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Abstract

Locally interpretable model agnostic explanations (LIME) method is one of the
most popular methods used to explain black-box models at a per example level.
Although many variants have been proposed, few provide a simple way to produce
high fidelity explanations that are also stable and intuitive. In this work, we
provide a novel perspective by proposing a model agnostic local explanation
method inspired by the invariant risk minimization (IRM) principle – originally
proposed for (global) out-of-distribution generalization – to provide such high
fidelity explanations that are also stable and unidirectional across nearby examples.
Our method is based on a game theoretic formulation where we theoretically show
that our approach has a strong tendency to eliminate features where the gradient
of the black-box function abruptly changes sign in the locality of the example we
want to explain, while in other cases it is more careful and will choose a more
conservative (feature) attribution, a behavior which can be highly desirable for
recourse. Empirically, we show on tabular, image and text data that the quality of
our explanations with neighborhoods formed using random perturbations are much
better than LIME and in some cases even comparable to other methods that use
realistic neighbors sampled from the data manifold. This is desirable given that
learning a manifold to either create realistic neighbors or to project explanations is
typically expensive or may even be impossible. Moreover, our algorithm is simple
and efficient to train, and can ascertain stable input features for local decisions of a
black-box without access to side information such as a (partial) causal graph as has
been seen in some recent works.

1 Introduction

Deployment and usage of neural black-box models has significantly grown in industry over the last
few years creating the need for new tools to help users understand and trust models [24]. Even well-
studied application domains such as image recognition require some form of prediction understanding
in order for the user to incorporate the model into important decisions [46, 33]. An example of
this could be a doctor who is advised by a model of a positive cancer diagnosis based on an image
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scan. Since the doctor holds responsibility for the final diagnosis, the model must provide sufficient
reason for its prediction. Even new text categorization tasks [21] are becoming important with the
growing need for social media companies to provide better monitoring of public content. Twitter was
monitoring tweets related to COVID-19 in order to label tweets containing misleading information,
disputed claims, or unverified claims [42]. Laws will likely emerge requiring explanations for why red
flags were or were not raised in many examples. In fact, the General Data Protection and Regulation
(GDPR) [51] act passed in Europe already requires automated systems that make decisions affecting
humans to be able to explain them. Given this acute need, a number of methods have been proposed
to explain local decisions (i.e. example specific decisions) of classifiers [41, 35, 46, 33, 13]. Locally
interpretable model-agnostic explanations (LIME) is arguably the most well-known local explanation
method that requires only query (or black-box) access to the model. Although LIME is a popular
method, it is known to be sensitive to certain design choices such as i) (random) sampling to create the
(perturbation) neighborhood2, ii) the size of this neighborhood (number of samples) and iii) (local)
fitting procedure to learn the explanation model [37, 54]. The first, most serious issue could lead to
nearby examples having drastically different explanations making effective recourse a challenge. One
possible mitigation is to increase the neighborhood size but one cannot arbitrarily do so as it not only
leads to higher computational cost, but also in today’s cloud computing-driven world it could have
direct monetary implications where every query to a black-box model has an associated cost [14].
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Coefficient inconsistency for LINEX

Figure 1: Above we visualize for the
IRIS dataset the Coefficient Inconsis-
tency (CI) (see Section 5 for exact def-
inition and setup details) between the
explanation (top two features) for an ex-
ample and its nearest neighbor in the
dataset. Each circle denotes an exam-
ple and a rainbow colormap depicts the
degree of inconsistency w.r.t. its nearest
neighbor where red implies least incon-
sistency, while violet implies the most.
As can be seen LINEX explanations are
much more consistent than LIME’s.

There have been variants suggested to overcome these
limitations [8, 45, 39, 15] primarily through mechanisms
that create realistic neighborhoods or through adversarial
training [32], however, their efficacy is restricted to certain
settings and modalities based on their assumptions and
training strategies.

In this paper we introduce a new method called Locally
INvariant EXplanations (LINEX) inspired by the invari-
ant risk minimization (IRM) principle [7], that produces
explanations in the form of feature attributions that are
robust to neighborhood sampling and can recover faithful
(i.e. mimic black-box behavior), stable (i.e. similar for
closeby examples) and unidirectional (i.e. same sign attri-
butions a.k.a. feature importances) for closeby examples,
see section 4.1) explanations across tabular, image, and
text modalities. In particular, we show that our method
performs better than the competitors for random as well
as realistic neighborhood generation, where in some cases
even with the prior strategy our explanation quality is
close to methods that employ the latter. Qualitatively, our
method highlights (local) features as important that in the
particular locality i) have consistently high gradient with
respect to (w.r.t.) the black-box function and ii) where the
gradient does not change significantly, especially in sign.
Such stable behavior for LINEX is visualized in Figure 1,
where we get similar explanations for nearby examples in
the IRIS dataset. The (in)fidelity of LINEX is still similar
to LIME (see Table 2), but of course our explanations are
much more stable.

2 Related Work

Posthoc explanations can typically be partitioned into two broad categories global and local. Global
explainability avers to trying to understand a black-box model at a holistic level where the typical
tact is knowledge transfer [28, 17, 16] where (soft/hard) labels of the black-box model are used
to train an interpretable model such as a decision tree or rule list [43]. Local explanations on the
other hand avers to understanding individual decisions. These explanations are typically in two

2By perturbation neighborhood or simply neighborhood, we mean neighborhoods generated for local
explanations. By exemplar neighborhood, we mean closest in dataset examples.
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forms, either exemplar based or feature based. For exemplar based as the name suggests similar but
diverse examples [30, 25] are provided as explanations for the input in question. While for feature
based [41, 35, 13, 33, 55], which is the focus of this work, important features are returned as being
important for the decision made for the input. There are some methods that do both [39]. Moreover,
there are methods which provide explanations that are local, global as well as at a group level [40].
All of these methods though may not still provide stable and robust local feature based explanations
which can be desirable in practice [23].

Given this there have been more recent works that try to learn either robust or even causal explanations.
In [32] the authors try to learn robust and stable local explanations relative to distribution shifts and
adversarial attacks. However, the distribution shifts they consider are linear shifts and adversarial
training is performed which can be slow and sometimes unstable [53]. Moreover, the method seems
to be applicable primarily to tabular data. There are also works [18, 19] which try to robustify
gradient based explanations assuming white box access to the model. Works on causal explanations
[22, 27] mainly modify SHAP and assume access to a partial causal graph. Some others [48] assume
white-box access. In this work we do not assume availability of such additional information. There
are also works which show that creating realistic neighborhoods by learning the data manifold for
LIME [8, 45] can lead to better quality explanations, where in a particular work [6] it is suggested
that projecting explanations themselves on to the manifold can also make them more robust. The
need for stability in a exemplar neighborhood for LIME like methods has been highlighted in [54],
with the general desire for stable explanations being also expressed in [52, 49]. Furthermore, it was
recently surmised through expert and crowd worker user studies that stability is a key factor when it
comes to assessing capability of a model or when learning a new domain [34].

Given that our approach is inspired from IRM we now describe, how it is novel w.r.t. to it. It is
important to realize that IRM approaches such as [3, 4] are designed for the out-of-distribution (OOD)
generalization, which learn global models directly from the data. The main similarity of these works
to ours is only that they also are game theory based approaches, but with the details being quite
different. For one, they assume accessibility to environments which (ideally) correspond to different
interventional distributions and with assumptions on the structural causal model derive results on how
the true causal factors could be divulged. In our case, we propose ways to generate environments
as they are not given, and have l1 and l∞ constraints on the entire and environment specific parts
of the model respectively, which is not the case with these prior works. As such those algorithms
do not produce sparse unidirectional models that are also consumable. Moreover, the perspective
we provide is novel in the context of local posthoc explanations where a priori it is not obvious that
approaches from OOD generalization could be extended and adapted. Additionally, we propose a
novel metric Unidirectionality which is not part of any of these works, but as we have argued it is a
desirable property for explanations.

3 Preliminaries

Invariant Risk Minimization: Given a collection of training datasets D = {De}e∈Etr gathered
from a set of environments Etr, where De = {xie, yie}

ne
i=1 is the dataset gathered from environment

e ∈ Etr and ne is the number of points in environment e. The feature value for data point i is
xie ∈ X and the corresponding label is yie ∈ Y , where X ⊆ Rd and Y ⊆ R. Each point (xie, y

i
e) in

environment e is drawn i.i.d from a distribution Pe. Define a predictor f : X → R.

The goal of IRM is to use these collection of datasets D to construct a predictor f that performs
well across many unseen environments Eall, where Eall ⊇ Etr. Define the risk achieved by f in
environment e asRe(f) = Ee

[
`(f(Xe), Ye)

]
, where ` is the square loss when f(Xe) is the predicted

value and Ye is the corresponding label, (Xe, Ye) ∼ Pe and the expectation Ee is defined w.r.t. the
distribution of points in environment e.

An invariant predictor is composed of two parts a representation Φ ∈ Rd×n and a predictor (with the
constant term) w ∈ Rd×1. We say that a data representation Φ elicits an invariant predictor wTΦ
across the set of environments Etr if there is a predictor w that achieves the minimum risk for all
the environments w ∈ argminw̃∈Rd×1 Re(w̃

TΦ), ∀e ∈ Etr. IRM may be phrased as the following
constrained optimization problem [7]:

min
Φ∈Rd×n,w∈Rd×1

∑
e∈Etr

Re(w
TΦ) s.t. w ∈ argmin

w̃∈Rd×1

Re(w̃
TΦ), ∀e ∈ Etr (1)
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If wTΦ solves the above, then it is an invariant predictor across the training environments Etr.
Nash Equilibrium (NE): To understand how certain key aspects of our method function let us
revisit the notion of Nash Equilibrium [20]. A standard normal form game is written as a tuple
Ω = (N , {ui}i∈N , {Si}i∈N ), where N is a finite set of players. Player i ∈ N takes actions from a
strategy set Si. The utility of player i is ui : S → R, where we write the joint set of actions of all the
players as S = Πi∈NSi. The joint strategy of all the players is given as s ∈ S , the strategy of player
i is si and the strategy of the rest of players is s−i = (si′ )i′ 6=i.

