
Appendix

Table of Contents
A Detailed method and hyperparameters 15

A.1 Input scaling . 15
A.2 Validation tuning . 15

B Addressing Memorization Concerns in GPT-3 Evaluations 15

C Benchmarking details and extended results 17
C.1 Darts datasets . 17
C.2 Monash datasets . 17
C.3 Informer datasets . 18
C.4 Synthetic datasets . 19
C.5 Darts full probabilistic results . 19
C.6 Informer datasets with extended horizon . 19
C.7 Monash dataset visualizations . 19
C.8 Informer dataset visualizations . 19

D Simplicity bias experiments 19
D.1 Full synthetic predictions . 20

E GPT-4 20

F Multimodal Text Understanding of Time Series 23

A Detailed method and hyperparameters

A.1 Input scaling

For all baseline methods, we use the MinMaxScaler from sklearn. For GPT-3, since it can handle
inputs spanning multiple orders of magnitudes by using varying number of digits, we apply an
affine transformation to each element xt of a time series (x1, ..., xT): xt 7! (xt � b)/a, where
b = mint xt��(maxt xt�mint xt), and a is the ↵-percentile of the shifted series (x1�b, ..., xT�b).
We also consider a basic scaler that only applies scaling and not shifting, with a clipped to a maximum
of 0.01 when the series only has tiny values. Here ↵ and � are hyperparameters controlling the
thresholds at which the number of digits used by the language model changes.

A.2 Validation tuning

We construct a validation time series from the last T observations in the training series, where T is
the length of the test series. When the training series is shorter than 2T, we take the last half of the
training series as the validation series. The likelihood of generating the validation conditioned on
the remaining training series is used to select the hyperparameters. Since LLMTIME is zero-shot,
the likelihood is computed without training. For other methods such as ARIMA, the likelihood is
computed after training on the remaining training series.

B Addressing Memorization Concerns in GPT-3 Evaluations

Evaluating the performance of black box APIs, like those provided by OpenAI, can be challenging
when training data for the underlying models is unknown. In our time series setting, it is natural to

15

Figure 9: Evaluation on a collection of short univariate time series recorded after GPT-3’s training
cutoff date. We compare the performance of our GPT-3 predictor against popular time series models.
Predicted median and 10-90th percentile intervals are shown for GPT-3 given the context, and we
compare test negative log likelihoods. GPT-3 continues to be competitive with or outperforms the
baselines on all of the tasks, from in-context learning alone. This result reinforces our belief that
GPT-3’s performance is not due to memorization of the test data.

wonder if the common benchmark datasets we use are included in the GPT-3 training data. LLMs are
known to memorize large amounts of their training data verbatim, including common benchmark text
datasets and copyrighted material [7, 12]. Beyond outright memorization, more benign data leakage
of closely related data is also possible, leading to overestimation of the generalization performance.

Even if our evaluation datasets are present in the GPT-3 training data, it’s unlikely that GPT-3’s
good performance is the result of memorization for at least two reasons a priori. First of all, our
idiosyncratic formatting is unlikely to be present in the training dataset, even if the numerical values
and their order are the same. Second, the time series datasets are unlikely to appear in GPT-3’s
training data sufficiently frequently to lead to memorization, as memorization increases in proportion
with redundancy [29].

To further address the memorization concern, we also perform a direct experiment to show GPT-3
also demonstrates strong performance when evaluated on time series recorded after its training data
cutoff date, September 2021. We use the following 3 time series:

• Istanbul Traffic (source: https://www.kaggle.com/datasets/leonardo00/istanbul-traffic-index):
This dataset provides minute-by-minute Traffic Index data for Istanbul from October 2022 to
May 2023. We select the "TI" column and downsample the series to an hourly frequency for the
period from May 5th, 2023 to May 18th, 2023, resulting in a total of 267 observations.

• TSMC Stock (source: https://www.kaggle.com/datasets/yeemeitsang/tsmc-stock-exchange-
2022): This dataset contains daily stock market trading data for Taiwan Semiconductor Manu-
facturing Company Limited for the year 2022. We use the closing price column, which consists
of a total of 246 observations.

