
A Heavy-Tailed Algebra for Probabilistic Programming
SUPPLEMENTARY MATERIAL

A Operations in the Generalized Gamma Algebra

In this section, we provide explanations, references, and new results for how operations on random
variables affect their GGA tails. A summary of this, useful for referencing, appeared in Table 1.

A.1 Ordering

A total ordering is imposed on the equivalence classes of G according to the heaviness of tails.
In particular, we say that (ν1, σ1, ρ1) ≤ (ν2, σ2, ρ2) if (xν1e−σ1x

ρ1
)/(xν2e−σ2x

ρ2
) is bounded as

x→∞. As usual, we say (ν1, σ1, ρ1) < (ν2, σ2, ρ2) if (ν1, σ1, ρ1) ≤ (ν2, σ2, ρ2) but (ν1, σ1, ρ1) ̸≡
(ν2, σ2, ρ2).

A.2 Addition

Tails of this form are closed under addition. Combining subexponentiality for ρ < 1 [1, Chapter X.1],
with [2, Thm 3.1 & eqn. (8.3)], we obtain the following Proposition 1 for exactness of the proposed
GGA addition operation.
Proposition 1. Denoting the addition of random variables (additive convolution of densities) by ⊕,

(ν1, σ1, ρ1)⊕(ν2, σ2, ρ2) ≡


max{(ν1, σ1, ρ1), (ν2, σ2, ρ2)} if ρ1 ̸= ρ2 or ρ1, ρ2 < 1

(ν1 + ν2 + 1,min{σ1, σ2}, 1) if ρ1 = ρ2 = 1

(ν1 + ν2 + 1− ρ
2 , (σ

− 1
ρ−1

1 + σ
− 1

ρ−1

2 )1−ρ, ρ) if ρ = ρ1 = ρ2 > 1.
(3)

A.3 Powers

For all exponents β > 0, by invoking a change of variables x 7→ xβ , it is easy to show that
(ν, σ, ρ)β ≡

(
ν+1
β − 1, σ, ρ

β

)
.

A.4 Reciprocals

We define negative powers and reciprocals equivalently to positive powers in the case β < 0. This
equivalence cannot be proven to hold in general since we cannot determine tail asymptotics of the
reciprocal without knowledge of its behaviour around zero. Therefore, we implicitly assume that the
behaviour around zero mimics the tail behaviour, that is, Equation (1) holds as x→ 0+. Note that
this can only hold provided (ν + 1)/ρ > 0 and ρ ̸= 0. To account for all other cases, includingRν ,
we assume that the density of X approaches some nonzero value near zero. In this case, Lemma 1
defines the reciprocal to beR2.
Lemma 1. Assume that a random variable X has a density p that is continuous at zero and p(0) > 0.
Then X−1 ≡ R2.

Proof. From a change of variables, the density q of X−1 is given by q(x) = |x|−2p(x−1). By
assumption, as |x| → ∞, q(x) ∼ p(0)|x|−2. Therefore, X−1 ≡ R2.

A.5 Multiplication

For any c ∈ R\{0}, it can be readily seen from a change of variables x 7→ cx that c(ν, σ, ρ) =
(ν, σ/|c|ρ, ρ). However, the case of multiplication convolution is not as straightforward. While
additive convolutions of generalized Gamma random variables are relatively well-explored, to our
knowledge, multiplicative convolution has not been examined at this level of generality. It turns out
that the class G is also closed under multiplication (assuming independence of random variables),
as we show in the following result. The proof requires some preliminary background on Mellin
transforms and the Fox H function, which we cover in Appendix E.
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Proposition 2. Denoting the multiplication of independent random variables (multiplicative convolu-
tion) by ⊗,

(ν1, σ1, ρ1)⊗ (ν2, σ2, ρ2) ≡



(
1
µ

(
ν1

|ρ1| +
ν2

|ρ2| +
1
2

)
, σ,− 1

µ

)
if ρ1, ρ2 < 0(

1
µ

(
ν1

ρ1
+ ν2

ρ2
− 1

2

)
, σ, 1

µ

)
if ρ1, ρ2 > 0

R|ν1| if ρ1 ≤ 0, ρ2 > 0

Rmin{|ν1|,|ν2|} if ρ1 = 0, ρ2 = 0

where µ = 1
|ρ1| +

1
|ρ2| =

|ρ1|+|ρ2|
|ρ1ρ2| and σ = µ(σ1|ρ1|)

1
µ|ρ1| (σ2|ρ2|)

1
µ|ρ2| .

