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S.1 Additional Simulations about bandwidth parameters

In this section, we verify the robustness of our method in practical scenarios with various bandwidth
parameter choices. In particular, we set the bandwidth parameters to be γx = c0γ

m
x and γy = c0γ

m
y

and vary c0 from 0.5 to 2. Here, γmz represents the median of {‖zi − zj‖}1≤i<j≤n, and z is either x
or y. We repeat the simulations in Examples 1 to 3 of the main paper.

For Example 1, we display the kernel density curves of the test statistics for the two scenarios in
Figures S1-S6 for different choices of c0, respectively. It is clear that the results are consistent
across different values of c0: the normal approximation performs poorly when the dimensions are
small, while the asymptotic distribution progressively converges more accurately to normality as the
dimensions increase.

For Examples 2 and 3, we report the empirical powers for Models (I) to (VI) in Table S1 and Table S2.
We can see that, when there exists linear dependences in Models (I) and (IV), all the empirical powers
can still approach one, which implies that all tests can easily detect linear dependence, even when the
dimension significantly exceeds the sample size. However, when there only exist higher orders of
dependences in the remaining models, we observe that the empirical powers decay as the dimensions
increase. Moreover, there exists a faster decay of powers in Models (III) and (VI) compared with
Models (II) and (V).

It is worth noting that when the dimensions are not too large, i.e., p = 30 in Model (II) and d = 6 in
Model (IV), when the multiplier for bandwidth parameters, denoted as c0, is set to either 1.5 or 2,
the test using a Gaussian kernel exhibits a slight reduction in power. Consequently, as a practical
recommendation, we propose opting for c0 = 1, which aligns with the sample medians precisely.

∗Corresponding author
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(A): p = 5 (B): p = 25 (C): p = 100

Figure S1: The kernel densities of the test statistics under the null hypothesis computed from 5000
simulations for Example 1. We fix q = 1 and vary p from 5, 25, 100. The horizontal axes represent
the observed values of the test statistics, and the vertical axes represent the kernel densities of those
values. We choose two kinds of commonly used kernels to implement the tests, i.e., Gaussian (dashed
line) and Laplacian (dotted line). The bandwidth parameters are set as γx = 0.5γmx and γy = 0.5γmy .
The solid line is the reference curve, which is the density of the standard normal distribution.
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(A): d = 2 (B): d = 5 (C): d = 10

Figure S2: The kernel densities of the test statistics under the null hypothesis computed from 5000
simulations for Example 1. We set p = q = d and vary d from 2, 5, 10. The horizontal axes represent
the observed values of the test statistics, and the vertical axes represent the kernel densities of those
values. We choose two kinds of commonly used kernels to implement the tests, i.e., Gaussian (dashed
line) and Laplacian (dotted line). The bandwidth parameters are set as γx = 0.5γmx and γy = 0.5γmy .
The solid line is the reference curve, which is the density of the standard normal distribution.

S.2 Proof of Theorem 1

We first show that, under the null hypothesis, HSICn(x,y), which is defined in (2), has an equivalent
form as HSIC∗n(x,y), where HSIC∗n(x,y) is defined as

HSIC∗n(x,y) =
1

n(n− 1)

∑
(i1,i2)

Hx(xi1 ,xi2)Hy(yi1 ,yi2)

− 2

n(n− 1)(n− 2)

∑
(i1,i2,i3)

Hx(xi1 ,xi2)Hy(yi1 ,yi3)

+
1

n(n− 1)(n− 2)(n− 3)

∑
(i1,i2,i3,i4)

Hx(xi1 ,xi2)Hy(yi3 ,yi4). (S.1)
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(A): p = 5 (B): p = 25 (C): p = 100

Figure S3: The kernel densities of the test statistics under the null hypothesis computed from 5000
simulations for Example 1. We fix q = 1 and vary p from 5, 25, 100. The horizontal axes represent
the observed values of the test statistics, and the vertical axes represent the kernel densities of those
values. We choose two kinds of commonly used kernels to implement the tests, i.e., Gaussian (dashed
line) and Laplacian (dotted line). The bandwidth parameters are set as γx = 1.5γmx and γy = 1.5γmy .
The solid line is the reference curve, which is the density of the standard normal distribution.
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(A): d = 2 (B): d = 5 (C): d = 10

Figure S4: The kernel densities of the test statistics under the null hypothesis computed from 5000
simulations for Example 1. We set p = q = d and vary d from 2, 5, 10. The horizontal axes represent
the observed values of the test statistics, and the vertical axes represent the kernel densities of those
values. We choose two kinds of commonly used kernels to implement the tests, i.e., Gaussian (dashed
line) and Laplacian (dotted line). The bandwidth parameters are set as γx = 1.5γmx and γy = 1.5γmy .
The solid line is the reference curve, which is the density of the standard normal distribution.