Definition 1. A strategy s† ∈ S is said to be a pure strategy Nash equilibrium (NE) if it satisfies,
ui(s

†
i , s
†
−i) ≥ ui(k, s

†
−i),∀k ∈ Si,∀i ∈ N , where ui(s

†
i , s
†
−i) = ui(s

†
1, s
†
2, ..., s

†
N ) = ui(s

†).

NE thus identifies a state where each player is using the best possible strategy in response to the rest
of the players leaving no incentive for any player to alter their strategy. In seminal work by [11] it
was shown that for a special class of games called concave games such a pure NE always exists. This
is relevant because the game implied by Algorithm 1 falls in this category.

4 Methodology

We first define desirable properties for our explanation methods. The first three have been seen in
previous works, while the last Unidirectionality is new. We then describe our method where the goal
is to explain a black-box model f : X → R for individual inputs x based on predictors w by looking
at their corresponding components, also termed as feature attributions.

We take inspiration from IRM since, our goal here too is to extract robust features that are ideally
stable and unidirectional. The main difference is that we do not learn a new (possibly invariant)
representation since, we desire interpretability and this new representation may not be interpretable.
We hence, are restricted to the provided input or some other interpretable representation. Thus, given
that Φ ⊆ X where n = 1 (since local explanations) in our setup, our goal is to find the best predictor
w (viz. high fidelity) for an input that will eliminate or at least mitigate the effect of unstable features.
In other words, we want to identify features in the input space that will (roughly) have the same
importance (i.e. are invariant) in the neighborhood of the example we want to explain. Our approach
as we will see is similar in spirit to IRM games [4], where we adopt a game theoretic strategy to
obtain such explanations. The differences with IRM games are mentioned in the last paragraph of
Section 2.

4.1 Desirable Properties

We now discuss certain properties we would like our explainability method to have in order to provide
robust explanations that could potentially be used for recourse. Let Dt denote a (test) dataset with
examples (x, y) where yb(x) is the black-box models prediction on x and yx

′

e (x) is the prediction
on x (∈ X ) using the explanation model at x′. The feature attributions (or coefficients) for the
explanation model at x are denoted by cxe , Nx denotes the exemplar neighborhood of x with |.|card
denoting cardinality and |.| denoting absolute value.

Fidelity: This is the most standard property which all proxy model based explanation methods are
evaluated against [41, 35, 32] as it measures how well the proxy model simulates the behavior of the
black-box (i.e. faithfulness to the black box) it is attempting to explain. Here we define inverse of
it, that is Infidelity (INFD), as the MAE between the black-box and explanation model predictions
across all the test points:

INFD =
1

|Dt|card

∑
(x,y)∈Dt

|yb(x)− yxe (x)|. (2)

We also define another metric here called Generalized Infidelity (GI), which also been used in previous
works [40] to measure the generalizability of local explanations to neighboring test points. It is
defined as:

GI =
1

|Dt|card

∑
(x,y)∈Dt

1

|Nx|card

∑
x′∈Nx

|yb(x)− yx
′

e (x)|. (3)
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Stability: This is also a popular notion [26, 40, 52] to evaluate robustness of explanations. Largely,
stability can be measured at three levels. One is prediction stability, which measures how much the
predictions of an explanation model change for the same example subject to different randomizations
within the method or across close by examples. The second is the variance in the feature attributions
again for the same or close by examples. It is good for a method to showcase stability w.r.t. both
even though in many cases the latter might imply the former. An interesting third notion of stability
is the correlation between the feature attributions of an explanation model and average feature values
of examples belonging to a particular class. This measures how much does the explanation method
pick features that are important for the class, rather than spurious ones that seem important for just
the example. We thus define two stability metrics.

Coefficient Inconsistency (CI): This notion has been used before [26] to measure an explanation
methods robustness. It can be defined as the MAE between the attributions of the test points and their
respective neighbors:

CI =
1

|Dt|card

∑
(x,y)∈Dt

1

|Nx|card

∑
x′∈Nx

|cxe − cx
′

e |1. (4)

Class-Attribution Consistency (CAC): For local explanations of classification black-boxes, we expect
certain important features to be highlighted across most of the explanations of a class. This is codified
by this metric which is defined as follows:

CAC =
1

|Y|card

∑
y∈Y

r(µye , µy), (5)

where Y denotes the set of class labels in the dataset, µy the mean (vector) of all inputs in class
y ∈ Y , µye the mean explanation for class y and r the Pearson’s correlation coefficient. This metric
quantifies the consistency between the important features for a class and attributions provided by the
explanations.

Black-box Invariance: This is the same as implementation invariance defined in [47]. Essentially, if
two models have exactly the same behavior on all inputs then their explanations should also be the
same. Since, our method is model agnostic with only query access to the model it is easy to see that
it satisfies this property if the same environments are created.

Unidirectionality: This is a new property, but as we argue that this is a natural one to have. Loosely
speaking, unidirectionality would measure how consistently the sign of the predictor for a feature is
maintained for the same or close by examples by an explanation method. This is a natural metric
[36], which from an algorithmic recourse [29] perspective is also highly desirable. For instance,
recommending a person to increase their salary to get a loan and then recommending to another
person with a very similar profile to decrease their salary for the same outcome makes little sense.

We define the unidirectionality Υ as a measure of how consistent the sign of the attribution for a
particular feature in a local explanation is when varying neighborhoods for the same example or
when considering different close by examples. As such, given m attributions for each of d features
denoted by w(1)

1 , ..., w
(d)
m the metric for an example is:

Υ =
1

md

d∑
i=1

∣∣∣∣∣∣
m∑
j=1

sgn
(
w

(i)
j

)∣∣∣∣∣∣ (6)

where |.| stands for absolute value. Clearly, the more consistent the signs for the attribution of a
particular feature across m attributions the higher the value, where the maximum value can be one.
If equal number of attributions have different signs for all features then Υ will be zero, the lowest
possible value. This property thus measures how intuitively consistent (ignoring magnitude) the
explanations are. Given its sole focus on the sign of the attributions it compliments the above metrics
along with attributional robustness metrics [9, 44].

4.2 Method

4.2.1 Description

In Algorithm 1, we show the steps of our method LINEX. The input is the example we want to
explain x, the black-box predictor, a few thresholds that we describe next and k (local) environments

5



Algorithm 1: Locally Invariant EXplanations (LINEX).
Input: example x, black-box predictor f(.), number of environments to be created k, (l∞)

threshold γ > 0, (l1) threshold t > 0 and convergence threshold ε > 0
Initialize: ∀i ∈ {1, ..., k} w̃i = 0 and ∆ = 0
Let ξ1(.), ..., ξk(.) be k environment creation functions as described in section 4.2.2
do

∆ = 0
for i = 1 to k do

w̃+
−i =

∑
j∈{1,...,k},j 6=i w̃j

w̃prev
i = w̃i

w̃i = argmin
w̃

∑
x̃∈ξi(x)

(
f(x̃)− w̃+T

−i x̃− w̃Tx̃
)2

s.t. |w̃+
−i + w̃|1 ≤ t and |w̃|∞ ≤ γ

∆ = max (|w̃prev
i − w̃i|2,∆)

end
while ∆ ≥ ε;
Output: w =

∑
i∈{1,...,k} w̃i

whose creation is described in Section 4.2.2. In the algorithm we iteratively learn a constrained least
squares predictor for each environment, where the final (local) linear predictor is the sum of these
individual predictors. In each iteration when computing the contribution of environment ei to the
final summed predictor, the most recent contributions of the other predictors are summed and the
residual is optimized subject to the constraints. The first constraint is a standard lasso type constraint
which tries to keep the final predictor sparse as in LIME.

Why l∞ constraint? The second constraint is more unique and is a l∞ constraint on the predictor of
just the current environment. This constraint as we prove in Section 4.3 is essential for obtaining
robust predictors. To intuitively understand why this is the case consider we have two environments.
In this case if the optimal predictors for a feature in each environment have opposite signs, then
the Nash equilibrium (NE) is when each predictor takes +γ or −γ values as they try to force the
sum to have the same sign as them. In other words, features that have a disagreement in even the
direction of their impact are eliminated by our method. LIME type methods on the other hand would
simply choose some form of average value of the predictors which may be a risky choice especially
for actionability/recourse given that the directions change so abruptly. On the other hand, if the
optimal predictors for a feature in the two environments have the same sign, the lower absolute valued
predictor would be chosen (assuming γ is greater) making it a careful choice. The reasoning for this
and a discussion involving more than two environments is given in Section 4.3.

The overall algorithm resembles a (simultaneous) game where each environment is a player trying
to find the best predictor for its environment given all other predictors and constraints. Formally,
for i ∈ {1, ..., k} the players are N = {ξi}, their strategy space is Si = [−γ, γ]d and their utility

ui
(
w̃i, w̃

+
−i
)

= −
∑

x̃∈ξi(x)

(
f(x̃)− w̃+T

−i x̃− w̃T
i x̃
)2

. The optimization problem solved by each
player is convex as norms are convex.

4.2.2 Creating Local Environments

In standard IRM, environments are assumed to be given. In our case of local explainability we have
to decide how to produce them. We offer a few options for the environment creation functions ξi
∀i{1, ..., k} in Algorithm 1.

Random Perturbation: This simple approach is similar to what LIME employs. We could perturb
the input example by adding zero mean gaussian noise to create the base environment (used by LIME)
and then perform bootstrap sampling to create the k different environments. This will efficiently
create neighbors in each environment, although they may be unrealistic in the sense that they could
correspond to low probability points w.r.t. the underlying distribution.

