not distribution learning.
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Provable score estimation. There is a rich literature giving Bayes-optimal algorithms for various
natural denoising problems via methods inspired by statistical physics, like approximate message
passing (AMP) (e.g. [MV21, CFM21, BM11, Kab03, DMM09, DMM10]) and natural gradient
descent (NGD) on the TAP free energy [CFM21, EAMS22, Cel22]. The abovementioned works
[EAMS22, MW23] (see also [Cel22]) build on these techniques to give algorithms for the denoising
problems that arise in their implementation of stochastic localization. These works on denoising via
AMP or NGD are themselves part of a broader literature on variational inference, a suitable literature
review would be beyond the scope of this work, see e.g. [BKM17, WJ+08, MM09].

We are not aware of any provable algorithms for score estimation explicitly in the context of distribu-
tion learning. That said, it may be possible to extract a distribution learning result from [EAMS22].
While their algorithm was for sampling from the Sherrington-Kirkpatrick (SK) model given the
Hamiltonian rather than training examples as input, if one is instead given training examples drawn
from the SK measure, then at sufficiently high temperature one can approximately recover the Hamil-
tonian [AG22]. In this case, a suitable modification [EAMS22] should be able to yield an algorithm
for approximately generating fresh samples from the SK model given training examples.

Learning mixtures of Gaussians. The literature on provable algorithms for learning Gaussian
mixture models is vast, dating back to the pioneering work of Pearson [Pea94], and we cannot do
justice to it here. We mention only works whose quantitative guarantees are closest in spirit to
ours and refer to the introduction of [LL22] for a comprehensive overview of recent works in this
direction. For mixtures of identity-covariance Gaussians in high dimensions, the strongest existing
guarantee is a polynomial-time algorithm [LL22] for learning the centers as long as their pairwise
separation slightly exceeds Ω(

√
logK) based on a sophisticated instantiation of method of moments

inspired by the quasipolynomial-time algorithms of [DKS18, HL18, KSS18]. By the lower bound in
[RV17], this is essentially optimal. In contrast, our Theorem 2 only applies given one initializes in
a neighborhood of the true parameters of the mixture. We also note the exponential-time spectral
algorithm of [SOAJ14] and quasipolynomial-time tensor-based algorithm of [DK20], which achieve
density estimation even in the regime where the centers are arbitrarily closely spaced and learning the
centers is information-theoretically impossible.

A separate line of work has investigated the “textbook” algorithm for learning Gaussian mixtures,
namely the EM algorithm [BWY17, DS07, DTZ17, XHM16, YYS17, ZLS20, KC20, SN21]. No-
tably, for balanced mixtures of two Gaussians with the same covariance, [DTZ17] showed that
finite-sample EM with random initialization converges exponentially quickly to the true centers. For
mixtures of K Gaussians with identity covariance, [KC20, SN21] showed that from an initialization
sufficiently close to the true centers, finite-sample EM converges exponentially quickly to the true
centers as long as their pairwise separation is Ω(

√
logK). In particular, [SN21] establish this local

convergence as long as every center estimate is initialized at distance at most ∆/2 away from the
corresponding true center, where ∆ is the minimum separation between any pair of true centers; this
radius of convergence is provably best possible for EM.

Lastly, we note that there are many works giving parameter recovery algorithms mixtures of Gaussians
with general mixing weights and covariances, all of which are based on method of moments [KMV10,
HP15, Kan21, BS15, MV10, LM23, BDJ+22, DHKK20]. Unfortunately, for general mixtures of K
Gaussians, these algorithms run in time at least dO(K), and there is strong evidence [DKS17, BRST21]
that this is unavoidable for computationally efficient algorithms.

1.2 Technical overview

We begin by describing in greater detail the algorithm we analyze in this work. For the sake of
intuition, in this overview we will focus on the case of mixtures of two Gaussians (K = 2) where the
centers are well-separated and symmetric about the origin, that is, the data distribution is given by

q =
1

2
N (µ∗, Id) +

1

2
N (−µ∗, Id) . (1)

At the end of the overview, we briefly discuss the key challenges for handling smaller separation and
general K.

Loss function, architecture of the score function and student network. The algorithmic task at
the heart of score estimation is that of denoising. Formally, for some noise level t > 0, we are given
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a noisy sample
Xt = exp(−t)X0 +

√
1− exp(−2t)Zt ,

where X0 is a clean sample drawn from the data distribution q, and Zt ∼ N (0, Id). Conditioning on
Xt induces some posterior distribution over the noise Zt, and our goal is to form an estimate s for
the mean of this posterior which achieves small error on average over the randomness of X0 and Zt.
That is, we would like to minimize the DDPM objective, which up to rescaling is given by1

Lt(s) = EX0,Zt∥s(Xt)− Zt∥2 .

As discussed in the introduction, the algorithm of choice for minimizing this objective in practice is
gradient descent on some student network. To motivate our choice of architecture, note that when the
data distribution is given by (1), the true minimizer of Lt is, up to scaling,

tanh(⟨µ∗t , x⟩)µ∗t − x , where µ∗t ≜ µ∗ exp(−t) . (2)

See Appendix A for the derivation. Notably, Eq. (2) is exactly a two-layer neural network with tanh
activation. As a result, we use the same architecture for our student network when running gradient
descent. That is, given weights µ ∈ Rd, our student network is given by sµ(x) ≜ tanh(µ⊤x)µ− x.
The exact gradient updates on µ are given in Lemma C.2.

As we discuss next, depending on whether the noise level t is large or small, this update closely
approximates the update in one of two well-studied algorithms for learning mixtures of Gaussians:
power method and EM respectively.

Learning mixtures of two Gaussians. We first provide a brief overview of the analysis and then go
into the details of the analysis. We start with mixtures of two Gaussians of the form (1) where ∥µ∗∥
is Ω(1). In this case, we analyze the following two-stage algorithm. We first use gradient descent on
the DDPM objective with large t starting from random initialization. We show that gradient descent
in this “high noise” regime resembles a type of power iteration and gives µ that has a nontrivial
correlation with µ∗t . Starting from this µ, we then run gradient descent with small t. We show that
the gradient descent in this “small noise” regime corresponds to the EM algorithm and converges
exponentially quickly to the ground truth.

Large noise level: connection to power iteration. When t is large, we show that gradient descent
on the DDPM objective is closely approximated by power iteration. More precisely, in this regime,
the negative gradient of Lt(sµ) is well-approximated by

−∇µLt(sµ) ≈ (2µ∗tµ
∗⊤
t − rId)µ ,

where r is a scalar that depends on µ (See Lemma 8). So the result of a single gradient update with
step size η starting from µ is given by

µ′ ≜ µ− η∇µLt(sµ) ≈ ((1− ηr) Id + 2ηµ∗tµ
∗⊤
t )µ . (3)

This shows us that each gradient step can be approximated by one step of power iteration (without
normalization) on the matrix (1− ηr) Id + 2ηµ∗tµ

∗⊤
t . It is know that running enough iterations of

the latter from a random initialization will converge in angular distance to the top eigenvector, which
in this case is given by µ∗t . This suggests that if we can keep the approximation error in (3) under
control, then gradient descent on µ will also allow us to converge to a neighborhood of the ground
truth. We implement this strategy in Lemma 10. Next, we argue that once we are in a neighborhood
of the ground truth, we can run GD on the DDPM objective at low noise level to refine our estimate.

Low noise level: connection to the EM algorithm. When t is small, we show that gradient descent
on the DDPM objective is closely approximated by EM. Here, our analysis uses the fact that µ∗ is
sufficiently large and requires that we initialize µ to have sufficiently large correlation with the true
direction µ∗t . We can achieve the latter using the large-t analysis in the previous section.

Provided we have this, when t is small it turns out that the negative gradient is well-approximated by

−∇µLt(sµ) ≈ EX∼N (µ∗
t ,Id)

[tanh(⟨µ,X⟩)X]− µ .

1The real DDPM objective is slightly different, see (5). The latter is what we actually consider in this paper,
but this distinction is unimportant for the intuition in this overview.
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Note that the expectation is precisely the “M”-step in the EM algorithm for learning mixtures of two
Gaussians (see e.g. Eq. (2.2) of [DTZ17]). We conclude that a single gradient update with step size η
starting from µ is given by mixing the old weights µ with the result of the “M”-step in EM:

µ′ ≜ µ− η∇µLt(sµ) ≈ (1− η)µ+ η EX∼N (µ∗
t ,Id)

[tanh(⟨µ,X⟩)X]︸ ︷︷ ︸
“M” step in the EM algorithm

.

[XHM16] and [DTZ17] showed that EM converges exponentially quickly to the ground truth µ∗t
from a warm start, and we leverage ingredients from their analysis to prove the same guarantee for
gradient descent on the DDPM objective at small noise level t (see Lemma 12).

Extending to small separation. Next, suppose we instead only assume that ∥µ∗∥ is Ω(1/poly(d)),
i.e. the two components in the mixture may have small separation. The above analysis breaks down
for the following reason: while it is always possible to show that gradient descent at large noise level
converges in angular distance to the ground truth, if ∥µ∗∥ is small, then we cannot translate this to
convergence in Euclidean distance.

We circumvent this as follows. Extending the connection between gradient descent at large t and
power iteration, we show that a similar analysis where we instead run projected gradient descent over
the ball of radius ∥µ∗∥ yields a solution arbitrarily close to the ground truth, even without the EM
step.2 The projection step can be thought of as mimicking the normalization step in power iteration.

It might appear to the reader that this projected gradient-based approach is strictly superior to
the two-stage algorithm described at the outset. However, in addition to obviating the need for a
projection step when separation is large, our analysis for the two-stage algorithm has the advantage
of giving much more favorable statistical rates. Indeed, we can show that the sample complexity
of the two-stage algorithm has optimal dependence on the target error (1/ε2), whereas we can only
show a suboptimal dependence (1/ε8) for the single-stage algorithm.

Extending to general K. The connection between gradient descent on the DDPM objective at
small t and the EM algorithm is sufficiently robust that for general K, our analysis for K = 2
can generalize once we replace the ingredients from [XHM16] and [DTZ17] with the analogous
ingredients in existing analyses for EM with K Gaussians. For the latter, it is known that if the
centers of the Gaussians have separation Ω(

√
logmin(K, d)), then EM will converge from a warm

start [KC20, SN21]. By carefully tracking the error in approximating the negative gradient with the
“M”-step in EM, we are able to show that gradient descent on the DDPM objective at small t achieves
the same guarantee.

1.3 Preliminaries

Diffusion models. Throughout the paper, we use either q or q0 to denote the data distribution and
X or X0 to denote the corresponding random variable on Rd. The two main components in diffusion
models are the forward process and the reverse process. The forward process transforms samples
from the data distribution into noise, for instance via the Ornstein-Uhlenbeck (OU) process:

dXt = −Xt dt+
√
2 dWt with X0 ∼ q0 ,

where (Wt)t≥0 is a standard Brownian motion in Rd. We use qt to denote the law of the OU process
at time t. Note that for Xt ∼ qt,

Xt = exp(−t)X0 +
√

1− exp(−2t)Zt with X0 ∼ q0, Zt ∼ N (0, Id) .

The reverse process then transforms noise into samples, thus performing generative modeling. Ideally,
this could be achieved by running the following stochastic differential equation for some choice of
terminal time T :

dX←t = {X←t + 2∇x ln qT−t(X
←
t )} dt+

√
2 dWt with X←0 ∼ qT ,

where now Wt is the reversed Brownian motion. In this reverse process, the iterate X←t is distributed
acccording to qT−t for every t ∈ [0, T ], so that the final iterate X←T is distributed according to the

2Note that although µ∗ is unknown, we can estimate its norm from samples.
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data distribution q0. The function ∇x ln qt is called the score function, and because it depends on q
which is unknown, in practice one estimates it by minimizing the score matching loss

min
st

EXt∼qt [∥st(Xt)−∇x ln qt(Xt)∥2] . (4)

A standard calculation (see e.g. Appendix A of [CCL+23b]) shows that this is equivalent to minimiz-
ing the DDPM objective in which one wants to predict the noise Zt from the noisy observation Xt,
i.e.

min
st

Lt(st) = EX0,Zt

[∥∥∥st(Xt) +
Zt√

1− exp(−2t)

∥∥∥2] . (5)

While we have provided background on diffusion models for context, in this work we focus specifically
on the optimization problem (5).

Mixtures of Gaussians. We consider the case of learning mixtures of K equally weighted Gaus-
sians:

q = q0 =
1

K

K∑
i=1

N (µ∗i , Id), (6)

where µ∗i denotes the mean of the ith Gaussian component. We define θ∗ = {µ∗1, µ∗2 . . . , µ∗K}. For
the mixtures of two Gaussians, we can simplify the data distribution as

q = q0 =
1

2
N (µ∗, Id) +

1

2
N (−µ∗, Id). (7)

Note that distribution in Eq. (7) is equivalent to the distribution Eq. (6) with K = 2 because shifting
the latter by its mean will give the former distribution, and furthermore the necessary shift can be
estimated from samples. The following is immediate:
Lemma 3. If q0 is a mixture of K Gaussians as in Eq. (6), then for any t > 0, qt is the mixture of K
Gaussians given by

qt =
1

K

K∑
i=1

N (µ∗i,t, Id) where µ∗i,t ≜ µ∗i exp(−t) . (8)

See Appendix A for a proof of this fact. We can see that the means of qt get rescaled according to the
noise level t. We also define θ∗t = {µ∗1,t, µ∗2,t, . . . , µ∗K,t}.
Lemma 4. The score function for distribution qt, for any t > 0, is given by

∇x ln qt(x) =

K∑
i=1

w∗i,t(x)µ
∗
i,t − x , where w∗i,t(x) =

exp(−∥x− µ∗i,t∥2/2)∑K
j=1 exp(−∥x− µ∗j,t∥2/2)

.

For a mixture of two Gaussians, the score function simplifies to

∇x log qt(x) = tanh(µ∗⊤t x)µ∗t − x , where µ∗t ≜ µ∗ exp(−t)

See Appendix A for the calculation.

Recall that ∇x log qt(x) is the minimizer for the score-matching objective given in Eq. (4). Therefore,
we parametrize our student network architecture similarly to the optimal score function. Our student
architecture for mixtures of K Gaussians is

sθt(x) =

K∑
i=1

wi,t(x)µi,t − x , where wi,t(x) ≜
exp(−∥x− µi,t∥2/2)∑K
j=1 exp(−∥x− µj,t∥2/2)

(9)

µi,t ≜ µi exp(−t).

where θt = {µ1,t, µ2,t, . . . , µK,t} denotes the set of parameters at the noise scale t. For mixtures of
two Gaussians, we simplify the student architecture as follows:

sθt(x) = tanh(µ⊤t x)µt − x , where µt ≜ µ exp(−t).

As θt only depends on µt in the case of mixtures of two Gaussians, we simplify the notation of the
score function from sθt(x) to sµt(x) in that case. We use µ̂t and µ̂∗t to denote the unit vector along
the direction of µt and µ∗t respectively. Note that we often use µt (or θt) to denote the current iterate
of gradient descent on the DDPM objective and µ′t to denote the iterate after taking a gradient descent
step from µt.
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Expectation-Maximization (EM) algorithm. The EM algorithm is composed of two steps: the
E-step and the M-step. For mixtures of Gaussians, the E-step computes the expected log-likelihood
based on the current mean parameters and the M-step maximizes this expectation to find a new
estimate of the parameters.

Fact 5 (See e.g., [DTZ17, YYS17, KC20] for more details). When X is the mixture of K Gaussian
and {µ1, µ2, . . . , µK} are current estimates of the means, the population EM update for all i ∈
{1, 2, . . . ,K} is given by

µ′i =
EX [wi(X)X]

EX [wi(X)]
, where wi(X) =

exp(−∥X − µi∥2/2)∑K
j=1 exp(−∥X − µj∥2/2)

.

The EM update for mixtures of two Gaussians given in Eq. (7) simplifies to

µ′ = EX∼N (µ∗,Id)[tanh(µ
⊤X)X].

An analogous version of the EM algorithm, called the gradient EM algorithm, takes a gradient step in
the direction of the M-step instead of optimizing the objective in the M-step fully.

Fact 6 (See e.g., [YYS17, SN21] for more details). For all i ∈ {1, 2, . . . ,K}, the gradient EM-
update for mixtures of K Gaussian is given by

µ′i = µi + η EX [wi(X)(X − µi)],

where η is the learning rate.

2 Warmup: mixtures of two Gaussians with constant separation

In this section, we formally state our result for learning mixtures of two Gaussians with constant
separation. This case highlights the main proof techniques, namely viewing gradient descent on the
DDPM objective as power iteration and as the EM algorithm.

2.1 Result and algorithm

Theorem 7. There is an absolute constant c > 0 such that the following holds. Suppose a mixture
of two Gaussians with the mean parameter µ∗ satisfies∥µ∗∥ > c. Then, for any ε > 0, there is a
procedure that calls Algorithm 1 at two different noise scales t and outputs µ̃ such that∥µ̃− µ∗∥ ≤ ε
with high probability. Moreover, the algorithm has time and sample complexity poly(d)/ε2 (see
Theorem C.1 for more precise quantitative bounds).