• Turkey Power (source: https://www.kaggle.com/datasets/dharanikra/electrical-power-demand-
in-turkey): This dataset includes hourly electricity generation and consumption data for Turkey
from January 1st, 2020 to December 31st, 2022. We choose the "Total" column and downsample
to daily data for the year 2022, resulting in 366 observations.

For each time series, we reserve the last 30 observations as test data and perform hyperparameter
tuning for each method over the same grid as in Appendix C.1. As displayed in Figure 9, GPT-3 not
only predicts plausible continuations of each time series but also competes with or even surpasses the
performance of the baseline models in all the tasks, solely based on in-context learning. This result
reinforces our belief that GPT-3’s performance is not due to memorization of the test data.

16

https://www.kaggle.com/datasets/leonardo00/istanbul-traffic-index
https://www.kaggle.com/datasets/yeemeitsang/tsmc-stock-exchange-2022
https://www.kaggle.com/datasets/yeemeitsang/tsmc-stock-exchange-2022
https://www.kaggle.com/datasets/dharanikra/electrical-power-demand-in-turkey
https://www.kaggle.com/datasets/dharanikra/electrical-power-demand-in-turkey

C Benchmarking details and extended results

C.1 Darts datasets

For the Darts datasets, we use the GPyTorch library [17] for Gaussian Process implementation and the
DARTS libary [23] for ARIMA, TCN, N-BEATS, N-HiTS. We use default values for hyperparameters
not described below. The test set is the last 20% of each series.

We use several baseline methods implemented directly in Darts [23]:

• ARIMA: ARIMA [8], short for AutoRegressive Integrated Moving Average, has been a popular
choice for time series forecasting for many decades.

• TCN: Temporal Convolutional Network (TCN) [28] is residual network with dilated 1D
convolutions.

• N-BEATS: N-BEATS [37] is a deep learning model tailored for time series forecasting. It
employs a deep architecture with backward and forward residual links and stacked fully-
connected layers.

• N-HiTS: N-HiTS [11] is a deep learning model that incorporates hierarchical interpolation
and multi-rate data sampling techniques in order to create forecasts that emphasize different
frequencies and scales of the input signal.

We also include Spectral Mixture Gaussian Process (SM-GP) [48] as a Bayesian nonparametric
approach to time series modeling.

We include the exact hyperparameters for each method below:

GPT-3 We perform a grid search over ↵ 2 [0.5, .7, 0.9, 0.99],� 2 [0, .15, 0.3, .5], precision
(number of decimals) 2 [2, 3], and temperature = 0.7.

GPT-4 Since likelihood evaluation is not available for GPT-4, we fix its hyperparameters for all
datasets as follows: we use the basic scaler with ↵ = 0.3 and temperature = 1.0 with top p = 0.8.
We do not insert spaces between digits for GPT-4 since it uses a different tokenizer than GPT-3 for
which this strategy is not effective.

LLaMA For models LLaMA-1 (7B/13B/30B/70B) and LLaMA-2 (7B/7B-chat/13B/13B-chat),
we perform a grid search over temperature 2 [0.2, 0.4, 0.6, 0.8] and use ↵ = 0.99,� =
0.3, precision = 3, nucleus = 0.9. For LLaMA-2 70B and LLaMA-2 70B-chat we use
temperature = 1.0,↵ = 0.99,� = 0.3, precision = 3, nucleus = 0.9.

Spectral Mixture Gaussian Process (SM-GP) We use a GP with a kernel formed by the sum of a
spectral mixture kernel with 12 mixture components and a RBF kernel. We tune the learning rate
from [5e-3, 1e-2, 5e-2, 1e-1].

ARIMA We perform a grid search over p 2 [12, 20, 30], d 2 [1, 2], and q 2 [0, 1, 2].

TCN We perform a grid search over input_chunk_length 2 [10, 100, 400], output_chunck_length
2 [1, 10], kernel_size 2 [3, 5], num_filters 2 [1, 3], and likelihood 2 [Laplace, Gaussian].

N-BEATS We perform a grid search over input_chunk_length 2 [10, 100, 400], out-
put_chunk_length 2 [1, 10], layer_widths 2 [64, 16], num_layers 2 [1, 2], and likelihood 2 [Laplace,
Gaussian].