Proof. The ρ1 ≤ 0, ρ2 > 0 and ρ1 = ρ2 = 0 cases follow from Breiman’s lemma [5, Lemma B.5.1].
Our argument proceeds similar to [2]. Assume that ρ1, ρ2 > 0 and let 0 < ϵ < 1 be such that
0 < a− < a+ < 1, where

a+ =
(1 + ϵ)ρ2
ρ1 + ρ2

, a− = 1− (1 + ϵ)ρ1
ρ1 + ρ2

.

Then for ρ = ρ1ρ2

ρ1+ρ2
, if X ≡ (ν1, σ1, ρ1) and Y ≡ (ν2, σ2, ρ2), then

P(XY > x,X /∈ [xa− , xa+ ]) ≤ P(X > xa+) + P(Y > x1−a−)

∼ c1x
ν1a+e−σ1x

ρ1a+
+ c2x

ν2(1−a−)e−σ2x
ρ2(1−a−)

≤
(
c1x

ν1a+ + c2x
ν2(1−a−)

)
e−min{σ1,σ2}x(1+ϵ)ρ

= o(xνe−σxρ

),

for any ν, σ > 0. Hence, it will suffice to show the claimed tail asymptotics for the generalized
Gamma distribution. In this case, since a− > 0 and a+ < 1, the tail of the distribution for the product
of X,Y depends only on the tail of the distributions for X and Y .

Therefore, assume without loss of generality that pX(x) = cXxν1e−σ1x
ρ1 and pY (x) =

cY x
ν2e−σ2x

ρ2 . Then

Ms[pXY ] = cXcY
σ
−ν1/ρ1

1

ρ1

σ
−ν2/ρ2

2

ρ2

(
σ
1/ρ1

1 σ
1/ρ2

2

)−s

Γ

(
ν1
ρ1

+
s

ρ1

)
Γ

(
ν2
ρ2

+
s

ρ2

)
.

Consequently,

pXY (z) = cXcY
σ
−ν1/ρ1

1

ρ1

σ
−ν2/ρ2

2

ρ2
H2,0

0,2

[
σ
1/ρ1

1 σ
1/ρ2

2 z
∣∣∣ −
(
ν1
ρ1

, 1
ρ1

),(
ν2
ρ2

, 1
ρ2

)

]
Computing the corresponding β, δ, µ for the asymptotic expansion, we find that

µ =
1

ρ1
+

1

ρ2
, δ =

ν1
ρ1

+
ν2
ρ2
− 1, β = ρ

−1/ρ1

1 ρ
−1/ρ2

2 .

Consequently, for some c > 0,

pXY (z) ∼ cz
1
µ ( 1

2+δ) exp
(
−µβ− 1

µ (σ
1/ρ1

1 σ
1/ρ2

2 )
1
µ z

1
µ

)
,

which completes the ρ1, ρ2 > 0 case. The final case follows by composing the multiplication and
reciprocal operations. Note that

(ν1, σ1,−ρ1)−1 ⊗ (ν2, σ2,−ρ2)−1 ≡ (−ν1 − 2, σ1, ρ1)⊗ (−ν2 − 2, σ2, ρ2)

≡
(
1

µ

(
−ν1 − 2

ρ1
+
−ν2 − 2

ρ2
− 1

2

)
, σ,

1

µ

)
≡
(
1

µ

(
−ν1
ρ1

+
−ν2
ρ2
− 2µ− 1

2

)
, σ,

1

µ

)
≡
(
1

µ

(
−ν1
ρ1

+
−ν2
ρ2
− 1

2

)
− 2, σ,

1

µ

)
,

and therefore

(ν1, σ1,−ρ1)⊗ (ν2, σ2,−ρ2) ≡
(
1

µ

(
ν1
ρ1

+
ν2
ρ2

+
1

2

)
, σ,− 1

µ

)
.
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A.6 Product of Densities

