
Appendix: Performance Bounds for Policy-Based
Average Reward Reinforcement Learning Algorithms

1 Discussion on Assumption 3.1

1.1 Assumption 3.1(a)

In order to ensure every policy induces an irreducible Markov chain, we modify the MDP where at
every time step with probability ϵ, an action is chosen from the set of all possible actions with equal
probability. Simultaneously, with probability 1− ϵ, we choose an action dictated by some policy. Let
the transition kernel of the MDP associated with policy µ be denoted as Pµ. We denote the modified
kernel by P̂µ, where the transition probability from state i to j is given by:

P̂µ(j|i) = (1− ϵ)Pµ(j|i) + ϵ

(
1

|A|
∑
a∈A

P(j|i, a)

)

Let Pρ(j|i) = 1
|A|
∑

a∈A P(j|i, a), where ρ represents randomized policy, that is ρ(a|i) = 1
|A|. Let

(Jµ, Vµ) be the average reward and state value function vector associated with the policy µ. Then
they the satisfy the following Bellman Equation:

Jµ + Vµ = rµ + PµVµ,

where rµ(i) =
∑

a∈A µ(a|i)r(i, a). Similarly (Ĵµ, V̂µ) be the average reward and state value function
vector that satisfy the following Bellman Equation,

Ĵµ + V̂µ = r̂µ + P̂µV̂µ

where r̂µ = (1− ϵ)rµ + ϵrρ. Since P̂µ = (1− ϵ)Pµ + ϵPρ, the above equation can be rewritten as:

Ĵµ = (1− ϵ)
(
rµ + PµV̂µ − V̂µ

)
+ ϵ
(
rρ + PρV̂µ − V̂µ

)
Multiplying the above equation by the vector P∗

µ, which is the invariant distribution over the state
space due to policy µ, we obtain,

Ĵµ = (1− ϵ)
(
P∗
µrµ
)
+ ϵP∗

µ

(
rρ + PρV̂µ − V̂µ

)
since P∗

µPµ = P∗
µ. We also know that Jµ = P∗

µrµ.. Hence we obtain,

Ĵµ = (1− ϵ) Jµ + ϵP∗
µ

(
rρ + PρV̂µ − V̂µ

)
Therefor we obtain the following result,

Jµ − Ĵµ = ϵ
(
Jµ − P∗

µ

(
rρ + PρV̂µ − V̂µ

))
Since the rewards are bounded, so are Jµ, rρ and PρV̂µ − V̂µ for all µ. Hence we obtain,

Jµ − Ĵµ = O(ϵ)

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

The difference in the average reward associated with the original MDP and the modified MDP
vary by O(ϵ). Let the optimal policy corresponding to original MDP be µ∗ and the optimal policy
corresponding to modified MDP be µ̂∗. Then,

Jµ∗ − Ĵµ̂∗ = Jµ∗ − Ĵµ∗ + Ĵµ∗ − Ĵµ̂∗

Since µ̂∗ is the optimizing policy for the modified MDP, we have Ĵµ∗ − Ĵµ̂∗ ≤ 0. Hence, we obtain,

Jµ∗ − Ĵµ̂∗ ≤ Jµ∗ − Ĵµ∗ = O(ϵ).

Similarly,
Jµ∗ − Ĵµ̂∗ = Jµ∗ − Jµ̂∗ + Jµ̂∗ − Ĵµ̂∗

Since µ∗ is the optimizing policy for the original MDP, we have Jµ∗ − Jµ̂∗ ≥ 0. Hence we obtain,

Jµ∗ − Ĵµ̂∗ ≥ Jµ̂∗ − Ĵµ̂∗ = O(ϵ).

Thus the optimal average reward of the original MDP and modified MDP differ by O(ϵ). That is,

|Jµ∗ − Ĵµ̂∗ | ≤ O(ϵ)

1.2 Assumption 3.1 (b)

To ensure Assumption 3.1 (b) is satisfied, an aperiodicity transformation can be implemented. Under
this transformation, the transition probabilities of the original MDP are modified such that the
probability of staying in any state under any policy is non-zero. In order to compensate for the change
in transition kernel, the single step rewards are analogously modified such that the Bellman equation
corresponding to the original and transformed dynamics are scaled versions of one another. This thus
ensures that the optimality of a policy remains the same irrespective of this transformation, along
with yielding quantifiable convergence properties. Mathematically, this transformation is described
below.
Definition 1.1 (Aperiodicity Transformation). Let κ ∈ (0, 1). For every policy µ ∈ Π and for all
states i, j ∈ S, consider the following transformation:

P̂µ (i|i) = κ+ (1− κ)Pµ (i|i) (1)

P̂µ (j|i) = (1− κ)Pµ (j|i) , j ̸= i (2)
r̂(i, µ(i)) = (1− κ)r(i, µ(i)) (3)

Theorem 1.2. Given the transformation in Equation (1)-Equation (3), for every µ ∈ Π, let (Jµ, hµ)

and (Ĵµ, ĥµ) be the solution to the Bellman Equation (Equation 2) corresponding to the original
MDP (Pµ, rµ) and the transformed MDP (P̂µ, r̂µ). Then,(

Ĵµ, ĥµ

)
= ((1− κ)Jµ, hµ)

Proof. The proof of this theorem can be found in [Sch71].

Remark 1.3. Due to this bijective relationship between the original and the transformed problem, it
suffices to solve the transformed problem. Given that the trajectory used for algorithms such as TD
Learning corresponds to the original system, such a transformation necessitates a mild change in how
samples from a given policy are utilized in TD learning. More specifically, for each (state, action)
sample, with probability κ, we have to add the same sample to the data set for the next time instant.
With probability 1− κ choose the next state in the trajectory. Hence, this transformation is easy to
incorporate in RL algorithms.