Note that Hx(x1,x2) and Hy(y1,y2) are defined in (3). To verify this, we denote by Ki1 =
E{K(xi1 ,xi2) | xi1} and Li1 = E{L(yi1 ,yi2) | yi1}. Then, by the symmetry of the kernels,
i.e., L(y1,y2) = L(y2,y1), we have Hy(yi1 ,yi2) = L(yi1 ,yi2)− Li1 − Li2 + EL(yi1 ,yi2). In
addition, we have∑

(i1,i2)

Hx(xi1 ,xi2)(Li1 + Li2) =
2

n− 2

∑
(i1,i2,i3)

Hx(xi1 ,xi2)Li1 ,

1

n− 3

∑
(i1,i2,i3,i4)

Hx(xi1 ,xi2)(Li3 + Li4) = 2
∑

(i1,i2,i3)

Hx(xi1 ,xi2)Li3 .

Substituting these two equations into (S.1), we have

HSIC∗n(x,y) =
1

n(n− 1)

∑
(i1,i2)

Hx(xi1 ,xi2)L(yi1 ,yi2)
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(A): p = 5 (B): p = 25 (C): p = 100

Figure S5: The kernel densities of the test statistics under the null hypothesis computed from 5000
simulations for Example 1. We fix q = 1 and vary p from 5, 25, 100. The horizontal axes represent
the observed values of the test statistics, and the vertical axes represent the kernel densities of those
values. We choose two kinds of commonly used kernels to implement the tests, i.e., Gaussian (dashed
line) and Laplacian (dotted line). The bandwidth parameters are set as γx = 2γmx and γy = 2γmy .
The solid line is the reference curve, which is the density of the standard normal distribution.
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Figure S6: The kernel densities of the test statistics under the null hypothesis computed from 5000
simulations for Example 1. We set p = q = d and vary d from 2, 5, 10. The horizontal axes represent
the observed values of the test statistics, and the vertical axes represent the kernel densities of those
values. We choose two kinds of commonly used kernels to implement the tests, i.e., Gaussian (dashed
line) and Laplacian (dotted line). The bandwidth parameters are set as γx = 2γmx and γy = 2γmy .
The solid line is the reference curve, which is the density of the standard normal distribution.

− 2

n(n− 1)(n− 2)

∑
(i1,i2,i3)

Hx(xi1 ,xi2)L(yi1 ,yi3)

+
1

n(n− 1)(n− 2)(n− 3)

∑
(i1,i2,i3,i4)

Hx(xi1 ,xi2)L(yi3 ,yi4). (S.2)

Now with the fact that K(x1,x2) = K(x2,x1) and Hx(xi1 ,xi2) = K(xi1 ,xi2) − Ki1 − Ki2 +
EK(xi1 ,xi2), we have∑

(i1,i2)

(Ki1 +Ki2)L(yi1 ,yi2) =
2

n− 2

∑
(i1,i2,i3)

Ki1L(yi1 ,yi3),

1

n− 3

∑
(i1,i2,i3,i4)

(Ki1 +Ki2)L(yi3 ,yi4) = 2
∑

(i1,i2,i3)

Ki2L(yi1 ,yi3).
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Table S1: The empirical powers of different tests for Models (I)-(III) in Example 2. The significance
level is 0.05. We fix q = 1 and vary p from 30, 50, 100, 200, 500, 1000. The bandwidth parameters
are set as γx = c0γ

m
x , γy = c0γ

m
y and we evaluate different c0 = 0.5, 1, 1.5, 2.