Realistic Generation/Selection: One could also create neighbors using data generators such as done
in MeLIME [8] or select neighboring examples from the training set as done in MAPLE [39] to create
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the base environment following which bootstrap sampling could be done to form the k different
environments. This could provide more realistic neighbors than the previous one, but may be much
more computationally expensive. Other than bootstrapping one could also oversample and try to find
the optimal hard/soft partition through various clustering type objectives [2, 10].

4.3 Theoretical Results

In this section, we analyze the output of Algorithm 1 with two environments. The extension to
multiple environments is discussed following this result, where the general intuition is still maintained
but some special cases arise depending on whether there are an even or odd number of environments.
To prove our main result we make two assumptions.

Assumption 1 The features of the samples in the local environments are independent.

This assumption is satisfied by the most standard way of creating neighborhoods/environments, where
gaussian noise is used to create them as described in Section 4.2.2.

Assumption 2 t ≥ γd, where d is the dimensionality of the feature vector.

Here t is the parameter in the `1 penalty and γ in the `∞ as noted in Algorithm 1. Making this
assumption ensures that we closely analyze the role of the `∞ penalty, which is one of our main
novelties.

Definition 2 Let the explanation that each environment ξi arrives at for an example x based on
unconstrained least squares minimization be w∗i where,

w∗i ∈ argmin
w̃∈Rd

Ex̃∈ξi(x)[(f(x̃)− w̃Tx̃)2] (7)

The expectation is taken w.r.t the environment generation distribution.

Theorem 1. The output of Algorithm 1 under Assumptions 1, 2 and equation 7 is given by:

w =
(
w∗1 � 1|w∗2 |≥|w∗1 | + w∗2 � 1|w∗1 |>|w∗2 |

)
1w∗1�w∗2≥0 (8)

where � is element wise product and 1 is the indicator function.

Proof Sketch. The above expression describes the NE of the game played between the two local
environments each trying to move w towards their least squares optimal solution. Given assumptions
1 and 2, we witness the following behavior of our method. Let the ith feature of the predictors w̃1

and w̃2 from Algorithm 1 be w̃1i and w̃2i respectively. Let the corresponding least squares optimal
predictors for the ith feature have the following relation: w∗1i > w∗2i and |w∗1i| > |w∗2i|. Then the
two environments will push the ensemble predictor, w̃1i + w̃2i, in opposite directions during their
turns, with the first environment increasing its weight, w̃1i, and the second environment decreasing its
weight, w̃2i. Eventually, the environment with a higher absolute value (ξ1 = 1 since |w∗1i| > |w∗2i|)
reaches the boundary (w̃1i = γ) and cannot move any further due to the l∞ constraint. The other
environment ξ2 best responds, where it either hits the other end of the boundary (w̃2i = −γ), in
which case the weight of the ensemble for component i is zero, a case which occurs if w∗1i and w∗2i
have opposite signs; or gets close to the other boundary while staying in the interior (w̃2i = w∗2i − γ),
in which case the weight of the ensemble for feature i is w∗2i, a situation which occurs if w∗1i and w∗2i
have the same sign.

Implications of the Theorem 1: The following are the main takeaways from Theorem 1: (1) If
the signs of the explanations for unconstrained least squares for the two environments differ for
some feature, then the algorithm outputs a zero for that feature attribution. (2) If the signs of the
explanations for the two environments are the same, then the algorithm outputs the lesser magnitude
of the two. These two properties are highly desirable from an algorithmic recourse or actionability
perspective, where the first biases us to not rely on features where the black-box function changes
direction rapidly (unidirectionality). The second, provides a reserved estimate so that we do not
incorrectly over rely on the particular feature (stability). Based on similar logic presented in the proof
sketch the behavior for more than two environments for LINEX is discussed in Suppl. C.
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Figure 2: Sample results using FMNIST dataset for two classes. (a-c): Class Dress, (d-f): Class
Sandal. (a, d): MeLIME explanations. (b, d): LINEX explanations. (c, f): Original images. We
observe that LINEX explanations capture important artifacts and thus exhibit significantly higher
correlation with the original images for the same level of sparsity, where in aggregate too the
correlations are high w.r.t. images belonging to a particular class, thus showcasing higher stability
(i.e. high CAC) as is seen in Table 2. More examples are shown in Suppl. G.

Table 1: Below are three example positive sentiment sentences from the Rotten Tomatoes dataset.
Green and red indicate the most important word highlighted by MeLIME and LINEX respectively.
As seen LINEX highlights stronger positive sentiment words. More examples in Suppl. F.

Example 1 Example 2 Example 3

one-of-a-kind near-masterpiece moving tale of love and destruction in
unexpected places , unexamined lives spare yet audacious . . .

5 Experiments

We test our method on five real world datasets covering all three modalities: IRIS (Tabular) [12],
Medical Expenditure Panel Survey (Tabular) [1], Fashion MNIST (Image) [50], CIFAR10 (Image)
[31] and Rotten Tomatoes reviews (Text) [38] with LIME-like random (rand) and MeLIME-like
realistic neighborhood generation (real) or MAPLE-like realistic neighborhood selection (mpl). The
summary of black-box classifier accuracies, and type of realistic perturbation used for the datasets
are provided in Table 3 in the Supplement. In other cases except FMNIST and CIFAR10 which come
with their own test partition we randomly split the datasets into 80/20% train/test partition and average
results for the local explanations over this test partition. For LINEX we produce two environments
where the two environments are formed by performing bootstrap sampling on the base environment
which is created either by rand, real or mpl type neighborhood generation. Thus in all cases the
union of the environments is the same as a single neighborhood used to produce explanations for the
competitors making it a fair comparison. Behavior with more environments is in Suppl. E.

Given the neighborhood generation schemes we compare LINEX with LIME, Smoothed
LIME (S-LIME), MeLIME and MAPLE, where for S-LIME we average the explanations
of LIME across the LINEX environments. SHAP’s results are in Suppl. H, since
it is not a natural fit here. Nor are methods such as saliency maps, gradcam, inte-
grated gradients as they are white-box methods requiring access to a differentiable model.

Figure 3: Sample results using CIFAR10 dataset for dog and
bird class. As can be seen LINEX focuses more on salient
features such as head and legs for the dog, and wings for the
bird (rather than also the background). More examples are
shown in Suppl. G.

Metrics: We evaluate using five sim-
ple metrics: Infidelity (INFD), Gen-
eralized Infidelity (GI), Coefficient
Inconsistency (CI), Class Attribution
Consistency (CAC) and Unidirection-
ality (Υ), which are defined in section
4.1. The first two evaluate faithful-
ness, the next two stability and the
last goodness for recourse.

We report the above metrics in Table 2.
Each result in Table 2 is mean ± stan-
dard error of the mean over five kernel sizes τ

√
d generally, where τ = {0.05, 0.1, 0.25, 0.5, 0.75}.

Test neighborhoods do not make sense for random perturbations with FMNIST, CIFAR10 and Rotten
Tomatoes because the features (viz. superpixels) used by neighboring test examples are different.
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Table 2: Comparison of the different methods based on infidelity (INFD), generalized infidelity
(GI), coefficient inconsistency (CI), class attribution consistency (CAC) and unidirectionality (Υ). ↑
indicates higher value for the metric is better, and ↓ indicates lower is better. Statistically significant
results based on paired t-test are bolded. LINEX is better than baselines in 21 out of 40 cases,
and worse only in 5 cases. Plots showing behavior with varying neighborhood size, number of
environments and kernel width are in Suppl. E.

Dataset Method INFD ↓ GI ↓ CI ↓ Υ ↑ CAC ↑

IRIS

LIME 0.015± 0.011 0.132± 0.042 0.319± 0.132 0.646± 0.040 0.667± 0.167
S-LIME 0.015± 0.010 0.077± 0.011 0.143± 0.045 0.704± 0.037 0.878± 0.034

LINEX/rand 0.013± 0.009 0.052± 0.008 0.044± 0.013 0.802± 0.043 0.921± 0.042
MeLIME 0.008± 0.003 0.049± 0.018 0.219± 0.108 0.629± 0.013 0.464± 0.100

LINEX/real 0.009± 0.003 0.029± 0.003 0.024± 0.002 0.744± 0.044 0.942± 0.023
MAPLE 0.009± 0.001 0.038± 0.004 0.261± 0.033 0.458± 0.032 0.586± 0.035

LINEX/mpl 0.013± 0.000 0.020± 0.000 0.026± 0.002 0.694± 0.008 0.929± 0.004

MEPS

LIME 0.158± 0.066 0.214± 0.041 0.005± 0.001 0.981± 0.006
NAS-LIME 0.158± 0.066 0.214± 0.042 0.005± 0.001 0.974± 0.008

LINEX/rand 0.130± 0.052 0.164± 0.021 0.003± 0.001 0.979± 0.006
MAPLE 0.063± 0.000 0.067± 0.000 0.007± 0.000 0.957± 0.000 NALINEX/mpl 0.098± 0.001 0.094± 0.001 0.007± 0.000 0.950± 0.000

FMNIST

LIME 0.162± 0.003
NA NA NA NAS-LIME 0.142± 0.003

LINEX/rand 0.149± 0.002
MeLIME 0.001± 0.000 0.277± 0.000 0.007± 0.000 0.769± 0.000 0.327± 0.000

LINEX/real 0.100± 0.002 0.304± 0.001 0.002± 0.000 0.780± 0.000 0.649± 0.001

CIFAR10

LIME 0.191± 0.005
NA NA NA NAS-LIME 0.185± 0.002

LINEX/rand 0.186± 0.002
MeLIME 0.100± 0.003 0.412± 0.007 0.014± 0.000 0.546± 0.003 NALINEX/real 0.090± 0.005 0.279± 0.001 0.006± 0.000 0.679± 0.004

Rotten
Tomatoes

LIME 0.079± 0.036
NA NA NA NAS-LIME 0.075± 0.035

LINEX/rand 0.069± 0.032
MeLIME 0.029± 0.001 0.391± 0.000 0.000± 0.000 0.999± 0.000 0.909± 0.000

LINEX/real 0.053± 0.000 0.361± 0.000 0.000± 0.000 1.000± 0.000 0.953± 0.001

Also, we do not use realistic perturbations with MEPS since KDE and VAE generators do not work
well with categorical data. In addition, since MEPS data uses regression black-box, CAC cannot be
computed. Also for CIFAR10 images in a class are not aligned so CAC is inapplicable. All these
justify the missing entries in Table 2. The results were generated on Linux machines with 56 cores and
242 GB RAM. More details regarding the exact perturbation schemes for LIME/MeLIME/MAPLE,
the perturbation neighborhood sizes and the time taken by the methods are in Suppl. A and Suppl. D.