N-HiTS We perform a grid search over input_chunk_length 2 [10, 100, 400], output_chunck_length
2 [1, 10], layer_widths 2 [64, 16], num_layers 2 [1, 2], and likelihood 2 [Laplace, Gaussian].

C.2 Monash datasets

We evaluate on 19 datasets in Monash that satisfy two criteria

17

1. The total number of individual series cannot be prohibitively large, so that the experiments
can be run in time without access to an enormous cluster and without a gratuitous API
expenses.

2. The length of the forecasting horizon cannot extend to a length that makes it impossible to
fit both the forecast and the history into the context window of the language model.

When we applied these criteria, we obtained the following 19 datasets were selected: covid deaths,
solar weekly, tourism monthly, australian electricity demand, pedestrian counts, traffic hourly, hospital,
fred md, tourism yearly, tourism quarterly, us births, nn5 weekly, nn5 daily, traffic weekly, saugeenday,
cif 2016, bitcoin, sunspot.

To aggregate across datasets, we normalized the mean absolute error by the MAE achieved by simply
predicting the last observed value before the test series (a naive baseline). This normalization places
high weight on datasets for which methods perform significantly better or worse than the naive
predictor.

Several of the baseline methods in the archive are shared with Darts, and all descriptions and code
can be found in [18]. A few notable addition include

• CatBoost: CatBoost [39] is gradient-boosting framework for continuous or categorical data.

• FFNN: A feed-forward neural network with a fixed window of input and output, inspired by
Goodfellow et al. [20].

• PR: A linear pooled regression (PR) model proposed by Trapero et al. [45].

We include visualizations of GPT-3’s prediction on these datasets in Appendix C.7.

GPT-3 hyperparameters We use the following hyperparameters for GPT-3: ↵ = 0.9,� =
0, temperature = 0.7. To avoid exceeding the context window, we truncate the history to at most
500 most recent observations. For the baselines, we report their performance as presented in [18].
The normalized MAE values shown in Figure 4 (center) are obtained by normalizing by the lowest
baseline MAE on each dataset before aggregating.

LLaMA-2 70B hyperparameters We use the following hyperparameters for LLaMA-2 70B:
↵ = 0.99,� = 0.3, temperature = 1.0, nucleus = 0.9. To avoid exceeding the context window, we
truncate the history to fit in the LLaMA-2 context window (4096 tokens).

C.3 Informer datasets

There are 6 datasets used by Zhou et al. [54] that have become standard benchmarks for evaluating
efficient transformers. We evaluate on the 5 datasets that are typically used with a prediction horizon
of 96 or 192: “ETTm2”, “exchange_rate”, “electricity”, “traffic”, and “weather”. The results provided
in the main text are for a prediction horizon of 96, and we include results for prediction horizon 192
in Appendix C.6. To make evaluation tractable with LLMTIME, we use a smaller evaluation set for
each dataset, taking the last 96 or 192 timesteps of each series within each dataset as the test set. As
there are many individual series in each multivariate dataset, the number of individual timesteps in
the test sets is still substantial. To forecast multivariate series with LLMTIME we simply forecast
over each series independently, combine the results, and evaluate as in prior work. Our efficient
transformer baselines include

• Informer: Informer [54] is an efficient transformer model with sparse attention designed for
long sequences.

• Reformer: Reformer [54] uses a locality-sensitive hashing mechanism to improve the memory
use of attention.

• Autoformer: Autoformer [49] is a model design for long time series that replaces standard
attention with a mechanism in Fourier space.

• FEDformer: Like Autoformer, FEDformer [55] uses frequency-based decompositions to
construct an efficient alternative to attention.

18

Figure 10: Median predictions of LLMTIME (GPT-3) and NLLs from LLMTIME (GPT-3 and
LLaMA-2 70B) for every dataset within Darts [23]. The shaded area shows the 10th to 90th quantiles
of the distribution over samples. LLMTIME consistently obtains better likelihood values than the
baselines and often makes surprisingly accurate forecasts by effectively extrapolating trend and
periodic components.