Model c0 Test
p

30 50 100 200 500 1000

(I)

0.5
Gaussian 1.000 1.000 1.000 0.994 0.914 0.710
Laplacian 1.000 1.000 1.000 0.996 0.900 0.696

1
Gaussian 1.000 1.000 1.000 1.000 0.998 0.954
Laplacian 1.000 1.000 1.000 1.000 0.994 0.916

1.5
Gaussian 1.000 1.000 1.000 1.000 1.000 0.992
Laplacian 1.000 1.000 1.000 1.000 0.998 0.950

2
Gaussian 1.000 1.000 1.000 1.000 1.000 0.994
Laplacian 1.000 1.000 1.000 1.000 1.000 0.970

(II)

0.5
Gaussian 1.000 1.000 0.980 0.870 0.532 0.354
Laplacian 1.000 0.986 0.886 0.670 0.358 0.234

1
Gaussian 0.934 0.774 0.484 0.318 0.184 0.132
Laplacian 0.998 0.978 0.834 0.596 0.314 0.234

1.5
Gaussian 0.542 0.394 0.230 0.188 0.102 0.102
Laplacian 0.998 0.976 0.802 0.570 0.300 0.210

2
Gaussian 0.282 0.236 0.140 0.140 0.084 0.080
Laplacian 0.998 0.966 0.786 0.554 0.282 0.212

(III)

0.5
Gaussian 0.050 0.050 0.064 0.052 0.056 0.060
Laplacian 0.058 0.048 0.062 0.048 0.058 0.058

1
Gaussian 0.044 0.050 0.060 0.046 0.060 0.068
Laplacian 0.050 0.046 0.054 0.048 0.054 0.060

1.5
Gaussian 0.042 0.050 0.048 0.046 0.056 0.046
Laplacian 0.046 0.048 0.054 0.044 0.054 0.062

2
Gaussian 0.054 0.052 0.062 0.046 0.060 0.048
Laplacian 0.042 0.046 0.058 0.040 0.062 0.060

Then we can derive that HSIC∗n(x,y) = HSICn(x,y) by substituting these two equations into (S.2).

Now we show that the last two terms in (S.1) are asymptotically negligible compared with the first
term. Specifically, we show that,

HSICn(x,y) =
1

n(n− 1)

∑
i 6=j

Hx(xi,xj)Hy(yi,yj) + op{n−1Hx(x1,x2)Hy(y1,y2)}. (S.3)

It suffices to show that the second and the last term in (S.1) are both second order degenerate. In fact,
by the definition of Hx(xi1 ,xi2) and Hy(yi1 ,yi2), it is straightforward that,

E{Hx(xi1 ,xi2) | xi1} = 0, E{Hy(yi1 ,yi3) | yi1} = 0.

Then, under the independence of x and y,

E{Hx(xi1 ,xi2)Hy(yi1 ,yi3) | xi1 ,yi1} = 0,

E{Hx(xi1 ,xi2)Hy(yi1 ,yi3) | xi2 ,yi2} = 0,

E{Hx(xi1 ,xi2)Hy(yi1 ,yi3) | xi3 ,yi3} = 0.

This implies that the second term in (S.1) is degenerate. In addition, we have

E{Hx(xi1 ,xi2)Hy(yi1 ,yi3) | xi1 ,xi2 ,yi1 ,yi2} = 0,

E{Hx(xi1 ,xi2)Hy(yi1 ,yi3) | xi2 ,xi3 ,yi2 ,yi3} = 0,

E{Hx(xi1 ,xi2)Hy(yi1 ,yi3) | xi1 ,xi3 ,yi1 ,yi3} = 0.
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Table S2: The empirical powers of different tests for Models (IV)-(VI) in Example 3. The significance
level is 0.05. We set p = q = d and vary d from 6, 10, 20, 50, 100, 200. The bandwidth parameters
are set as γx = c0γ

m
x , γy = c0γ

m
y and we evaluate different c0 = 0.5, 1, 1.5, 2.