Observations: Quantitatively, we see that in terms of CAC, LINEX is better than baselines in
all cases which indicates that on average the LINEX explanations highlight the important features
characterizing the entire class, making them more stable. This is also verified by looking at Υ and CI
metrics where LINEX is similar or better than others. For GI and INFD, the results are more evenly
spread which implies that LINEX’s key advantage is obtaining stable and unidirectional explanations
that are faithful to a similar degree. Ablation studies showing superiority of LINEX over MeLIME on
the FMNIST dataset where we have significantly higher INFD than MeLIME are given in Suppl. J.

An interesting observation is that when it comes to the stability metrics (CI and CAC) and unidirec-
tionality LINEX with even random perturbation model is better than MeLIME in some cases. This
is very promising as it means LINEX could be potentially be trusted without the need to generate
realistic perturbations which may be computationally expensive or not even possible.

Qualitatively, we see in Figures 2 and 3, that LINEX explanations are more coherent and highlight
more salient features compared to MeLIME. Even on the text data we see more reasonable attributions
in Table 1, where “masterpiece”, “moving” and “audacious” are highlighted as the most important
words indicative of positive sentiment in the three examples. We also performed qualitative error
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analysis on FMNIST where our INFD is much worse than MeLIME and is described in Suppl.
I. We see that even where LINEX has high infidelity it invariably still focuses on salient features
ignoring superfluous features which may result in lower fidelity but may not be critical for correct
identification. The goodness of these features identified by LINEX can be further verified by looking
at other metrics such as GI, CAC, CI and Υ in Table 2 where it is either comparable or better than
MeLIME.

6 Discussion

In this paper we have provided a method based on a game theoretic formulation and inspired by the
invariant risk minimization principle to provide faithful, stable and unidirectional explanations. We
have defined the latter property and argued that it is somewhat of a necessity (may not be sufficient)
for recourse. We have theoretically shown that our method has a strong tendency to be stable and
unidirectional as we will mostly eliminate features where the black-box models gradient changes
abruptly and in other cases choose a conservative value. Empirically, we have verified this where we
outperform competitors in majority of the cases on these metrics. Interestingly, in some cases our
method provides more stable and unidirectional explanations with just a random perturbation model
relative to more expensive methods that use realistic neighbors.

We now discuss a real world use case we tested our method on. We worked with a large financial
institution to explain the fraud detection model they had built. The Association of Certified Fraud
Examiners (ACFE) claims that roughly 5% of a companies revenue is lost to fraud every year. Thus,
catching fraud or even non-compliance is extremely important for any organization. Their model
(fraud = 1 else 0) had ≈ 91% accuracy. The inputs to the model were (transactional) invoices and
details corresponding to those invoices such as vendor name, invoice amount, purchase order (PO) or
not, vendor address, commodity code, country perception indices (CPI), etc. Since, one of the focuses
is to reduce false positives accurate explanations are important. We applied LINEX to this setting
to explain why certain invoices were classified as fraudulent. The experts found that in majority of
the cases (913 out of 1000) the attributions of LINEX especially in terms of sign made sense. For
instance, low CPI implies high risk and so LINEX gave a negative coefficient for this feature for most
examples, while LIME gave a positive coefficient for many instances. Going forward their plan is to
incorporate such capabilities into their workflow to further improve fraud detection precision.

In the future, it would be worth experimenting with more varied strategies to form environments and
if possible find the optimal ones [10], which may lead to picking even more relevant features that are
“causal” to the local decision.

7 Summary of the Supplement

Information about black-box classifier accuracies and realistic perturbation methods used for the
datasets are provided in Table 3. Suppl. A has run time comparisons. Suppl. B has proof of
Theorem 1. Suppl. C discusses theoretical behavior of LINEX for more than two environments.
Suppl. D has dataset details and hyperparameter specifications. Suppl. E has experiments with
different hyperparameter combinations (including more than 2 environments). Suppl. F has additional
examples of text data attributions. Suppl. G has example feature attributions with image data. Suppl.
H has SHAP results. Suppl. I, J and K has error analysis and ablation studies. Suppl. L has additional
synthetic experiments. Suppl. M discusses sensitivity to γ. Suppl. N demonstrates convergence of
LINEX. Suppl. O discusses limitations of LINEX. Figure 30 depicts SLIME variants using median
and median of means which turn out to be worse than using the (typical) mean.
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Table 3: Datasets, models and neighborhoods used in experiments. RF→ Random Forest, NN→
Neural Network, ResNet→ Residual Network and NB→ Naive Bayes.

Dataset Modality Black-box model acc/R2, Realistic neighborhood creation methods

IRIS tabular RF classifier, 93% KDEGen [8], RF [39]
MEPS tabular RF regressor, 0.325 [39]
FMNIST image NN classifier, 87% VAEGen [8]
CIFAR10 image ResNet18, 95% VAEGen [8]
Rotten Tomatoes text NB classifier, 75% Word2VecGen [8]

A Efficiency of LINEX

It is important to note that the query complexity (i.e. number of times we query the black box to
obtain an explanation) of LINEX is the same as that of LIME since the union of the environments is
the same as a LIME perturbation neighborhood. This is important in todays cloud-driven world where
models may exist on different cloud platforms and posthoc explanations are an independent service
where each call to the model has an associated cost. In terms of running time for two environments,
convergence was fast and running time was approximately 2.5 times that of LIME (LINEX took
2.5 seconds on IRIS for 30 examples as opposed to 1 second by LIME, LINEX took 47 seconds on
MEPS for 500 examples as opposed to 18 seconds by LIME), which is very similar to Smoothed
LIME (S-LIME) (took 2.3 seconds on IRIS and 40 seconds on MEPS) that we still outperform in
majority of the cases.

Realistic neighborhood generation can be time consuming especially for MeLIME since generators
have to be trained which may take up to an hour using a single GPU for datasets such as FMNIST.
After the generator is trained and neighborhood sampled MeLIME takes the same amount of time as
LIME since the model fitting procedure is the same. MAPLE took 1.5 seconds for the IRIS dataset
for 30 examples and 27 seconds for 500 MEPS examples.

A way to further speed up LINEX would be to implement it through embarrassing parallelism which
can easily be done across explanations. This will prevent scaling of the running time in the number of
examples when many explanations are needed. The setting with many explanations is anyway where
we would need efficiency because if only few explanations were desired the slightly higher running
time of LINEX would not be an issue.

B Proof of Theorem 1

Expanding on the proof sketch provided in the main paper we now provide a case wise analysis to
prove Theorem 1.

• w∗1 = w∗2 : If the optimal solutions to both environments in the convex set [−γ, γ]d are the same,
then in the first iteration itself where we fit to the first environment we would have reached the optimal
solution to our problem where w̃1 = w∗1 . This is because in the second iteration where we fit the
second environment to the residual from the previous fit w̃2 = 0 and the algorithm would terminate.
This would imply the output of algorithm 1 would be w = w∗1 .

• w∗1 6= w∗2 : When the optimal solutions for the two environments are not equal we consider the
following two cases:

• Opposite sign attributions: If the ith component of w∗1 and w∗2 have opposite signs, then
the ith components of the ensemble predictor, w̃1i and w̃2i are both at the boundary γ
and −γ respectively if w̃1i > 0. This is because both try to push the ensemble (i.e. their
sum) towards the sign they have where eventually they reach the boundary ±γ and have no
incentive to deviate. Any deviation from these values will lead to a higher least squares error
in their environment, thus making this a NE.

• Same sign attributions: If the ith component of w∗1 and w∗2 have same signs, then the
ith component of ensemble predictor constructed from the NE is set to the least squares
attribution with a smaller absolute value, i.e., wi = w∗1i, where |w∗1i| ≤ |w∗2i|. Without
loss of generality assume 0 < w∗1i < w∗2i, the attribution of the environments’ predictors
in NE, then w̃1i and w̃2i have opposite signs, i.e., w̃2i = γ and w̃1i = w∗1i − γ where the
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ensemble predictor for the ith component would be wi = w̃1i + w̃2i = w∗1i − γ + γ = w∗1i,
since any deviation from this would lead to a worse least squares loss for the corresponding
environment. This shows that ensemble predictor is conservative and selects the smaller
least squares attribution.

C Behavior for More than Two Environments

Given Assumptions 1 and 2 we now discuss the behavior of our method for more than two environ-
ments. If the number of environments is odd, then using similar logic to that discussed in the proof
sketch one can see that the feature attribution would be equal to the median of the feature attributions
across all the environments. Essentially, all environments with optimal least squares attributions
above the median would be at +γ, while those below it would be at−γ. The one at the median would
remain so with no incentive for any environment to alter its attribution making it a NE. This is a
stable choice that is also likely to be faithful as we have no more information to decide otherwise. On
the other hand if we have an even number of environments the final attribution in this case depends
on the middle two environments in the same manner as the two environment case proved in Theorem
1. Thus, if the optimal least squares attributions of the middle two environments have opposite sign,
then the final attribution is zero, else its the lower of the two attributions in terms of the numerical
value. This happens because the NE for the other environments is ±γ depending on if their optimal
least squares attributions are above/below those of the middle two environments. This again is a
stable and likely to be faithful choice, where also unidirectionality is preferred.