LLaMA-2 70B hyperparameters We use LLaMA-2 70B with ↵ = 0.99,� = 0.3, temperature =
1.0, nucleus = 0.9, precision = 3. The series in the Informer datasets are very long and we put as
much as possible in the LLaMA-2 context window (4096).

C.4 Synthetic datasets

For the baselines, we use the same hyperparameter grid in Section C.1. For GPT-3, we didn’t find it
useful to perform validation tuning. We use the basic scaler with ↵ = 0.1 and temperature = 0.7.

C.5 Darts full probabilistic results

In Figure 10 we show the predicted NLLs and forecasts from LLMTIME using GPT-3 and LLaMA-
2 70B as base models. LLMTIME typically obtains much better likelihoods than baselines and
successfully identifies trend and seasonal components in the time series. We attribute this strong
performance in part to the fact that the time series are relatively short. With the tokenization of the
input, only about 300 of the observations can fit into the context window, and among the datasets
only Sunspots and HeartRate exceed this amount (with 705 and 900 observations respectively).

C.6 Informer datasets with extended horizon

Figure 11 shows MAE results per dataset and in aggregate for the Informer datasets we used in the
paper. Extending the results in the main text, we also include MAE numbers for a prediction horizon
of 192. We observed a similar trend overall, though the relative performance of LLMTIME is slightly
diminished, largely due to the “electricity” and “traffic” datasets.

C.7 Monash dataset visualizations

Figure 12 shows visualizations of the LLMTIME’s median predictions (GPT-3 base model) on a
subset of the Monash datasets.

C.8 Informer dataset visualizations

Figure 13 shows visualizations of the LLMTIME’s median predictions (LLaMA-2 70B base model)
on the Informer datasets, for a subset of the each set of multivariate series.

D Simplicity bias experiments

We generate data from the function f(x) = cos(x) + x and add Gaussian noise with zero mean
and variance 0.05. We fit symbolic expressions to the first 140 timesteps using PySR [14] with
symbols ["+", "·", "-", "/", "sin", "cos", "exp","square"] and maxsize = 70,maxdepth =

19

Figure 11: Aggregated and non-aggregated MAE numbers for LLMTIME (LLaMA-2 70B base
model) and baselines on the Informer datasets. Overall LLMTIME performs well in aggregate for a
zero-shot method, but its performance is highly variable, being the best method on some datasets
and the worst on others. The relative performance of LLMTIME is slightly diminished for a longer
prediction horizon, but LLMTIME is still very competitive with the best methods in aggregate. Error
bars show two standard deviations in the error over datasets.

10, population_size = 50, loss = abs(prediction� target),model_selection = accuracy and
niterations = 100. The solutions are saved and ranked by complexity, which is simply the number
of terms in the symbolic regression function. The five solutions shown in Figure 6 are

1. (x0 + 0.3652524)

2. cos(cos(x0/� 0.031412385) ⇤ (�1.5252972 + x0))

3. (sin(cos(cos(x0/0.031470172) ⇤ �1.4668792)) + (cos(0.81965065) ⇤ x0))

4. (sin(cos(cos((x0/ sin(�0.03127001)) + 0.07646165) ⇤ �1.4539052)) +
(sin(sin(cos(cos(exp(cos(�0.03127001) + x0))))) ⇤ x0))

5. (cos((cos((x0/ � 0.03127001) + 0.07646165)/ � 0.957405)/ sin(sin(cos(x0 � x0)) ⇤
exp(cos(sin(x0/ � 0.983214)))))/(cos(sin(sin(sin(sin(x0)) � (x0 ⇤ (�0.47036648 �
(x0/0.5857117))))))��0.10476875))

To obtain likelihoods we run GPT-3 (‘text-davinci-003’) with alpha = 0.99, beta = 0.3, basic =
True, precision = 1, signed = True.

D.1 Full synthetic predictions

Figure 14 shows likelihoods and forecasts from LLMTIME with GPT-3 on the full set of synthetic
datasets. We see that some compositional tasks like Linear + Cosine are challenging, while others
(Linear * Sine or X * Sine) are well within the abilities of the model. As shown above, GPT-3
demonstrates good understanding of Linear + Cosine through its likelihoods, but has more trouble
in sampling. This discrepancy could be the result of good solutions being high likelihood while not
being typical.