2 Proof of Theorem 3.3

Prior to presenting the proof, we define
uk = max

i
(Thk − hk)(i), (4)

lk = min
i
(Thk − hk)(i).

A key lemma in the proof of convergence of approximate policy iteration in the context of average
reward is:

2

Lemma 2.1. Let J∗ be the optimal average reward associated with the transformed MDP. For all
k ∈ N:

lk − ϵ ≤ Jµk+1
≤ J∗ ≤ uk

Proof. From definition,
lk1 ≤ Thk − hk

Since ∥Thk − Tµk+1
hk∥∞ ≤ ϵ,

lk1 ≤ Tµk+1
hk − hk + ϵ1

= rµk+1
+ Pµk+1

hk − hk + ϵ1

P∗
µk+1

lk1 ≤ P∗
µk+1

rµk+1
+ P∗

µk+1
Pµk+1

hk − P∗
µk+1

hk + P∗
µk+1

ϵ1

where P∗
µk+1

is a matrix whose rows are identical and are the invariant distribution associated with
the probability transition kernel Pµk+1

. Since P∗
µk+1

Pµk+1
= P∗

µk+1
,

lk1 ≤ P∗
µk+1

rµk+1
+ ϵ1

lk1− ϵ1 ≤ Jµk+1
1

lk − ϵ ≤ Jµk+1

From definition,
J∗ = max

µ∈Π
Jµ ≥ Jµk+1

Let µ∗ be the policy corresponding to the optimal average reward J∗ and value function h∗, ie.,
J∗ + h∗ = max

µ
rµ + Pµh

∗

= rµ∗ + Pµ∗h∗

Then,
uk1 ≥ Thk − hk

(a)

≥ Tµ∗hk − hk

= rµ∗ + Pµ∗hk − hk

P∗
µ∗uk1 ≥ P∗

µ∗rµ∗ + P∗
µ∗Pµ∗hk − P∗

µ∗hk

uk1 ≥ P∗
µ∗rµ∗

uk ≥ J∗

where (a) is due to the fact that T is the maximising Bellman operator.
Hence ∀k ∈ N,

lk − ϵ ≤ Jµk+1
≤ J∗ ≤ uk

Without any approximation, the above lemma indicates that there exists a state whose value function
changes by an amount less than the average reward associated with the optimizing policy at that
iteration, and also that there exists a state whose value function increases by an amount larger than
the optimal average reward.

The proof proceeds by showing a geometric convergence rate for lk. More precisely, the following
lemma is proved.
Lemma 2.2. For all k ∈ N, it is true that:

(J∗ − lk) ≤ (1− γ) (J∗ − lk−1) + ϵ+ 2δ

Proof. Define:
gk(i) = (Thk − hk) (i)

gk(i) ≥ (Tµk
hk − hk) (i)

Since T is the maximizing Bellman operator.
We know that:

3

1. ∥hk − hµk
∥∞ ≤ δ

2. For all constant p ∈ R:

Tµk
(hk + p1) = rµk

+ Pµk
(hk + p1)

= rµk
+ Pµk

hk + p1

= Tµk
hk + p1

We thus obtain,

gk(i) ≥ Tµk
(hµk

− δ)− (hµk
+ δ) (5)

≥ (Tµk
hµk

− hµk
) (i)− 2δ (6)

Recall that hµk
= limm→∞ T̃m

µk+1
hk

T̃m
µk
hk−1 = T̃m−1

µk
T̃µk

hk−1

= T̃m−1
µk

(rµk
+ Pµk

hk−1 − rµk
(x∗)1− (Pµk

hk−1) (x
∗)1)

= T̃m−1
µk

(Tµk
hk−1 − (Tµk

hk−1) (x
∗)1)

= T̃m−2
µk

T̃µk
(Tµk

hk−1 − (Tµk
hk−1) (x

∗)1)

= T̃m−2
µk

(rµk
+ Pµk

(Tµk
hk−1 − Tµk

hk−1(x
∗))− rµk

(x∗)1− (Pµk
(Tµk

hk−1 − Tµk
hk−1(x

∗))) (x∗)1)

= T̃m−2
µk

(rµk
+ Pµk

(Tµk
hk−1)− Tµk

hk−1(x
∗)− rµk

(x∗)1− Pµk
(Tµk

hk−1) (x
∗)1+ Tµk

hk−1(x
∗))

= T̃m−2
µk

(
T2
µk
hk−1 − T2

µk
hk−1(x

∗)1
)

Iterating, we thus obtain,

hµk
= lim

m→∞
Tm
µk
hk−1 − Tm

µk
hk−1(x

∗)1

Substituting back in Equation (5),

gk(i) ≥
(
Tµk

(
lim

m→∞
Tm
µk
hk−1 − Tm

µk
hk−1(x

∗)1
)
− lim

m→∞
Tm
µk
hk−1 − Tm

µk
hk−1(x

∗)1
)
(i)− 2δ

=
(
Tµk

(
lim

m→∞
Tm
µk
hk−1

)
− lim

m→∞
Tm
µk
hk−1(x

∗)1− lim
m→∞

Tm
µk
hk−1 − lim

m→∞
Tm
µk
hk−1(x

∗)1
)
(i)− 2δ

=
(
Tµk

(
lim

m→∞
Tm
µk
hk−1

)
− lim

m→∞
Tm
µk
hk−1

)
(i)− 2δ

Since Tµk
is a continuous operator, it is possible to take the limit outside. We thus obtain,

gk(i) ≥ lim
m→∞

(
Tm+1
µk

hk−1 − Tm
µk
hk−1

)
(i)− 2δ

= lim
m→∞

(
Tm
µk
Tµk

hk−1 − Tm
µk
hk−1

)
(i)− 2δ

= lim
m→∞

(
Pm
µk

(Tµk
hk−1 − hk−1)

