A Trichotomy for Transductive Online Learning Supplementary Materials

334 A Multiclass Threshold Bounds

Definition A.1. Let \mathcal{X} and \mathcal{Y} be sets, let $X = \{x_1, \ldots, x_t\} \subseteq \mathcal{X}$, and let $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$. We say that X is threshold-shattered by \mathcal{H} if there exist distinct $y_0, y_1 \in \mathcal{Y}$ and functions $h_1, \ldots, h_t \in \mathcal{H}$ such that $\overline{h_i(x_j)} = y_{1(j \leq i)}$. The threshold dimension of \mathcal{H} , denoted $\mathsf{TD}(\mathcal{H})$, is the supremum of the set of integers t for which there exists a threshold-shattered set of cardinality t.

339 We introduce the following generalization of the threshold dimension.

Definition A.2. Let \mathcal{X} and \mathcal{Y} be sets, let $X = \{x_1, \ldots, x_t\} \subseteq \mathcal{X}$, and let $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$. We say that Xis multi-class threshold-shattered by \mathcal{H} if there exist $y_1, y'_1 \ldots, y_t, y'_t \in \mathcal{Y}$ such that $y_i \neq y'_j$ for all

 $i, \overline{j \in [t]}, and there exist functions <math>h_1, \ldots, h_t \in \mathcal{H}$ such that

$$h_i(x_j) = \begin{cases} y_i & (j \le i) \\ y'_j & (j > i). \end{cases}$$

The multi-class threshold dimension of \mathcal{H} , denoted MTD(\mathcal{H}), is the supremum of the set of integers t for which there exists a threshold-shattered set of cardinality t.

- S45 **Claim A.3.** Let \mathcal{X} and \mathcal{Y} be sets, $k = |\mathcal{Y}| < \infty$, and let $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$. Then $\mathsf{TD}(\mathcal{H}) \ge |\mathsf{MTD}(\mathcal{H})/k^2|$.
- Proof of Claim A.3. The proof follows from two applications of the pigeonhole principle. \Box

Claim A.4. Let \mathcal{X} and \mathcal{Y} be sets, let $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ such that $d = \mathsf{TD}(\mathcal{H}) < \infty$, and let $n \in \mathbb{N}$. Then $M(\mathcal{H}, n) \geq \min \{ |\log(d)|, |\log(n)| \}.$

³⁴⁸ The proof of Claim A.4 is similar to that of Claim 3.4.

Theorem A.5. Let \mathcal{X} and \mathcal{Y} be sets with $k = |\mathcal{Y}| < \infty$, let $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$. If $LD(\mathcal{H}) = \infty$ then MTD $(\mathcal{H}) = \infty$.

Following is a lemma from Ramsey theory used for proving Theorem A.5, and a generalized notion of subtrees used in that lemma.

Definition A.6. Let X be a finite set and let (X, \preceq) be a partial order relation. For $p, c \in X$, we say that c is a <u>child</u> of p if $p \preceq c$ and there does not exist $m \in X$ such that $p \preceq m \preceq c$. We say that $z \in X$ is a <u>leaf</u> if there exists no $x \in X$ such that $z \preceq x$. (X, \preceq) is a <u>binary tree</u> every non-leaf $x \in X$ has precisely 2 children. The <u>depth</u> of $z \in X$ is the largest $d \in \mathbb{N}$ for which there exist distinct $x_1, \ldots, x_d \in X$ such that $x_1 \preceq x_2 \preceq \cdots \preceq x_d \preceq z$. For $d \in \mathbb{N}$, we say that (X, \preceq) is a <u>complete binary tree of depth</u> d if (X, \preceq) is a binary tree and all the leaves in X have depth d. We say that a partial order (X', \preceq') is a <u>subtree</u> of (X, \preceq) if $X' \subseteq X$, and $\forall a, b \in X'$: $a \preceq' b \iff a \preceq b$.

The following lemma follows from Lemma 16 in Appendix B of [ALMM19].

Lemma A.7. Let $k, d \in \mathbb{N}$, and let \mathcal{Y} be a set, $|\mathcal{Y}| = k$. Let $T = (X, \preceq)$ be a complete binary tree of depth $d \in \mathbb{N}$, and let $g : X \to \mathcal{Y}$. Then T has a monochromatic complete binary tree subtree $T' = (X', \preceq')$ of depth d/k, namely there exists T' such that T' is a subtree of T, T' is a complete binary tree of depth d/k, and $|g(X')| = |\{g(a) : a \in X'\}| = 1$.

Proof of Theorem A.5. Let $f_k(d)$ be the largest number such that every class with Littlestone dimension *d* has multi-class threshold dimension at least $f_k(d)$. We show by induction on *d* that f_k satisfies the following recurrence relation: $f_k(d) \ge 1 + f_k(\lceil d/k \rceil - 1)$.