E GPT-4

We investigated using GPT-4 for time series prediction. Due to the limitations of the tokenizer,
we used the naive tokenization strategy of feeding in the numbers without additional spaces. In
addition, due to the enforced separation between system and user in the interface (through additional
tokens we cannot modify), inputting the time series input alone leads GPT-4 to talk about the time
series or provide analysis, rather than simply continuing the stream of numbers. In order to coax
GPT-4 to produce numerical predictions which can be decoded, we added the additional commands
System: "You are a helpful assistant that performs time series predictions. The user will provide
a sequence and you will predict the remaining sequence. The sequence is represented by decimal
strings separated by commas." User: "Please continue the following sequence without producing
any additional text. Do not say anything like ’the next terms in the sequence are’, just return the
numbers. Sequence:". We found that doing so was sufficient to be able to consistently decode the
output numerically for GPT-4, but not for GPT-3.5-turbo.

20

Figure 12: LLMTIME (GPT-3 base model) median predictions on at most 4 randomly chosen series
per Monash dataset.

21

Figure 13: LLMTIME (LLaMA-2 70B base model) median predictions on 4 randomly chosen series
per Monash dataset.

Figure 14: LLMTIME median predictions on all synthetic datasets using GPT-3 as a base model. The
hyperparameters used are described in Appendix C.4.

We show predictions on the synthetic benchmarks (from Figure 6) in Figure 15. As one can observe,
GPT-4 is considerably better performing on these synthetic benchmarks, although numerical decoding
of the model sometimes fails before the full output. With non-deterministic time series problems
such as with the DARTS datasets, the predictions are slightly worse than GPT-3, but the uncertainties
are much less well calibrated as shown in Figure 16.

22

Figure 15: GPT-4 extrapolations on synthetic data (10-90th percentiles shaded). GPT-4 is able to
identify and extrapolate the pattern for each of the deterministic time series, but sometimes behaves
erratically.

Figure 16: GPT-4 extrapolations on real (DARTS) time series (10-90th percentiles shaded). The
extrapolations are plausible but worse than GPT-3, and the uncertainties tend to be more poorly
calibrated making for a high CRPS.

F Multimodal Text Understanding of Time Series

We evaluate the ability of the language model to reason about the input time series through text in a
zero-shot fashion. To test this, we devise a simple experiment where we generate a synthetic time
series from one of several candidate functions. We provide the generation code and the numerical
values to GPT-4 (Listing 1), but because of the randomness, GPT-4 must infer which of the functions
generated the values. We note that as this code could easily be found within a Jupyter notebook on
the internet without intentionally being designed as an experiment for LLMs, we should expect that
this textual time series identification task will fall within the data distribution, and in principle should
be solved given sufficient capabilities of the language model.

To make the problem slightly easier, we add an additional guiding prompt before and after the text in
Listing 1. We prepend

“The following is code that was run to generate a synthetic time series. From the
input and output you will be asked to identify which of the time series was picked
to generate the data.”

to the code, and after the time series we append either

“Which name gave rise to this series? Put your answer in the form ‘Answer:
gaussian_wave’ ”

or

23

“Carefully analyze the time series. Think step by step, make observations about
the time series that you see and then use your observations to identify which of the
functions is most likely to have generated it. Reason your way to a solution and at
the end give give a name as your answer such as ‘Answer: gaussian_wave’.”

for chain-of-thought prompting.

The prediction accuracies computed over 20 trials are shown in Figure 8, with x_times_sine, beat,
and sinc not shown in the table because GPT-4 predicted these incorrectly 100% of the time. With
the CoT prompting, this prediction task elicits some interesting textual analysis of the time series.
Several (non cherry-picked) examples are shown below. Notably, this task elicits the model to analyze
the time series in text, reasoning about the trend and periodicity. However, the model sometimes
makes incorrect deductions about the behavior of the data it has seen, or the expected behavior of the
candidate functions.