D Experimental Details

D.1 Dataset Details and Hyperparameter Specifications

We describe the datasets and the hyperparameters used for each. We set perturbation neighborhood
sizes 10 (IRIS), 500 (MEPS), 100 (FMNIST-random), 500 (FMNIST-realistic), 100 (CIFAR10-
random), 500 (CIFAR10-realistic), 100 (Rotten tomatoes) for generating local explanations. We
also use 3, 10, 10, 10, 5 as exemplar neighborhood sizes to compute GI, CI and Υ metrics for the
five datasets respectively. We also use 5−sparse explanations for all cases except FMNIST and
CIFAR10 with realistic perturbations where we follow MeLIME and generate a dense explanation
using ridge penalty with penalty multiplier value of 0.001. The `∞ bound γ in Algorithm 1 is set
as the maximum absolute value of linear coefficient computed by running LIME/MeLIME in the
two individual environments. Please look at IRIS dataset first since it contains some of the common
details used across others.

IRIS (Tabular): This dataset has 150 instances with four numerical features representing the sepal
and petal width and length in centimeters. The task is to classify instances of Iris flowers into three
species: setosa, versicolor, and virginica. A random forest classifier was trained with a train/test
split of 0.8/0.2 and yielded a test accuracy of 93%. We provide local explanations for the prediction
probabilities for class setosa. For both random and realistic perturbations, we use a perturbation
neighborhood size of n. For random perturbations, we used the same approach followed by LIME
and sample from a Gaussian around each data point. Realistic perturbations (with the same number
n) were generated using KDEGen [8], a kernel density estimator (KDE) with the Gaussian kernel
fitted on the training dataset to sample data around a sample point. For both random and realistic
perturbations, we weight the neighborhood using a Gaussian kernel of width τ

√
d, where d is the

dimension of the feature vector and τ = {0.05, 0.1, 0.25, 0.5, 0.75}, and this corresponded to kernel
widths {0.1, 0.2, 0.5, 1.0, 1.5}. We also perform a weighted version of realistic selection where we
use MAPLE [39] to assign weights to all the test examples and pick the top n weighted examples to
use as the perturbation neighborhood. For random/realistic perturbations and realistic selection, the
corresponding environments (of size n each) for LINEX are created by drawing k bootstrap samples
where k = {2, 3, 4, 5} in our experiments. We test for n = {10, 20, 30, 40, 50} with this dataset.

Medical Expenditure Panel Survey (Tabular): The Medical Expenditure Panel Survey (MEPS)
dataset is produced by the US Department of Health and Human Services. It is a collection of surveys
of families of individuals, medical providers, and employers across the country. We choose Panel 19
of the survey which consists of a cohort that started in 2014 and consisted of data collected over 5

15



rounds of interviews over 2014−2015. The outcome variable was a composite utilization feature that
quantified the total number of healthcare visits of a patient. The features used included demographic
features, perceived health status, various diagnosis, limitations, and socioeconomic factors. We filter
out records that had a utilization (outcome) of 0, and log-transformed the outcome for modeling.
These pre-processing steps resulted in a dataset with 11136 examples and 32 categorical features.
We train a random forest regressor that has a test R2 of 0.325 in this dataset. We provide local
explanations of the predictions. With MEPS, we do not use realistic perturbations since KDE and
VAE generators do not work well with categorical data. Otherwise the setting is similar as IRIS
data, except that we use n = {50, 100, 200, 300, 400, 500}. The kernel widths in this case were
{0.28, 0.57, 1.41, 2.83, 4.24}. We use k = {2, 3, 4, 5} for this dataset.

Fashion MNIST (Images): This dataset has 28 × 28 grayscale images of fashion articles with
60,000 train and 10,000 test samples. The task is to classify these into 10 classes correspond-
ing to coat, shoe, and so on. A neural network trained with test accuracy of 87%. Explanations
are generated for the prediction probabilities corresponding to the predicted class for each ex-
ample. We choose 1000 test examples to generate explanations. Realistic perturbations were
generated using VAEGen [8], a Variational Auto Encoder (VAE) fitted on the training dataset.
For random perturbations, we chose n from {50, 100, 200, 300, 400, 500} and kernel sizes were
{0.43, 0.85, 2.14, 4.27, 6.41}. For realistic perturbations we chose n from {250, 500, 750, 1000} and
the kernel widths were {1.4, 2.8, 7.0, 14.0, 21.0}. We use k = {2, 3, 4, 5} for this dataset.

CIFAR10 (Images): This dataset has 32 × 32 colored images belonging to 10 different classes.
The dataset has 50,000 train and 10,000 test samples. The task is to classify these into 10 classes
corresponding to dog, bird, and so on. A residual network with 18 units (ResNet18) was trained with
test accuracy of ∼ 95%. Explanations are generated for the prediction probabilities corresponding
to the predicted class for each example. We choose 1000 test examples to generate explanations.
Realistic perturbations were generated using VAEGen [8], a Variational Auto Encoder (VAE) fitted
on the training dataset. For random perturbations, we chose n from {50, 100, 200, 300, 400, 500}
and kernel sizes were {0.43, 0.85, 2.14, 4.27, 6.41}. For realistic perturbations we chose n from
{250, 500, 750, 1000} and the kernel widths were {1.4, 2.8, 7.0, 14.0, 21.0}. We use k = {2, 3, 4, 5}
for this dataset.

Rotten Tomatoes (Text): This dataset contains 10662 movie reviews from rotten tomatoes website
along with their sentiment polarity, i.e., positive or negative reviews and the task is to classify the
sentiment of the reviews into positive or negative. The review sentences were vectorized using
CountVectorizer and TfidfTransformer and a sklearn Naive Bayes classifier was fitted on training
dataset which yielded a test accuracy of 75%. Explanations are generated for the prediction probabili-
ties corresponding to the predicted class for each example. Realistic perturbations were generated
using Word2VecGen [8], wherein word2vec embeddings are first trained using the training corpus and
new sentences are generated by randomly replacing a sentence word whose distance in the embedding
space lies within the radius of the neighbourhood. For both random and realistic perturbations,
n was chosen from {25, 50, 75, 100}. The kernel sizes were {0.42, 1.06, 2.12, 3.18} for random
perturbations (kernel size 0.21 resulted in numerical issues), and {0.21, 0.42, 1.06, 2.12, 3.18} for
realistic perturbations. We use k = {2, 3, 4, 5} for this dataset.

E Results with All Datasets and Hyperparameter Combinations for
Random and Realistic Perturbations

We present results with all hyperparameter combinations for random and realistic perturbations.
Results for LIME with random perturbations (LIME), smoothed LIME (S-LIME), LINEX with
random perturbations (LINEX/rand), MeLIME (MeLIME), LINEX with MeLIME-like realistic
neighborhoods (LINEX/real), MAPLE (MAPLE), LINEX with MAPLE-like realistic neighborhoods
(LINEX/mpl) are presented in figures 5-19. The legend for these figures are given in Figure 4.

For the five datasets, we perform ablations by varying one of perturbation neighborhood size (Figures
5-9), number of environments (Figures 10-14), and kernel width (Figures 15-19). Each point in
these figures are averaged over all possible values for the two parameters that are not ablated. For
example, each point in Figure 5 is averaged over all possible values for kernel widths and number of
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environments for a given perturbation neighborhood size. Standard errors of the mean are also plotted
in the same color with lesser opacity. Lower values of Infidelity (INFD), Generalized Infidelity (GI),
Coefficient Inconsistency (CI) are better whereas for Unidirectionality (Υ) and Class Attribution
Consistency (CAC) higher values are better.

Figures 5-9 show ablations with respect to perturbation neighborhood sizes. Considering all datasets,
the stability/recourse metrics (CI, Υ, CAC) are clearly better for LINEX compared to its counter-
parts. For LINEX methods (LINEX/rand, LINEX/real, LINEX/mpl), the metrics get better or stays
approximately the same generally as perturbation neighborhood size increases keeping with the
intuition that larger perturbation neighborhood sizes should produce explanations that are more stable
in the exemplar neighborhood. Υ for FMNIST and CIFAR10 are already good for small perturbation
neighborhood sizes possibly because of the quality of MeLIME perturbations.

Turning to the fidelity metrics (INFD and GI) in tabular datasets, we see that the results still favor
LINEX, but less heavily compared to the stability/recourse metrics. This is in line with what we
observe in Table 2. In IRIS and MEPS, LINEX is close to or outperforms the corresponding baselines
in the GI measure (except for LINEX/mpl with MEPS). This gap closes a bit with INFD, but we note
that GI is a better measure since it estimates how faithful explanations are in a exemplar neighborhood.
With the text dataset, LINEX variants are slightly more favored, whereas with the image dataset, the
baselines have an edge.

Considering Figures 10-14, we see that variations are less stark with respect to number of environ-
ments overall for LINEX variants. Note that except for S-LIME, other baselines do not use multiple
environments, and hence stay constant. The slight variations in MAPLE are due to the effect of
random seeds. In the stability/recourse metrics, again LINEX variants emerge as the clear winner
across datssets. With the faithfulness metrics (GI and INFD), in the text dataset, LINEX variants
generally perform better, whereas the baselines have a better performance in the image dataset.

Finally, we study the variation of the performance measures with respect to kernel width in Figures
15-19. We see that the stability/recourse metrics flatten out in all cases with large kernel widths.
This behaviour holds true for faithfulness metrics (GI and INFD) as well except in some cases.
GI and INFD measures also increase before they flatten out since the fit becomes poorer at larger
kernel widths. The stability/recourse metrics become better or remain approximately the same since
explanations generally improve or preserve their stability properties as kernel widths increase. Note
that very small kernel widths can lead to unexpected behavior that does not fit the trend as seen with
the tabular datasets since explanations can become hyper-local. MAPLE and LINEX/mpl stay the
same at different kernel widths since they use a different weighting scheme. As with other ablations,
we see that LINEX variants are similar or better in stability/recourse metrics overall, while with the
faithfulness metrics the results are more mixed.