Algorithm. The algorithm has two stages. In the first stage we run gradient descent on the DDPM
objective described in Algorithm 1 from a random Gaussian initialization and noise scale t1 for a
fixed number of iterations H where t1 = Θ(log d) (“high noise”) and H = poly(d, 1/ε). In the
second stage, the procedure uses the output of the first step as initialization and runs Algorithm 1 at a
“low noise” scale of t2 = Θ(1).

2.2 Proof outline of Theorem 7

We provide a proof sketch of correctness of the above algorithm and summarize the main technical
lemmas here. All proofs of the following lemmas can be found in Appendix C.

Part I: Analysis of high noise regime and connection to power iteration. We show that in the
large noise regime, the negative gradient −∇Lt(st) is well-approximated by 2µ∗tµ

∗⊤
t µt− 3∥µt∥2 µt.

Recall that this result is the key to showing the resemblance between gradient descent and power
iteration. Concretely, we show the following lemma:

Lemma 8 (See Lemma C.3 for more details). For t = Θ(log d), the gradient descent update on the
DDPM objective Lt(st) can be approximated with 2µ∗tµ

∗⊤
t µt − 3∥µt∥2 µt:∥∥∥ (−∇Lt(st)

)
−
(
2µ∗tµ

∗⊤
t µt − 3∥µt∥2 µt

)∥∥∥ ≤ poly(1/d).
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From Lemma 8, it immediately follows that µ′t, the result of taking a single gradient step starting
from µt, is well-approximated by the result of taking a single step of power iteration for a matrix
whose leading eigenvector is µ∗t :

µ′t = µt − η∇Lt(sµ) ≈ (Id(1− 3η∥µt∥2) + 2µ∗tµ
∗⊤
t )µt .

The second key element is to show that as a consequence of the above power iteration update, the
gradient descent converges in angular distance to the leading eigenvector. Concretely, we show the
following lemma:
Lemma 9 (Informal, see Lemma C.5 for more details). Suppose µ′t is the iterate after one step of
gradient descent on the DDPM objective from µt. Denote the angle between µt and µ∗t to be θ and
between µ′t and µ∗t to be θ′. In this case, we show that

tan θ′ = max (κ1 tan θ, κ2) ,

where κ1 < 1 and κ2 ≤ 1/poly(d).

Note tan θ′ < tan θ implies that θ′ < θ or equivalently ⟨µ̂′t, µ̂∗t ⟩ > ⟨µ̂t, µ̂∗t ⟩. Thus, the above lemma
shows that by taking a gradient step in the DDPM objective, the angle between µt and µ∗t decreases.
By iterating this, we obtain the following lemma:
Lemma 10 (Informal, see Lemma C.6 for more details). Running gradient descent from a random
initialization on the DDPM objective Lt(sµ) for t = O(log d) gives µt for which ⟨µ̂t, µ̂∗t ⟩ is Ω(1).

Note that we cannot keep running gradient descent at this high noise scale and hope to achieve µ
such that∥µ− µ∗∥ is O(ε). This is because Lemma 9 can only guarantee that the angle between µt
and µ∗t is O(ε), but this does not imply∥µ− µ∗∥ is O(ε). Instead, as described in Part II, we will
proceed with a smaller noise scale.

Part II: Analysis of low noise regime and connection to EM. In the low noise regime, we run
Algorithm 1 using the output from Part I as our initialization. Our analysis here shows that whenever
the initialization µt satisfies the condition of ⟨µ̂t, µ̂∗t ⟩ being Ω(1),∥µt − µ∗t ∥ contracts after every
gradient step. To start with, we show that the result of a population gradient step on the DDPM
objective Lt(sµ) results in the following:

µ′t = (1− η)µt + η Ex∼N (µ∗
t ,Id)

[tanh(µ⊤t x)x] + ηG(µt, µ
∗
t ),

where µ′t is the parameter after a gradient step, η is the learning rate, and function G is given by

G(µ, µ∗) = Ex∼N (µ∗,Id)[−
1

2
tanh′′(µ⊤x)∥µ∥2 x+ tanh′(µ⊤x)µ⊤xx− tanh′(µ⊤x)µ].

Note we use the population gradient here only for simplicity; in the Appendix we show that empirical
estimates of the gradient suffice. After some calculation, we can show that∥∥µ′t − µ∗t

∥∥ ≤ (1− η)∥µt − µ∗t ∥+ η∥Ex∼N (µ∗
t ,Id)

[tanh(µ⊤t x)x]− µ∗t ∥+ η
∥∥G(µt, µ

∗
t )
∥∥ . (10)

Using Fact 5, we know that Ex∼N (µ∗
t ,Id)

[tanh(µ⊤t x)x] is precisely the result of one step of EM
starting from µt, and it is known [DTZ17] that the EM update contracts the distance between µt and
µ∗t as follows:

∥Ex∼N (µ∗
t ,Id)

[tanh(µ⊤t x)x]− µ∗t ∥ ≤ λ1∥µt − µ∗t ∥ for some λ1 < 1 (11)

It remains to control the second term in Eq. (10), for which we prove the following:
Lemma 11 (Informal, see Lemma C.9 for more details). When∥µ∗∥ = Ω(1) and the noise scale
t = Θ(1), then for every µ with ⟨µ̂, µ̂∗⟩ being Ω(1), the following inequality holds:

∥G(µt, µt∗)∥ ≤ λ2∥µt − µ∗t ∥ for some λ2 < 1 .

Combining Eq. (11) and Lemma 11 with Eq. (10), we have∥∥µ′t − µ∗t
∥∥ ≤ (1− η(1− λ1 − λ2))∥µt − µ∗t ∥ . (12)

We can set parameters to ensure that λ1 + λ2 < 1 and therefore that∥µt − µ∗t ∥ contracts with each
gradient step. Applying Lemma 11 and Eq. (12), we obtain the following lemma summarizing the
behavior of gradient descent on the DDPM objective in the low noise regime.
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Lemma 12 (Informal). For any ε > 0 and for the noise scale t = Θ(1), starting from an initialization
µt for which ⟨µ̂t, µ̂∗t ⟩ = Ω(1), running gradient descent on the DDPM objective Lt(sµ) will give us
mean parameter µ̃ such that ∥µ̃− µ∗∥ ≤ O(ε).

Combining Lemma 10 and Lemma 12, we obtain our first main result, Theorem 7, for learning
mixtures of two Gaussians with constant separation. For the full technical details, see Appendix C.

3 Extensions: small separation and more components

3.1 Mixtures of two Gaussians with small separation

In this section, we briefly sketch how the ideas from Section 2 can be extended to give our second
main result, namely on learning mixtures of two Gaussians even with small separation. We defer the
full technical details to Appendix D.

Theorem 13. Suppose a mixture of two Gaussians has mean parameter µ∗ that satisfies ∥µ∗∥ =
Ω( 1

poly(d) ). Then, for any ε > 0, there exists a modification of Algorithm 1 that provides an estimate
µ such that ∥µ− µ∗∥ ≤ O(ε) with high probability. Moreover, the algorithm has time and sample
complexity poly(d)/ε8 (see Theorem D.1 for more precise quantitative bounds).

Algorithm modification. The algorithm that we analyze runs projected gradient descent on the
DDPM objective but only in the high noise scale regime where t = O(log d). At each step, we
project the iterate µ to the ball of radius R, where R is an empirical estimate for∥µ∗∥ obtained by
drawing samples x1, . . . , xn from the data distribution and forming R ≜ ( 1n

∑n
i=1∥xi∥

2 − d)1/2.

Proof sketch. Lemma 9 and Lemma 10 apply even when the components of the mixture have small
separation, and they show that running gradient descent on the DDPM objective results in µt and µ∗t
being O(1) close in angular distance. Although our analysis can be extended to show that gradient
descent can achieve O(ε) angular distance, this does not guarantee that∥µt − µ∗t ∥ is O(ε). If in
addition to being O(ε) close in angular distance, we also have that∥µt∥ ≈∥µ∗t ∥, then it is easy to see
that∥µt − µ∗t ∥ is indeed O(ε).

Observe that if R is approximately equal to∥µ∗t ∥, then the projection step in our algorithm ensures
that our final estimate µt satisfies this additional condition of∥µt∥ ≈∥µ∗t ∥. It is not hard to show that
R2 is an unbiased estimate of∥µ∗t ∥

2, so standard concentration shows that taking n = poly(d, 1
ε )

suffices to ensure that R is sufficiently close to∥µ∗t ∥.

3.2 Mixtures of K Gaussians, from a warm start

In this section, we state our third main result, namely for learning mixtures of K Gaussians given by
Eq. (6) from a warm start, and provide an overview of how the ideas from Section 2 can be extended
to obtain this result.

Assumption 14. (Separation) For a mixture of K Gaussians given by Eq. (6), for every pair of
components i, j ∈ {1, 2, . . . ,K} with i ̸= j, we assume that the separation between their means
∥µ∗i − µ∗j∥ ≥ C

√
log(min(K, d)) for sufficiently large absolute constant C > 0.

Assumption 15. (Initialization) For each component i ∈ {1, 2, . . . ,K}, we have an initialization
µ
(0)
i with the property that ∥µ(0)

i − µ∗i ∥ ≤ C ′
√

log(min(K, d)) for sufficiently small absolute
constant C ′ > 0.

Theorem 16. Suppose a mixture of K Gaussians satisfies Assumption 14. Then, for any ε =
Θ(1/poly(d)), running gradient descent on the DDPM objective (Algorithm 1) at low noise scale
t = O(1) and with initialization satisfying Assumption 15 results in mean parameters {µi}Ki=1 such
that with high probability, the mean parameters satisfy ∥µi−µ∗i ∥ ≤ O(ε) for each i ∈ {1, 2, . . . ,K}.
Additionally, the runtime and sample complexity of the algorithm is poly(d, 1/ε) (see Theorem E.1
for more precise quantitative bounds).

We provide a brief overview of the proof here. The full proof can be found in Appendix E.
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Proof sketch. For learning mixtures of two Gaussians, we have already established the connection
between gradient descent on the DDPM objective and the EM algorithm. For mixtures of K
Gaussians, however, in a local neighborhood around the ground truth parameters θ∗, we show
an equivalence between gradient EM (recall gradient EM performs one-step of gradient descent
on the “M” step objective) and gradient descent on the DDPM objective. In particular, our main
technical lemma (Lemma E.4) shows that for noise scale t = Θ(1) and for any µi that satisfies
∥µi − µ∗i ∥ ≤ O(

√
log(min(K, d))), we have

−∇µi,tLt(sθt) ≈ EXt [wi,t(Xt)(Xt − µi,t)].

Therefore, the iterate µ′i,t resulting from a single gradient step on the DDPM objective Lt(sθt) with
learning rate η is given by

µ′1,t = µ1,t − η∇µ1,tLt(sθt) ≈ µ1,t + η EXt [w1,t(Xt)(Xt − µ1,t)]. (13)

Comparing Fact 6 with Eq. (13), we see the correspondence in this regime between gradient descent
on the DDPM objective to gradient EM. Using this connection and an existing local convergence
guarantee from the gradient EM literature [SN21, KC20], we obtain our main theorem for mixtures
of K Gaussians. Full details can be found in Appendix E.
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Roadmap. In Appendix A, we provide proofs of some simple lemmas from Section 1.3 and some
basic inequalities. In Appendix B we give additional notation and preliminaries. In Appendix C,
we provide the proof details for Theorem 7, our result on learning mixtures of two Gaussians with
constant separation. In Appendix D, we extend this analysis to give a proof of Theorem 13, our result
on learning mixtures of two Gaussians with small separation. In Appendix E, we provide the proof
details for Theorem 16, our result on learning mixtures of K Gaussians. In Appendix F, we give
further deferred proofs. Finally, in Appendix G, we provide experiments to confirm our theoretical
results.

A Proofs from Section 1.3

A.1 Xt is a mixture of Gaussians

Proof of Lemma 3. Suppose X0 is mixture of K Gaussians with density function given by

q0 =
1

K

K∑
i=1

N (µ∗i,0, Id)

We know that Xt = exp(−t)X0 +
√
1− exp(−2t)Zt where Zt ∼ N (0, Id). Then, by change of

variable of probability density, we have

pdf of exp(−t)X0 =
1

K

K∑
i=1

N (µ∗i,0 exp(−t), exp(−2t) · Id)

pdf of
√
1− exp(−2t)Zt = N (0, (1− exp(−2t)) · Id) .

Combining these, we have

qt(Xt) =
1

K

K∑
i=1

N (µ∗i,t, I) where µ∗i,t = µ∗i,0 exp(−t) ,

as claimed.

A.2 Derivation of score function

Proof of Lemma 4. For mixtures of K Gaussians in the form of Eq. (6), the score function at time t
is given by

∇ log qt(x) = −
∑K
i=1 e

−
∥x−µ∗i,t∥

2

2 (x− µ∗i,t)∑K
j=1 e

−
∥x−µ∗

j,t
∥2

2

=

K∑
i=1

w∗i,t(x)µ
∗
i,t − x where w∗i,t(x) =

e−
∥x−µ∗i,t∥

2

2∑K
j=1 e

−
∥x−µ∗

j,t
∥2

2

.

For mixtures of two Gaussians in the form of Eq. (7), the score function is given by

∇ log qt(x) = w∗1,t(x)µ
∗
1,t + w∗2,t(x)µ

∗
2,t − x

= w∗1,t(x)µ
∗ − (1− w∗1,t(x))µ

∗ − x

= (2w∗1,t(x)− 1)µ∗ − x (A.1)

By simplifying w∗1,t(x), we obtain

w∗1,t(x) =
1

1 + exp(∥x−µ
∗∥2

2 − ∥x+µ
∗∥2

2 )

=
1

1 + exp(−2µ∗⊤x)

= σ(2µ∗⊤x) (A.2)
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where σ(·) denotes the sigmoid function. Using Eq. (A.2) in Eq. (A.1), we obtain

∇ log qt(x) = tanh(µ∗⊤x)µ∗ − x.

B Additional notations and preliminaries

In this section, we provide additional notations and preliminaries for the proofs to follow. Recall that
we use Lt(sθt) to denote the population denoising loss at noise scale t.

Lt(sθt) = E
[∥∥∥sθt(Xt) +

Zt√
1− exp(−2t)

∥∥∥2].
We use Lt(sθt(x0, zt)) to denote the denoising loss at noise scale t on a sample x0 from the data
distribution and zt from the standard Gaussian distribution:

Lt(sθt(x0, zt)) =
∥∥∥sθt(xt) + zt√

1− exp(−2t)

∥∥∥2,
where xt = exp(−t)x0 +

√
1− exp(−2t)zt. We use αt as shorthand notation for exp(−t) and βt

as shorthand notation for
√
1− exp(−2t).

For mixtures of two Gaussians, we use B to denote the upper bound on ∥µ∗∥2, that is,

∥µ∗∥2 ≤ B .

Throughout, we assume that B = poly(d).

For any vector v, we use v̂ to denote the unit vector along the direction of v. For a vector v, we use
[v]i to denote the ith coordinate of v. Similarly, for a matrix X , we use [X]i to denote the ith row of
the matrix. For any positive integer n, we use [n] to denote the set {1, 2, . . . , n}. We use N (µ, σ2 ·Id)
to denote the standard Gaussian with mean µ and covariance σ2 · Id. Sometimes, we use a shorter
notation Nµ to denote N (µ, Id). For any two quantities X and Y that are both implicitly functions
of some parameter a over R≥0, we use the shorthand X ≲ Y and X = O(Y ) interchangeably to
denote that there exists absolute constant C > 0 such that for all a sufficiently large, X(a) ≤ CY (a).
We also use the shorthand X ≳ Y and X = Ω(Y ), defined in the obvious way.

Finally, we will use the following standard bounds.

Lemma B.1 (Sub-Gaussian norm, see e.g. [Ver]). The sub-Gaussian norm of a random variable
X ∈ R, denoted by ∥X∥ψ2

is defined as

∥X∥ψ2
= inf{t > 0 : E[exp(X2/t2)] ≤ 2}.

The sub-Gaussian norm has the following properties:

1. (Bounded): Any bounded random variable X (i.e., there is a finite A for which |X| ≤ A
with probability 1) is sub-Gaussian:

∥X∥ψ2
≤ A√

ln 2

2. (Centering): If X is a sub-Gaussian random variable, then X−E[X] is also a sub-Gaussian
random variable. Specifically, the following holds for some absolute constant C.

∥X − E[X]∥ψ2 ≤ C∥X∥ψ2

3. (Moment generating function bound): If X is a sub-Gaussian random variable with E[X] =
0, then

E[exp(λX)] ≤ exp(Cλ2∥X∥2ψ2
) for all λ ∈ R,

where C is some absolute constant.

16



4. (Sum of sub-Gaussian random variables): If X1 and X2 are mean zero sub-Gaussian
random variables, then

∥X1 +X2∥ψ2
≤ ∥X1∥ψ2

+ ∥X2∥ψ2
.

5. (Product with a bounded random variable): If X is a sub-Gaussian random variable and Y
is a bounded random variable Y ∈ [0, 1], then

∥XY ∥ψ2 ≤ ∥X∥ψ2 .