1 import numpy as np
2 mapping = {
3 ’gaussian_wave ’: lambda t: np.exp(-5*(t-.6) **2)*np.sin (20*(t-6)),
4 ’exp’:lambda t: np.exp(2*t),
5 ’linear_cos ’:lambda t: 0.3+ 0.5*t +.2*np.cos (25*t+3),
6 ’linear ’:lambda t: 0.3+ 0.5*t,
7 ’sine’:lambda t: np.sin (40*t+3),
8 ’sinc’: lambda t: np.sin (10*t)/t/10,
9 ’beat’: lambda t: np.sin(3*t)*np.sin (25*t),

10 ’sigmoid ’: lambda t: 1/(1+np.exp(-4*t)),
11 ’log’: lambda t: np.log(1+t),
12 ’x_times_sine ’: lambda t: 4*(t+1)*np.sin (10*(t+1)+4),
13 ’square ’: lambda t: 3*(t-.6)**2,
14 }
15 name = np.random.choice(list(mapping.keys()))
16 t = np.linspace (-1,1,200) +.1*np.random.randn (1)
17 x = mapping[name](t)
18 np.set_printoptions(formatter ={’float’: lambda x: "{0:0.3f}".format(x)

})
19 print("Series: ",x)
20 print(" ",name)
21

22 Series:
23 [-0.000 -0.033 -0.070 -0.111 -0.153 -0.197 -0.240 -0.281
24 -0.320 -0.355 -0.385 -0.408 -0.425 -0.433 -0.432 -0.422
25 -0.402 -0.371 -0.330 -0.279 -0.217 -0.145 -0.064 0.026
26 0.124 0.229 0.339 0.453 0.570 0.688 0.806 0.922 1.033
27 1.140 1.238 1.328 1.407 1.474 1.527 1.564 1.586 1.590
28 1.576 1.543 1.491 1.420 1.329 1.219 1.091 0.945 0.782
29 0.604 0.413 0.209 -0.005 -0.227 -0.455 -0.686 -0.917
30 -1.147 -1.373 -1.591 -1.799 -1.995 -2.175 -2.338 -2.481
31 -2.602 -2.698 -2.769 -2.812 -2.826 -2.811 -2.766 -2.689
32 -2.583 -2.446 -2.279 -2.084 -1.863 -1.615 -1.345 -1.053
33 -0.743 -0.418 -0.081 0.265 0.617 0.970 1.322 1.667 2.003
34 2.325 2.630 2.915 3.175 3.407 3.609 3.778 3.910 4.005
35 4.060 4.074 4.046 3.975 3.862 3.706 3.509 3.272 2.997
36 2.686 2.341 1.965 1.563 1.137 0.692 0.232 -0.239 -0.715
37 -1.192 -1.665 -2.128 -2.577 -3.008 -3.414 -3.791 -4.136
38 -4.443 -4.710 -4.932 -5.108 -5.233 -5.306 -5.326 -5.291
39 -5.202 -5.058 -4.859 -4.608 -4.306 -3.955 -3.558 -3.120
40 -2.643 -2.132 -1.592 -1.029 -0.447 0.148 0.749 1.350
41 1.946 2.530 3.095 3.637 4.148 4.623 5.057 5.445 5.782
42 6.064 6.288 6.450 6.548 6.580 6.546 6.444 6.275 6.039
43 5.740 5.378 4.956 4.479 3.951 3.376 2.760 2.109 1.429
44 0.726 0.009 -0.717 -1.444 -2.164 -2.870 -3.555 -4.210
45 -4.830 -5.408 -5.936 -6.409 -6.822 -7.170 -7.448 -7.653

24

46 -7.783 -7.834 -7.806 -7.698 -7.511 -7.245]

Listing 1: Self-contained code presented to the model for the multimodal time series identification
task. When the code is run one of the listed functions is randomly chosen to generate the time series.
In order to simply predict the next token after observing this text (which could be found in the cells
of a Jupyter notebook) the model must infer which of the functions produced the series.

25

1 First , let ’s analyze the time series and make some observations:
2

3 1. The time series starts at a negative value , increases linearly , and
ends at a positive value.

4 2. There is no apparent periodicity or oscillation in the time series.
5 3. There are no sudden jumps or changes in the time series , indicating

a smooth function.
6

7 Now , let ’s go through the functions in the mapping and see which one
matches our observations:

8

9 - ’gaussian_wave ’: This function has a periodic oscillation , which
doesn ’t match our observations.