Note that we do not compute MeLIME perturbations with MEPS since KDE and VAE generators
do not work well with categorical data, and do not use compute CAC since the task is regression.
Further, the features used in explanations for different test examples are not comparable for random
perturbations with FMNIST, CIFAR10 and Rotten Tomatoes, hence we cannot compute CAC for
those cases as well. This explains the missing curves/plots.
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Figure 4: Legend for figures 5-19

17



10 15 20 25 30 35 40 45 50
Neighborhood size

0.0

0.1

0.2

0.3

0.4

Co
ef

fic
ie

nt
 in

co
ns

is
te

nc
y

(a) Iris

100 200 300 400 500
Neighborhood size

0.004

0.006

0.008

0.010

Co
ef

fic
ie

nt
 in

co
ns

is
te

nc
y

(b) MEPS

300 400 500 600 700 800 900 1000
Neighborhood size

0.002

0.003

0.004

0.005

0.006

0.007

Co
ef

fic
ie

nt
 in

co
ns

is
te

nc
y

(c) FMNIST

30 40 50 60 70 80 90 100
Neighborhood size

0.00016
0.00017
0.00018
0.00019
0.00020
0.00021
0.00022
0.00023
0.00024

Co
ef

fic
ie

nt
 in

co
ns

is
te

nc
y

(d) Rotten Tomatoes

300 400 500 600 700 800 900 1000
Neighborhood size

0.006
0.007
0.008
0.009
0.010
0.011
0.012
0.013
0.014

Co
ef

fic
ie

nt
 in

co
ns

is
te

nc
y

(e) CIFAR10

Figure 5: Coefficient inconsistency (CI) vs. Perturbation neighborhood size.
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(b) FMNIST
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(c) Rotten Tomatoes

Figure 6: Class attribution consistency (CAC) vs. Perturbation neighborhood size.
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Figure 7: Unidirectionality (Υ) vs. Perturbation neighborhood size.
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(d) Rotten Tomatoes
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Figure 8: Generalized infidelity (GI) vs. Perturbation neighborhood size.
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(g) CIFAR10

Figure 9: Infidelity (INFD) vs. Perturbation neighborhood size.
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(d) Rotten Tomatoes
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(e) CIFAR10

Figure 10: Coefficient inconsistency (CI) vs. Number of environments.
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Figure 11: Class attribution consistency (CAC) vs. Number of environments.

F Example Feature Attributions in Text Data: MeLIME vs LINEX

Below we see sample attributions by the two methods along with the magnitude of the attributions.
Attribution magnitudes are printed with a precision of 10−3 and shown along with the corresponding
words in descending order.

F.1 Positive Sentiment

enticing and often funny documentary .
MeLIME: documentary funny and enticing often
LINEX : documentary funny often enticing and
MeLIME: 0.517 0.446 0.333 0.317 0.311
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Figure 12: Unidirectionality (Υ) vs. Number of environments.
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(d) Rotten Tomatoes
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(e) CIFAR10

Figure 13: Generalized infidelity (GI) vs. Number of environments.
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Figure 14: Infidelity (INFD) vs. Number of environments.

LINEX : 0.416 0.377 0.342 0.331 0.330

one-of-a-kind near-masterpiece .
MeLIME: kind near masterpiece
LINEX : masterpiece kind one
MeLIME: 0.832 0.695 0.182
LINEX : 0.712 0.384 0.381
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Figure 15: Unidirectionality (Υ) vs. Kernel width.
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(e) CIFAR10

Figure 16: Coefficient inconsistency (CI) vs. Kernel width.
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(c) Rotten Tomatoes

Figure 17: Class attribution consistency (CAC) vs. Kernel width.
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Figure 18: Generalized infidelity (GI) vs. Kernel width.
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Figure 19: Infidelity (INFD) vs. Kernel width.

a fast , funny , highly enjoyable movie .
MeLIME: enjoyable highly funny fast movie
LINEX : enjoyable highly fast funny movie
MeLIME: 0.550 0.432 0.412 0.389 0.198
LINEX : 0.409 0.389 0.372 0.350 0.326

ferrara’s strongest and most touching movie of recent years .
MeLIME: touching years most strongest and
LINEX : touching most recent strongest and
MeLIME: 0.735 0.490 0.450 0.443 0.427
LINEX : 0.490 0.488 0.450 0.444 0.407

saved from being merely way-cool by a basic , credible compassion .
MeLIME: cool basic credible merely from
LINEX: cool credible merely compassion from
MeLIME: 1.514 0.050 0.040 0.029 0.026
LINEX : 0.358 0.308 0.304 0.299 0.293

really quite funny .
MeLIME: funny quite really
LINEX : funny quite really
MeLIME: 0.559 0.417 0.233
LINEX : 0.462 0.368 0.275

spare yet audacious . . .
MeLIME: spare yet audacious
LINEX : audacious spare yet
MeLIME: 0.626 0.447 0.395
LINEX : 0.501 0.431 0.422

an engrossing and infectiously enthusiastic documentary .
MeLIME: engrossing documentary and enthusiastic an
LINEX : engrossing documentary an enthusiastic and
MeLIME: 0.593 0.455 0.358 0.354 0.333
LINEX : 0.461 0.407 0.374 0.357 0.350

a wildly funny prison caper .
MeLIME: funny caper wildly prison
LINEX : funny caper prison wildly
MeLIME: 0.541 0.364 0.214 0.193
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LINEX : 0.403 0.335 0.245 0.239

this charming but slight tale has warmth , wit
and interesting characters compassionately portrayed .
MeLIME: charming compassionately and interesting portrayed
LINEX : charming compassionately has tale portrayed
MeLIME: 0.690 0.507 0.456 0.444 0.424
LINEX : 0.464 0.435 0.431 0.430 0.429

thoughtful , provocative and entertaining .
MeLIME: thoughtful entertaining and provocative
LINEX : thoughtful entertaining and provocative
MeLIME: 0.612 0.517 0.402 0.395
LINEX : 0.505 0.461 0.415 0.404

the film is quiet , threatening and unforgettable .
MeLIME: quiet unforgettable and film the
LINEX : unforgettable quiet film and is
MeLIME: 0.597 0.483 0.412 0.325 0.303
LINEX : 0.421 0.416 0.388 0.378 0.338

a moving tale of love and destruction in unexpected places , unexamined lives .
MeLIME: unexpected moving love tale lives
LINEX : moving unexpected places lives in
MeLIME: 0.692 0.662 0.577 0.538 0.499
LINEX : 0.538 0.530 0.521 0.513 0.501

though frodo’s quest remains unfulfilled , a hardy group of
determined new zealanders has proved its creative mettle .
MeLIME: creative group proved has new
LINEX : creative quest its proved determined
MeLIME: 0.602 0.441 0.424 0.402 0.393
LINEX : 0.410 0.392 0.390 0.385 0.381

F.2 Negative Sentiment

originality is sorely lacking .
MeLIME: lacking sorely is originality
LINEX : lacking sorely originality is
MeLIME: 0.543 0.381 0.296 0.278
LINEX : 0.430 0.356 0.314 0.271

an ugly , pointless , stupid movie .
MeLIME: stupid pointless ugly movie an
LINEX : stupid pointless ugly movie an
MeLIME: 0.543 0.499 0.385 0.365 0.276
LINEX : 0.446 0.411 0.373 0.360 0.350

so devoid of pleasure or sensuality that it cannot even be dubbed hedonistic .
MeLIME: devoid even be dubbed of
LINEX : devoid so dubbed be cannot
MeLIME: 0.666 0.416 0.413 0.372 0.344
LINEX : 0.400 0.392 0.387 0.380 0.368

neither revelatory nor truly edgy--merely crassly flamboyant
and comedically labored .
MeLIME: edgy neither nor labored revelatory
LINEX : edgy neither nor labored truly
MeLIME: 1.256 0.338 0.277 0.204 0.021
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LINEX : 0.439 0.398 0.398 0.369 0.349

occasionally funny , sometimes inspiring , often boring .
MeLIME: boring occasionally inspiring sometimes often
LINEX : boring occasionally sometimes often inspiring
MeLIME: 0.669 0.242 0.218 0.210 0.182
LINEX : 0.377 0.266 0.266 0.250 0.236

a cumbersome and cliche-ridden movie greased
with every emotional device known to man .
MeLIME: cliche every device movie with
LINEX : cliche every man cumbersome emotional
MeLIME: 0.695 0.449 0.327 0.280 0.268
LINEX : 0.385 0.361 0.354 0.349 0.309

ponderous , plodding soap opera disguised as a feature film .
MeLIME: plodding soap ponderous opera disguised
LINEX : plodding soap film ponderous feature
MeLIME: 0.579 0.522 0.421 0.408 0.382
LINEX : 0.442 0.440 0.418 0.406 0.377

kitschy , flashy , overlong soap opera .
MeLIME: soap flashy opera overlong kitschy
LINEX : soap flashy opera overlong kitschy
MeLIME: 0.499 0.397 0.391 0.358 0.230
LINEX : 0.389 0.362 0.360 0.346 0.300

[a] poorly executed comedy .
MeLIME: poorly comedy executed
LINEX : poorly comedy executed
MeLIME: 0.653 0.348 0.257
LINEX : 0.502 0.335 0.309

a bad movie that happened to good actors .
MeLIME: bad happened movie to that
LINEX : bad happened to movie actors
MeLIME: 0.692 0.396 0.371 0.367 0.242
LINEX : 0.442 0.384 0.367 0.361 0.344

a complete waste of time .
MeLIME: waste complete time of
LINEX : waste complete time of
MeLIME: 0.614 0.425 0.313 0.247
LINEX : 0.480 0.381 0.348 0.278

don’t waste your money .
MeLIME: waste money don your
LINEX : waste money don your
MeLIME: 0.592 0.497 0.408 0.309
LINEX : 0.483 0.450 0.411 0.337

witless and utterly pointless .
MeLIME: pointless witless and utterly
LINEX : pointless witless utterly and
MeLIME: 0.652 0.491 0.263 0.245
LINEX : 0.506 0.444 0.311 0.269
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Figure 20: Results using individual samples for realistic perturbations for FMNIST dataset for all
classes:1-10 (T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag and Ankle boot).
(a) MeLIME feature attributions for an image. (b) LINEX feature attributions for an image. (c)
Original image in the class. The r values show Pearson’s correlation between feature attributions
and the original image from the respective class. We observe that LINEX attributions/explanations
exhibit significantly higher correlation with the original image belonging to a particular class (i.e.
high CAC).