We can also consider a product of densities operation acting on two random variables X,Y , denoted
X&Y , by pX&Y (x) = cpX(x)pY (x), where c > 0 is an appropriate normalizing constant and
pX , pY , pX&Y are the densities of X , Y , and X&Y , respectively. In terms of the equivalence
classes:

(ν1, σ1, ρ1)&(ν2, σ2, ρ2) ≡


(ν1 + ν2, σ1, ρ1) if ρ1 < ρ2
(ν1 + ν2, σ1 + σ2, ρ) if ρ = ρ1 = ρ2
(ν1 + ν2, σ2, ρ2) otherwise,

which follows directly by taking the product of the generalized Gamma tails in eq. (1). Note that this
particular operation does not require either pX or pY to be normalized — only the tail behaviour is
needed. We may also use this to work out the tail behaviour of a posterior density, provided the tail
behaviour of the likelihood in the parameters is known.

A.7 Exponential and Logarithm

Tails of the generalized Gamma form are not closed under exponentiation or logarithms. Indeed, if
both X and expX have generalized Gamma tails, then X is exponentially distributed (and expX
has power law tails). As a workaround, we can consider an upper bound on the tail by projecting onto
the nearest possible exponentially distributed / power law tail. If ρ > 1, then a change of variables
shows the density of expX satisfies

pexpX(x) ∼ c

x
(log x)ν exp (−σ(log x)ρ) ≤ c̃

x
exp (−σ(log x)) = cx−σ−1, as x→∞.

The inverse of this operation sendsRσ+1 to (0, σ, 1). With this in mind, we define the exponential
and logarithmic operations according to the following: exp(ν, σ, ρ) ≡ Rσ+1 if ρ ≥ 1, otherwiseR1;
log(ν, σ, ρ) ≡ (0, |ν| − 1, 1) if ν < −1 and ρ ≤ 0, otherwise L.

A.8 Lipschitz Functions

There are many multivariate functions that cannot be readily represented in terms of the operations
covered thus far. For these, it is important to specify the tail behaviour of pushforward measures
under Lipschitz-continuous functions. Fortunately, this is covered by Theorem 2 below, presented in
[31, Proposition 1.3].

Theorem 2. For any Lipschitz continuous function f : Rd → R satisfying ∥f(x)−f(y)∥ ≤ L∥x−y∥
for x, y ∈ Rd, there is f(X1, . . . , Xd) ≡ Lmax{X1, . . . , Xd}. More generally, for any Hölder
continuous function f : Rd → R satisfying ∥f(x) − f(y)∥ ≤ L∥x − y∥α for x, y ∈ Rd, there is
f(X1, . . . , Xd) ≡ Lmax{Xα

1 , . . . , X
α
d }.

A.9 Power Law Approximation

There are many cases where power laws arise not from a single operation of random variables, but
cumulatively, through many successive operations. In these cases, ρ becomes small while σ becomes
large, such that σ = O(ρ−1). To see how this regime induces a power law, note that as x→∞,

p|X|(x) ∼ cxνe−σxρ

= c̃xνe−σ(xρ−1) = c̃xνe−σρ xρ−1
ρ ≈ c̃xνe−σρ log x = c̃xν−σρ,

where we have used the approximation log x = ρ−2(xρ − 1) + O(ρ2). Consequently, we can
represent tails of this form by the Student t distribution with |ν − σρ| − 1 degrees of freedom. In
practice, we find this approximation tends to overestimate the heaviness of the tail.