Lemma B.2 (Sub-exponential norm, see e.g. [Ver]). The sub-exponential norm of a random variable
X ∈ R, denoted by ∥X∥ψ1

is defined as

∥X∥ψ1
= inf{t > 0 : E[exp(|X|/t)] ≤ 2}.

The sub-exponential norm has the following properties:

1. (Sum of sub-exponential distributions): If X1 and X2 are mean-zero sub-exponential random
variables, then X1 +X2 is also a mean-zero sub-exponential variable. Specifically,

∥X1 +X2∥ψ1 ≤
√
2(∥X1∥ψ1 + ∥X2∥ψ1) .

2. (Centering) If X is a sub-exponential random variable, then X − E[X] is sub-exponential
with

∥X − E[X]∥ψ1 ≤ C∥X∥ψ1 ,

where C is some absolute constant.

Proof. The proof follows from following the equivalent definition of a sub-exponential random
variable: If any random variable X satisfies

E[exp(λX)] ≤ exp(C∥X∥2ψ1
λ2) for all λ such that|λ| ≤ 1

C∥X∥2ψ1

,

for some constant C, then X is sub-exponential random variable with sub-exponential norm ∥X∥ψ1
.

Then, for any |λ| ≤ 1
2Cmax(∥X1∥2ψ1

,∥X2∥2ψ1
)
, the MGF of X1 +X2 is given by

E[exp(λ(X1 +X2))] ≤ E[exp(2λX1)]
1/2E[exp(2λX2)]

1/2

≤ exp(C∥X1∥2ψ1
2λ2) exp(C∥X2∥2ψ1

2λ2)

≤ exp(Cλ2(2∥X1∥2ψ1
+ 2∥X2∥2ψ1

)) .

Using ∥X1∥ψ1
+ ∥X2∥ψ1

≥ max(∥X1∥ψ1
, ∥X2∥ψ1

), we know that above inequality is true for any
λ with |λ| ≤ 1

2C(∥X1∥ψ1
+∥X2∥ψ1

)2 ≤ 1
2Cmax(∥X1∥2ψ1

,∥X2∥2ψ1
)
. This completes the proof.

Lemma B.3 (Corollary 2.8.4 in [Ver]). (Bernstein’s inequality for sub-exponential random variable)
Let X1, X2, . . . , XN be independent, mean zero, sub-exponential random variables. Then, for every
ε ≥ 0, we have

Pr

[∣∣∣∣ 1N
N∑
i=1

Xi

∣∣∣∣ ≥ ε

]
≤ 2 exp

[
− cN min

( ε

maxi ∥Xi∥ψ1

,
ε2

(maxi ∥Xi∥ψ1)
2

)]
where c > 0 is some absolute constant.

C Learning mixtures of two Gaussians with constant separation

In this section, we provide the details and proofs for learning mixtures of two Gaussians with constant
separation. Our results in this section can be summarized in the following theorem statement.
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Theorem C.1 (Formal version of Theorem 7). Let q be a mixture of two Gaussians (in the form of
Eq. (7)) with mean parameter µ∗ satisfying∥µ∗∥ > c for some absolute constant c > 0. Recalling
that B denotes an a priori upper bound on∥µ∗∥, we have that for any ε ≤ ε′ where ε′ ≲ 1

d2B9 ,
there exists a procedure satisfying the following. If the procedure is run for at least Ω(B6 log(d/ε))
iterations with at least poly(d,B)/ε2 samples from q, then it outputs µ̃ such that ∥µ̃− µ∗∥ ≤ ε with
high probability.

As described earlier, the procedure first runs gradient descent on the DDPM objective described in
Algorithm 1 from a random Gaussian initialization in a high noise scale regime with noise scale
t1 = O(log d). It then uses the output of the first step as initialization and runs the Algorithm 1 in a
low noise scale regime with noise scale t2 = O(1).

We begin by calculating the form of the gradient updates:

Lemma C.2. For any noise scale t > 0, the gradient update for the mixture of two Gaussians on the
DDPM objective is given by

−∇µtLt(sµt) = Ex∼N (µ∗
t ,Id)

[(
tanh(µ⊤t x)−

1

2
tanh′′(µ⊤t x)∥µt∥

2
+ tanh′(µ⊤t x)µ

⊤
t x
)
x
]

− µt − Ex∼N (µ∗
t ,Id)

[
tanh′(µ⊤t x)µt

]
.

The proof of Lemma C.2 is given in Appendix F.1.

C.1 High noise regime–connection to power iteration

Here we show that running population gradient descent on the DDPM objective at high noise scale
behaves like power iteration on the covariance matrix of the data and thus reaches an iterate µ with
constant correlation with µ∗.

Lemma C.3. For any noise scale t > t′ and number of samples n > n′ where t′ ≲ log d and n′ =

Θ
(
d4B3

ε2

)
, with high probability, the negative gradient of the diffusion model objective Lt(st) can be

approximated by 2µ∗tµ
∗⊤
t µt − 3∥µt∥2 µt. More precisely, given independent samples {xi,t}i=1,...,n

from qt generated using noise vectors {zi,t}i=1,...,n sampled from N (0, Id), we have∥∥∥∥−∇
( 1
n

n∑
i=1

Lt(sµt(xi,t, zi,t))
)
−
(
2µ∗tµ

∗⊤
t µt − 3∥µt∥2 µt

)∥∥∥∥ ≤ 250
√
d∥µt∥5 + 10∥µt∥3∥µ∗t ∥

2
+ ε .

Proof. Recall that the population gradient update on the DDPM objective is given by

−∇Lt(sµt) = Ex∼N (µ∗
t ,Id)

[
tanh(µ⊤t x)x− 1

2
tanh′′(µ⊤t x)∥µt∥

2
x+ tanh′(µ⊤t x)µ

⊤
t xx

]
− µt − Ex∼N (µ∗

t ,Id)
[tanh′(µ⊤t x)µt]

= Ex∼N (µ∗
t ,Id)

[
tanh(µ⊤t x)x− 1

2
tanh′′(µ⊤t x)∥µt∥

2
x+ tanh′(µ⊤t x)µ

⊤
t xµ

∗
t

+ tanh′′(µ⊤t x)µ
⊤
t xµt

]
− µt ,

where the last equality follows from the Stein’s lemma on Ex∼N (µ∗
t ,Id)

[tanh′(µ⊤t x)µ
⊤
t xx], as

Ex∼N (µ∗
t ,Id)

[tanh′(µ⊤t x)µ
⊤
t xx] = Ex∼N (µ∗

t ,Id)
[tanh′(µ⊤t x)µ

⊤
t xµ

∗
t+tanh′(µ⊤t x)µt+tanh′′(µ⊤t x)µ

⊤
t xµt] .

Using Taylor’s theorem, we know that

tanh(µ⊤t x) = µ⊤t x− 2

3
(µ⊤t x)

3 +O(ξ(x)5) where ξ(x) ∈ [0, µ⊤t x]

=⇒ tanh(µ⊤x)x = µ⊤xx− 2

3
(µ⊤t x)

3x+O(ξ(x)5x)

=⇒
∥∥∥Ex∼N (µ∗

t ,Id)
[tanh(µ⊤t x)x]− Ex∼N (µ∗

t ,Id)

[
µ⊤t xx− 2

3
(µ⊤t x)

3x
]∥∥∥ ≤ ∥E[ξ(x)5x]∥ ≲

√
d∥µt∥5
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where the last inequality follows from
∥∥E[ξ(x)5x]∥∥ ≤ E[|µ⊤t x|5∥x∥] ≤(

E[|µ⊤t x|10]
)1/2 (E[ ∥x∥2])1/2 ≲ ∥µt∥5

√
d+∥µ∗t ∥

2 ≲
√
d∥µt∥5. Similarly, using Taylor’s

theorem, we get

tanh′′(µ⊤t x) = −2µ⊤t x+O(ξ(x)3) where ξ(x) ∈ [0, µ⊤t x]

=⇒ tanh′′(µ⊤t x)

(
−1

2
∥µt∥2x+ µ⊤t xµt

)
=
(
−2µ⊤t x+O(ξ(x)3)

)(
−1

2
∥µt∥2 x+ µ⊤t xµt

)
=⇒

∥∥∥E[tanh′′(µ⊤t x)(− 1

2
∥µt∥2 x+ µ⊤t xµt

)
]− E

[
− 2µ⊤t x

(
−1

2
∥µt∥2 x+ µ⊤t xµt

)]∥∥∥
≤
∥∥− 1

2
∥µt∥2 Ex∼N (µ∗

t ,I)
[O(ξ(x)3)x] + Ex∼N (µ∗

t ,I)
[O(ξ(x)3)µ⊤t xµt]

∥∥
≤ 1

2
∥µt∥2 E[|µ⊤t x|3∥x∥] +∥µt∥E[|µ⊤t x|4]

≤ 1

2
∥µt∥2

√
E[|µ⊤t x|6]E[∥x∥

2
] +∥µt∥E[|µ⊤t x|4]

≤ 10∥µt∥5
√
d+ 6∥µt∥5

Using Taylor’s theorem for tanh′, we get

tanh′(µ⊤t x) = 1− (µ⊤t x)
2 +O(ξ(x)4) where ξ(x) ∈ [0, µ⊤t x]

=⇒ tanh′(µ⊤t x)µ
⊤
t xµ

∗
t = µ⊤t xµ

∗
t − (µ⊤t x)

3µ∗t +O(ξ(x)4µ⊤t xµ
∗
t ) where ξ(x) ∈ [0, µ⊤t x]

=⇒
∥∥∥E[tanh′(µ⊤t x)µ⊤t xµ∗t ]− E[µ⊤t xµ∗t − (µ⊤t x)

3µ∗t ]
∥∥∥ ≤

∥∥∥E[ξ(x)4(µ⊤t x)µ∗t ]∥∥∥
≤ E[|µ⊤t x|5]∥µ∗t ∥ ≲∥µ∗t ∥∥µt∥

5

Additionally, we have

Ex∼N (µ∗
t ,Id)

[xx⊤µt(1 +∥µt∥2)−
2

3
(µ⊤t x)

3x− 2µt(µ
⊤
t x)

2 + µ⊤t xµ
∗
t − (µ⊤t x)

3µ∗t ]

= (I + µ∗tµ
∗⊤
t )µt(1 +∥µt∥2)−

5

3
E[(µ⊤t x)3µ∗t ] + µ∗tµ

∗⊤
t µt − 4E[µt(µ⊤t x)2]

= (I + µ∗tµ
∗⊤
t )µt(1 +∥µt∥2)−

5µ∗t
3

((µ⊤t µ
∗
t )

3 + 3(µ⊤t µ
∗
t )∥µt∥

2
)

+ µ∗tµ
∗⊤
t µt − 4µt(∥µt∥2 + (µ⊤t µ

∗
t )

2)

= µ∗tµ
∗⊤
t µt(2− 4∥µt∥2) + µt(1− 3∥µt∥2)−

5µ∗t (µ
⊤
t µ
∗
t )

3

3
− 4µt(µ

⊤
t µ
∗
t )

2

where the second equality uses Stein’s lemma on E[(µ⊤t x)3x] and E[xx⊤] = Id + µ∗tµ
∗⊤
t and the

third equality uses Gaussian moments for E[(µ⊤t x)2] and E[(µ⊤t x)3]. Putting it all together and using
triangle inequality, we obtain the desired bound on ∥ − ∇Lt(sµt)− (2µ∗tµ

∗⊤
t µt − 3∥µt∥2 µt)∥.

∥ − ∇Lt(sµt)− (2µ∗tµ
∗⊤
t µt − 3∥µt∥2 µt)∥

≤
∥∥∥−∇Lt(sµt)− E[xx⊤µt(1 +∥µt∥2)−

2

3
(µ⊤t x)

3x− 2µt(µ
⊤
t x)

2 + µ⊤t xµ
∗
t − (µ⊤t x)

3µ∗t − µt]
∥∥∥

+
∥∥∥E[xx⊤µt(1 +∥µt∥2)−

2

3
(µ⊤t x)

3x− 2µt(µ
⊤
t x)

2 + µ⊤t xµ
∗
t − (µ⊤t x)

3µ∗t − µt]

−
(
2µ∗tµ

∗⊤
t µt − 3∥µt∥2 µt

)∥∥∥
≤
(
200

√
d∥µt∥5 + 10∥µt∥5

√
d+ 6∥µt∥5 + 20∥µ∗t ∥∥µt∥

5
)
+ 10∥µt∥3∥µ∗t ∥

2

≤ 250
√
d∥µt∥5 + 10∥µt∥3∥µ∗t ∥

2

Using Lemma E.7 and triangle inequality, we obtain the result.

We will use the following simple bound on the correlation between the ground truth and a random
initialization:
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Lemma C.4. A randomly initialized µ0 ∼ N (0, Id) satisfies that
∣∣⟨µ̂0, µ̂

∗⟩
∣∣ ≥ 1

2d with probability at
least 1−O(d−1/2).

Proof. For µ0 ∼ N (0, I), we know that ⟨µ0, µ̂
∗⟩ ∼ N (0, I). Using Gaussian anti-concentration,

with probability at least 1− 1/
√
d , we have

∣∣⟨µ0, µ̂
∗⟩
∣∣ ≥ 1/

√
d. Because the L2 norm of a Gaussian

vector is sub-exponential, with probability at least 1− exp(−Ω(d)), we have∥µ0∥ ≤ 2
√
d. Using

the norm bound, with probability at least 1− 1/
√
d− exp(−O(d)) = 1−O(d−1/2), we obtain the

claimed bound on
∣∣⟨µ̂0, µ̂

∗⟩
∣∣.

We can now track the correlation between the iterates of gradient descent and the ground truth:

Lemma C.5. Suppose that the vector µt satisfies |⟨µ̂t, µ̂∗t ⟩| ≥ 1
2d , and let µ′t denote the iterate

resulting from a single empirical gradient step with learning rate η starting from µt. Suppose that
the empirical gradient and the population gradient differ by at most ε. Denote the angle between µt
(resp. µ′t) and µ∗t by θ (resp. θ′). Then

tan θ′ = max (κ1 tan θ, κ2)

for

κ1 =
1− 3η∥µt∥2

1− 3η∥µt∥2 + η(∥µ∗t ∥2 − 500
√
d3∥µt∥4 − 20d∥µt∥2∥µ∗t ∥2 − ηε̃)

,

κ2 =
500η

√
d3∥µt∥4 + 20ηd∥µt∥2∥µ∗t ∥2 + ηε̃

∥µ∗t ∥2
and ε̃ ≲

dε

∥µt∥
.

Proof. Define µ̂∗⊥t as the orthogonal vector to µ∗t in the plane of µt and µ∗t . Note that µ′t still lies in
this plane, so the orthogonal vector to µ∗t in the plane of µ′t and µ∗t is also given by µ̂∗⊥t .

We have

tan θ′ =
⟨µ̂∗⊥, µ̂′t⟩
⟨µ̂∗t , µ̂′t⟩

=
⟨µ̂∗⊥t , µ′t⟩
⟨µ̂∗t , µ′t⟩

=
⟨µ̂∗⊥t , µt + ηF (µt, µ

∗
t )⟩+ ⟨µ̂∗⊥t ,−η∇Lt(st)− ηF (µt, µ

∗
t )⟩+ ηε

⟨µ̂∗t , µt + ηF (µt, µ∗t )⟩+ ⟨µ̂∗⊥t ,−η∇Lt(st)− ηF (µt, µ∗t )⟩ − ηε

where F (µ, µ∗) =
(
2µ∗tµ

∗⊤
t µt − 3∥µt∥2 µt

)
≤
σ2⟨µ̂∗⊥t , µt⟩+ η

∥∥∇Lt(st) + F (µt, µ
∗
t )
∥∥+ ηε

σ1⟨µ̂∗t , µt⟩ − η
∥∥∇Lt(st) + F (µt, µ∗t )

∥∥− ηε
(C.1)

where σ1 and σ2 are the first and second eigenvalues of Id+F (µt, µ
∗
t ) = (1−3η∥µt∥2)Id+2ηµ∗tµ

∗⊤
t ,

given by

σ1 = 1 + η(2∥µ∗t ∥2 − 3∥µt∥2)
σ2 = 1− 3η∥µt∥2 .