Model c0 Test
d

6 10 20 50 100 200

(IV)

0.5
Gaussian 1.000 1.000 1.000 1.000 1.000 1.000
Laplacian 1.000 1.000 1.000 1.000 1.000 1.000

1
Gaussian 1.000 1.000 1.000 1.000 1.000 1.000
Laplacian 1.000 1.000 1.000 1.000 1.000 1.000

1.5
Gaussian 1.000 1.000 1.000 1.000 1.000 1.000
Laplacian 1.000 1.000 1.000 1.000 1.000 1.000

2
Gaussian 1.000 1.000 1.000 1.000 1.000 1.000
Laplacian 1.000 1.000 1.000 1.000 1.000 1.000

(V)

0.5
Gaussian 1.000 1.000 1.000 1.000 0.962 0.736
Laplacian 1.000 1.000 1.000 0.998 0.852 0.488

1
Gaussian 1.000 1.000 0.944 0.440 0.242 0.140
Laplacian 1.000 1.000 1.000 0.904 0.578 0.282

1.5
Gaussian 0.972 0.812 0.496 0.210 0.136 0.096
Laplacian 1.000 1.000 0.998 0.760 0.448 0.216

2
Gaussian 0.712 0.496 0.310 0.148 0.104 0.088
Laplacian 1.000 1.000 0.992 0.674 0.390 0.192

(VI)

0.5
Gaussian 0.048 0.068 0.058 0.054 0.054 0.046
Laplacian 0.056 0.064 0.054 0.054 0.056 0.044

1
Gaussian 0.072 0.048 0.048 0.06 0.062 0.042
Laplacian 0.062 0.066 0.046 0.06 0.054 0.042

1.5
Gaussian 0.070 0.056 0.044 0.062 0.060 0.042
Laplacian 0.058 0.062 0.046 0.058 0.058 0.042

2
Gaussian 0.064 0.054 0.046 0.062 0.062 0.044
Laplacian 0.058 0.060 0.048 0.056 0.058 0.042

That is, the second term in (S.1) is second order degenerate. Moreover, when x is independent of y,

E{Hx(x1,x2)Hy(y1,y3)}2 = E{Hx(x1,x2)Hy(y1,y2)}2.

Then the second term in (S.1) is of order op{n−1Hx(x1,x2)Hy(y1,y2)}. Similarly, we can also
derive that the third term in (S.1) is also of order op{n−1Hx(x1,x2)Hy(y1,y2)}. Therefore, (S.3)
holds true, and HSICn(x,y) is asymptotically equal to a second order U -statistic.

In what follows, we show that, the standardized version of HSICn(x,y) converges in distribution
to a standard normal distribution. First of all, we introduce several additional notations. Let
H(x1,y1,x2,y2) be the product of Hx(x1,x2) and Hx(x1,y2), and G(x1,y1,x2,y2) be defined
as

G(x1,y1,x2,y2) = E{H(x3,y3,x1,y1)H(x3,y3,x2,y2) | x1,y1,x2,y2}.

We further define Un as

Un =
1

n(n− 1)

∑
i 6=j

Hx(xi,xj)Hy(yi,yj).

Then Un is a degenerate U -statistic because

E{Hx(xi1 ,xi2)Hy(yi1 ,yi2) | xi1 ,yi1} = 0.

6



Then we have Un is of order Op{n−1Hx(x1,x2)Hy(y1,y2)}. We substitute Un into (S.3), we
obtain that HSICn(x,y) = Un + op(Un). Therefore, it suffices to study the asymptotic property for
Un.

According to Lemma 3.2 of Zheng (1996), if E{H2(x1,y1,x2,y2)} <∞, and

E{G2(x1,y1,x2,y2)}+ n−1E{H4(x1,y1,x2,y2)}
E2{H2(x1,y1,x2,y2)}

→ 0, (S.4)

nUn/[2E{H2(x1,y1,x2,y2)}]1/2 is asymptotically standard normal. Then with the Slutsky’s The-
orem, n HSICn(x,y)/[2E{H2(x1,y1,x2,y2)}]1/2 also has a limiting standard normal distribution.
When x and y are independent, it follows that

E{H2(x1,y1,x2,y2)} = E{H2
x(x1,x2)H

2
y(y1,y2)} = E{H2

x(x1,x2)}E{H2
y(y1,y2)}.

According to Lyons (2013), we have HSIC(x,x) = E{H2
x(x1,x2)} and HSIC(y,y) =

E{H2
y(y1,y2)}. In addition, by Lemma 1 of Gao et al. (2021), HSICn(x,x)/HSIC(x,x) and

HSICn(y,y)/HSIC(y,y) both converge in probability to one under assumption (4). Then we con-
clude that 2−1/2n hCorr2n(x,y) converges in distribution to a standard normal distribution with the
Slutsky’s Theorem.