Alternatively, the generalized Gamma density (2) satisfies EXr = σ−r/ρΓ(ν+1+r
ρ )/Γ(ν+1

ρ ) for
r > 0. Let α > 0 be such that EXα = 2. By Markov’s inequality, the tail of X satisfies
P(X > x) ≤ 2x−α. Therefore, we can represent tails of this form by the Student t distribution with
α+1 degrees of freedom (generate X ∼ StudentT(α)). In practice, we find this approximation to be
more accurate, and is hence used as our power law candidate distribution in Section 3.2.
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A.10 Posterior Distributions

Suppose that a random variable X is dependent on a parameter θ and a latent random element Z
through a function f by X = f(Z; θ). Letting π denote a prior on θ, since p(θ|x) ∝ pX(x|θ)π(θ), it
will suffice to find the tail of pX(x|θ) in θ, as we can incorporate the tail of π with the & operation.
Assuming that f is invertible with respect to both Z and θ with respective inverses f−1(x; θ) and
Θ(x; z), a change of variables shows that

pX(x|θ) = pZ(f
−1(x; θ))

∣∣∣∣ ∂∂xf−1(x; θ)

∣∣∣∣ .
Note that z = f−1(x; Θ(x; z)) and so Θ−1(θ;x) = f−1(x; θ), where Θ−1(x; θ) is the inverse of
z 7→ Θ(x; z) at θ. Therefore, the density of Θ(x;Z) is

pΘ(θ, x) = pZ(f
−1(x; θ))

∣∣∣∣ ∂∂θf−1(x; θ)

∣∣∣∣ .
Consequently,

pX(x|θ) = pΘ(θ, x)R(x, θ),

where R(x, θ) = | ∂∂xf
−1(x; θ)|/| ∂∂θf

−1(x; θ)|. Since the inverse of a composition of operations
is a composition of inverses, the tail of pΘ is relatively straightforward to determine by tracing
back through the computation graph and sequentially applying inverse operations, i.e., ⊕ (addition)
becomes⊖ (subtraction), etc. For example, if X = µ+Z, then f(z, µ) = µ+ z, f−1(x;µ) = x−µ,
and R(x, µ) = 1. Therefore, µ|X = x ≡ (x − z)&π. Similarly, if X = σZ, then f(z, σ) = σz,
f−1(x, σ) = x/σ, and R(x, σ) = σ−1/(xσ−2) ≡ σ. Therefore, µ|X = x ≡ (x/Z)& (1, 1, 0)&π.
If X = Z/σ, then f(Z, σ) = z/σ, f−1(x, σ) = σx, and R(x, σ) = σ/x ≡ σ.

B List of Univariate Distributions

To demonstrate the scope of our algebra and facilitate implementation in a general PPL, Table 5 lists
many families of one-dimensional densities and their corresponding tail class.

Table 5: List of univariate distributions

Name Support Density p(x) Class

Benktander Type II (0,∞) e
a
b (1−xb)xb−2(axb − b+ 1) (2b− 2, a

b , b)

Beta prime (0,∞) Γ(α+β)
Γ(α)Γ(β)x

α−1(1 + x)−α−β Rβ+1

Burr (0,∞) ckxc−1(1 + xc)−k−1 Rck+1

Cauchy (−∞,∞) (πγ)−1

[
1 +

(
x−x0

γ

)2]−1

R2

Chi (0,∞) 1
2k/2−1Γ(k/2)

xk−1e−x2/2 (k − 1, 1
2 , 2)

Chi-squared (0,∞) 1
2k/2Γ(k/2)

x
k
2−1e−x/2 (k2 − 1, 1

2 , 1)

Dagum (0,∞) ap
x

(
x
b

)ap ((x
b

)a
+ 1
)−p−1 Ra+1

Davis (0,∞) ∝ (x− µ)−1−n/
(
e

b
x−µ − 1

)
(−1− n, b,−1)

Exponential (0,∞) λe−λx (0, λ, 1)

F (0,∞) ∝ xd1/2−1(d1x+ d2)
−(d1+d2)/2 Rd2/2+1

Fisher z (−∞,∞) ∝ ed1x

(d1e2x+d2)(d1+d2)/2 (0, d2, 1)
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Frechet (0,∞) α
λ

(
x−m
λ

)−1−α
e−(

x−m
λ )

−α

(−1− α, λα,−α)