10 - ’exp ’: This function increases exponentially , which doesn ’t match
the linear increase in our observations.

11 - ’linear_cos ’: This function has a periodic oscillation , which doesn ’
t match our observations.

12 - ’linear ’: This function increases linearly , which matches our
observations.

13 - ’sine ’: This function has a periodic oscillation , which doesn ’t
match our observations.

14 - ’sinc ’: This function has a periodic oscillation , which doesn ’t
match our observations.

15 - ’beat ’: This function has a periodic oscillation , which doesn ’t
match our observations.

16 - ’sigmoid ’: This function has a sigmoid shape , which doesn ’t match
our observations.

17 - ’log ’: This function increases logarithmically , which doesn ’t match
the linear increase in our observations.

18 - ’x_times_sine ’: This function has a periodic oscillation , which
doesn ’t match our observations.

19 - ’square ’: This function has a parabolic shape , which doesn ’t match
our observations.

20

21 Based on our observations and analysis , the function that most likely
generated the time series is ’linear ’.

22

23 Answer: linear

Listing 2: Sample output for Linear time series (correctly classified)

26

1 First , let ’s analyze the time series.
2

3 The time series starts with a value of 0.148 and ends with a value of
8.063. This indicates that the series is monotonically increasing.

4

5 Now , let ’s look at the differences between consecutive values. The
differences are small and seem to be increasing as the series
progresses. This suggests that the series is not only increasing
but also accelerating.

6

7 With these observations , let ’s analyze the given functions:
8

9 1. gaussian_wave: This function represents a wave that is localized
around a specific point. It does not match the characteristics of
the time series.

10 2. exp: This function represents an exponential growth , which matches
the increasing and accelerating characteristics of the time series
.

11 3. linear_cos: This function represents a linear function with an
added cosine term. It does not match the accelerating
characteristic of the time series.

12 4. linear: This function represents a linear growth , which does not
match the accelerating characteristic of the time series.

13 5. sine: This function represents a sinusoidal wave , which does not
match the characteristics of the time series.

14 6. sinc: This function represents a sinc function , which does not
match the characteristics of the time series.

15 7. beat: This function represents a beat pattern , which does not match
the characteristics of the time series.

16 8. sigmoid: This function represents a sigmoid curve , which does not
match the characteristics of the time series.

17 9. log: This function represents a logarithmic growth , which does not
match the accelerating characteristic of the time series.

18 10. x_times_sine: This function represents a product of a linear
function and a sinusoidal function , which does not match the
characteristics of the time series.

19 11. square: This function represents a quadratic growth , which does
not match the characteristics of the time series.

20

21 Based on our analysis , the exp function is the most likely candidate
to have generated the time series.

22

23 Answer: exp

Listing 3: Sample output for Exp time series (correctly classified)

27

1 Observations about the time series:
2 1. The values are positive and continuous.
3 2. The values start from a high value and gradually decrease until

they reach a minimum value near the middle of the series.
4 3. After the minimum value , the values gradually increase again until

they reach a high value near the end of the series.
5 4. The overall trend of the time series seems to be symmetric.
6

7 Now , let ’s analyze the given functions and their characteristics:
8

9 1. gaussian_wave: Symmetric , bell -shaped curve , values are positive
and continuous.

10 2. exp: Exponential growth , not symmetric.
11 3. linear_cos: Linear trend with oscillations , not symmetric.
12 4. linear: Linear growth , not symmetric.
13 5. sine: Oscillating function , not symmetric.
14 6. sinc: Symmetric , sinc function has a peak at the center and

oscillates on both sides.
15 7. beat: Combination of two sine waves with different frequencies , not

symmetric.
16 8. sigmoid: S-shaped curve , not symmetric.
17 9. log: Logarithmic growth , not symmetric.
18 10. x_times_sine: Product of a linear function and sine function , not

symmetric.
19 11. square: Quadratic function , symmetric , parabolic shape.
20

21 Based on our observations , the most likely function to have generated
this time series is the ’square ’ function. It is symmetric , has a
parabolic shape , and the values are positive and continuous.