The last inequality (C.1) follows from the fact that

⟨µ̂∗t , µt + ηF (µt, µ
∗
t )⟩ = µ̂∗⊤t ((1− 3η∥µt∥2)Id + 2ηµ∗tµ

∗⊤
t )µt

= µ⊤t ((1− 3η∥µt∥2)Id + 2ηµ∗tµ
∗⊤
t )µ̂∗t = σ1µ

⊤
t µ̂
∗
t

because µ̂∗ is the first eigenvector of (1 − 3η∥µt∥2)Id + 2ηµ∗tµ
∗⊤
t . Recall from Lemma C.3 that

the deviation between the negative population gradient and the power iteration update F (µt, µ
∗
t ) is

bounded by∥∥∇Lt(st) + F (µt, µ
∗
t )
∥∥

⟨µt, µ̂∗t ⟩
≤ 250η

√
d∥µt∥4 + 10η∥µt∥2∥µ∗t ∥

2

⟨µ̂t, µ̂∗t ⟩
≤ 500η

√
d3∥µt∥4 + 20dη∥µt∥2∥µ∗t ∥

2
.
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Substituting this into Eq. (C.1), we get

tan θ′ ≤ σ2⟨µ̂∗⊥t , µt⟩+ η∥∇Lt(st) + F (µt, µ
∗
t )∥+ ηε

⟨µ̂∗t , µt⟩(σ1 − 500η
√
d3∥µt∥4 − 20dη∥µt∥2∥µ∗t ∥

2 − ηε̃)
where ε̃ ≲

dε

∥µ∥

≤ σ2

σ̃1
tan θ +

1

σ̃1

(
500η

√
d3∥µ∥4 + 20dη∥µ∥2 ∥µ∗t ∥2 + ηε̃

)
where σ̃1 ≜ σ1 − 500η

√
d3∥µ∥4 − 20dη∥µ∥2 ∥µ∗t ∥2 − ηε̃

≤
(
1− η∥µ∗t ∥2

σ̃1

) σ2

σ̃1 − η∥µ∗t ∥2
tan θ +

(η∥µ∗t ∥2
σ̃1

)500η√d3∥µt∥4 + 20dη∥µt∥2 ∥µ∗t ∥2 + ηε̃

η∥µ∗t ∥2

≤ max
( σ2

σ̃1 − η∥µ∗t ∥2
tan θ,

500η
√
d3∥µt∥4 + 20ηd ∥µt∥2 ∥µ∗t ∥2 + ηε̃

∥µ∗t ∥2
)

where the last inequality uses the fact that convex combinations of two values is less than the
maximum of two values.

Finally, we obtain the following bound on the correlation between the ground truth and the final
iterate of gradient descent:

Lemma C.6. For any h ∈ N, let µ(h)
t denote the iterate after h empirical gradient steps with learning

rate η = 1/20 starting from random initialization, where the empirical gradients are estimated from
at least Θ(d

4B3

ε2 ) samples. Let θ(h) denote the angle between µ
(h)
t and µ∗t . For any ε ≲ 1

d2B9 , there
exists H ′ ≲ B6 log d such that for any H ≥ H ′, if 1

B3 ≤∥µ∗t ∥ ≤ 1
B2 , we have

tan θ(H) ≲ 1 .

Proof. Denote the h-th iterate of gradient descent by µ
(h)
t . In Lemma C.7 we show that

∥∥∥µ(h)
t

∥∥∥ ≤ 1
B2

for all h. We would like to apply the bound in Lemma C.5 to argue that the angle with µ∗t decreases
when going from µ

(h)
t to µ

(h+1)
t . Using that 1

B3 ≤ ∥µ∗t ∥ ≤ 1
B2 and∥µt∥ ≤ 1

B2 , we can bound the
quantity κ1 that appears in Lemma C.5 by

κ1 ≤ 1− 3η∥µt∥2

1− 3η∥µt∥2 + η
B6 (1− 500

√
d3

B2 − 20d
B2 − εdB9)

≤ 1

1 + η
B6 (1− 500

√
d3

B2 − 20d
B2 − εdB9)

≤ 1

1 + η
2B6

.

On the other hand, for B a sufficiently large polynomial in d, we can again use that 1
B3 ≤ ∥µ∗t ∥ ≤ 1

B2

and∥µt∥ ≤ 1
B2 to bound the quantity κ2 that appears in Lemma C.5 by

κ2 ≤ 500η
√
d3

B2
+

20ηd

B4
+B9ηdε ≲

η

d
.

As
∣∣⟨µ̂, µ̂∗⟩∣∣ ≥ 1

2d , this implies | tan θ(h)| ≤ 2d. Without loss of generality assume that tan θ(h) ≤
2d.

By Lemma C.5, for any h we either have tan θ(h) ≲ η/d ≪ 1, in which case we are done as this bound
will also hold for subsequent iterates, or tan θ(h) ≲ (1 + η

2B6 )
−1 tan θ(h−1). If the latter happens

consecutively for H ≥ log d
log(1+ η

2B6 ) steps, then because (1 + η
2B6 )

−H = 1
d , the angle θ will satisfy

tan θ ≤ 2d · (1/d) ≲ 1. The proof is complete because, by hypothesis, H ≥ 4B6 log d
η ≥ log d

log(1+ η

2B6 )

(the last inequality follows from log(1 + x) ≥ x
2 for any 0 < x < 1).

Lemma C.7. When parameter µt satisfies ∥µt∥ ≤ 1
B2 for the noise scale t = O(log d) and µ′t is the

new parameter after performing a gradient descent update on the DDPM objective at noise scale
t = O(log d), then parameter µ′t satisfies ∥µ′t∥ ≤ 1

B2 .
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Proof. When ∥µt∥ ≤ 0.9∥µ∗t ∥ ≤ 0.9
B2 , we have

∥µ′t∥ ≤ ∥µt + ηF (µt, µ
∗
t )∥+ η∥(−∇Lt(sµt)− F (µ, µ∗))∥+ ηε ≤ (1 + 2η∥µ∗t ∥2)∥µt∥+

1

dB9

≤ 1.05∥µt∥+
1

dB9
≤ 1

B2
.

When ∥µt∥ ≥ 0.9∥µ∗t ∥, then maximum eigenvalue of F (µt, µ
∗
t ) is negative. Therefore, ∥µ′t∥ is less

than 1
B2 . Specifically, we have

∥µ′t∥ ≤ ∥µt + ηF (µt, µ
∗
t )∥+ η∥(−∇Lt(sµt)− F (µ, µ∗))∥+ ηε

≤ (1 + η(2∥µ∗t ∥2 − 3∥µt∥2))∥µt∥+
1

dB9
≤ (1− 0.01∥µ∗t ∥

2
)∥µt∥+

1

dB9
≤ 1

B2
.

C.2 Low noise regime - connection to EM algorithm

In the previous section we showed how to obtain a warm start by running gradient descent on the
DDPM objective at high noise. We now focus on proving the contraction of ∥µt − µ∗t ∥ starting
from this warm start, by running gradient descent at low noise. We first prove the contraction for
population gradient descent and then, we argue that the empirical gradient descent concentrates well
around the population gradient descent.

As before, we denote µt as the current iterate and µ′t as the next iterate obtained by performing
(population) gradient descent on the DDPM objective with step size η. We upper bound ∥µ′t − µ∗t ∥
as follows:

∥µ′t − µ∗t ∥ = ∥µt − η∇µtLt(sµt)− µ∗t ∥

=
∥∥∥(1− η)(µt − µ∗t ) + η Ex∼N (µ∗

t ,1)

[(
tanh(µ⊤t x)−

1

2
tanh′′(µ⊤t x)∥µt∥

2

+ tanh′(µ⊤t x)µ
⊤
t x
)
x
]
− η Ex∼N (µ∗

t ,1)
[tanh′(µ⊤t x)µt]− ηµ∗t

∥∥∥
≤(1− η) ∥µt − µ∗t ∥+ η

∥∥Ex∼N (µ∗
t ,1)

[tanh(µ⊤t x)x]− µ∗t
∥∥+ η ∥G(µt, µ

∗
t )∥ ,

where

G(µt, µ
∗
t ) ≜ Ex∼N (µ∗

t ,Id)

[
− 1

2
tanh′′(µ⊤t x)∥µt∥

2
x+ (tanh′(µ⊤t x)µ

⊤
t x)x− tanh′(µ⊤t x)µt

]
.

Recall that Ex∼N (µ∗
t ,1)

[tanh(µ⊤t x)x] is the EM update for mixtures of two Gaussians (See Fact 5).
If we can show that the G(µt, µ

∗
t ) term above is “contractive” in the sense that it is decreasing in

∥µt − µ∗t ∥, then we can invoke existing results on convergence of EM to show that the distance
between the current iterate and µ∗t contracts in a single gradient step [DTZ17, XHM16]. Our goal is
thus to control G(µt, µ

∗
t ).

For this, we start with the 1D case in Lemma C.8. We then extend to the multi-dimensional case in
Lemma C.9.
Lemma C.8 (One-dimensional version). Let µ, µ∗ > 0, and consider µ ∈ [c, 4µ∗

3 ] for some constant
c. In this one-dimensional case, the function G specializes to

G(µ, µ∗) = Ex∼N (µ∗,1)

[
−1

2
tanh′′(µx)µ2x+ tanh′(µx)µx2 − tanh′(µx)µ

]
, (C.2)

and we have

G(µ, µ∗) ≤ 0.01|µ− µ∗|

The proof uses the fact that the function G only contains first or higher-order derivatives of the tanh
function and all the derivatives of tanh decay exponential quickly as µ increases. Therefore, when µ
is at least a constant, we obtain the result. The complete proof of lemma C.8 is given in Appendix F.2.
Lemma C.9 (Multi-dimensional version). For any noise scale t, when the current parameter at noise
scale t, µt, satisfies ∥µt∥ ∈ [c,

4⟨µ̂t,µ∗
t ⟩

3 ] for some sufficiently large constant c, then the following
inequality holds: ∥∥G(µt, µ

∗
t )
∥∥ ≤ 0.01∥µt − µ∗t ∥
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Proof. Suppose {v1, v2, . . . , vd} are d orthonormal directions such that v1 = µ̂t and v2 is either of
the two unit vectors µ̂⊥t which are orthogonal to µ̂t in the plane of µt and µ∗t . Recall that

G(µt, µ
∗
t ) = Ex∼N (µ∗

t ,Id)

[
− 1

2
tanh′′(µ⊤t x)∥µt∥

2
x+ (tanh′(µ⊤t x)µ

⊤
t x)x− tanh′(µ⊤t x)µt

]
= Ex∼N (0,I)

[
− 1

2
tanh′′(µ⊤t (x+ µ∗t ))∥µt∥

2
(x+ µ∗t )

+ tanh′(µ⊤t (x+ µ∗t ))(µ
⊤
t (x+ µ∗t ))(x+ µ∗t )− tanh′(µ⊤t (x+ µ∗t ))µt

]
= Eα1,α2,...,αd∼N (0,1)

[
− 1

2
tanh′′(∥µt∥ (α1 + µ̂⊤t µ

∗
t ))∥µt∥

2 (∑
i
αivi + µ∗t

)
+ tanh′(∥µt∥ (α1 + µ̂⊤t µ

∗
t ))∥µt∥ (α1 + µ̂⊤t µ

∗
t )
(∑

i
αivi + µ∗t

)
− tanh′(∥µt∥ (α1 + µ̂⊤t µ

∗
t ))µt

]
,

where in the last equality we rewrote x ∼ N (0, I) as
∑d
i=1 αivi for αi ∼ N (0, 1). Therefore, we

have

⟨µ̂t, G(µt, µ
∗
t )⟩

= Eα1,α2,...,αd∼N (0,I)

[
− 1

2
tanh′′(∥µt∥ (α1 + µ̂⊤t µ

∗
t ))∥µt∥

2
(α1 + µ̂t

⊤µ∗t )

+ tanh′(∥µt∥ (α1 + µ̂t
⊤µ∗t ))∥µt∥ (α1 + µ̂⊤t µ

∗
t )

2 − tanh′(∥µt∥ (α1 + µ̂t
⊤µ∗t ))∥µt∥

]
= Eα1∼N (µ̂⊤

t µ
∗
t ,1)

[
− 1

2
tanh′′(∥µt∥α1)∥µt∥2 α1 + tanh′(∥µt∥α1)∥µt∥α2

1 − tanh′(∥µt∥α1)∥µt∥
]
.

By taking∥µt∥ to be µ and ⟨µ̂t, µ∗t ⟩ to be µ∗, we observe the similarity between the right side of the
above equation and the one-dimensional definition of G defined in Eq. (C.2). Using Lemma C.8 and
if∥µt∥ ∈ [c,

4⟨µ̂t,µ∗
t ⟩

3 ], we have

⟨µ̂t, G(µt, µ
∗
t )⟩ ≤ 0.01

∣∣⟨µ̂t, µt⟩ − ⟨µ̂t, µ∗t ⟩
∣∣

Taking the dot product of G(µt, µ
∗
t ) with v2 = µ̂⊥t , we have

⟨µ̂⊥t , G(µt, µ
∗
t )⟩ = Eα1,α2,...,αd∼N (0,1)

[
− 1

2
tanh′′(∥µt∥ (α1 + µ̂⊤t µ

∗
t ))∥µt∥

2
(α2 + ⟨µ̂⊥t , µ∗t ⟩)

+ tanh′(∥µt∥ (α1 + µ̂⊤t µ
∗
t ))∥µt∥ (α1 + µ̂⊤t µ

∗
t )(α2 + ⟨µ̂⊥t , µ∗t ⟩)

]
= Eα1∼N (µ̂⊤

t µ
∗
t ,1)

[
− 1

2
tanh′′(∥µt∥α1)∥µt∥2 ⟨µ̂⊥t , µ∗t ⟩

+ tanh′(∥µt∥α1)∥µt∥α1⟨µ̂⊥t , µ∗t ⟩
]

= ⟨µ̂⊥t , µ∗t ⟩Eα1∼N (µ̂⊤
t µ

∗
t ,1)

[
− 1

2
tanh′′(∥µt∥α1)∥µt∥2 + tanh′(∥µt∥α1)∥µt∥α1

]
.

In Lemma F.5 below, we show that when ∥µt∥ ∈ [c,
4⟨µ̂t,µ∗

t ⟩
3 ], the expectation in the last expression

is upper bounded by 0.01. Therefore, we have∣∣⟨µ̂⊥t , G(µt, µ
∗
t )⟩
∣∣ ≤ 0.01|⟨µ̂⊥t , µ∗t ⟩| =⇒

∣∣⟨µ̂⊥t , G(µt, µ
∗
t )⟩
∣∣ ≤ 0.01

∣∣⟨µ̂⊥t , µt − µ∗t ⟩
∣∣

Observe that for i = 3, . . . , d, ⟨G(µt, µ
∗
t ), vi⟩ = 0. Therefore, we have

∥∥G(µt, µ
∗
t )
∥∥2 =

d∑
i=1

⟨vi, G(µt, µ
∗
t )⟩2 ≤ 0.012∥µt − µ∗t ∥

2
.

The next Lemma ensures that the parameter µt after a few steps of gradient descent on the DDPM
objective stays in the region where the function G satisfies

∥∥G(µt, µ
∗
t )
∥∥ ≤ 0.01∥µt − µ∗t ∥. Recall

that the condition of the Lemma is satisfied because we initialize at the warm start obtained by
gradient descent in the high noise regime.
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Lemma C.10. Suppose the angle between initialization µ̂
(0)
t and optimal parameter µ∗t is Θ(1), then

for any h, we have ∥µ(h)
t ∥ ∈ [c,

4⟨µ̂(h)
t ,µ∗

t ⟩
3 ].

The proof of Lemma C.10 is given in Appendix F.3. Finally, we are ready to prove the main result of
this section:

Proof of Theorem C.1. To obtain the contraction of ∥µ(h)
t − µ∗t ∥ after a gradient descent step on the

DDPM objective, we write ∥µ(h+1)
t − µ∗t ∥ in terms of ∥µ(h)

t − µ∗t ∥ as follows:∥∥µ(h+1)
t − µ∗t

∥∥ =
∥∥µ(h)

t − η∇Lt(sµ(h)
t

)− µ∗t
∥∥+ η

∥∥∥∥( 1n
n∑
i=1

∇Lt(sµ(h)
t

(xi, zi))
)
−∇Lt(sµ(h)

t
)

∥∥∥∥
≤ (1− η)∥µ(h)

t − µ∗t ∥+ η
∥∥Ex∼N (µ∗

t ,1)
[(tanh(µ

(h)⊤

t x))x]− µ∗t
∥∥+ η∥G(µ

(h)
t , µ∗t )∥+ ηε ,

where in the last step we used Lemma E.7 below to bound the distance between the population and
empirical gradient.

Recall that gradient descent in the low noise regime was initialized using the output of the gradient
descent in the high noise regime. Therefore, ⟨µ̂(0)

t , µ̂∗t ⟩ ≳ 1. Using Lemma C.10, we know that the
condition on Lemma C.8 is always satisfied. Using the contractivity of G established in Lemma C.8
combined with [DTZ17, Theorem 2], and choosing η = 0.05, we conclude that the distance to the
ground truth contracts:∥∥µ(h+1)

t − µ∗t
∥∥ ≤ (1− 0.05)

∥∥µ(h)
t − µ∗t

∥∥+ 0.01
∥∥µ(h)

t − µ∗t
∥∥+ 0.01

∥∥µ(h)
t − µ∗t

∥∥+ ηε

≤ 0.97
∥∥µ(h)

t − µ∗t
∥∥+ ηε.

Applying the above for all h ∈ [H], we obtain

∥µ(H)
t − µ∗t ∥ ≤ 0.97H∥µ(0)

t − µ∗t ∥+ 50ε.

The choice of H given in the Theorem statement proves the result.

D Learning mixtures of two Gaussians with small separation

In this section, we extend the analysis for learning mixtures of two Gaussians with constant separation,
provided in Section C, to the low-separation regime and prove the following:
Theorem D.1 (Formal version of Theorem 13). For any L > 0, let q be a mixture of two Gaussians
(in the form of Eq. (7)) with mean parameter µ∗ satisfying∥µ∗∥ > L. Recalling that B denotes an a
priori upper bound on∥µ∗∥, we have that for any ε ≤ ε′, where ε′ ≲ 1

d2B9 , there exists a procedure
satisfying the following. If the procedure is run for at least poly(d,B, 1

L )
1
ε3 iterations with at least

poly(d,B, 1
L ) ∗

1
ε8 samples from q, then it outputs µ̃ such that ∥µ̃− µ∗∥ ≤ ε with high probability.