Gamma (0,∞) βα

Γ(α)x
α−1e−βx (α− 1, β, 1)

Gamma/Gompertz (0,∞) bsebxβs/(β − 1 + ebx)s+1 (0, bs, 1)

Generalized hyperbolic (−∞,∞) ∝ eβ(x−µ)Kλ−1/2(α
√

δ2+(x−µ)2)

(δ2+(x−µ)2)1/4−λ/2 (λ− 1, α− β, 1)

Generalized normal (−∞,∞) β
2αΓ(1/β) exp

(
−
(

|x−µ|
α

)β)
(0, α−β , β)

Geometric stable (−∞,∞) no closed form Rα+1

Gompertz (0,∞) ση exp(η + σx− ηeσx) L

Gumbel (0,∞) β−1e−(β−1(x−µ)+e−β−1(x−µ)) (0, 1
β , 1)

Gumbel Type II (0,∞) αβx−α−1e−βx−α

(−α− 1, β,−α)

Holtsmark (−∞,∞) no closed form R5/2

Hyperbolic secant (−∞,∞) 1
2 sech

(
πx
2

)
(0, π

2 , 1)

Inverse chi-squared (0,∞) 2−k/2

Γ(k/2)x
−k/2−1e−1/(2x) (−k

2 − 1, 1
2 ,−1)

Inverse gamma (0,∞) βα

Γ(α)x
−α−1e−β/x (−α− 1, β,−1)

Levy (0,∞)
√

c
2π (x− µ)−3/2e−

c
2(x−µ) (− 3

2 ,
c
2 ,−1)

Laplace (−∞,∞) 1
2λ exp

(
− |x−µ|

λ

)
(0, 1

λ , 1)

Logistic (−∞,∞) e−(x−µ)/λ

λ(1+e−(x−µ)/λ)2
(0, 1

λ , 1)

Log-Cauchy (0,∞) σ
xπ ((log x− µ)2 + σ2)−1 R1

Log-Laplace (0,∞) 1
2λx exp

(
− |log x−µ|

λ

)
R1/λ+1

Log-logistic (0,∞) β
α

(
x
α

)β−1
(
1 +

(
x
α

)β)−2

Rβ+1

Log-t (0,∞) ∝ x−1(1 + 1
ν (log x− µ)2)−

ν+1
2 R1

Lomax (0,∞) α
λ

(
1 + x

λ

)−α−1 Rα+1

Maxwell-Boltzmann (0,∞)
√

2
π

x2e−x2/(2σ2)

σ3 (2, 1
2σ2 , 2)

normal (−∞,∞) 1
σ
√
2π

e−
1
2 (

x−µ
σ )2 (0, 1

2σ2 , 2)

Pareto (x0,∞) αxα
0x

−α−1 Rα+1

Rayleigh (0,∞) x
σ2 e

−x2/(2σ2) (1, 1
2σ2 , 2)

Rice (0,∞) x
σ2 exp

(
− (x2+ν2)

2σ2

)
I0
(
xν
σ2

)
( 12 ,

1
2σ2 , 2)

Skew normal (−∞,∞) no closed form (0, 1
2σ2 , 2)

Slash (−∞,∞) 1−e−
1
2
x2

√
2πx2

(−2, 1
2 , 2)

Stable (−∞,∞) no closed form Rα+1
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Student’s t- (−∞,∞)
Γ( ν+1

2 )√
νπΓ( ν

2 )

(
1 + x2

ν

)− ν+1
2 Rν+1

Tracy-Widom (−∞,∞) no closed form (− 3β
4 − 1, 2β

3 , 3
2 )

Voigt (−∞,∞) no closed form R2

Weibull (0,∞) ρ
λ

(
x
λ

)ρ−1
e−(x/λ)ρ (ρ− 1, λ−ρ, ρ)

The following densities are not supported by our algebra: Benini distribution; Benktander Type I
distribution; Johnson’s SU -distribution; and the log-normal distribution. All of these densities exhibit
log-normal tails.

C Theoretical Examples

To verify that our GGA yields accurate predictions of tail behaviour, we work out some explicit GGA
computations on several standard distributions using operations in Table 1. By doing so, we recover
some common probability identities.