)
(i)− 2δ

= P∗
µk

(Tµk
hk−1 − hk−1) (i)− 2δ

Since ∥Tµk
hk−1 − Thk−1∥∞ ≤ ϵ,

gk(i) ≥ P∗
µk

(Thk−1 − hk−1) (i)− 2δ − ϵ

=
(
P∗
µk
gk−1

)
(i)− 2δ − ϵ

Note that from Lemma 3.2 in the mainpaper, we know that

min
i,j∈S

P∗
µk
(j|i) > γ > 0

Also, since every policy is assumed to induce an irreducible Markov Process, we have a limiting
distribution with all positive entries. We thus obtain the following crucial relationship,

gk(i) ≥ (1− γ)lk−1 + γuk−1 − 2δ − ϵ (7)

4

Since the above inequation is true for all states i, it has to also be true for argmini (Thk − hk) (i).
Hence, we obtain,

lk ≥ (1− γ)lk−1 + γuk−1 − 2δ − ϵ

Note that from Lemma 2.1, we know that uk ≥ J∗ for all k ∈ N.
Hence we obtain,

lk ≥ (1− γ)lk−1 + γJ∗ − 2δ − ϵ

Upon rearranging we obtain the result, that is,

(J∗ − lk) ≤ (1− γ) (J∗ − lk−1) + 2δ + ϵ

We now present the proof of Theorem 3.3.

From Lemma 2.2, we thus have,

(J∗ − lk) ≤ (1− γ) (J∗ − lk−1) + 2δ + ϵ (8)

However, we know that,
lk − ϵ ≤ J∗

In order to iterate Equation (8), need to ensure the terms are non-negative. Rearranging the terms
thus yields,

(J∗ − lk + ϵ) ≤ (1− γ) (J∗ − lk−1 + ϵ) + 2δ + (1 + γ)ϵ

Let
ω = 2δ + (1 + γ)ϵ

and
ak = J∗ − lk + ϵ.

Then upon iterating, we obtain,

ak ≤ (1− γ)ak−1 + ω

≤ (1− γ)((1− γ)ak−2 + ω) + ω

≤ ω
1− (1− γ)k

γ
+ (1− γ)ka0

Substituting back, we obtain,

(J∗ − lk + ϵ) ≤
(
1− (1− γ)k

γ

)
(2δ + (1 + γ)ϵ) + (1− γ)k(J∗ − l0 + ϵ) (9)

(J∗ − lk) ≤
(
1− (1− γ)k

γ

)
(2δ + (1 + γ)ϵ)− ϵ+ (1− γ)k(J∗ − l0 + ϵ)

Note that from Lemma 2.1 we know that

lk ≤ Jµk+1
+ ϵ ≤ J∗ + ϵ

Hence we get, (
J∗ − Jµk+1

)
≤ (J∗ − lk + ϵ)

Thus we obtain,(
J∗ − Jµk+1

)
≤
(
1− (1− γ)k

γ

)
(2δ + (1 + γ)ϵ) + (1− γ)k(J∗ − l0 + ϵ)

Theorem 3.3 presents an upper bound on the error in terms of the average reward. Recall that, for the
optimal relative value function h, the following relationship holds: Th− h = J∗1. Thus, it is also
interesting to understand how Thk − hk behaves under approximate policy iteration. The following
proposition characterizes the behavior of this term.

5

Proposition 2.3. The iterates generated from approximate policy iteration algorithm 1 satisfy the
following bound:

(uk−1 − lk−1) ≤
(
1− (1− γ)k

γ2

)
(2δ + (1 + γ)ϵ) +

2δ + ϵ

γ︸ ︷︷ ︸
approximation error

+
(1− γ)k(J∗ − l0 + ϵ)

γ︸ ︷︷ ︸
initial condition error

,

where uk, lk are defined in Equation (4).

Proof. It is known from Equation (7) that,

gk(i) ≥ (1− γ)lk−1 + γuk−1 − 2δ − ϵ

This further yields,
lk ≥ (1− γ)lk−1 + γuk−1 − 2δ − ϵ

From Lemma 2.1, we know that,
lk ≤ J∗ + ϵ

J∗ + ϵ ≥ (1− γ)lk−1 + γuk−1 − 2δ − ϵ

J∗ − lk + ϵ ≥ γ(uk−1 − lk−1)− 2δ − ϵ

γ(uk−1 − lk−1) ≤ (J∗ − lk + ϵ) + 2δ + ϵ

From Equation (9), we thus obtain,

γ(uk−1 − lk−1) ≤
(
1− (1− γ)k

γ

)
(2δ + (1 + γ)ϵ) + (1− γ)k(J∗ − l0 + ϵ) + 2δ + ϵ

We thus obtain the result in Proposition 3.11,

(uk−1 − lk−1) ≤
(
1− (1− γ)k

γ2

)
(2δ + (1 + γ)ϵ) +

2δ + ϵ

γ
+

(1− γ)k(J∗ − l0 + ϵ)

γ

Corollary 2.4. The asymptotic behavior of the relative value function iterates is given by

lim sup
k→∞

(uk − lk) ≤
ϵ (1 + 2γ) + 2δ (1 + γ)

γ2

Comment of the Novelty of our Proof Technique: As mentioned in the main body of the paper,
our proof is inspired by the proof of convergence of modified policy iteration in [VdW80]. However,
since our algorithm is quite different from modified policy iteration due to the presence of errors in
each step of the algorithm, special care is needed to obtain useful performance bounds. Specifically,
the impact of the errors at each step have to be carefully bounded to ensure that the performance
bounds do not blow up to infinity as it does when we obtain a similar result for the discounted-reward
case and let the discount factor go to one.