G Example Feature Attributions in Image Data: MeLIME vs LINEX

We show feature attributions for individual example images with MeLIME and LINEX with MeLIME
perturbations in Figure 20. In Figure 21 we show class-wise mean feature attributions along with
mean images. In Figure 22, we see examples from CIFAR10. LINEX explanations seem to provide
more meaningful feature attributions.

H Results for All Methods Including SHAP

In Table 4, we provide the results for SHAP along with all methods for easy comparison. Note
that SHAP does not have standard errors since it is computed only once per test point. The INFD
values for SHAP are miniscule since SHAP values add up to the predictions by definition. In order to
compute GI, CI, Υ, CAC, we convert the SHAP values to SHAP attributions [5] first and follow the
same approach used by other explanation methods.
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Figure 21: Results using realistic perturbations for FMNIST dataset with mean feature importances
for all classes:1-10 (T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag and Ankle
boot). (a) Mean feature attributions of all images in the class using MeLIME. (b) Mean feature
attributions of all images in the class using LINEX. (c) Mean of all images in the class. The r values
show Pearson’s correlation between average feature attributions and mean of the original images
from the respective classes. We observe that LINEX explanations/attributions exhibit significantly
higher correlation with the original images belonging to a particular class (i.e. high CAC).

I Error Analysis of LINEX

We perform error analysis for LINEX to gain better understanding about the method. We choose
FMNIST dataset for doing this since, LINEX/real under performs MeLIME in terms of the INFD
measure here (see Table 2) more heavily compared to other datasets and so we wanted to investigate
the reasons for this. This also happens to be one of the higher dimensional datasets that is intuitive to
visualize and understand.

We start by observing that even though LINEX/real underperforms in the INFD metric, the gap is not
so great in the GI metric, which suggests that MeLIME may be overfitting explanations here. We
also note that in terms of CI, Υ, and CAC metrics, LINEX/real clearly outperforms MeLIME.

We now choose a sample of images from the dataset where LINEX/real has highest instance-
level infidelity numbers and display them in Figure 23. Just looking at the explanations and the
corresponding original images visually, it is evident that LINEX/real highlights the prominent features
like sleeves and collar in a shirt, handles of the bags, outlines of the boots/shoes, even though the
infidelity values are high. However, MeLIME misses out on some of these prominent features and
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Figure 22: Results using realistic perturbations for CIFAR10 dataset. We see above images of a dog,
a horse, a truck, a bird, a boat and a dog again randomly selected from CIFAR10. The original images
are greyed out here so that the (normalized) attributions are clearly visible. As can be seen LINEX
attributions seem to consistently focus on salient features as compared to MeLIME. For example for
the first dog image we highlight the head, ears and leg, while MeLIME focuses more on the neck and
some of the background. For horse too LINEX focuses on head and body, while MeLIME focuses
on the legs and neck. For truck both seem to focus on important features. For bird LINEX hones
in on the wings, while MeLIME although giving importance to wings also attributes some of the
background. The boat image LINEX focuses on the center of the boat, while Melime on the edges
and some of the water around the boat. For the dog face image LINEX focuses on the nose, eyes and
ears, while Melime focuses on the ears and neck.

focuses only on optimizing the local fit. The fact that LINEX zeroes in on important features also
provides additional evidence for the closeness of GI metrics between the two methods, and the better
performance of LINEX/real with CI, Υ, and CAC metrics.

This conclusion is also verified when we look at the performance of LINEX at a class level. In Figure
24, we see two classes one where the infidelity of LINEX is low (i.e. Trousers class) and the other
where its infidelity is high (i.e Shirt class). As can be seen since the Trousers class has examples with
less superfluous features (viz. varied designs) focusing on which might reduce infidelity but are not
critical for determination of the class, LINEX does better in terms of infidelity on the prior. However,
although infidelity is higher for the latter Shirt class it does much better on other metrics such as GI,
CAC, CI and Υ indicating that LINEX truly focuses on robust features.

J Ablation Analysis of Important Features for Various Explanation Methods

We wanted to analyze the most challenging case for us in the reported experiments which is on the
FMNIST dataset where we are more worse than MeLIME in terms of INFD than any of the other
setups. We thus assess if the features deemed important - those with the largest coefficients - by the
explanation methods are indeed important for the black box model to make their predictions. To
assess this, we set the we set a fraction of features (pixel values) corresponding to the top coefficients
of MeLIME and LINEX/realistic to a baseline value and run the modified images again through
the black box model - this is what we mean by ablation here. The baseline value here was chosen
to be -1 since that is the value of the background pixels. We then used two measures to assess the
quality of explanations - higher values being better for both. The first measure is mean absolute error
between the predicted scores before and after ablation, corresponding to the original predicted class.
The second measure is the fraction of images that changed their predicted class after ablation. We
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Table 4: Comparing the different methods (including SHAP) using metrics infidelity (INFD), gen-
eralized infidelity (GI), coefficient inconsistency (CI), class attribution consistency (CAC) and
unidirectionality (Υ).

Dataset Method INFD ↓ GI ↓ CI ↓ Υ ↑ CAC ↑

IRIS

LIME 0.015± 0.011 0.132± 0.042 0.319± 0.132 0.646± 0.040 0.667± 0.167
S-LIME 0.015± 0.010 0.077± 0.011 0.143± 0.045 0.704± 0.037 0.878± 0.034

LINEX/rand 0.013± 0.009 0.052± 0.008 0.044± 0.013 0.802± 0.043 0.921± 0.042
NB/rand 0.040± 0.010 0.067± 0.003 0.319± 0.132 0.646± 0.040 0.667± 0.167
MeLIME 0.008± 0.003 0.049± 0.018 0.219± 0.108 0.629± 0.013 0.464± 0.100

LINEX/real 0.009± 0.003 0.029± 0.003 0.024± 0.002 0.744± 0.044 0.942± 0.023
NB/real 0.058± 0.022 0.034± 0.000 0.219± 0.108 0.629± 0.013 0.464± 0.100
MAPLE 0.009± 0.001 0.038± 0.004 0.261± 0.033 0.458± 0.032 0.586± 0.035

LINEX/mpl 0.013± 0.000 0.020± 0.000 0.026± 0.002 0.694± 0.008 0.929± 0.004
SHAP 0.007 0.197 0.248 0.664 0.524

MEPS

LIME 0.158± 0.066 0.214± 0.041 0.005± 0.001 0.981± 0.006

NAS-LIME 0.158± 0.066 0.214± 0.042 0.005± 0.001 0.974± 0.008
LINEX/rand 0.130± 0.052 0.164± 0.021 0.003± 0.001 0.979± 0.006

NB/rand 0.275± 0.062 0.311± 0.079 0.005± 0.001 0.981± 0.006
MAPLE 0.063± 0.000 0.067± 0.000 0.007± 0.000 0.957± 0.000 NALINEX/mpl 0.098± 0.001 0.094± 0.001 0.007± 0.000 0.950± 0.000
SHAP 0.000 0.091 0.009 0.940 NA

FMNIST

LIME 0.162± 0.003

NA NA NA NAS-LIME 0.142± 0.003
LINEX/rand 0.149± 0.002

NB/rand 0.207± 0.000
MeLIME 0.001± 0.000 0.277± 0.000 0.007± 0.000 0.769± 0.000 0.327± 0.000

LINEX/real 0.100± 0.002 0.304± 0.001 0.002± 0.000 0.780± 0.000 0.649± 0.001
NB/real 0.017± 0.000 0.446± 0.000 0.007± 0.000 0.769± 0.000 0.327± 0.000
SHAP 0.000 1.962 0.589 0.551 0.038

CIFAR10

LIME 0.191± 0.005

NA NA NA NAS-LIME 0.185± 0.002
LINEX/rand 0.186± 0.002

NB/rand 0.208± 0.001
MeLIME 0.100± 0.003 0.412± 0.007 0.014± 0.000 0.546± 0.003

NALINEX/real 0.090± 0.005 0.279± 0.001 0.006± 0.000 0.679± 0.004
NB/real 0.103± 0.002 0.398± 0.004 0.014± 0.000 0.546± 0.003
SHAP 0.003 1.376 0.398 0.512 NA

Rotten
Tomatoes

LIME 0.079± 0.036

NA NA NA NAS-LIME 0.075± 0.035
LINEX/rand 0.069± 0.032

NB/rand 0.241± 0.007
MeLIME 0.029± 0.001 0.391± 0.000 0.000± 0.000 0.999± 0.000 0.909± 0.000

LINEX/real 0.053± 0.000 0.361± 0.000 0.000± 0.000 1.000± 0.000 0.953± 0.001
NB/real 0.035± 0.000 0.535± 0.000 0.000± 0.000 0.999± 0.000 0.909± 0.000
SHAP 0.000 0.384 0.008 0.999 0.015

see from Figure 25 that LINEX/realistic substantially outperforms MeLIME in both these measures,
clearly demonstrating the relevance of features chosen by our method to the black box.

K Error Analysis of LINEX based on Ablation

Highlighting stable features for examples near non-linearities is a key strength of LINEX. However,
in some cases for examples near class boundaries it may ignore sensitive features as we show in this
demonstration.

In Figure 26, we show 6 examples that are appear to be close to class boundaries. We ablate pixels
corresponding to top 15% of important features chosen by MeLIME and LINEX/realistic using the
approach discussed in Section J. Ablation based on MeLIME importances meaningfully changes
classes, whereas ablation by LINEX importances does not. The changes in prediction for MeLIME
ablation for the six images are respectively from Dress to Trouser, Sneaker to Sandal, Pullover to
Dress, Sneaker to Sandal, Bag to Pullover, and Sneaker to Sandal. The new class assignment looks
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reasonable looking at the ablated images. We also see that the changes in class probabilities for the
original class (p) are much higher after MeLIME ablation compared to LINEX/realistic ablation.