As described in Section 1.2, the algorithm is a simple modification of Algorithm 1 in which gradient
descent is replaced by projected gradient descent. We start in Lemma D.2 by showing that the
projection step in the algorithm ensures that the norm of the current iterate µt is approximately that of
µ∗t . Then in Lemma D.3, we extend the analysis of Lemma C.5 to show that every projected gradient
step contracts the distance to the ground truth. Combined with Lemma D.2, this allows us to conclude
the proof of Theorem 13.
Lemma D.2. Let x1, . . . , xn be independent samples from q, and define radius parameter R by
R2 ≜ 1

n

∑n
i=1 ∥xi∥2 − d. For any ε > 0, provided that n ≳ B4+d2

ε2L2 , we have |R− ∥µ∗∥| ≤ ε with
high probability.

Proof. Observe that we can write the random variable corresponding to the mixture of two Gaussians
X0 = X = Z + pµ∗ where Z ∼ N (0, I) and p is a Rademacher random variable. Using Theorem
3.1.1 (concentration of norms) from [Ver], we know that ∥∥Z∥ −

√
d∥ψ2

≲ 1. Therefore, sub-
Gaussian norm

∥∥∥X0∥
∥∥
ψ2

≲
∥∥∥Z∥

∥∥
ψ2

+
∥∥∥pµ∗∥∥∥

ψ2
≲ B +

√
d. Using Lemma 2.7.4 from [Ver],
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we have
∥∥∥X0∥2

∥∥
ψ1

≲
∥∥∥X0∥

∥∥2
ψ2

≲ B2 + d. Therefore, using number of samples n specified in the
Lemma statement, with high probability, we have∣∣∣ 1

n

n∑
i=1

∥xi∥2 − E[∥X0∥2]
∣∣∣ ≤ εL =⇒

∣∣∣∥µ∥2 − ∥µ∗∥2
∣∣∣ ≤ εL =⇒

∣∣∥µ∥ − ∥µ∗∥
∣∣ ≤ ε

where the penultimate implication uses the fact that EX0
[∥X0∥2] = E[∥Z∥2 + ∥µ∗∥2] = d +

∥µ∗∥2.

Lemma D.3. Assume that L ≤ ∥µ∗∥ ≤ B. Then, for any small ε > 0, running projected GD on
diffusion models with step size η = 1

20 at noise scale t = log d
ε for number of steps H > H ′ and

number of samples n > n′ steps will achieve∥∥µ(H) − µ∗
∥∥ ≲ d2B4ε,

where H ′ = d2

L2ε3 and n′ = d10B3

ε8L6 .

Proof. Recalling that µ∗t = µ∗0 exp(−t), note that for t = log d
ε , εLd ≤∥µ∗t ∥ ≤ εB

d . We would like
to apply Lemma C.5. Note that we may apply this even though it is only stated for gradient descent
(without projection). The reason is that it bounds the change in angle between the iterate and the
ground truth after a single gradient step, and this angle is unaffected by projection.

Suppose we take one projected gradient step with learning rate η starting from an iterate µt. As µt
was the result of a projection, by Lemma D.2 we have εL

d ≲
∥∥µ(h)

t

∥∥ ≲ εB
d .

We now bound κ2 in Lemma C.5:

κ2 =
500η

√
d3∥µt∥4 + 20ηd∥µt∥2∥µ∗t ∥

2
+ ηε̃

∥µ∗t ∥
2

≲ 500η
√
d7∥µt∥2 + 20ηd∥µt∥2 +

d2ε

∥µ∗t ∥
3

≤ 550d7/2B2 exp(−2t) +
d5ε

ε3L3

≲ d2B2ε,

where the last inequality follows by choosing population gradient estimation error parameter ε = ε4L3

d3

with the number of samples n′ = d11B6

ε8L6 . Additionally, κ1 in Lemma C.5 is given by

κ1 =
1− 3η∥µt∥2

(1− 3η∥µt∥2) + η(∥µ∗t ∥2 − 500
√
d3∥µt∥4 − 20d∥µt∥2∥µ∗t ∥

2 − ε̃)

=
1− 3η∥µt∥2

(1− 3η∥µt∥2) + η∥µ∗t ∥2(1− κ2)

≲
1− 3η∥µ(h)

t ∥2

(1− 3η∥µ(h)
t ∥2) + η∥µ∗t ∥2(1− d2B2ε)

≤ 1

1 + L
2ε2

20d2 (1− d2B2ε)
.

Using bounds on κ1 and κ2 and Lemma C.5, we conclude that if θ (resp. θ′) is the angle between µt
(resp. the next iterate of projected gradient descent after µt) and µ∗t

tan θ′ ≤ max
( 1

1 + L
2ε2

20d2 (1−B2ε)
tan θ, d2B2ε

)
.
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Doing projected gradient descent for H = 20d2

L2ε3 steps, if θ(h) denotes the angle between the h-th
iterate and µ∗t , we obtain

tan θ(H) ≤ tan θ(h+1) ≤ max

(( 1

1 + L
2ε2

20d2 (1− d2B2ε)

)H
tan θ(0), d2B2ε

)
≤ max

(
tan θ(0)

1 + HL2ε2

20d2 (1−B2ε)
, d2B2ε

)
≤ d2B2ε ,

where the last inequality uses 1 + HL2ε2

20d2 (1 − B2ε) ≥ 1
ε for ε ≲ 1

B3 . Additionally, for a random
initialization, Lemma C.4 shows that cos θ(0) ≥ 1

2d which implies tan θ(0) ≤
√
sec2 θ(0) − 1 ≲

d. Using Lemma D.2, we have ∥µ(H)∥ ≥ ∥µ∗∥ − ε which implies −2∥µ(H)∥∥µ∗∥ cos θ(H) ≤
−2∥µ∗∥2 cos θ(H) + 2Bε and ∥µ(H)∥2 ≤ ∥µ∗∥2 + 3Bε. Using this result, we obtain

∥µ(H) − µ∗∥2 = ∥µ(H)∥2 + ∥µ∗∥2 − 2∥µ(H)∥∥µ∗∥ cos θ(H)

≲ 2∥µ∗∥2 − 2∥µ∗∥2 cos θ(H) + 5Bε ≲ 2B2
(
1− 1√

1 + d4B4ε2

)
+ 5Bε ≲ d2B4ε,

where the last inequality follows from the fact that
√
1 + x ≤ 1 +

√
x for any x > 0.

E Learning mixtures of K Gaussians from a warm start

In this section, we provide details about our main result on learning mixtures of K Gaussians. We
start by describing our main theorem in this case.
Theorem E.1 (Formal version of Theorem 16). Let q be a mixture of Gaussians (in the form of Eq. (6))
with center parameters θ∗ = {µ∗1, µ∗2, . . . , µ∗K} ∈ Rd satisfying the separation Assumption 14, and
suppose we have estimates θ for the centers such that the warm initialization Assumption 15 is
satisfied. For any ε > ε0 and noise scale t where

ε0 = 1/poly(d) and t = Θ(ε) ,

gradient descent on the DDPM objective at noise scale t′ (Algorithm 1) outputs θ̃ = {µ̃1, µ̃2, . . . , µ̃K}
such that mini ∥µ̃i − µ∗i ∥ ≤ ε with high probability. The algorithm runs for H ≥ H ′ iterations and
uses n ≥ n′ number of samples where

H ′ = Θ(log(ε−1 log d)) and n′ = Θ(K4d5B6/ε2) .

We first give an overview of the proof for population gradient descent, and then show that the
empirical gradients concentrate well around the population gradients. We start by simplifying the
population gradient update for mixtures of K Gaussians using Stein’s lemma in Lemma E.2, which
yields

−∇µ1,t
Lt(sθt) = E[w1,t(Xt)(Xt − µ1,t)] + [extra terms] ,

recalling the notation of Eq. (9). As discussed in the body of the paper, E[w1,t(Xt)(Xt − µ1,t)] is
precisely the update for the gradient EM algorithm (see Fact 6) and known results for the latter [KC20,
SN21] can be used to show that the distance ∥µ1,t − µ∗1,t∥ contracts in each step when the separation
Assumption 14 and the warm initialization Assumption 15 are satisfied. Therefore, showing that the
“extra terms” do not disturb the progress coming from the gradient EM update is sufficient. We prove
that the “extra terms” are 1/poly(d) in Lemma E.4 when the separation Assumption 14 and warm
initialization Assumption 15 hold.

The intuition behind Lemma E.4 is as follows: We start with a key observation that each of the
“extra terms” either contains w1,t(Xt)(1− w1,t(Xt)) or w1,t(Xt)wj,t(Xt) where j ̸= 1. Note that
the w1,t(Xt) can be interpreted as the conditional probability of the underlying component being
N (µ1,t, I) given Xt. When Assumption 14 and Assumption 15 are satisfied, Proposition 4.1 of
[SN21] shows that

EXt∼N (µ∗
1,t,I)

[wj,t(Xt)] ≲ 1/poly(d) for any j ̸= 1 .

This result can be extended to show both EXt [w1,t(Xt)(1 − w1,t(Xt))] ≲ 1/poly(d) as well as
EXt [w1,t(Xt)wj,t(Xt)] ≲ 1/poly(d) for any j ̸= 1 (see Lemma E.5 for the proof). Using these
bounds, we conclude that [“extra terms′′] ≲ 1/poly(d) in Lemma E.4.
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E.1 EM and population gradient descent on DDPM objective

We begin by writing out the gradient update explicitly:
Lemma E.2. For any noise scale t > 0, the gradient of the population DDPM objective
E[Lt(sθt(Xt))] with respect to parameter µ1,t is given by

∇µ1,t
Lt(sθt) = E

[
− w1,t(Xt)(Xt − µ1,t) + w1,t(Xt)(Xt − µ1,t)

K∑
i=1

wi,t(Xt)µ
⊤
i,t(Xt − µ1,t)

+ w1,t(Xt)µ1,t − w1,t(Xt)(Xt − µ1,t)
⊤µ1,t(Xt − µ1,t)− w1,t(Xt)

K∑
i=1

wi,t(Xt)µi,t

− w1,t(Xt)

K∑
i=1

∇xwi,t(Xt)
⊤µi,t(Xt − µ1,t)

]
where w1,t(x) and µ1,t are defined in Eq. (9).

Proof. Recall that the score function of mixture of Gaussians is given by

sθt(Xt) =
∑
i

wi,t(Xt)µi,t −Xt

Finding the gradient ∇µ1,t
wi,t(Xt), we have

∇µ1,t
wi,t(Xt) =

{
w1,t(Xt)(1− w1,t(Xt))(Xt − µ1,t) if i = 1

−w1,t(Xt)wi,t(Xt)(Xt − µ1,t) otherwise.

The gradient of the score function is given by

∇µ1,tsθt(Xt) = ∇µ1,t

(
w1,t(Xt)µ1,t

)
+

K∑
i=2

∇µ1,t

(
wi,t(Xt)µi,t

)
= w1,t(Xt)(1− w1,t(Xt))µ1,t(Xt − µ1,t)

⊤ + w1,t(Xt)I − w1,t(Xt)

K∑
i=2

wi,t(Xt)µi,t(Xt − µ1,t)
⊤

= w1,t(Xt)µ1,t(Xt − µ1,t)
⊤ + w1,t(Xt)I − w1,t(Xt)

K∑
i=1

wi,t(Xt)µi,t(Xt − µ1,t)
⊤ .

The gradient of 1
2∥sθt∥

2 is given by

1

2
∇
∥∥sθt(Xt)

∥∥2 =

d∑
j=1

[sθt(Xt)]j [∇µ1,t
sθt(Xt)]j = ∇µ1,t

sθt(Xt)
⊤sθt(Xt)

where [∇µ1,t
sθt(Xt)]j is jth row of ∇µ1,t

sθt(Xt) .

The gradient of this is given by

∇µ1,t
sθt(Xt)

⊤Zt

βt
=

1

βt

(
w1,t(Xt)(Xt − µ1,t)µ

⊤
1,tZt + w1,t(Xt)Zt

− w1,t(Xt)

K∑
i=1

wi,t(Xt)(Xt − µ1,t)µ
⊤
i,tZt

)
(E.1)

Applying Stein’s lemma to the expectation of the first term in Eq. (E.1), we have

EX0,Zt [w1,t(Xt)(Xt − µ1,t)µ
⊤
1,tZt] =

d∑
j=1

EX0,Zt [w1,t(Xt)(Xt − µ1,t)µ1,t,jZt,j ]

=

d∑
j=1

EX0,Zt [w1,t(Xt)βtejµ1,t,j + βt∇xw1,t(Xt)
⊤ej(Xt − µ1,t)µ1,t,j ]

= EX0,Zt [w1,t(Xt)βtµ1,t + βt∇xw1,t(Xt)
⊤µ1,t(Xt − µ1,t)]

27



The expectation of the second term in Eq. (E.1) simplifies to βtEXt [∇xw1,t(Xt)] by Stein’s Lemma.
Each summand in the third term in Eq. (E.1) simplifies as following:

EX0,Zt

[
w1,t(Xt)wi,t(Xt)(Xt − µ1,t)µ

⊤
i,tZt

]
=

d∑
j=1

EX0,Zt

[
w1,t(Xt)wi,t(Xt)(Xt − µ1,t)µi,t,jZt,j

]
=
∑
j

µi,t,jEX0,Zt

[
w1,t(Xt)wi,t(Xt)βtej + βtw1,t(Xt)∇xwi,t(Xt)

⊤ej(Xt − µ1,t)

+ βt∇xw1,t(Xt)
⊤ejwi,t(Xt)(Xt − µ1,t)

]
= βt EX0,Zt

[
w1,t(Xt)wi,t(Xt)µi,t + w1,t(Xt)∇xwi,t(Xt)

⊤µi,t(Xt − µ1,t)

+∇xw1,t(Xt)
⊤µi,twi,t(Xt)(Xt − µ1,t)

]
(E.2)

Combining the gradients of all the terms of Eq. (E.2), we have

∇µ1,tLt(sθt)

= E
[
w1,t(Xt)(Xt − µ1,t)µ

⊤
1,tsθt(Xt) + w1,t(Xt)sθt(Xt)− w1,t(Xt)(Xt − µ1,t)

∑
i

wi,t(Xt)µ
⊤
i,tsθt(Xt)

+∇xw1,t(Xt) + w1,t(Xt)µ1,t +∇xw1,t(Xt)
⊤µ1,t(Xt − µ1,t)− w1,t(Xt)

∑
i

wi,t(Xt)µi,t

− w1,t(Xt)
∑
i

∇xwi,t(Xt)
⊤µi,t(Xt − µ1,t)−

∑
i

∇xw1,t(Xt)
⊤µi,twi,t(Xt)(Xt − µ1,t)

]
= E

[
− w1,t(Xt)(Xt − µ1,t) + w1,t(Xt)(Xt − µ1,t)

∑
i

wi,t(Xt)µ
⊤
i,t(Xt − µ1,t)

+ w1,t(Xt)µ1,t − w1,t(Xt)(Xt − µ1,t)
⊤µ1,t(Xt − µ1,t)− w1,t(Xt)

∑
i

wi,t(Xt)µi,t

− w1,t(Xt)
∑
i

∇xwi,t(Xt)
⊤µi,t(Xt − µ1,t)

]
,

where the last equality uses Lemma E.3. Specifically, it uses

∇xw1,t(Xt) + w1,t(Xt)sθt(Xt) = −w1,t(Xt)(Xt − µ1,t)

(∇xw1,t(Xt) + w1,t(Xt)sθt(Xt))
⊤µ1,t(Xt − µ1,t) = −w1,t(Xt)(Xt − µ1,t)

⊤µ1,t(Xt − µ1,t) .

We will also need the following intermediate calculation:

Lemma E.3. For any i ∈ [K], the gradient of wi,t(Xt) with respect to Xt is given by

∇xwi,t(Xt) = −wi,t(Xt)(Xt − µi,t)− wi,t(Xt)sθt(Xt)

= −wi,t(Xt)(1− wi,t(Xt))(Xt − µi,t) + wi,t(Xt) ·
∑

j∈[K]:j ̸=i

wj,t(Xt)(Xt − µj,t) .
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Proof. By taking the gradient of wi,t(Xt) and simplifying it, we get the result:

∇xwi,t(Xt) = −
exp

(
− ∥Xt−µi,t∥2

2

)
(Xt − µi,t)∑K

j=1 exp
(
− ∥Xt−µj,t∥2

2σ2

)
+

exp
(
− ∥Xt−µi,t∥2

2

)
·
∑K
j=1 exp

(
− ∥Xt−µj,t∥2

2

)
(Xt − µj,t)(∑K

j=1 exp
(
− ∥Xt−µj,t∥2

2

))2

= −wi,t(Xt)(Xt − µi,t) + wi,t(Xt)

 K∑
j=1

wj,t(Xt)(Xt − µj,t)


= −wi,t(Xt)(1− wi,t(Xt))(Xt − µi,t) + wi,t(Xt)

 K∑
j=1,j ̸=i

wj,t(Xt)(Xt − µj,t)

 .