3 Proofs from Section 4

Algorithm 2 and its analysis, adapted to the context of Q function with time dependent approximation
errors is presented in this section. Most RL algorithms use the state-action relative value function
Q instead of the relative state value function h to evaluate a policy. The corresponding Bellman
Equation in terms of Q associated with any state-action pair (s, a) is given by

Jµ +Qµ(s, a) = r(s, a) + (QµQµ) (s, a)

where Qµ(s
′, a′|s, a) = µ(a′|s′)P(s′|s, a). Since we are interested in randomized policies for explo-

ration reasons, the irreducibility assumptions imposed on Pµ also hold true for the transition kernel
Qµ. The state relative value function hµ and state-action relative value function Qµ are related as
hµ(s) =

∑
a µ(a|s)Qµ(s, a). Consider the following similar definitions of the Bellman operators

corresponding to the state-action value function:

(TQ
µQ)(s, a) = r(s, a) + (QµQ) (s, a)

6

and
(TQQ)(s, a) = r(s, a) + max

µ∈Π
(QµQ) (s, a).

Let (s∗, a∗) represent some fixed state. Then the relative Bellman operator, relative to (s∗, a∗) is
defined as: (

T̃Q
µQ
)
(s, a) = r(s, a) + (QµQ) (s, a)− r(s∗, a∗)− (QµQ) (s∗, a∗).

The algorithm, thus adapted to state action relative value function is given below:

Algorithm 1 Approximate Policy Iteration: Average Reward
1: Require Q0 ∈ Rn

2: for k = 0, 1, 2, . . . do
3: 1. Compute µk+1 ∈ Π such that ∥TQk − Tµk+1

Qk∥∞ ≤ ϵk
4: 2. Compute Qk+1 such that ∥Qk+1 − hµk+1

∥∞ ≤ δk+1

5: where Qµk+1
= limm→∞

(
T̃Q
µk+1

)m
Qk

6: end for

Define

gk(s, a) =
(
TQQk −Qk

)
(s, a), ∀(s, a) ∈ S ×A,

and set

lk = min
(s,a)∈S×A

gk(s, a), uk = max
(s,a)∈S×A

gk(s, a).

We prove the convergence in three parts:

1. We prove that lk − ϵk ≤ Jµk+1
≤ J∗ ≤ uk.

2. We use the result from 1 to prove Lemma 4.1.
3. We iteratively employ the result in Lemma 4.1 to prove Proposition 4.2.

3.1 Proof of part 1

By definition, we have

lk1 ≤ TQQk −Qk.

Since ∥TQQk − TQ
µk+1

Qk∥∞ ≤ ϵk, it follows that

lk1 ≤ TQ
µk+1

Qk −Qk + ϵk1

= r +Qµk+1
Qk −Qk + ϵk1.

Multiplying by Q∗
µk+1

, we get

Q∗
µk+1

lk1 ≤ Q∗
µk+1

r +Q∗
µk+1

Qµk+1
Qk −Q∗

µk+1
Qk +Q∗

µk+1
ϵk1

= Q∗
µk+1

r + ϵk1 (10)

where Q∗
µk+1

is a matrix whose rows are identical and are the invariant distribution associated with
the probability transition kernel Qµk+1

. Note that Q∗
µk+1

1 = 1, and that Q∗
µk+1

Qµk+1
= Q∗

µk+1
.

Consider the Bellman Equation corresponding to the state-action relative value function associated
with the policy µk+1:

Jµk+1
+Qµk+1

= r +Qµk+1
Qµk+1

It follows that

Q∗
µk+1

Jµk+1
+Q∗

µk+1
Qµk+1

= Q∗
µk+1

r +Q∗
µk+1

Qµk+1
Qµk+1

.

7

Since Q∗
µk+1

Qµk+1
= Q∗

µk+1
, we have that

Jµk+1
1 = Q∗

µk+1
r.

Hence, Equation (10) yields

lk ≤ Jµk+1
+ ϵk.

Equivalently, we have

lk − ϵk ≤ Jµk+1
.

From definition,

J∗ = max
µ∈Π

Jµ ≥ Jµk+1
.

Let µ∗ be the policy corresponding to the optimal average reward J∗. Let Q∗ denote the state-action
relative value function associated with the policy µ∗. Note that (J∗, Q∗) is the solution of the Bellman
optimality equation, i.e.,

J∗ +Q∗ = r +max
µ∈Π

QµQ
∗

= r +Qµ∗Q∗.