Example 3 (Chi-squared random variables). Let X1, . . . , Xk be k independent standard normal
random variables. The variable Z =

∑k
i=1 X

2
i is chi-squared distributed with k degrees of freedom.

Using the GGA, we can accurately determine the tail behaviour of this random variable directly from
its construction. Recall that each Xi ≡ (0, 1/2, 2), and by the power operation, X2

i ≡ (−1/2, 1/2, 1).
Applying the addition operation k times reveals that Z ≡ (k/2 − 1, 1/2, 1) and implies that the
density of Z is asymptotically cxk/2−1e−x/2 as x→∞. In fact, it is known that the density of Z is
exactly pZ(x) = ckx

k/2−1e−x/2, where ck = 2−k/2/Γ(k/2).

Example 4 (Products of random variables). To demonstrate the multiplication operation in our
algebra, we consider the product of two exponential, Gaussian, and reciprocal Gaussian random
variables. Traditionally, asymptotics for the distribution of the product of two random variables would
be found analytically. For example, consider the following Lemma 3.
Lemma 3. Let X1, X2 ∼ Exp(λ) and Z1, Z2 ∼ N (0, 1) be independent. As x→∞, the densities
of X1X2, Z1Z2 and Z = 1/Z1 · 1/Z2 satisfy

pX1X2
(x) ∼ λ3/2

√
π

x1/4
e−2λ

√
x, pZ1Z2

(x) ∼ 1√
2πx

e−x, pZ(x) ∼
1√

2π|z|3/2
e−1/|z|.

With ease, our algebra correctly determines that X1X2 ≡ (− 1
4 , 2λ,

1
2 ), Z1Z2 ≡ (− 1

2 , 1, 1) and
Z ≡ (− 3

2 , 1,−1). We now demonstrate how one would ascertain these asymptotics manually.

Proof of Lemma 3. The proof relies on the following integral definition [56, pg. 183] and asymptotic
relation as z →∞ [56, pg. 202] of the modified Bessel function Kν(z) for z > 0 and ν ≥ 0,

Kν(z) =
1

2

(z
2

)ν ∫ ∞

0

u−ν−1 exp

(
−u− z2

4u

)
du ∼

√
π

2z
e−z. (4)

We also make use of the known density for the product of two independent continuous random
variables: if X and Y have densities pX and pY respectively, then Z = XY has density

pZ(z) =

∫
R
pX(x)pY (z/x)|x|−1dx.

• Density of X1X2: Recalling that the density of X ∼ Exp(λ) is pX(x) = λe−λx for x ≥ 0,
for Z = XY where X ∼ Exp(λ1) and Y ∼ Exp(λ2) are independent,

pZ(z) =

∫ ∞

0

x−1λ1e
−λ1xλ2e

−λ2z/xdx = λ1λ2

∫ ∞

0

x−1e−λ1x−λ2z/xdx.
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Since 2K0(2
√
z) =

∫∞
0

u−1 exp(−u− z
u )du, let u = λ1v, so that du = λ1dv,

2K0(2
√
λ1λ2z) =

∫ ∞

0

u−1 exp
(
−λ1v − λ2

z

v

)
dv.

Therefore, letting λ =
√
λ1λ2,

pZ(z) = 2λ2K0(2λ
√
z) ∼

√
πλ3/2z−1/4e−2λz1/2

.

• Density of Z1Z2: Recalling that the density of X ∼ N (0, 1) is pX(x) =
(2π)−1/2 exp(− 1

2x
2), for Z = XY where X,Y ∼ N (0, 1) are independent,

pZ(z) =
1

2π

∫
R
|x|−1

e−
1
2x

2

e−
1
2 z

2/x2

dx

=
1

π

∫ ∞

0

x−1e−
1
2x

2− 1
2 z

2/x2

dx

=
1

π

∫ ∞

0

x−1e−
1
2x

2− 1
2 z

2/x2

dx.