22

23 Answer: square

Listing 4: Sample output for Square time series (correctly classified)

28

1 We can start by analyzing the time series and making observations
about its characteristics:

2

3 1. The time series starts and ends at 0, with values close to 0 in the
beginning and end.

4 2. The time series has a single peak and a single valley , reaching a
maximum value around 0.85 and a minimum value around -1.

5 3. The time series is not periodic , as it doesn ’t repeat its pattern.
6

7 Now , let ’s go through the functions one by one and see which one
matches these observations:

8

9 - ’gaussian_wave ’: This function is a product of a Gaussian and a
sinusoidal function , which could give us a single peak and valley.
However , it is periodic , so it doesn ’t match observation 3.

10 - ’exp ’: This function is an exponential function , which doesn ’t match
the observations as it doesn ’t have a peak and valley.

11 - ’linear_cos ’: This function is a linear function combined with a
cosine function , which could give a single peak and valley.
However , it is also periodic , so it doesn ’t match observation 3.

12 - ’linear ’: This function is a linear function , which doesn ’t have a
peak and valley , so it doesn ’t match observation 2.

13 - ’sine ’: This function is a sinusoidal function , which is periodic
and doesn ’t match observation 3.

14 - ’sinc ’: This function is a sinc function , which has multiple peaks
and valleys , so it doesn ’t match observation 2.

15 - ’beat ’: This function is a product of two sinusoidal functions ,
which could give a single peak and valley. However , it is also
periodic , so it doesn ’t match observation 3.

16 - ’sigmoid ’: This function is a sigmoid function , which matches all
the observations. It starts and ends at 0, has a single peak and
valley , and is not periodic.

17 - ’log ’: This function is a logarithmic function , which doesn ’t have a
peak and valley , so it doesn ’t match observation 2.

18 - ’x_times_sine ’: This function is a product of a linear function and
a sinusoidal function , which could give a single peak and valley.
However , it is also periodic , so it doesn ’t match observation 3.

19 - ’square ’: This function is a quadratic function , which doesn ’t have
a peak and valley , so it doesn ’t match observation 2.

20

21 Based on these observations , the most likely function to have
generated the time series is ’sigmoid ’.

22

23 Answer: sigmoid

Listing 5: Sample output for Gaussian_wave time series (misclassified)

29

1 Let ’s analyze the time series step by step:
2

3 1. The time series starts at a negative value , increases to a positive
value , and then decreases back to a negative value. This suggests
that the function might have a symmetric or periodic behavior.

4

5 2. The time series has a peak in the middle , which indicates that the
function might have a single maximum or minimum point.

6

7 3. The time series does not show an exponential growth or decay , which
rules out ’exp ’, ’log ’, and ’sigmoid ’ functions.

8

9 4. The time series does not have a linear pattern , which rules out the
’linear ’ function.

10

11 5. The time series does not show a clear periodic pattern , which rules
out ’sine ’, ’linear_cos ’, and ’beat ’ functions.

12

13 6. The time series does not show a sinc pattern , which rules out the ’
sinc ’ function.

14

15 7. The time series does not show a clear x_times_sine pattern , which
rules out the ’x_times_sine ’ function.

16

17 8. The time series does not show a clear parabolic pattern , which
rules out the ’square ’ function.

18

19 Based on the above observations , the only remaining function is ’
gaussian_wave ’. Therefore , the most likely function to have
generated the time series is:

20

21 Answer: gaussian_wave

Listing 6: Sample output for Linear_Cos time series (misclassified)

30

	Introduction
	Background
	LLMTime: Forecasting with Language Models
	Experiments
	Origins of Zero-Shot Performance
	Special Properties of LLMs
	Discussion
	Appendix
	 Appendix
	Detailed method and hyperparameters
	Input scaling
	Validation tuning

	Addressing Memorization Concerns in GPT-3 Evaluations
	Benchmarking details and extended results
	Darts datasets
	Monash datasets
	Informer datasets
	Synthetic datasets
	Darts full probabilistic results
	Informer datasets with extended horizon
	Monash dataset visualizations
	Informer dataset visualizations

	Simplicity bias experiments
	Full synthetic predictions

	GPT-4
	Multimodal Text Understanding of Time Series