For the base case, if $d = LD(\mathcal{H}) = 0$, \mathcal{H} and \mathcal{X} are non-empty and therefore $MTD(\mathcal{H}) \ge 1$. For the induction step $d = LD(\mathcal{H}) \ge 1$, let T be a Littlestone tree of depth d that is shattered by \mathcal{H} . Let $h \in \mathcal{H}$. Then h is a k-cloring of the nodes of T. By Lemma A.7, there exists an h-monochromatic

subtree $T' \subseteq T$ of depth at least d/k. Let y_1 be the color assigned by h to all nodes of T'. T' is 371 shattered by \mathcal{H} , so there exists a child x_1 of the root r of T' such that the label of the edge leading 372 to it is some $y'_1 \neq y_1$. Let $\mathcal{H}_1 = \{h \in \mathcal{H} : h(x_1) = y'_1\}$. Notice that $LD(\mathcal{H}_1) \geq d/k - 1$, so by the induction hypothesis, there exist x_2, \ldots, x_s for $s = f_k(\lfloor d/k \rfloor - 1)$ that are multi-class 373 374 threshold shattered. By construction, the set $\{x_1, \ldots, x_s\}$ is multi-class threshold shattered by \mathcal{H} , as 375 desired. 376

B **Multiclass Trichotomy** 377

- The Natarajan dimension is one popular generalization of the VC dimension to the multiclass setting. 378
- **Definition B.1** ([Nat89]). Let \mathcal{X} and \mathcal{Y} be sets, let $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$, let $d \in \mathbb{N}$, and let $X = \{x_1, \ldots, x_d\} \subseteq$ 379 \mathcal{X} . We say that \mathcal{H} Natarajan-shatters X if there exist $f_0, f_1 : X \to \mathcal{Y}$ such that: 380

1. $\forall x \in X : f_0(x) \neq f_1(x)$; and 381

382

389

2. $\forall A \subseteq X \exists h \in \mathcal{H} \ \forall x \in X : h(x) = f_{\mathbb{1}(x \in A)}(x).$

The Natarajan dimension of \mathcal{H} is $\mathsf{ND}(\mathcal{H}) = \sup \{ |X| : X \subseteq \mathcal{X} \text{ finite } \land \mathcal{H} \text{ Natarajan-shatters } X \}.$ 383

We show the following generalization of Theorem 4.1 for the multiclass setting. 384

Theorem B.2 (Formal Version of Theorem 5.1). Let \mathcal{X} and \mathcal{Y} be sets with $k = |\mathcal{Y}| < \infty$, let 385 $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$, and let $n \in \mathbb{N}$ such that $n \leq |\mathcal{X}|$. 386

387 1. If
$$ND(\mathcal{H}) = \infty$$
 then $M(\mathcal{H}, n) = n$.

2. Otherwise, if $ND(\mathcal{H}) = d < \infty$ and $LD(\mathcal{H}) = \infty$ then 388

$$\max\{\min\{d,n\}, \lfloor \log(n) \rfloor\} \le M(\mathcal{H},n) \le O(d\log(nk/d)).$$
(5)

The $\Omega(\cdot)$ and $O(\cdot)$ notations hide universal constants that do not depend on \mathcal{X}, \mathcal{Y} or \mathcal{H} .

3. Otherwise, there exists a number $C(\mathcal{H}) \in \mathbb{N}$ (that depends on \mathcal{X}, \mathcal{Y} and \mathcal{H} but does not 390 depend on n) such that $M(\mathcal{H}, n) \leq C(\mathcal{H})$. 391

The proof of Theorem B.2 uses the following generalization of the Sauer–Shelah–Perles lemma. 392

Theorem B.3 ([Nat89]; Corollary 5 in [HL95]). Let $d, n, k \in \mathbb{N}$, let \mathcal{X} and \mathcal{Y} be sets of cardinality 393 *n* and *k* respectively, and let $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ such that $\mathsf{ND}(\mathcal{H}) \leq d$. Then 394

$$|\mathcal{H}| \le \sum_{i=0}^{d} \binom{n}{i} \binom{k+1}{2}^{i} \le \left(\frac{enk^2}{d}\right)^{d}.$$

Proof of Theorem B.2. Items 1 and 3 and the $min\{d, n\}$ lower bound in Item 2 follow similarly to 395

the corresponding items in Theorem 4.1. The upper bound in Item 2 also follows similarly to the 396 corresponding item in Theorem 4.1, except that it uses Theorem B.3 instead of the Sauer-Shelah-397 Perles lemma. 398

The $|\log(n)|$ lower bound in Item 2 follows from Theorem A.5 and Claim A.4. 399