Let u = 1
2x

2 so that du = xdx and

Kν(z) = zν
∫ ∞

0

x−2ν−1 exp

(
−1

2
x2 − z2

2x2

)
dx.

In particular, for any z ∈ R,

K0(|z|) =
∫ ∞

0

x−1 exp

(
−1

2
x2 − z2

2x2

)
dx, (5)

and so
pZ(z) =

1

π
K0(|z|) ∼

1√
2π|z|

e−|z|.

• Density of Z: Finally, by a change of variables, we note that the density of X−1 where X ∼
N (0, 1) is pX−1(x) = (2π)−1/2x−2 exp(− 1

2x2 ). Therefore, the density of Z = 1/(XY )
where X,Y ∼ N (0, 1) are independent is given by

pZ(z) =

∫
R

1√
2πx2

e−
1

2x2
x2

√
2πz2

e−
x2

2z2
1

|x|
dx

=
1

2πz2

∫
R
e−

1
2x2 − x2

2z2
1

|x|
dx

=
1

πz2

∫ ∞

0

e−
1

2x2 − x2

2z2
1

x
dx

=
1

πz2
K0(|z|−1) ∼

√
1

2π
|z|−3/2e−|z|−1

,

where we have once again used (5).

Example 5 (Reciprocal distributions). Perhaps the most significant challenge with our tail algebra is
correctly identifying the tail behaviour of reciprocal distributions. Here, we test the efficacy of our
formulation with known reciprocal distributions.

• Reciprocal normal: X ∼ N (0, 1) ≡ (0, 1/2, 2), and X−1 ≡ (−2, 1/2,−2).

• Inverse exponential: X ∼ Exp(λ) ≡ (0, λ, 1), and X−1 ≡ (−2, λ,−1).
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• Inverse t-distribution: X ≡ Rν , and X−1 ≡ R2.

• Inverse Cauchy: X ≡ R2, it is known X−1 has the same distribution and our theory predicts
X−1 ≡ R2.

Example 6 (Cauchy distribution). A simple special case of the Student T distribution is the Cauchy
distribution, which arises as the ratio of two standard normal random variables. For X ∼ N (0, 1),
X ≡ (0, 1/2, 2) and X−1 ≡ (−2, 1/2,−2). Hence, the multiplication operation correctly predicts
that the ratio of two standard normal random variables is inR2.

Example 7 (Student T distribution). Let X be a standard normal random variable, and V a chi-
squared random variable with ν degrees of freedom. The random variable T = X/

√
V/ν is

t-distributed with ν degrees of freedom. Since V ≡ (ν/2− 1, 1/2, 1), multiplying by the constant
1/ν reveals V/ν ≡ (ν/2 − 1, 1/(2ν), 1). Applying the square root operation,

√
V/ν ≡ (ν −

1, 1/(2ν), 2). To compute the division operation, we first take the reciprocal to find (V/ν)−1/2 ≡
(−ν − 1, 1/(2ν),−2). Finally, since ρ = −2 < 1 for this random variable, the multiplication
operation with X ≡ (0, 1/2, 2) yields T ≡ Rν+1. Thus, the density of T is asymptotically cx−ν−1

as x→∞. In fact, it is known that the density of T satisfies pT (x) = cν(1 + x2/ν)−(ν+1)/2 where
cν = Γ(ν+1

2 )/Γ(ν2 )(νπ)
−1/2, which exhibits the predicted tail behaviour.

Example 8 (Log-normal distribution). Although the log-normal distribution does not lie in G, the
existence of log-normal tails arising from the multiplicative central limit theorem is suggested by our
algebra. Let X1, X2, . . . be independent standard normal random variables, and let Zk = X1 · · ·X2k

for each k = 1, 2, . . . . By the multiplicative central limit theorem, letting τ = exp(E log |Xi|) ≈
1.13, (

X1 · · ·Xn

τ

)1/
√
n

D−→ Z as n→∞,

where Z is a log-normal random variable with density

pZ(x) =
1

x
√
2π

exp(− 1
2 (log x)

2).