We are now ready to establish the connection between gradient descent on the DDPM objective and
the gradient EM update, for mixtures of K Gaussians:
Lemma E.4. Suppose the centers of the mixture of K Gaussians are well-separated according to
Assumption 14, and the parameters θ = {µ1, µ2, . . . , µK} that the student network is initialized to
satisfy the warm start Assumption 15. Then, for noise scale t = O(1), gradient descent on the DDPM
objective is close to the gradient EM update:∥∥∇µ1,t

Lt(sθt) + E[w1,t(Xt)(Xt − µ1,t)]
∥∥ ≲

K2B2

dc
2
r/4000

=
1

poly(d)
,

where cr is a large constant.

Proof. Observe that the first term in the expression for the population gradient of the DDPM objective
in Lemma E.2 is exactly the gradient EM update for the mixture of K Gaussian in Fact 6. To prove
the closeness between the GD update and the gradient EM update, we will show that the additional
terms in Lemma E.2 are small.

Note that when the ground truth parameters θ∗ = {µ∗1, µ∗2, . . . , µ∗K} satisfy Assumption 14, θ∗t
also satisfies Assumption 14 for t = O(1). Similarly, it is straightforward to show that when the
parameters θ satisfy Assumption 15, θt = {µ1,t, µ2,t, . . . , µK,t} also satisfies the assumption.

We focus on the d ≤ K case for this proof. A similar calculation with projection onto O(K)
dimensional subspace of µ∗i,t will give the result for d ≥ K case [VW04, YYS17].

Using Lemma E.6 below, we have∥∥E[w1,t(Xt)(1− w1,t(Xt))(Xt − µ1,t)(Xt − µ1,t)
⊤]µ1,t

∥∥ ≤ d2c2rB

dc
2
r/1000

,

for any i ∈ [K]. We can simplify additional terms as∥∥∥∥ K∑
i=2

E[w1,t(Xt)wi,t(Xt)(Xt − µ1,t)(Xt − µ1,t)
⊤µi,t]

∥∥∥∥
≤

K∑
i=2

E[∥w1,t(Xt)wi,t(Xt)(Xt − µ1,t)(Xt − µ1,t)
⊤µi,t∥]

≤
K∑
i=2

√
E
[
|w1,t(Xt)wi,t(Xt)|2

]
· E
[
∥(Xt − µ1,t)(Xt − µ1,t)⊤µi,t∥2

]
≤ KB2

dc
2
r/2000

,
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where in the last step we used the second part of Lemma E.5. This will allow us to prove that
∥E[w1,t(Xt)(Xt − µ1,t)

∑K
i=1 wi,t(Xt)µ

⊤
i,t(Xt − µ1,t)−w1,t(Xt)(Xt − µ1,t)

⊤µ1,t(Xt − µ1,t)]∥
is small.

Using the expression for ∇xwi,t(Xt) from Lemma E.3, we have
K∑
i=1

w1,t(Xt)∇xwi,t(Xt)
⊤µi,t(Xt − µ1,t)

= −
K∑
i=1

w1,t(Xt)wi,t(Xt)(1− wi,t(Xt))(Xt − µ1,t)(Xt − µi,t)
⊤µi,t

+

K∑
i=1

K∑
j=1,j ̸=i

w1,t(Xt)wi,t(Xt)wj,t(Xt)(Xt − µ1,t)(Xt − µj,t)
⊤µi,t .

The first term can be simplified as follows:∥∥∥∥ K∑
i=1

E
[
w1,t(Xt)wi,t(Xt)(1− wi,t(Xt))(Xt − µ1,t)(Xt − µi,t)

⊤µi,t

]∥∥∥∥
≤

K∑
i=1

E
[∥∥w1,t(Xt)wi,t(Xt)(1− wi,t(Xt))(Xt − µ1,t)(Xt − µi,t)

⊤µi,t
∥∥]

≤
K∑
i=2

√
E[w1,t(Xt)2wi,t(Xt)2] · E

[
(1− wi,t(Xt))2 · ∥Xt − µ1,t∥2 · ∥Xt − µi,t∥2 · ∥µi,t∥2

]
≲

KB2

dc
2
r/4000

,

where the last inequality follows from

E
[
∥Xt − µ1,t∥2∥Xt − µi,t∥2

]
≤
√
E
[
∥Xt − µ1,t∥4

]
E
[
∥Xt − µi,t∥4

]
≲ B2 .

Similarly, by simplifying the second term, we get
K∑
i=1

K∑
j=1,j ̸=i

E
[∥∥w1,t(Xt)wi,t(Xt)wj,t(Xt)(Xt − µ1,t)(Xt − µj,t)

⊤µi,t
∥∥]

≤
K∑
i=1

K∑
j=1,j ̸=i

√
E
[
w2
i,t(Xt)w2

j,t(Xt)
]
E
[
w2

1,t(Xt)∥(Xt − µ1,t)(Xt − µj,t)µi,t∥2
]
≲

K2B2

dc
2
r/4000

,

where the last inequality uses Lemma E.5. Simplifying the following term using Lemma E.5, we have∥∥∥E[w1,t(Xt)µ1,t − w1,t(Xt)

K∑
i=1

wi,t(Xt)µi,t]
∥∥∥

≤
K∑
i=2

E
[∥∥w1,t(Xt)wi,t(Xt)µi,t

∥∥]+ K∑
i=2

E
[∥∥w1,t(Xt)wi,t(Xt)µ1,t

∥∥] ≤ 2KB

dc
2
r/200

.

Combining all the results, we obtain the theorem statement.

The above proof made use of the following two helper lemmas which follow from prior work
analyzing EM for learning mixtures of Gaussians:
Lemma E.5. There is some absolute constant cr > 0 for which the following holds. For any
θ = {µ1, µ2, . . . , µK} such that ∥µi − µ∗i ∥ ≤ cr

4

√
log d for all i ∈ [K] and any j such that j ̸= i,

we have

EXt∼N (µ∗
i,t,I)

[wj,t(Xt)] ≤
1

dc
2
r/100

.

Additionally, for any j ̸= k such that j ∈ [K] and k ∈ [K], we have

EXt [wj,t(Xt)wk,t(Xt)] ≤
1

dc
2
r/200

.
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Proof. Using Proposition 4.1 from [SN21], for any θ = {µ1, µ2, . . . , µK} such that ∥µi − µ∗i ∥ ≤
cr
4

√
log d for all i ∈ [K] and j ̸= i, we have

EXt∼N (µ∗
i,t,I)

[wj,t(Xt)] ≤
1

dc
2
r/100

.

Computing the expectation of the product of the weights wj,t and wk,t for any distinct j, k, we have

EXt [wj,t(Xt)wk,t(Xt)] =

K∑
i=1

1

K
Ex∼N (µ∗

i ,I)
[wj,t(x)wk,t(x)]

≤ 1

K

K∑
i=1

√
Ex∼N (µ∗

i ,I)
[wj,t(x)2]Ex∼N (µ∗

i ,I)
[wk,t(x)2]

≤ 1

dc
2
r/200

where the last inequality uses the fact that either i ̸= j or i ̸= k and wj,t(x)
2 ≤ wj,t(x) ≤ 1.

Lemma E.6 (Lemma 4.3 of [SN21]). Suppose X is distributed according to a mixture of K Gaussians
with centers θ∗ = {µ∗1, . . . , µ∗K} as in Eq. (6). For any θ = {µ1, µ2, . . . , µK} such that ∥µi−µ∗i ∥ ≤
cr
4

√
log d for all i ∈ [K], then for any distinct i, j ∈ [K], we have∥∥∥EX [wi(X,µ)(1− wi(X,µ))(X − µi)(X − µi)

⊤]
∥∥∥
op

≤ d2c2r
dc

2
r/1000∥∥∥EX [wi(X, θ)wj(x, θ)(X − µi)(X − µj)

⊤]
∥∥∥
op

≤ d2c2r
dc

2
r/1000

E.2 Closeness between population gradient descent and empirical gradient descent

In this section, we show that the population gradient descent on the DDPM objective is close to the
empirical gradient descent for mixtures of K Gaussians.
Lemma E.7. For any ε that is Θ( 1

poly(d) ) and noise scale t > t′ where t′ ≲ 1, the empirical estimate
of gradient descent update on the DDPM objective with the number of samples n > n′ concentrates
well to the population gradient descent update where n′ = O(K

4d5B6

ε2 ). More specifically, the
following inequality holds with probability at least 1− exp(−d0.99):∥∥∥∥∥∥∇µ1,t

( 1
n

n∑
i=1

Lt(sθt(xi,0, zi,t))
)
−∇µ1,t

Lt(sθt)

∥∥∥∥∥∥ ≤ ε.

Proof. Recall that the population gradient is given by

∇µ1,t
Lt(sθt) = E

[1
2
∇µ1,t

∥∥sθt(Xt)
∥∥2 + ∇µ1,tsθt(Xt)

⊤Zt

βt

]
,

where

E
[1
2
∇µ1,t

∥∥sθt(Xt)
∥∥2 ] = E

[(
w1,t(Xt)(Xt − µ1,t)µ

⊤
1,t + w1,t(Xt) · Id

− w1,t(Xt)

K∑
i=1

wi,t(Xt)(Xt − µ1,t)µ
⊤
i,t

)
·
K∑
i=1

(
wi,t(Xt)µi,t −Xt

)]
,

and

E
[
∇µ1,t

sθt(Xt)
⊤Zt

]
= E

[(
w1,t(Xt)(Xt − µ1,t)µ

⊤
1,tZt

+ w1,t(Xt)Zt − w1,t(Xt)

K∑
i=1

wi,t(Xt)(Xt − µ1,t)µ
⊤
i,tZt

)]
.(E.3)
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We will prove that the sample estimate of each coordinate in Eq. (E.3) concentrates well around the
expectation. We will prove the concentration of the first coordinate and a similar analysis holds for
other coordinates. For the rest of the proof, we use x̃t to denote the first coordinate of Xt and µ̃i,t
to indicate the first coordinate µi,t. For any random variable Y ∈ R, we use ∥Y ∥ψ1

to denote the
sub-exponential norm of Y and ∥Y ∥ψ2

to denote the sub-gaussian norm of Y (See lemma B.1 for
details). Using properties of a sub-Gaussian random variable from Lemma B.1, we get∥∥∥ K∑

j=1

w1,t(Xt)wj,t(Xt)(x̃t − µ̃1,t)µ
⊤
1,tµj,t

∥∥∥
ψ2

≲
K∑
j=1

∥∥∥w1,t(Xt)wj,t(Xt)(x̃t − µ̃1,t)µ
⊤
1,tµj,t

∥∥∥
ψ2

(Using sum of sub-Gaussian random variables property in Lemma B.1)

≲
K∑
j=1

∥∥∥w1,t(Xt)wj,t(Xt)µ
⊤
1,tµj,tz

∥∥∥
ψ2

+
∥∥∥w1,t(Xt)wj,t(Xt)µ

⊤
1,tµj,t(τ − µ̃1,t)

∥∥∥
ψ2

≲ KB2 +KB3 ≲ KB3, (E.4)
where the third inequality follows by writing x̃t = z + τ where z ∼ N (0, 1) and τ is a random
variable that takes µ̃∗i,t for every i ∈ [K] with probability 1

K . The fourth inequality follows from
the sub-Gaussian property of a bounded random variable and the product of a sub-Gaussian random
variable with bounded random variable property in Lemma B.1. Using the sum of sub-Gaussian
random variable property in Lemma B.1, we have∥∥∥ K∑

i=1

w1,t(Xt)wi,t(X)µ̃i,t

∥∥∥
ψ2

≲
K∑
i=1

∥w1,t(Xt)wi,t(X)µ̃i,t∥ψ2
≲ KB. (E.5)

Using properties of the sub-Gaussian random variable from Lemma B.1 in a similar way of Eq. (E.4),
we have∥∥∥ K∑

i=1

K∑
j=1

w1,t(Xt)wi,t(Xt)wj,t(Xt)µ
⊤
i,tµj,t(x̃t − µ̃1,t)

∥∥∥
ψ2

≤
K∑
i=1

K∑
j=1

∥∥∥w1,t(Xt)wi,t(Xt)wj,t(Xt)µ
⊤
i,tµj,t(x̃t − µ̃1,t)

∥∥∥
ψ2

≤
K∑
i=1

K∑
j=1

∥∥∥w1,t(Xt)wi,t(Xt)wj,t(Xt)µ
⊤
i,tµj,tz

∥∥∥
ψ2

+
∥∥∥w1,t(Xt)wi,t(Xt)wj,t(Xt)µ

⊤
i,tµj,t(τ − µ̃i,t)

∥∥∥
ψ2

≤ K2B2 +K2B3 ≲ K2B3 (E.6)

We know that ∥w1,t(Xt)µ
⊤
1,tXt∥ψ2 ≤ ∥

∑d
i=1 µ1,t(i)Xt(i)∥ψ2 ≲ dB2 and ∥x̃t − µ̃1,t∥ψ2 ≲ B.

Using the fact that the product of two sub-Gaussian random variables is a sub-exponential random
variable, we have

∥w1,t(Xt)µ
⊤
1,tXt(x̃t − µ̃1,t)∥ψ1 ≤ ∥x̃t − µ̃1,t∥ψ2∥w1,t(Xt)µ

⊤
1,tXt∥ψ2 ≲ dB3 (E.7)

The sub-gaussian norm of w1,t(Xt)x̃t term in the gradient is given by
∥w1,t(Xt)x̃t∥ψ2

≤ ∥Xt∥ψ2
≲ ∥Z∥ψ2

+ ∥τ∥ψ2
≲ B (E.8)

Using the property that the product of two sub-Gaussian random variables is a sub-exponential
random variable, we obtain∥∥∥w1,t(Xt)(x̃t − µ̃1,t)

( K∑
i=1

wi,t(Xt)µ
⊤
i,tXt

)∥∥∥
ψ1

≲ ∥w1,t(Xt)(x̃t − µ̃1,t)∥ψ2

∥∥∥( K∑
i=1

wi,t(Xt)µ
⊤
i,tXt

)∥∥∥
ψ2

≲ KdB3 (E.9)
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For any random variable Y , we know that ∥X∥ψ1 ≤ ∥X∥ψ2 . Therefore, combining Eq. (E.4), (E.5),
(E.6), (E.7), (E.8) and (E.9), we have

∥[∇µ1,tsθt(Xt)
⊤sθt(Xt)]1 − E[∇µ1,tsθt(Xt)

⊤sθt(Xt)]1∥ψ1 ≲ ∥[∇µ1,tsθt(Xt)
⊤sθt(Xt)]1∥ψ1

≲ K2dB3 (E.10)

Now, we shift our focus on obtaining the sub-exponential norm of ∇µ1,t
sθt(Xt)

⊤Zt. Using
∥w1,t(Xt)(x̃t − µ̃1,t)∥ψ2 ≲ B and ∥µ⊤1,tZt∥ψ2 ≲ dB, we obtain

∥w1,t(Xt)(x̃t − µ̃1,t)µ
⊤
1,tZt∥ψ1

≤ ∥w1,t(Xt)(x̃t − µ̃1,t)∥ψ2
∥µ⊤1,tZt∥ψ2

≲ dB2 (E.11)

Using Lemma B.1, we have ∥w1,t(Xt)zt∥ψ2
≤ ∥zt∥ψ2

≲ 1. For the last term, we have∥∥∥w1,t(Xt)(x̃t − µ̃1,t)

K∑
i=1

wi,t(Xt)µ
⊤
i,tZt

∥∥∥
ψ1

≤ ∥w1,t(Xt)(x̃t − µ̃1,t)∥ψ2

∥∥∥ K∑
i=1

wi,t(Xt)µ
⊤
i,tZt

∥∥∥
ψ2

≲ KdB2 (E.12)

Combining Eq. (E.11), (E.12), we have∥∥∥ [∇µ1,t
sθt(Xt)

⊤Zt]1

βt
−

E[∇µ1,t
sθt(Xt)

⊤Zt]1

βt

∥∥∥
ψ1

≲
∥∥∥ [∇µ1,t

sθt(Xt)
⊤Zt]1

βt

∥∥∥
ψ1

≲
KdB2

βt
,(E.13)

where [∇µ1,tsθt(Xt)
⊤Zt]1 denotes the first coordinate of ∇µ1,tsθt(Xt)

⊤Zt. Combining Eq. (E.10)
and Eq. (E.13), we have∥∥∥[∇µ1,t

Lt(sθt(Xt))]1 − [∇µ1,t
Lt(sθt)]1

∥∥∥
ψ1

≲
K2dB3

βt

For each i.i.d. sample xi,t, the term [∇µ1,t
Lt(sθt(xi,t))]1 − [∇µ1,t

Lt(sθt)]1 is also independent and
identically distributed. Therefore, using Lemma B.3, for any ε that is Θ( 1

poly(d) ), we have

Pr
[∣∣∣ 1
n

n∑
i=1

[∇µ1,t
Lt(sθt(xi,t))]1 − [∇µ1,t

Lt(sθt)]1

∣∣∣ ≥ ε
]
≤ 2 exp

(
− nε2β2

t

K4d2B6

)
.