Then,

uk1 ≥ TQQk −Qk

(a)

≥ TQ
µ∗Qk −Qk

= r +Qµ∗Qk −Qk,

where (a) is due to the fact that TQ is the Bellman optimality operator. Therefore, we have

Q∗
µ∗uk1 ≥ Q∗

µ∗r +Q∗
µ∗Qµ∗Qk −Q∗

µ∗Qk

Equivalently,

uk1 ≥ Q∗
µ∗r

Therefore, we conclude that

uk ≥ J∗

Hence, for all k ∈ N,

lk − ϵk ≤ Jµk+1
≤ J∗ ≤ uk (11)

3.2 Proof of Lemma 4.1

Recall that

gk(s, a) =
(
TQQk −Qk

)
(s, a) ≥

(
TQ
µk
Qk −Qk

)
(s, a),

where the inequality follows by the fact that TQ is the Bellman optimality operator. Note that the
Bellman operator TQ

µk
is shift-invariant, i.e., for all p ∈ R:

TQ
µk

(Qk + p1) = r +Qµk
(Qk + p1)

= r +Qµk
Qk + p1

= TQ
µk
Qk + p1

Recall that ∥Qk −Qµk
∥∞ ≤ δk. Hence, we have

gk(s, a) ≥ TQ
µk
(Qµk

− δk1)(s, a)− (Qµk
(s, a) + δk)

≥
(
TQ
µk
Qµk

−Qµk

)
(s, a)− 2δk (12)

8

Recall that Qµk
= limm→∞

(
T̃Q
µk+1

)m
Qk. Therefore,(

T̃Q
µk

)m
Qk−1 =

(
T̃Q
µk

)m−1 (
T̃Q
µk

)
Qk−1

=
(
T̃Q
µk

)m−1

(r +Qµk
Qk−1 − r(s∗, a∗)1− (Qµk

Qk−1) (s
∗, a∗)1)

=
(
T̃Q
µk

)m−1 (
TQ
µk
Qk−1 −

(
TQ
µk
Qk−1

)
(s∗, a∗)1

)
=
(
T̃Q
µk

)m−2 (
T̃Q
µk

) (
TQ
µk
Qk−1 −

(
TQ
µk
Qk−1

)
(s∗, a∗)1

)
=
(
T̃Q
µk

)m−2
(
r +Qµk

(
TQ
µk
Qk−1 −

(
TQ
µk
Qk−1

)
(s∗, a∗)1

)
− r(s∗, a∗)1−

(
Qµk

(
TQ
µk
Qk−1 −

(
TQ
µk
Qk−1

)
(s∗, a∗)1

))
(s∗, a∗)1

)
=
(
T̃Q
µk

)m−2
(
r +Qµk

(
TQ
µk
Qk−1

)
−
(
TQ
µk
Qk−1

)
(s∗, a∗)1

− r(s∗, a∗)1−Qµk

(
TQ
µk
Qk−1

)
(s∗, a∗)1+

(
TQ
µk
Qk−1

)
(s∗, a∗)1

)
=
(
T̃Q
µk

)m−2 ((
TQ
µk

)2
Qk−1 −

(
TQ
µk

)2
Qk−1(s

∗, a∗)1
)

Iterating, we thus obtain,

Qµk
= lim

m→∞
(TQ

µk
)mQk−1 − (TQ

µk
)mQk−1(s

∗, a∗)1

Substituting back in Equation (12),

gk(s, a) ≥
(
TQ
µk

(
lim

m→∞
(TQ

µk
)mQk−1 − (TQ

µk
)mQk−1(s

∗, a∗)1
)

− lim
m→∞

(
TQ
µk

)m
Qk−1 −

(
TQ
µk

)m
Qk−1(s

∗, a∗)1

)
(s, a)− 2δk

=

(
TQ
µk

(
lim

m→∞
(TQ

µk
)mQk−1

)
− lim

m→∞
(TQ

µk
)mQk−1(s

∗, a∗)1

− lim
m→∞

(
TQ
µk

)m
Qk−1 − lim

m→∞

(
TQ
µk

)m
Qk−1(s

∗, a∗)1

)
(s, a)− 2δk

=
(
TQ
µk

(
lim

m→∞

(
TQ
µk

)m
Qk−1

)
− lim

m→∞

(
TQ
µk

)m
Qk−1

)
(s, a)− 2δk

Since TQ
µk

is a continuous operator, it is possible to take the limit outside. We thus obtain,

gk(s, a) ≥ lim
m→∞

((
TQ
µk

)m+1
Qk−1 −

(
TQ
µk

)m
Qk−1

)
(s, a)− 2δk

= lim
m→∞

((
TQ
µk

)m
TQ
µk
Qk−1 −

(
TQ
µk

)m
Qk−1

)
(s, a)− 2δk

= lim
m→∞

(
Qm

µk

(
TQ
µk
Qk−1 −Qk−1

))
(s, a)− 2δk

= Q∗
µk

(
TQ
µk
Qk−1 −Qk−1

)
(s, a)− 2δk.

Since
∥∥TQ

µk
Qk−1 − TQQk−1

∥∥
∞ ≤ ϵk−1,

gk(s, a) ≥ Q∗
µk

(
TQQk−1 −Qk−1

)
(s, a)− 2δk − ϵk−1

=
(
Q∗

µk
gk−1

)
(s, a)− 2δk − ϵk−1.

Recall the definition of γ > 0 in Lemma 4.1. Note that all entries of Q∗
µk

are bounded from below by
γ. Hence, we have

gk(s, a) ≥ (1− γ)lk−1 + γuk−1 − 2δk − ϵk−1.

9

Since the above inequality is true for all states (s, a) ∈ S ×A, we obtain,

lk ≥ (1− γ)lk−1 + γuk−1 − 2δk − ϵk−1.

The above inequality combined with Equation (11), yields

lk ≥ (1− γ)lk−1 + γJ∗ − 2δk − ϵk−1.

Upon rearranging the above inequality, we obtain the result, that is,

(J∗ − lk) ≤ (1− γ) (J∗ − lk−1) + 2δk + ϵk−1.