Therefore, the same is true for Vk = (Zk/τ)
2−k/2

. Using our algebra, we will attempt to reproduce
the tail of this density. Letting Z̃k = X2k · · ·X2k+1 , we see that Zk+1 = ZkZ̃k, and Zk, Z̃k are iid.
Let Zk ≡ (νk, σk, ρk), by induction using the multiplication operation, we find that

νk+1 =
1

µ

(
2νk
ρk
− 1

2

)
= νk −

ρk
4

σk+1 = µ (σkρk)
2

µρk =
2

ρk
(σkρk) = 2σk

ρk+1 =
1

µ
=

ρk
2
.

Since ρ0 = 2, σ0 = 1/2, and ν0 = 0, we find that ρk = 21−k and σk = 2k−1. Furthermore,
νk+1 = νk − 2−k−1 and so νk = −1 + 2−k. Therefore

Zk ≡ (−1 + 2−k, 2k−1, 21−k), and,

Vk ≡ (−1 + 2−k/2, 2k−1τ−21−k

, 21−k/2),

and letting ϵk = 2−k/2, the tail behaviour of the density of Vk satisfies

pk(x) ∼ ckx
−1+ϵk exp

(
−

ϵ−2
k

2τ−2ϵ2k
x2ϵk

)
∼ ckx

−1+ϵk exp

(
− 1

2τ−2ϵ2k

(
xϵk − 1

ϵk

)2
)
≈ ckx

−1 exp

(
−1

2
(log x)2

)
,
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as x→∞, where the approximation improves as k gets larger. The quality of this approximation is
demonstrated in Figure 6.

Figure 6: Estimation of the log-normal density (blue) by the representative density chosen by the
GGA applied to Vk for k = 1, 5, 10 (orange, green, red, respectively), as presented on a log-linear
scale (left) and a log-log scale (right).

D Additional Details for Experiments

The targets in Table 2 and Table 4 are analyzed using the GGA in Appendix C. Note that Inverse
Gamma (“IG”) corresponds to the inverse exponential. We selected closed form targets so that the
Pareto tail index α is known analytically and the quality of theoretical predictions as well as empirical
results can be rigorously evaluated. All experiments are repeated on i7-8700K CPU and GTX 1080
GPU hardware for 100 trials. 1000 samples from the model (as well as the approximation in VI) were
used to compute each gradient estimate. Losses were trained until convergence, which all occurred in
under 104 iterations at a 0.05 learning rate and the Adam [27] optimizer.

E Mellin Transforms

Recall that the Mellin transform of a function f on (0,∞) is given by

Ms[f ] =

∫ ∞

0

xs−1f(x)dx.

Letting pXY denote the density of the product of independent random variables X,Y with respective
densities pX and pY ,Ms[pXY ] =Ms[pX ]Ms[pY ]. There is

Ms[cx
νe−σxρ

] =
cσ−ν/ρ

ρ
σ−s/ρΓ

(
ν

ρ
+

s

ρ

)
.

To facilitate the proof of Proposition 2, we define the Fox H-function

Hm,n
p,q

[
z
∣∣∣(a1,A1),...,(ap,Ap)
(b1,B1),...,(bq,Bq)

]
as the inverse Mellin transform of

Θ(s) = z−s

∏m
j=1 Γ(bj +Bjs) · · ·

∏n
j=1 Γ(1− aj −Ajs)∏q

j=m+1 Γ(1− bj −Bjs)
∏p

j=n+1 Γ(aj +Ajs)
.

An important property of the Fox H-function is its asymptotic behaviour as z → ∞. From [34,
Theorem 1.3],

Hq,0
p,q

[
z
∣∣∣(a1,A1),...,(ap,Ap)
(b1,B1),...,(bq,Bq)

]
∼ cx(δ+ 1

2 )/µ exp(−µβ−1/µx1/µ), as x→∞,

for some constant c > 0, where β =
∏p

j=1(Aj)
−Aj

∏q
j=1 B

Bj

j , µ =
∑q

j=1 Bj −
∑p

j=1 Aj , and
δ =

∑q
j=1 bj −

∑p
j=1 aj +

p−q
2 .
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