Now it remains to verify (S.4). Under the null hypothesis, we have

G(x1,y1,x2,y2) = E{H(x3,y3,x1,y1)H(x3,y3,x2,y2) | x1,y1,x2,y2}
= E{Hx(x1,x3)Hx(x2,x3) | x1,x2}E{Hy(y1,y3)Hy(y2,y3) | y1,y2},

which equals the product of Gx(x1,x2) and Gy(y1,y2). Recall that we have shown

E{H2(x1,y1,x2,y2)} = E{H2
x(x1,x2)}E{H2

y(y1,y2)} = HSIC(x,x)HSIC(y,y).

Then we have

E{G2(x1,y1,x2,y2)}
E2{H2(x1,y1,x2,y2)}

=
E{G2

x(x1,x2)}E{G2
y(y1,y2)}

{HSIC(x,x)HSIC(y,y)}2
,

which tends to 0 by assumption (4). In addition,

n−1E{H4(x1,y1,x2,y2)}
E2{H2(x1,y1,x2,y2)}

=
E{H4

x(x1,x2)}E{H4
y(y1,y2)}

n{HSIC(x,x)HSIC(y,y)}2
→ 0.

Therefore, we have verified (S.4), and the proof is completed.

S.3 Proof of Theorem 2

Recall that the squared Hilbert-Schmidt correlation hCorr2(x,y) is estimated as

hCorr2n(x,y)
def
=

HSICn(x,y)√
HSICn(x,x)HSICn(y,y)

.

We deal with the denominator and the numerator, respectively. For the denominator, we show
that HSIC(z, z) � d−κz and the ratio HSICn(z, z)/HSIC(z, z) converges in probability to 1. By
assumption (A1), we have

E(‖z∗1 − z∗2‖2 − E‖z∗1 − z∗2‖2)2k � d−kκz .

Then with Taylor’s expansion and assumption (A2), we have

k0(‖z∗1 − z∗2‖2) = k0(E‖z∗1 − z∗2‖2) + k′0(E‖z∗1 − z∗2‖2)(‖z∗1 − z∗2‖2 − E‖z∗1 − z∗2‖2) +Op(d
−κz).

Recall the definition of Hz(z1, z2), we derive that

Hz(z1, z2) = k′0(E‖z∗1 − z∗2‖2)
{
‖z∗1 − z∗2‖2 − E(‖z∗1 − z∗2‖2 | z∗1)

−E(‖z∗1 − z∗2‖2 | z∗2) + E(‖z∗1 − z∗2‖2)
}
+Op(d

−κz)

= 2k′0(E‖z∗1 − z∗2‖2)(z∗1 − Ez∗)T(z∗2 − Ez∗) +Op(d
−κz).
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Because k′0(E‖z∗1 − z∗2‖2) is bounded away from 0 to infinity, and Ez∗ = 0, by assumption (A1),
we have

E{H2k
z (z1, z2)} � d−kκz .

This implies that HSIC(z, z) = E{H2
z (z1, z2)} � d−κz and E{H4

z (z1, z2)} � d−2κz . In addition,
we conclude that

E{H4
x(x1,x2)}E{H4

y(y1,y2)}
n{HSIC(x,x)HSIC(y,y)}2

→ 0.

This guarantees the ratio consistency according to Lemma 1 of Gao et al. (2021). That is,
HSICn(z, z)/HSIC(z, z) converges in probability to 1. Therefore, to show n hCorr2n(x,y)→∞
in probability, it suffices to show that npκx/2qκy/2HSICn(x,y)→∞.

In what follows, we study the numerator of hCorr2n(x,y), i.e., HSICn(x,y). We show that,
npκx/2qκy/2HSICn(x,y)→∞ under the assumption of n1/2pκx/2qκy/2HSIC(x,y)→∞.

Recall that we have shown in (S.1) in the proof of Theorem 1 that, HSICn(x,y) has an alternative
expression,

HSICn(x,y) =
1

n(n− 1)

∑
(i1,i2)

Hx(xi1 ,xi2)Hy(yi1 ,yi2)

− 2

n(n− 1)(n− 2)

∑
(i1,i2,i3)

Hx(xi1 ,xi2)Hy(yi1 ,yi3)

+
1

n(n− 1)(n− 2)(n− 3)

∑
(i1,i2,i3,i4)

Hx(xi1 ,xi2)Hy(yi3 ,yi4).