Subsequently,(
J∗ −min

(s,a)

(
TQQk −Qk

)
(s, a)

)
≤ (1− γ)

(
J∗ −min

(s,a)

(
TQQk−1 −Qk−1

)
(s, a)

)
+ 2 ∥Qk −Qµk

∥∞ +
∥∥TQQk−1 − TQ

µk
Qk−1

∥∥
∞

3.3 Proof of Proposition 4.2

We now prove Proposition 4.2. From Lemma 4.1, we have

(J∗ − lk) ≤ (1− γ) (J∗ − lk−1) + 2δk + ϵk−1. (13)

To iterate over Equation (13), we need to ensure the terms are non-negative. Note that by the first
part,

lk − ϵk ≤ J∗.

Hence, rearranging the terms thus yields,

(J∗ − lk + ϵk) ≤ (1− γ) (J∗ − lk−1 + ϵk−1) + ϵk + 2δk + ϵk−1 − (1− γ)ϵk−1.

This is equivalent to

(J∗ − lk + ϵk) ≤ (1− γ) (J∗ − lk−1 + ϵk−1) + (ϵk + γϵk−1) + 2δk.

Let
ak = J∗ − lk + ϵk.

Then, we obtain,

ak ≤ (1− γ)ak−1 + ϵk + γϵk−1 + 2δk
≤ (1− γ) [(1− γ)ak−2 + ϵk−1 + γϵk−2 + 2δk−1] + ϵk + γϵk−1 + 2δk

= (1− γ)ka0 +

k−1∑
ℓ=0

(1− γ)ℓϵk−ℓ + γ

k−1∑
ℓ=0

(1− γ)ℓϵk−1−ℓ + 2

k−1∑
ℓ=0

(1− γ)ℓδk−ℓ

Since ϵ0 = 0,

ak ≤ (1− γ)
k
a0 + ϵk +

k−1∑
ℓ=1

(1− γ)
ℓ−1

ϵk−ℓ + 2

k−1∑
ℓ=0

(1− γ)
ℓ
δk−ℓ

Substituting for ak, we get

(J∗ − lk) ≤ (1− γ)
k
(J∗ − l0) +

k−1∑
ℓ=1

(1− γ)
ℓ−1

ϵk−ℓ + 2

k−1∑
ℓ=0

(1− γ)
ℓ
δk−ℓ.

Since from part 1, we know that J∗ − Jµk+1
≤ J∗ − lk + ϵk, we have

J∗ − Jµk+1
≤ (1− γ)

k
[
J∗ −min

i

(
TQQ0 −Q0

)
(i)
]

+

k−1∑
ℓ=1

(1− γ)
ℓ−1
[∥∥∥TQ

µk+1−ℓ
Qk−ℓ − TQQk−ℓ

∥∥∥
∞

]
+
∥∥∥TQ

µk+1
Qk − TQQk

∥∥∥
∞

+ 2

k−1∑
ℓ=0

(1− γ)
ℓ [∥∥Qk−ℓ −Qµk−ℓ

∥∥
∞

]
.

10

Taking expectation, we have

E
[
J∗ − Jµk+1

]
≤ (1− γ)

k E
[
J∗ −min

i

(
TQQ0 −Q0

)
(i)
]

+

k−1∑
ℓ=1

(1− γ)
ℓ−1 E

[∥∥∥TQ
µk+1−ℓ

Qk−ℓ − TQQk−ℓ

∥∥∥
∞

]
+ E

[∥∥∥TQ
µk+1

Qk − TQQk

∥∥∥
∞

]
+ 2

k−1∑
ℓ=0

(1− γ)
ℓ E
[∥∥Qk−ℓ −Qµk−ℓ

∥∥
∞

]
.

3.4 TD Learning for Q function

One RL algorithm to estimate the state-action relative value function with linear function approxima-
tion, associated with a policy µ is TD(λ). Finite-time sample complexity of TD(λ) has been recently
studied in [ZZM21]. Invoking their results, restating it in terms of the state-action relative value
function rather than the state relative value function, we characterize the sample complexity required
to achieve certain accuracy in the approximation.

We estimate Qµ(s, a) linearly by ϕ(s, a)⊤θ∗µ, for some θ∗µ ∈ Rd, where ϕ(s, a) =

[ϕ1(s, a), · · · , ϕd(s, a)]
T ∈ Rd is the feature vector associated with (s, a) ∈ S × A. Here, θ∗µ is

a fixed point of Φθ = ΠD,Wϕ
TQ,λ
µ Φθ, where Φ is an |S| × d matrix whose k-th column is ϕk,

TQ,λ
µ = (1 − λ)

∑∞
m=0 λ

m
(
T̂Q
µ

)m+1

where T̂Q
µ = TQ

µ − Jµ1, D is the diagonal matrix with
diagonal elements given by the stationary distribution of the policy µ on S × A, and ΠD,Wϕ

=

Φ(Φ⊤DΦ)−1Φ⊤D is the projection matrix onto WΦ = {Φθ|θ ∈ Rd} with respect to the norm
∥ · ∥D. Note that this fixed point equation may have multiple solutions. In particular, if Φθe = 1,
then θ∗µ + pθe is also a solution for any p ∈ R. Hence, we focus on the set of equivalent classes
E where we say θ1 ∼ θ2 if Φ(θ1 − θ2) = 1. The value of E[∥Π2,E(θ − θ∗µ)∥22] characterizes the
accuracy of our approximation, where Π2,E is the projection onto E with respect to ∥ · ∥2. Suppose
that {ϕ1, ϕ2, · · · , ϕd} are linearly independent and that max(s,a)∈S×A ∥ϕ(s, a)∥2 ≤ 1.