A similar analysis will give the concentration for each coordinate. Using the union bound and
rescaling ε as ε

d , with probability at least 1− 2d exp
(
− nε2β2

t

K4d4B6

)
, we have∥∥∥∥∥∥∇µ1,t

( 1
n

n∑
i=1

Lt(sθt(xi,t))
)
−∇µ1,t

Lt(sθt)

∥∥∥∥∥∥ ≤ ε

Note that for any t = Ω(1), βt ≥ c for some constant c. Therefore, choosing n provided in the
Lemma E.7 statement, we obtain the result.

E.3 Proof of Theorem E.1

Proof of Theorem E.1. For any training iteration h, assume that parameters θ
(h)
t are such that∥∥∥µ(h)

i,t − µ∗i,t

∥∥∥ ≤ cr
4

√
log d we can write the update on the DDPM objective as follows:

∥µ(h+1)
1,t − µ∗1,t∥ =

∥∥∥µ(h)
1,t − η∇

( 1
n

n∑
i=1

Lt(sθ(h)t
(xi,0, zi,t))

)
− µ∗1,t

∥∥∥
≤
∥∥µ(h)

1,t + η E[w1,t(Xt)(Xt − µ
(h)
1,t )]− µ∗1,t

∥∥
+ η
∥∥∥ (−∇µ1,t

Lt(sθt)
)
− E[w1,t(Xt)(Xt − µ

(h)
1,t )]

∥∥∥
+ η
∥∥∥ (∇µ1,t

Lt(sθt)
)
−∇µ1,t

( 1
n

n∑
i=1

Lt(sθ(h)t
(xi,0, zi,t))

)∥∥∥ .
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Using Lemma E.4, Lemma E.7 and Theorem 3.2 from [SN21], for any η ∈ (0,K), we have

∥µ(h+1)
1,t − µ∗1,t∥ ≤

(
1− 3η

8K

)
∥µ(h)

1,t − µ∗1,t∥+
ηK2B2

d
c2r

4000

+ ηε.

Choosing η = 2K
3 , cr to be sufficiently large constant and ε to be Θ( 1

poly(d) ), we have

∥µ(h+1)
1,t − µ∗1,t∥ ≤ 3

4
∥µ(h)

1,t − µ∗1,t∥+ ε

By assumption 15, ∥µ(0)
1,t − µ∗1,t∥ ≤ O(

√
log d) and therefore, choosing H to be Ω(log( log dε )), we

obtain the result.

F Additional proofs

F.1 Proof of Lemma C.2

Proof of Lemma C.2. By calculating the negative gradient of the DDPM objective in Eq. (5), we
obtain

−∇µtLt(sµt) = −EX0,Zt [(tanh(µ
⊤
t Xt)I + tanh′(µ⊤t Xt)Xtµ

⊤
t )(sµt(Xt) +

Zt
βt

)]

= −E[(tanh(µ⊤t Xt)I + tanh′(µ⊤t Xt)Xtµ
⊤
t )(tanh(µ

⊤
t Xt)µt −Xt +

Zt
βt

)]

= E[− tanh2(µ⊤t Xt)µt − tanh(µ⊤t Xt) tanh
′(µ⊤t Xt)Xt∥µt∥2 + tanh(µ⊤t Xt)Xt

+ tanh′(µ⊤t Xt)µ
⊤
t XtXt − tanh(µ⊤t Xt)

Zt
βt

− tanh′(µ⊤t Xt)Xtµ
⊤
t

Zt
βt

]

By simplifying the gradient terms involving Zt by the Stein’s identity as in Lemma F.1 and plugging
it back in the gradient, we obtain

−∇µtLt(sµt) = E
[ (

tanh(µ⊤t Xt)− tanh(µ⊤t Xt) tanh
′(µ⊤t Xt)∥µt∥2 + tanh′(µ⊤t Xt)µ

⊤
t Xt

)
Xt

]
− µt − E

[
tanh′′(µ⊤t Xt)∥µt∥2 Xt

]
− E

[
tanh′(µ⊤t Xt)µt

]
= E

[ (
tanh(µ⊤t Xt)− 0.5 tanh′′(µ⊤t Xt)∥µt∥2 + tanh′(µ⊤t Xt)µ

⊤
t Xt

)
Xt

]
− µt − E

[
tanh′(µ⊤t Xt)µt

]
Observe that

(
tanh(µ⊤x)− 1

2 tanh
′′(µ⊤x)∥µ∥2 + tanh′(µ⊤x)µ⊤x

)
x and tanh′(µ⊤x) are even

functions and Xt is a symmetric distribution, therefore, for any even function f , we can write
EXt [f(Xt)] =

1
2EXt∼N (µ∗

t ,Id)
[f(Xt)] +

1
2EXt∼N (−µ∗

t ,I)
[f(Xt)] = EXt∼N (µ∗

t ,Id)
[f(Xt)]. Apply-

ing this property of the even function on the gradient update, we obtain the result.

Lemma F.1. When random variable Xt = αtX0 + βtZt where Zt ∼ N (0, I), αt = exp(−t) and
βt =

√
1− exp(−2t), then for any t > 0, the following two equations hold.

EX0,Zt

[
tanh(µ⊤t Xt)

Zt
βt

+ tanh2(µ⊤t Xt)µt

]
= µt

EX0,Zt

[
tanh′(µ⊤t Xt)

µ⊤t Zt
βt

Xt

]
= EX0,Zt

[
tanh′′(µ⊤t Xt)∥µt∥2 Xt + tanh′(µ⊤t Xt)µt

]
Proof. Applying Stein’s lemma on the first term, we get the first equation of the statement in the
Lemma.

EX0,Zt

[
tanh(µ⊤t Xt)

Zt
βt

]
= EX0,Zt

[
tanh(µ⊤t (αtX0 + βtZt))

Zt
βt

]
= EX0,Zt

[
tanh′(µ⊤t Xt)µt

]
= EX0,Zt

[(
1− tanh2(µ⊤t Xt)

)
µt

]
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For the second term, we have

E
[
tanh′(µ⊤t Xt)

µ⊤t Zt
βt

Xt

]
= E

[
tanh′(µ⊤t Xt)

µ⊤t Zt
βt

αtX0

]
+ E

[
tanh′(µ⊤t Xt)µ

⊤
t ZtZt

]
=

d∑
i=1

E
[
αtX0 tanh

′(µ⊤t Xt)
µt(i)Zt(i)

βt

]
+ E

[
tanh′(µ⊤t Xt)µt

]
+ E

[
tanh′′(µ⊤t Xt)µ

⊤
t Ztβtµt

]
=

d∑
i=1

E
[
αtX0 tanh

′′(µ⊤t Xt)µt(i)µt(i)
]
+ E

[
tanh′(µ⊤t Xt)µt

]
+ E

[
tanh′′(µ⊤t Xt)µ

⊤
t Ztβtµt

]

where the second equality follows from the Stein’s lemma on the E[tanh′(µ⊤t Xt)µ
⊤
t ZtZt] and the

last equality follows from the Stein’s lemma on E[αtX0 tanh
′′(µ⊤t Xt)µt(i)Zt(i)]. Applying Stein’s

inequality on the E
[
tanh′′(µ⊤t Xt)µ

⊤
t Ztβtµt

]
, we obtain

= E
[
αtX0 tanh

′′(µ⊤t Xt)∥µt∥2
]
+ E

[
tanh′(µ⊤t Xt)µt

]
+

d∑
i=1

βtµtE
[
tanh′′′(µ⊤t Xt)µt(i)βtµt(i)

]
= E

[
Xt tanh

′′(µ⊤t Xt)∥µt∥2
]
− E

[
βtZt tanh

′′(µ⊤t Xt)∥µt∥2
]
+ E

[
tanh′(µ⊤t Xt)µt

]
+ β2

t ∥µt∥
2
µtE

[
tanh′′′(µ⊤t Xt)

]
= E

[
Xt tanh

′′(µ⊤t Xt)∥µt∥2
]
+ E

[
tanh′(µ⊤t Xt)µt

]
.

F.2 Proof of Lemma C.8

Proof of Lemma C.8. Recall that the gradient update for any µ∗t is given by

−∇µ∗
t
Lt(sµ∗

t
) = G(µ∗t , µ

∗
t ) + ηEx∼N (µ∗

t ,Id)
[tanh(µ∗⊤t x)x]− ηµ∗t (F.1)

We know that Ex∼N (µ∗
t ,Id)

[tanh(µ∗⊤t x)x] = µ∗t (Eq.(2.1) of [DTZ17]) and ∇µ∗
t
Lt(sµ∗

t
) = 0

because µ∗t is a stationary point of the regression objective of diffusion model. This implies that
G(µ∗t , µ

∗
t ) = 0 for any µ∗t .

Note that this proof only talks about 1D case therefore, for the purpose of this proof, we use a to
denote µ and b to denote µ∗. In 1D, using Mean value theorem, we have

G(a, b)−G(a, a)

b− a
=

dG(a, ξ)

dξ
for some ξ ∈ [a, b] (if a < b) (F.2)

Using the fact that G(a, a) = 0 in Eq. (F.2), we have

∣∣G(a, b)
∣∣ = ∣∣∣∣dG(a, ξ)

dξ

∣∣∣∣|b− a|

Observe that it suffices to prove
∣∣∣dG(a,ξ)

dξ

∣∣∣ ≤ 0.01 to obtain the lemma. By computing the gradient of
G, we obtain

dG(a, ξ)

dξ
= ηEx∼N (ξ,1)

[
2 tanh′(ax)ax+ tanh′′(ax)

(
−3a2

2
+ a2x2

)
− 1

2
a3x tanh′′′(ax)

]
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For the first term, we have

Ex∼N (ξ,I)[tanh
′(ax)ax] =

1√
2π

∫ ∞
−∞

tanh′(ax)axe−
(x−ξ)2

2 dx

=
1√
2π

∫ ∞
0

tanh′(ax)ax

(
e−

(x−ξ)2
2 − e−

(x+ξ)2

2

)
dx

≤ 1√
2π

∫ ∞
0

e−axaxe−
(x−ξ)2

2 dx

≤ ae
a2−2aξ

2

√
2π

∫ ∞
0

xe−
(x−ξ+a)2

2 dx

≤ ae
a2−2aξ

2 (

√
2

π
e−

(ξ−a)2
2 + (ξ − a)erf

(
ξ − a√

2

)
)

≤ ae−
ξ2

2 + a|ξ − a| e
−2a(ξ−a)−a2

2

Using Lemma 1 of [DTZ17], we know that Ex∼N (ξ,I)[tanh
′(ax)ax] > 0. Therefore, we have∣∣∣Ex∼N (ξ,I)[tanh

′(ax)ax]
∣∣∣ ≤ ae−

ξ2

2 + a|ξ − a| e
−2a(ξ−a)−a2

2

For the second term, we have

Ex∼N (ξ,1)[tanh
′′(ax)(−3a2

2
+ a2x2)]

=
1√
2π

∫ ∞
0

a2 tanh′′(ax)(−3

2
+ x2)

(
exp(− (x− ξ)2

2
)− exp(− (x+ ξ)2

2
)

)
dx

≤ 1√
2π

∫ √
3
2

0

a2e−2ax(
3

2
− x2) exp(− (x− ξ)2

2
)dx

≤ 3√
2π

a2 exp(−a2

16
)

Assuming a ≥
√
6, then when ξ ≥ a ≥

√
6, we have exp(− (x−ξ)2

2 ) ≤ exp(−a2

4 ) and when ξ ≤ a,

using ξ ≥ 3a
4 , we have exp(− (x−ξ)2

2 ) ≤ exp(−a2

16 ). For the lower bound, we have

Ex∼N (ξ,1)[tanh
′′(ax)(−3a2

2
+ a2x2)]

=
1√
2π

∫ ∞
0

tanh′′(ax)(−3a2

2
+ a2x2)

(
exp(− (x− ξ)2

2
)− exp(− (x+ ξ)2

2
)

)
dx

≥ 1√
2π

∫ ∞
√

3
2

tanh′′(ax)(−3a2

2
+ a2x2)

(
exp(− (x− ξ)2

2
)− exp(− (x+ ξ)2

2
)

)
dx

≥ 1√
2π

∫ ∞
√

3
2

tanh′′(ax)a2x2

(
exp(− (x− ξ)2

2
)− exp(− (x+ ξ)2

2
)

)
dx

≥ − 8a2√
2π

∫ ∞
√

3
2

e−2axx2

(
exp(− (x− ξ)2

2
)− exp(− (x+ ξ)2

2
)

)
dx

≥ −8a2e−
√
6a

√
2π

∫ ∞
√

3
2

x2 exp(− (x− ξ)2

2
)dx ≥ −8a2e−

√
6a

Using upper bound and lower bound, we have∣∣∣∣Ex∼N (ξ,1)[tanh
′′(ax)a2(−3

2
+ x2)]

∣∣∣∣ ≤ 8a2e−
√
6a
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For the third term, we have∣∣∣Ex∼N (ξ,1)[
a3x

2
tanh′′′(ax)]

∣∣∣
=

∣∣∣∣ 1

32
√
2π

∫ ∞
0

a3xσ(2ax)(1− σ(2ax))
(
1− 6σ(2ax)(1− σ(2ax))

)(
exp

(
− (x− ξ)2

2

)
− exp

(
− (x+ ξ)2

2

))
dx

∣∣∣∣
≤
∣∣∣∣ 3a3

16
√
2π

∫ ∞
0

xσ2(2ax)(1− σ(2ax))2
(
exp

(
− (x− ξ)2

2

)
− exp

(
− (x+ ξ)2

2

))
dx

∣∣∣∣
≤ 3a3

16
√
2π

∫ ∞
0

xe−ax exp

(
− (x− ξ)2

2

)
dx

≤ a3

10
e−

ξ2

2 +
a3

10
|ξ − a| e

−2a(ξ−a)−a2
2 .

We can lower bound the third term as follows:

Ex∼N (ξ,1)[
a3x

2
tanh′′′(ax)]

≥ 1

2
√
2π

∫ c

0

a3x tanh′′′(ax)

(
exp

(
− (x+ ξ)2

2

)
− exp

(
− (x− ξ)2

2

))
dx

≥ a3

2
√
2π

∫ c

0

x exp

(
− (x− ξ)2

2

)(
exp (−2ξx)− 1

)
dx

≥ − a3ξ√
2π

∫ c

0

x2 exp

(
− (x− ξ)2

2

)
dx ≥ −

ξ exp(− ξ2

4 )√
2π

Using all the bounds, we have∣∣∣∣dG(a, ξ)

dξ

∣∣∣∣ ≤ a3

10
e−

ξ2

2 +
a3

10
|ξ − a| e

−2a(ξ−a)−a2
2 + 8a2e−

√
6a + ae−

ξ2

2 + a|ξ − a| e
−2a(ξ−a)−a2

2

When ξ ≥ a and a ≥ c for some sufficiently large constant c (for example, c = 25), then, we have∣∣∣∣dG(a, ξ)

dξ

∣∣∣∣ ≤ a3

10
e−

a2

2 +
a3

10
|ξ − a| e

−a2
2 + 8a2e−

√
6a + ae−

a2

2 + a|ξ − a| e
−a2
2 ≤ 0.01

When 3a
4 ≤ ξ ≤ a and a > c for sufficiently large constant c (for example, c = 25), we have∣∣∣∣dG(a, ξ)

dξ

∣∣∣∣ ≤ a3

10
e−

9a2

32 +
a4

40
e

−a2
4 + 8a2e−

√
6a + ae−

a2

2 +
a2

4
e

−a2
4 ≤ 0.01

Pluggint the bound on |dG(a,ξ)
dξ | in Eq. (F.1), we obtain the final result.

F.3 Proof of Lemma C.10

Proof of Lemma C.10. We will prove this by induction. For h = 0, this is true because the algorithm
initializes the gradient descent on the low noise regime with the output of gradient descent on the
high noise regime, and the output is guaranteed to have ⟨µ̂(0)

t , µ̂∗t ⟩ to be Ω(1) and by assumption

∥µ∗t ∥ > c′, therefore ∥µ(0)
t ∥ ∈ [c,

4⟨µ̂(0)
t ,µ∗

t ⟩
3 ].