We define the three summations in the above display as Un1, Un2, and Un3, respectively. We first
show that Un2 and Un3 are both of order Op(n−1p−κx/2q−κy/2). In fact, because

E{Hx(xi1 ,xi2)Hy(yi1 ,yi3) | xi1 ,yi1 ,xi2} = Hx(xi1 ,xi2)E{Hy(yi1 ,yi3) | yi1} = 0,

E{Hx(xi1 ,xi2)Hy(yi1 ,yi3) | xi2 ,yi1 ,yi3} = Hy(yi1 ,yi3)E{Hx(xi1 ,xi2) | xi2} = 0,

we have

E{Hx(xi1 ,xi2)Hy(yi1 ,yi3) | xi1 ,yi1} = 0,

E{Hx(xi1 ,xi2)Hy(yi1 ,yi3) | xi2} = 0,

E{Hx(xi1 ,xi2)Hy(yi1 ,yi3) | yi3} = 0.

This implies that Un2 is a degenerate U -statistic with mean 0. In addition, by the Cauchy-Schwarz
inequality, we obtain that

var{Hx(xi1 ,xi2)Hy(yi1 ,yi3)} = E{H2
x(xi1 ,xi2)H

2
y(yi1 ,yi3)}

≤ E{H2
x(x1,x2)}E{H2

y(y1,y2)}+ [var{H2
x(x1,x2)}var{H2

y(y1,y2)}]1/2.

We have shown that E{H2k
z (z1, z2)} � d−kκz . Then we have

var{H2
z (z1, z2)} ≤ E{H4

z (z1, z2)} = O(d−2κz).

Therefore, the variance of Hx(xi1 ,xi2)Hy(yi1 ,yi3) is bounded by O(p−κxq−κy). Subsequently,
we have Un2 is of order Op(n−1p−κx/2q−κy/2).

Similarly, we can derive that Un3 is also with mean 0 and of order Op(n−1p−κx/2q−κy/2). Now it
remains to calculate the order of Un1. Similar as bounding the variance of Hx(xi1 ,xi2)Hy(yi1 ,yi3),
we also have, the variance of Hx(xi1 ,xi2)Hy(yi1 ,yi2) is bounded by O(p−κxq−κy). Then under
the alternative hypothesis,

Un1 = E{Hx(x1,x2)Hy(y1,y2)}+Op(n
−1/2p−κx/2q−κy/2).

Combing with the orders of Un2 and Un3, we obtain that

HSICn(x,y) = HSIC(x,y) +Op(n
−1/2p−κx/2q−κy/2).
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Therefore, when n1/2pκx/2qκy/2HSIC(x,y)→∞,

HSICn(x,y) = HSIC(x,y){1 + op(1)}.

Subsequently, we have

npκx/2qκy/2HSICn(x,y) = npκx/2qκy/2HSIC(x,y){1 + op(1)},

which converges in probability to infinity. Recall that we have shown HSIC(z, z) =
E{H2

z (z1, z2)} � d−κz . Then we have

hCorr2(x,y) =
HSIC(x,y)√

HSIC(x,x)HSIC(y,y)
� pκx/2qκy/2HSIC(x,y).

Therefore, n1/2pκx/2qκy/2HSIC(x,y) → ∞ is equivalent to n1/2hCorr2(x,y) → ∞. This com-
pletes the proof of Theorem 2.

S.4 Proof of Proposition 1

We have shown in the proof of Theorem 2 that

E{H2k
z (z1, z2)} � d−kκz .

Then we conclude that HSIC(z, z) = E{H2
z (z1, z2)} � d−κz , which completes the proof of

Proposition 1.

S.5 Proof of Lemma 1

Let l̃(·) = l(‖ · ‖/γy). Then the kernel L(y1,y2) can be written as l̃(y1−y2). By applying Theorem
9 of Sriperumbudur et al. (2010), we have l̃(·)/l̃(0) is the characteristic function of a random vector
supported on Rq . Then L(y1,y2) = l̃(y1 − y2) can be written as

L(y1,y2) = l̃(0)

∫
exp{i(y1 − y2)

Tu}ω(u)du,

where ω(u) is the p.d.f. of a random vector supported on Rq . Then we obtain that

MD2(x | y) = E{(x1 − Ex)T(x2 − Ex)L(y1,y2)}

= l̃(0)E

[
(x1 − Ex)T(x2 − Ex)

∫
exp{i(y1 − y2)

Tu}ω(u)du
]

= l̃(0)

∫
‖E{(x− Ex) exp(iyTu)}‖2ω(u)du.