MeLIME ablated images for the first example has structures that look like trouser legs, for the second,
fourth and sixth examples the area around the heel is more open making the original sneaker look like
a sandal, for the third example, there is a hole in the hooded part of the pullover making it resemble a
dress. The fifth example is classified as a pullover possibly because of the elongated structures on the
sides that look like hands.

Note that such cases of LINEX under performing are rare though as is confirmed by its superior
performance in Figure 25.

L Understanding Behavior of LIME and LINEX with Synthetic Data

We consider explaining the behavior of a function of two variables x and y with Class 1 sandwiched
between Class 0 (see Figure 27). The third (or vertical) axis denotes the probability of being in Class
1. Clearly, x is the only important feature here that determines the class label.

From Figure 27 (left), we see that the LIME (here MeLIME would be the same as LIME since
the space is flat and all points are realistic) feature attributions at points a, b, and c will provide
importance to x feature for small as well as large kernel width (1 and 2 respectively) neighborhoods.
For point c, in the interior of the Class 0, the attributions are stable across kernel widths. However
for points a and b close to the boundary of classes, the attributions for small kernel width and large
kernel width neighborhoods differ significantly along the x direction. This shows the instability of
LIME explanations near boundaries of classes for different kernel widths.

In contrast in Figure 27 (right), we see that the LINEX explanation constructed for the two kernel
widths provides stable feature attributions for all points a, b, c. For a and b, LINEX will conservatively
pick a smaller feature attribution along the x direction since the function changes rapidly in its
neighborhood. As such though LINEX will still pick the feature in the x direction in this scenario.

M Variation of feature attributions with γ

Based on the proof of Theorem 1, if for a feature the optimal attributions have opposite sign for each
of the two environments, then γ can be made arbitrarily small (except 0) or large and the output
of Algorithm 1 should still be the same which is 0 as the Nash Equilibrium is ±γ. If the optimal
attributions are the same sign then we should still get the same output from Algorithm 1 as long
as γ ≥ min(|w1i|, |w2i|) since the attribution from our algorithm is the minimum of those values.
When γ < min(|w1i|, |w2i|) then the feature attributions will smoothly reduce as γ reduces.

We demonstrate this behavior in Figure 28 using an example from the IRIS dataset with random
perturbations using the same setting as in Section 5. In the experiments in Section 5, we set γ = 0.329
which is the maximum absolute value based on a linear fit to each environment. As γ increases beyond
0.329, the attributions are unchanged demonstrating robustness. Same holds true while reducing γ
up to 0.165 beyond which we see smooth reduction in the attribution values. Qualitatively, similar
behavior is seen for other examples too. Because we set γ pessimistically (ignoring constraints) to a
high value, we can expect our reported performances in the paper to be robust across many values of
γ.

N Convergence of LINEX procedure and comparisons

We demonstrate based on a synthetic example how Algorithm 1 and provides a unidirectional
explanation. We generate synthetic data using a function in R2 (Figure 29(left)). The function gently
rises with increasing y values, and along x it is flat first, then rises abruptly and then falls gradually.
We want to obtain robust attributions of this function at the point x = 1.0, y = 0.0, which is close to
the end of the rising edge along x direction.

As we can imagine, since the slope changes abruptly along x direction near the point, it should be
ideally excluded from an explanation intended towards recourse based on a linear proxy. Otherwise,
the explanation will not generalize in the neighborhood of this point. On the other hand, the y
direction should be included since the function changes smoothly along y throughout.
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To generate explanations We first create two environments centered at the example to explain with
variances 0.5 and 2.0. Now independently fitting to these environments leads to feature attributions
that are {−0.033, 0.098} and {0.084, 0.102}. Appending the two environments the attributions
are {0.029, 0.095}, whereas with LINEX, the attributions would be {0.0, 0.093}. Thus, LINEX
effectively eliminates the feature with high variability or abrupt changes. The behavior of the
coefficients for each environment as LINEX converges is shown in Figure 29(right). As such, one
can also see the convergence is fast.

O Limitations

Like any other posthoc explainable AI method there is no way to surely say that LINEX exactly
reflects the true reasoning behind a black box classifier in arbitrary applications. It also is somewhat
slower than LIME as shown in section A given the game theoretic nature of the algorithm, where its
stability and unidirectionality hopefully offsets the additional time required. On the flip side, given
its favorable properties in terms of recovering explanations it could be used to violate privacy which
may be concerning from a social standpoint.
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MeLime: r=0.121, INFD=0.001 LINEX/real: r=0.334, INFD=0.169 Original

MeLime: r=0.093, INFD=0.001 LINEX/real: r=0.338, INFD=0.216 Original

MeLime: r=0.112, INFD=0.001 LINEX/real: r=0.539, INFD=0.201 Original

MeLime: r=0.114, INFD=0.001 LINEX/real: r=0.412, INFD=0.189 Original

MeLime: r=0.393, INFD=0.001 LINEX/real: r=0.713, INFD=0.180 Original

MeLime: r=0.162, INFD=0.001 LINEX/real: r=0.528, INFD=0.161 Original

Figure 23: Error analysis for a chosen set of examples in FMNIST using MeLIME and LINEX/real
methods. The three columns are the MeLIME feature attributions, LINEX/real feature attributions,
and the original images. The rows correspond to different examples. We show the Pearson’s
correlation coefficient between feature attributions and mean of the original images from the respective
classes (r) and instance-level infidelity (INFD) measures. LINEX seems to highlight important
features like stripes in the t-shirt, handles of the bags, outlines of the boots/shoes more prominently,
while MeLIME seems to overfit to the data while missing out on highlighting some key features
prominently.
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Figure 24: We see above that infidelity is lower for Trousers class for LINEX as compared with the
Shirts class. A reason for this is that the trousers are more plain with less superfluous features such
as the different designs in shirts. Since LINEX focuses on robust features focusing excessively on
the designs is not critical for it to determine a shirt, albeit focusing on these designs might reduce
infidelity. Advantage of it relying on robust features is however apparent when we look at other
metrics such GI, CAC, CI and Υ as seen in Table 2 where it is much closer to or superior to MeLIME.

Figure 25: Ablation analysis to determine if the features deemed important by the explanation
methods are actually considered important for prediction by the black box model. We see that features
chosen by LINEX impact the prediction of the black box model much more than those chosen by
MeLIME. This is true with respect to both MAE measure (left) between the predicted probabilities
before and after ablation for winning (or argmax) class, and the change in predicted classes (right)
before and after ablation. Higher values here mean that the features chosen by the explanations are
more relevant for the black box to make its predictions. The maximum value of both measures is 1.0.
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Figure 26: Error analysis for a chosen set of examples in FMNIST using MeLIME and
LINEX/realistic methods, using ablation of important features. Each row shows results for a particular
image. The columns show the: (a) MeLIME coefficients, (b) LINEX/realistic coefficients, (c) the
original image along with its predicted class (cls.) and predicted probability for that class (p), (d) the
image after MeLIME ablation along with the predicted probability for the original class (p) and the
new class prediction (cls.), and (e) the image after LINEX/realistic ablation along with the predicted
probability for the original class (p) and the new class prediction (cls.). The changes in prediction
for MeLIME ablation for the six images are respectively from Dress to Trouser, Sneaker to Sandal,
Pullover to Dress, Sneaker to Sandal, Bag to Pullover, and Sneaker to Sandal. No changes in classes
are seen for LINEX ablation.
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Figure 27: LIME (left) and LINEX (right) feature attributions for three points (a, b, c) for a synthetic
data where we have Class 1 sandwiched between Class 0. For LIME, the different colors pink and
blue correspond to feature attributions obtained with the small and large kernel width neighborhoods.
Note how explanations for LIME change significantly (in magnitude) by kernel widths near the class
boundaries, whereas the LINEX explanation remains stable, where it still picks up the important
feature.
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Figure 28: Feature attributions for the four features for an example in the IRIS dataset are shown
above when varying γ. We used the same setting as in Section 5 for this experiment. The attributions
increase smoothly as γ increases and stay constant after γ ≥ min(|w1i|, |w2i|)∀i.
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Figure 29: Left side: Explaining a scalar function in R2 at the point indicated by the triangle. The
point is centered at x = 1.0, y = 0.0. The two environments are created by sampling multivariate
normals with variances 0.5 and 2.0 respectively (samples not shown) centered at this point. Right
side: Convergence of individual environment attributions. The attributions for first feature (x), w1,0

and w2,0, converge to γ and −γ leading to the optimal attribution of 0. For the second feature (y) the
optimal attribution (w1,1 + w2,1) converges to a positive value.
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(a) INFD - S-LIME - mean
smoothing

(b) INFD - S-LIME - median
smoothing

(c) INFD - S-LIME - MoM
smoothing

(d) GI - S-LIME - mean smoothing
(e) GI - S-LIME - median

smoothing (f) GI - S-LIME - MoM smoothing

(g) CI - S-LIME - mean smoothing
(h) CI - S-LIME - median

smoothing (i) CI - S-LIME - MoM smoothing

(j) Υ - S-LIME - mean smoothing
(k) Υ - S-LIME - median

smoothing (l) Υ - S-LIME - MoM smoothing

(m) CAC - S-LIME - mean
smoothing

(n) CAC - S-LIME - median
smoothing

(o) CAC - S-LIME - MoM
smoothing

Figure 30: Effect of various smoothing schemes on S-LIME’s performance based on 5 environments
(since median-of-means (MoM) is just median for 2) with the same setup described in Suppl. D.
for the IRIS dataset. As can be seen median and MoM perform worse than the mean on INFD and
similar to it on other metrics. Thus, this does not change the takeaways from the main paper. See
Figure 4 in the supplement for legend. 36
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