Suppose ∥µ(h)
t ∥ ∈ [c,

4⟨µ̂(h)
t ,µ∗

t ⟩
3 ], then we know that ∥µ(h+1)

t − µ∗t ∥ < ∥µ(h)
t − µ∗t ∥. To prove

∥µ(h+1)
t ∥ ∈ [c,

4⟨µ̂(h+1)
t ,µ∗

t ⟩
3 ], first we will prove that ⟨µ̂(h)

t , µ
(r+1)
t ⟩ ∈ [c,

6⟨µ̂(h)
t ,µ∗

t ⟩
5 ]. Note that the

update in the direction of ⟨µ̂t, µt⟩ works like 1D. Therefore, we have a contraction for it as follows.∣∣∣⟨µ̂(h)
t , µ

(h+1)
t ⟩ − ⟨µ̂(h)

t , µ∗t ⟩
∣∣∣ < ∣∣∣⟨µ̂(h)

t , µ
(h)
t ⟩ − ⟨µ̂t, µ∗t ⟩

∣∣∣
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If ∥µ(h)
t ∥ ≤ ⟨µ̂(h)

t , µ∗t ⟩, then using Lemma F.4, we know ⟨µ̂(h)
t , µ

(h+1)
t ⟩ ≤ 6⟨µ̂(h)

t ,µ∗
t ⟩

5 and
⟨µ̂(h)
t , µ

(h+1)
t ⟩ ≥ ∥µ(h)

t ∥ ≥ c because of the contraction. If ∥µ(h)
t ∥ ≥ ⟨µ̂(h)

t , µ∗t ⟩ and
⟨µ̂(h)
t , µ

(h+1)
t ⟩ ≥ ⟨µ̂(h)

t , µ∗t ⟩, then ⟨µ̂(h)
t , µ

(h+1)
t ⟩ ≤ ∥µ(h)

t ∥ because of the contraction. If
∥µ(h)

t ∥ ≥ ⟨µ̂(h)
t , µ∗t ⟩ and ⟨µ̂(h+1)

t , µ
(h)
t ⟩ ≤ ⟨µ̂(h)

t , µ∗t ⟩, then using ⟨µ̂(h+1)
t , µ

(h)
t ⟩ ≥ ∥µ(h)

t ∥ −∣∣∣U(⟨µ̂(h)
t , µ

(h)
t ⟩, ⟨µ̂(h)

t , µ∗t ⟩)
∣∣∣ ≥ 4⟨µ̂(h)

t ,µ∗
t ⟩

5 ≥ 4⟨µ̂(0)
t ,µ∗

t ⟩
5 ≥ c from Lemma F.2, we get the result

that ⟨µ̂(h)
t , µ

(h+1)
t ⟩ ∈ [c,

6⟨µ̂(h)
t ,µ∗

t ⟩
5 ]. Now, using Lemma F.2, we get

⟨µ̂(h)
t , µ

(h+1)
t ⟩ ∈ [c,

6⟨µ̂(h)
t , µ∗t ⟩
5

] =⇒ ∥µ(h+1)
t ∥ ∈

[ c

cosαh
,
6∥µ∗t ∥ cosβh
5 cosαh

]
=⇒ ∥µ(h+1)

t ∥ ∈
[
c,
4∥µ∗t ∥ cosβh+1

3

]
=⇒ ∥µ(h+1)

t ∥ ∈
[
c,
4⟨µ̂(h+1)

t , µ∗t ⟩
3

]
Lemma F.2. Suppose the angle between µ(r) and µ∗ is βr and αr is the angle between µ(r) and
µ(r+1) and assume the contraction is true at time r. Assume that β0 ∈ (0, π2 ). Then:

αr ∈ (0, π/2) ∀r and cosβr ≤ cosβr+1

which implies that

cosβr ≤ cosβr+1 ∀r =⇒ ⟨µ̂(r), µ∗⟩ ≥ ⟨µ̂(0), µ∗⟩

Proof. First, we will prove that if βr ∈ (0, π2 ) and ∥µ(r)∥ ∈ [c,
4⟨µ̂(r)

t ,µ∗
t ⟩

3 ], then αr ∈ (0, βr) for
any r. We denote αr > 0 if µ(r) moves towards µ(r)⊥ and hence towards µ∗. The following simple
observation of ⟨µ̂(r)⊥, µ(r+1)⟩ ≥ 0 proves that αr > 0.

⟨µ̂(r)⊥, µ(r+1)⟩

= Ex∼N (µ∗,1)

[
η
(
tanh(µ(r)⊤x)− 1

2
tanh′′(µ(r)⊤x)∥µ(r)∥2 + tanh′(µ(r)⊤x)µ(r)⊤x

)
· ⟨µ̂(r)⊥, x⟩

]
= Ex∼N (0,1)

[
η
(
tanh(µ(r)⊤(x+ µ∗))− 1

2
tanh′′(µ(r)⊤(x+ µ∗))∥µ(r)∥2

+ tanh′(µ(r)⊤(x+ µ∗))µ(r)⊤(x+ µ∗)
)
· ⟨µ̂(r)⊥, (x+ µ∗)⟩

]
= Eα1,α2∼N (⟨µ̂(r),µ∗⟩,1)

[
η
(
tanh(∥µ(r)∥α1)−

1

2
tanh′′(∥µ(r)∥α1)∥µ(r)∥2

+ tanh′(∥µ(r)∥α1)∥µ(r)∥α1

)
(α2 + ⟨µ̂(r)⊥, µ∗⟩)

]
= Eα1,α2∼N (⟨µ̂(r),µ∗⟩,1)

[
η
(
tanh(∥µ(r)∥α1)−

1

2
tanh′′(∥µ(r)∥α1)∥µ(r)∥2

+ tanh′(∥µ(r)∥α1)∥µ(r)∥α1

)
· ⟨µ̂(r)⊥, µ∗⟩

]
> 0 ,

where in the last step we used the fact that ⟨µ̂(r), µ∗⟩ > 0 and ⟨µ̂(r)⊥, µ∗⟩ > 0.
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Now, we will prove that cotαr > cotβr which will prove that αr ∈ (0, βr). Note that

cotαr =
⟨µ̂(r), µ(r+1)⟩
⟨µ̂(r)⊥, µ(r+1)⟩

where

⟨µ̂(r), µ(r+1)⟩ = (1− η)∥µ(r)∥+ ηEα1∼N (µ̂(r)⊤µ∗,1)[tanh(∥µ(r)∥α1)α1]

+ ηEα1∼N (µ̂(r)⊤µ∗,1)[−
1

2
tanh′′(∥µ(r)∥α1)∥µ(r)∥2α1 + tanh′(∥µ(r)∥α1)∥µ(r)∥α2

1

− tanh′(∥µ(r)∥α1)∥µ(r)∥]

⟨µ̂(r)⊥, µ(r+1)⟩ = η⟨µ̂(r)⊥, µ∗⟩Eα1∼N (µ̂(r)⊤µ∗,1)[tanh(∥µ(r)∥α1)−
1

2
tanh′′( ∥µ(r)∥α1)∥µ(r)∥2

+ tanh′( ∥µ(r)∥α1)∥µ(r)∥α1]

and cotβr =
⟨µ̂(r), µ∗⟩
⟨µ̂(r)⊥, µ∗⟩

Observe the fact that to prove a+c′

b+c − a
b > 0, it is sufficient to prove c′ > ac

b for b, c > 0. Using this
observation, to prove cotαr > cotβr, it is sufficient to prove

(
1− η − ηE[tanh′(∥µ(r)∥x)]

)
∥µ(r)∥+ ηEx

[
− 1

2
tanh′′(∥µ(r)∥x)∥µ(r)∥2(x− ⟨µ̂(r), µ∗⟩)

+ tanh′(∥µ(r)∥x)(x2 − ⟨µ̂(r), µ∗⟩x) + tanh(∥µ(r)∥x)(x− ⟨µ̂(r), µ∗⟩)
]
> 0,

where the expectation is wrt N (⟨µ(r), µ∗⟩, 1). Lemma F.3 shows that this is indeed true.

Lemma F.3. For any η = 1
20 , assuming a ∈ [30, 4b

3 ], we have

(1− η − ηEx∼N (b,1)[tanh
′(ax)])a

+ η Ex∼N (b,1)

[
− 1

2
tanh′′(ax)a2(x− b) tanh′(ax)(x2 − bx) + tanh(ax)(x− b)

]
> 0 .

Proof. First, we will find the upper bound on E[tanh′′(ax)(x− b)].

E[tanh′′(ax)(x− b)] =

∫ ∞
−∞

tanh′′(ax)(x− b) exp
(
− (x− b)2

2

)
dx

≤
∫ b

0

tanh′′(ax)(x− b) exp
(
− (x− b)2

2

)
dx

≤
∫ b

0

tanh′′(ax)x exp
(
− (x− b)2

2

)
dx

≤
∫ b

0

exp(−ax)x exp
(
− (x− b)2

2

)
dx

≤ exp
(a2 − 2ab

2

)∫ b

0

x exp
(
− (x− b)2 + 2a(x− b) + a2

2

)
dx

≤ exp(
a2 − 2ab

2
)

∫ ∞
0

x
[
exp

(
− (x− b+ a)2

2

)
+ exp

(
− (x+ b− a)2

2

)]
dx

≤ exp(−b2/2) +|a− b| · exp
(a2 − 2ab

2

)
.
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Now, for the second term, we have

Ex∼N (b,1)[tanh
′(ax)(x2 − bx)]

=

∫ ∞
−∞

tanh′(ax)x(x− b) exp
(
− (x− b)2

2

)
dx

≥ −b

∫ b

0

xe−ax exp
(
− (x− b)2

2

)
dx

≥ −b exp
(a2 − 2ab

2

)∫ ∞
0

x
[
exp

(
− (x− b+ a)2

2

)
+ exp

(
− (x+ b− a)2

2

)]
dx

≥ −b exp(−b2/2)− b|a− b| · exp
(a2 − 2ab

2

)
We can rewrite the last term as Ex∼N (0,1)[tanh(a(x+ b))x]. Using the fact that tanh(a(x+ b)) >
tanh(a(−x+ b)), we get that Ex∼N (0,1)[tanh(a(x+ b))x] > 0. Finally, using the upper bound on
E[tanh′(ax)], we get the following lower bound.

(1− η − η Ex∼N (b,1)[tanh
′(ax)]) a+ ηEx∼N (b,1)

[
− 1

2
tanh′′(ax)a2(x− b) + tanh′(ax)(x2 − bx)

]
≥ a

20
(19− 4e

a2−2ab
2 ) +

1

20

(
− a2

2

[
exp(−b2/2) +|a− b| exp

(a2 − 2ab

2

)]
− b exp(−b2/2)− b|a− b| exp(a

2 − 2ab

2
)
)
≥ 1 .

Lemma F.4. For any a, b > 0 and a ∈ [30, 4b
3 ], the following holds. Define

U(a, b) ≜ ηEx∼N (b,1)

[(
tanh(ax)−1

2
tanh′′(ax)a2+tanh′(ax)ax

)
x
]
−ηEx∼N (b,1)

[
tanh′(ax)a

]
−ηa .

When the learning rate η = 1
20 , is given by, we have∣∣U(a, b)

∣∣ ≤ a+ b

10

Proof. We upper bound each term in U(a, b) and they apply triangle inequality to get the result. We
start with |Ex∼N (b,1)

[
tanh′′(ax)a2x

]
|:

−Ex∼N (b,1)

[
tanh′′(ax)a2x

]
=

a2

8
√
2π

∫ ∞
0

xσ(2ax)(1− σ(2ax))(2σ(2ax)− 1)

(
e−

(x−b)2
2 + e−

(x+b)2

2

)
dx

≤ a2

4
√
2π

∫ ∞
0

xe−2axe−
(x−b)2

2 dx

≤ a2

4
√
2π

∫ ∞
0

e−axxe−
(x−b)2

2 dx

≤ a2

2
e−

b2

2 +
a2

2
|b− a| e−

−2a(b−a)−a2
2

Ex∼N (b,1)[tanh
′(ax)ax2] =

1√
2π

∫ ∞
0

tanh′(ax)ax2

(
e−

(x−b)2
2 + e−

(x+b)2

2

)
dx

≤ a

∫ ∞
0

e−axx2e−
(x−b)2

2 dx

≤ ae
a2−2ab

2

∫ ∞
0

x2e−
(x−b+a)2

2 dx

≤ 2a(a− b)2e
a2−2ab

2
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−Ex∼N (b,1)[a tanh
′(ax)] = − a√

2π

∫ ∞
0

tanh′(ax)

(
e−

(x−b)2
2 + e−

(x+b)2

2

)
dx

≥ −a

∫ ∞
0

e−axe−
(x−b)2

2 dx

≥ −ae
a2−2ab

2

∫ ∞
0

e−
(x−b+a)2

2 dx

≥ −4ae
a2−2ab

2 .

Now, using the fact that tanh′(x) and − tanh′′(x)x are always positive, we have the following upper
bound.∣∣U(a, b)

∣∣ ≤ η
∣∣∣Ex∼N (b,1)

[(
tanh(ax)− 1

2
tanh′′(ax)a2 + tanh′(ax)ax

)
· x
]∣∣∣

+ η|a|+ η
∣∣− Ex∼N (b,I)

[
tanh′(ax)a

] ∣∣
≤ η

(
2b+ a+

a2

2
e−

b2

2 +
a2

2
|b− a| e

−2a(b−a)−a2
2 + 2a(b− a)2e

a2−2ab
2 + 2ae

a2−2ab
2

)
If b ≥ a and a ≥ 30, then we have ∣∣U(a, b)

∣∣ ≤ η (2b+ a+ 0.1)

If b ≤ a ≤ 4b
3 and a ≥ 30, then ∣∣U(a, b)

∣∣ ≤ η (2b+ a+ 0.1)

Using η = 1/20 and for any a > 30, we have∣∣U(a, b)
∣∣ ≤ a+ b

10
.

F.4 Additional proofs for mixtures of two Gaussians

Lemma F.5. Suppose a, b > 0 satisfy a ∈ [30, 4b
3 ], then the following inequality holds:

|Ex∼N (b,1)[−0.5 tanh′′(ax)a2 + tanh′(ax)ax]| ≤ 0.01

Proof. We first show that Ex∼N (b,1)[−0.5 tanh′′(ax)a2] > 0 for any a, b > 0.

Ex∼N (b,1)[−0.5 tanh′′(ax)a2] = −0.5a2
∫ ∞
−∞

tanh′′(ax) exp(−0.5(x− b)2)dx

= −0.5a2
∫ ∞
0

tanh′′(ax)(exp(−0.5(x− b)2)− exp(−0.5(x+ b)2))dx > 0

where the last inequality follows from exp(−0.5(x− b)2) > exp(−0.5(x+ b)2) and tanh′′(ax) < 0
for x > 0. We can upper bound Ex∼N (b,1)[−0.5 tanh′′(ax)a2] as follows:

Ex∼N (b,1)[−
1

2
tanh′′(ax)a2] ≤ −1

2
a2
∫ ∞
0

tanh′′(ax) exp(−1

2
(x− b)2)dx

≤ a2
∫ ∞
0

exp(−ax) exp(−1

2
(x− b)2)dx

≤ a2 exp(
1

2
(a2 − 2ab))

∫ ∞
0

exp(−1

2
(x− b+ a)2)dx

≤ a2 exp(
1

2
(a2 − 2ab))

When a ≤ b, by writing a2−2ab = −2a(b−a)−a2 ≤ −a2, we have E[− 1
2 tanh

′′(ax)a2] ≤ 0.005

for a ≥ 30. When a ∈ [b, 4b
3 ], a2 − 2ab =≤ − 2b2

9 , we have |E[− 1
2 tanh

′′(ax)a2]| ≤
0.005. Similar to the Ex∼N (b,1)[− 1

2 tanh
′′(ax)a2], we prove Ex∼N (b,1)[tanh

′(ax)ax] >

0 and Ex∼N (b,1)[tanh
′(ax)ax] < 0.005. Combining bounds for |E[tanh′(ax)ax]| and

|E[− 1
2 tanh

′′(ax)a2]| using triangle inequality, we obtain the result.
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G Experiments

In this section, we perform two sets of experiments to understand the role of large and small noise
regimes in the training of mixtures of two Gaussians. Mainly, we want to answer the following
questions:

1. Does the large noise regime helps in achieving the warm start required for the small noise
regime (as predicted by theory)? Answer: Yes

2. Does the large noise scale regime learn the direction of the true mean vector despite having
a high amount of noise? Answer: Yes

Setup. The task in both experiments is to learn the true parameters of zero-centered mixtures of
two Gaussians in 100 dimensions. We use µ∗ and −µ∗ to denote the mean vectors of two mixtures.
Each element of the µ∗ vector is sampled uniformly from [0, 1]. We use stochastic gradient descent
(SGD) with batch size 128 and learning rate 0.001 for the training. We use t = 0.01 for the small
noise scale training and t ∈ {1, 1.1, 1.2} for the large noise scale. All results are averaged over 5
independent runs.

Results. To answer the first question, we plot the angle and L2 distance between the iterate and the
ground truth in Figure 1. From the figure, it is evident that the large noise scale training brings the
iterate near the ground truth µ∗ and then, training with smaller noise scale reduces the L2 distance
quickly. In contrast, only small noise scale training does not make any progress. For the second
question, even for large noise scale t, we show that the angle between the learned mean and true
mean is decreasing.

(a) Angle between the iterate and the ground truth. (b) L2 distance between the iterate and the ground truth.

Figure 1: For the blue curve, we initialize randomly, first train in the large t regime for 7000 steps, and
then train in the small t regime for 7000 steps. For the orange curve, we initialize randomly and only
train in the small t regime for 14000 steps. We see that large t training helps get in a neighborhood of
the ground truth, at which point small t training decreases L2 distance much more quickly, as our
theory predicts. In contrast, if we only train with small t, we do not make any noticeable progress.
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(a) Cosine similarity between the iterate and the ground
truth.

(b) Angle between the iterate and the ground truth.

Figure 2: We show that for some large noise scale, the cosine similarity of learned mean and true
mean is increasing (or equivalently, angle is decreasing) as we run for more steps.
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