Upon making a new observation (st+1, at+1) for t ≥ 0, the average reward TD(λ) uses the following
update equations:

Eligibility trace: zt = λzt−1 + ϕ(st, at)

TD error: dt = r(st, at)− Jt + ϕ(st+1, at+1)
⊤θt

− ϕ(st, at)
⊤θt

average-reward update: Jt+1 = Jt + cαβt(r(st, at)− Jt),

parameter update: θt+1 = θt + βtδt(θ)zt,

(14)

where βt is the scalar step size, cα > 0 is a constant, and z−1 is initialized to be zero. Following
the same argument as in [ZZM21], we get the following theorem which characterizes the number of
samples required to get a certain accuracy in the approximation.

Theorem 3.1. Let βt =
c1

t+c2
, and suppose that the positive constants c1, c2, and cα are properly

chosen. Then, the number of samples required to ensure an approximation accuracy of E[∥Π2,E(θ −
θ∗µ)∥22] ≤ δ, is given by

τ = O

(
K log(1

∆)∥θ∗µ∥22
∆4(1− λ)4δ2

)
,

where K is the minimum mixing time constant across all probability transition matrices induced by
the policies,

∆ = min
∥θ∥2=1,θ∈E

θTΦTD(I −Qλ)Φθ > 0,

and Qλ = (1− λ)
∑∞

m=0 λ
mQm+1.

11

Proof. The proof is a simple adaptation of the proof in [ZZM21] for the state relative value function.

Let Qk = Φθk, where θk is the output of TD(λ) algorithm with T samples. Then, we have

∥Qk −Qµk
∥∞ ≤ ∥Φ(θk − θ∗µk

)∥∞ + ∥Φθ∗µk
−Qµk

∥∞,

where the second term above is the error associated with the choice of Φ.

Since max(s,a)∈S×A ∥ϕ(s, a)∥2 ≤ 1, we get

δk = d∥θk − θ∗µk
∥∞ + ∥Φθ∗µk

−Qµk
∥∞.

Using Theorem 3.1, we get a bound on the value of ∥θk − θ∗µk
∥∞. Note that if Φθe = 1 for

some θe ∈ Rd, then we can pick θk+1 and θ∗µk+1
so that ϕ(s∗, a∗)T θk+1 = ϕ(s∗, a∗)T θ∗µk+1

= 0.
Otherwise, there is a unique choice for θ∗µk+1

, and we have E = Rd.

The expected value of learning error can thus be expressed as:

E [δk] = E [δTD,k] + E [δ0,k]

where δTD,k = d∥θk+1 − θ∗µk+1
∥∞ represents the TD learning error of the parameter vector θ∗µk+1

and δ0,k = ∥Φθ∗µk+1
− Qµk+1

∥∞ represents the function approximation error associated with the
span of the feature vector matrix Φ.

δTD,k has a direct dependence on the number of samples utilized for TD learning and the mixing time
of the corresponding Markov Chain induced by the policy µk. More precisely, from Theorem 3.1,

E [δTD,k] = O

√K log(1
∆)∥θ∗µk

∥22
∆4(1− λ)4τ

 ,

Hence as long as the mixing constant ∆ is uniformly greater than zero, and the feature vectors θ∗µk

are such that they are uniformly upper bounded in k, it is true that

E [δTD,k] =
C√
τ
,

for some constant C > 0.

Next, we prove the corollaries for specific policy improvement algorithms. Since the policy improve-
ment part does not depend on whether the problem is a discounted-reward problem or an average
reward problem, we can borrow the results from [CM22] to identify ϵk in each of the corollaries.

3.5 Proof of Corollary 4.3

Recall the greedy update rule. Let a∗ = argmaxa′ Qk(s, a
′). Given a parameter β > 0, at any time

instant k, the greedy policy update µk+1 is given by:

µk+1(a|s) =

{
1

β|A| , if a ̸= a∗

1
β|A| + 1− 1

β , if a = a∗
(15)

Let ηk = maxs′∈S
a′∈A

|Qk(s
′, a′)|. The policy improvement approximation can be shown to be the

following:

ϵk =
(
TQQk − TQ

µk+1
Qk

)
(s, a)

≤
∑
s′∈S

P(s′|s, a) 2
β
max
a′∈A

|Qk(s
′, a′)|

≤ 2ηk
β

.

12

Recall the error due to TD Learning

E [δk] = E [δTD,k] + E [δ0,k] .

Let δ0 = maxt δ0,t. Then we obtain the following:

E [δk] = δ0 +
C√
τ
.

Substituting for expressions in Proposition 4.2, we obtain,

E
[
J∗ − JµT+1

]
≤ (1− γ)

T E
[
J∗ −min

i

(
TQQ0 −Q0

)
(i)
]

+ 2

T−1∑
ℓ=0

(1− γ)
ℓ

(
δ0 +

C√
τ

)
+

T−1∑
ℓ=1

(1− γ)
ℓ−1 2ηT−ℓ

β
+

2ηT
β

.

Let c0 = E
[
J∗ −mini

(
TQQ0 −Q0

)
(i)
]

be the error associated with the initial condition. Let
η = maxt ηt (η can be the uniform upper bound of the estimates Qk of relative state action value
function Qµk

over k.) Then we obtain the result in the corollary,

E
[
J∗ − JµT+1

]
≤ (1− γ)T c0 +

2

γ

(
δ0 +

C√
τ

)
+

(
1 + γ

γ

)
2η

β
. (16)

3.6 Proof of Corollary 4.4

Recall the softmax policy update. Given a parameter β > 0, at any time instant k, the Softmax update
policy µk+1 is:

µk+1(a|s) =
exp (βQk(s, a))∑

a′∈A exp (βQk(s, a′))
. (17)

The policy improvement approximation for this update rule turns out to be time independent and is
given by:

ϵk =
(
TQQk − TQ

µk+1
Qk

)
(s, a) ≤ log |A|

β
.

Given δ0 = maxt δ0,t the following is true,

E [δk] = δ0 +
C√
τ
.

Substituting for expressions in Proposition 4.2, we obtain,

E
[
J∗ − JµT+1

]
≤ (1− γ)

T E
[
J∗ −min

i

(
TQQ0 −Q0

)
(i)
]

+ 2

T−1∑
ℓ=0

(1− γ)
ℓ

(
δ0 +

C√
τ

)
+

T−1∑
ℓ=1

(1− γ)
ℓ−1 log |A|

β
+

log |A|
β

.

Let c0 = E
[
J∗ −mini

(
TQQ0 −Q0

)
(i)
]

be the error associated with the initial condition. Then
we obtain the result in the corollary,

E
[
J∗ − JµT+1

]
≤ (1− γ)T c0 +

2

γ

(
δ0 +

C√
τ

)
+

(
1 + γ

γ

)
log (|A|)

β
. (18)

3.7 Proof of Corollary 4.5

Recall the mirror descent update. Given β > 0 the mirror descent update is given by:

µk+1(a|s) =
µk(a|s)eβQk(s,a)∑

a′∈A µk(a′|s)eβQk(s,a′)
(19)

13

The policy improvement error for this update rule and is given by:

ϵk =
(
TQQk − TQ

µk+1
Qk

)
(s, a)

≤ 1

β
log

1

mins∈S µk+1 (a∗(s)|s)
.

where a∗(s) is the optimal action at state s. Let ωk+1 = mins∈S µk+1 (a
∗(s)|s) Given that the TD

learning error is of the form

E [δk] = δ0 +
C√
τ
,

Substituting for expressions in Proposition 4.2, we obtain,

E
[
J∗ − JµT+1

]
≤ (1− γ)

T E
[
J∗ −min

i

(
TQQ0 −Q0

)
(i)
]

+ 2

T−1∑
ℓ=0

(1− γ)
ℓ

(
δ0 +

C√
τ

)
+

T−1∑
ℓ=1

(1− γ)
ℓ−1 2

β
log

1

ωT−ℓ
+

2

β
log

1

ωT
.

Let c0 = E
[
J∗ −mini

(
TQQ0 −Q0

)
(i)
]

be the error associated with the initial condition. Let
ω = mint ωt Then we obtain the result in the corollary,

E
[
J∗ − JµT+1

]
≤ (1− γ)T c0 +

2

γ

(
δ0 +

C√
τ

)
+

(
1 + γ

γβ

)
log

(
1

ω

)
. (20)

3.8 Regret Analysis

Recall the pseudo regret defined as follows:

RPS(K) =

K∑
t=1

(J∗ − Jµt) , (21)

where µt us the policy utilized at time t and obtained through mirror descent, and K is the time
horizon. Since K = τT , we have

RPS(K) = τ

T∑
t=1

(J∗ − Jµt
) . (22)

Substituting for J∗ − Jµt
, it is true that

RPS(K) = τ

(
T∑

t=1

(1− γ)T c0 +
1 + γ

γβ
log

(
1

ω

)
+

2

γ

(
δ0 +

c3√
τ

))
. (23)

Let β =
√
τ . The above regret can be simplified as:

RPS(K) =
τc0
γ

+
K

γ
√
τ

(
(1 + γ) log

(
1

ω

)
+ 2c3

)
+

2Kδ0
γ

(24)

Let c5 = (1 + γ) log(1/ω) + 2c3. We then have

RPS(K) =
τc0
γ

+
Kc5
γ
√
τ
+

2Kδ0
γ

. (25)

Optimizing for regret involves equating τc0
γ and Kc5

γ
√
τ

. This yields τ =
(

Kc5
c0

)2/3
. Further substituting

for τ yields

RPS(K) =

(
Kc3
c0

)2/3

· c0
γ

+
Kc5c

1/3
0

γ(Kc5)1/3
+

2Kδ0
γ

(26)

=
(Kc5)

2/3 · c1/30

γ
+

(Kc5)
2/3 · c1/30

γ
+

2Kδ0
γ

(27)

=
2c

2/3
5 · c1/30 ·K2/3

γ
+

2Kδ0
γ

. (28)

14

Let c6 = 2c
2/3
5 c

1/3
0 . We have

RPS(K) =
K2/3c6

γ
+

2Kδ0
γ

. (29)

References
[CM22] Zaiwei Chen and Siva Theja Maguluri. Sample complexity of policy-based methods under off-policy

sampling and linear function approximation. In International Conference on Artificial Intelligence
and Statistics, pages 11195–11214. PMLR, 2022.

[Sch71] Paul J Schweitzer. Iterative solution of the functional equations of undiscounted markov renewal
programming. Journal of Mathematical Analysis and Applications, 34(3):495–501, 1971.

[VdW80] J Van der Wal. Successive approximations for average reward markov games. International Journal
of Game Theory, 9(1):13–24, 1980.

[ZZM21] Sheng Zhang, Zhe Zhang, and Siva Theja Maguluri. Finite sample analysis of average-reward td
learning and q-learning. Advances in Neural Information Processing Systems, 34:1230–1242, 2021.

15

	Discussion on Assumption 3.1
	Assumption 3.1(a)
	Assumption 3.1 (b)

	Proof of Theorem 3.3
	Proofs from Section 4
	Proof of part 1
	Proof of Lemma 4.1
	Proof of Proposition 4.2
	TD Learning for Q function
	Proof of Corollary 4.3
	Proof of Corollary 4.4
	Proof of Corollary 4.5
	Regret Analysis