Because ω(u) is the p.d.f. of a random vector supported on Rq, we have ω(u) > 0 for all u ∈ Rq.
Then we have MD2(x | y) = 0 if and only if

E{(x− Ex) exp(iyTu)} = 0

for all u ∈ Rq , which is equivalent to E(x | y) = Ex. This completes the proof.

S.6 Proof of Theorem 3

First of all, because we have assumed that Ez∗ = 0 without loss of generality, then

E(‖z∗1 − z∗2‖2 − E‖z∗1 − z∗2‖2)2k = E{‖z∗1‖2 − E(‖z∗‖2) + ‖z∗2‖2 − E(‖z∗‖2)− 2z∗1
Tz∗2}2k.

which is of order O(d−kκz) by Assumption (A1). Then we have, for each s ∈ N+,

(‖z∗1 − z∗2‖2 − E‖z∗1 − z∗2‖2)s = Op(d
−sκz/2).

Then with Taylor’s expansion, we have,

K(x1,x2) =

s∑
i=0

(i!)−1k
(i)
0 (‖x∗1 − x∗2‖2 − E‖x∗1 − x∗2‖2)i + op(p

−sκx/2), (S.5)
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where k(i)0 is the i-th derivative of k0(·) evaluated at E‖x∗1 − x∗2‖2. By the multinomial theorem,
with the fact that Ez∗ = 0, we have

(‖x∗1 − x∗2‖2 − E‖x∗1 − x∗2‖2)i

=
i!

a!b!c!

∑
a+b+c=i

{‖x∗1‖2 − E(‖x∗1‖2)}a{‖x∗2‖2 − E(‖x∗2‖2)}b(−2x∗1
Tx∗2)

c. (S.6)

By the definition of HSIC(x,y), it can be verified that

HSIC(x,y) = cov{Hx(x1,x2)Hy(y1,y2)} = E{K(x1,x2)Hy(y1,y2)}.
Combing this with (S.5) and (S.6), when p→∞ and q is fixed, we obtain that

HSIC(x,y) =

s∑
i=0

(i!)−1k
(i)
0

∑
a+b+c=i

i!

a!b!c!
E

[
{‖x∗1‖2 − E(‖x∗1‖2)}a

{‖x∗2‖2 − E(‖x∗2‖2)}b(−2x∗1
Tx∗2)

cHy(y1,y2)

]
+ op(p

−sκx/2). (S.7)

Because E(x⊗t | y) = E(x⊗t) for all t < s, we have, as long as 2a+ c < s,

E
[
{‖x∗1‖2 − E(‖x∗1‖2)}a{‖x∗2‖2 − E(‖x∗2‖2)}b(−2x∗1

Tx∗2)
cHy(y1,y2) | (y1,x2,y2)

]
= {‖x∗2‖2 − E(‖x∗2‖2)}bHy(y1,y2)E

[
{‖x∗1‖2 − E(‖x∗1‖2)}a

]
E{(−2x∗1

Tx∗2)
c | x2}.

Then with the law of iterated expectation, as long as 2a+ c < s, we have

E
[
{‖x∗1‖2 − E(‖x∗1‖2)}a{‖x∗2‖2 − E(‖x∗2‖2)}b(−2x∗1

Tx∗2)
cHy(y1,y2)

]
= E

[
{‖x∗1‖2 − E(‖x∗1‖2)}a

]
E
[
{‖x∗2‖2 − E(‖x∗2‖2)}bHy(y1,y2)E{(−2x∗1

Tx∗2)
c | x2}

]
.

By using the law of iterated expectation again, we have

E
[
{‖x∗2‖2 − E(‖x∗2‖2)}bHy(y1,y2)E{(−2x∗1

Tx∗2)
c | x2}

]
= E

[
{‖x∗2‖2 − E(‖x∗2‖2)}bE{(−2x∗1

Tx∗2)
c | x2}E {Hy(y1,y2) | (x2,y2)}

]
,

which equals zero because E{Hy(y1,y2) | (x2,y2)} = 0. Therefore, we conclude that

E
[
{‖x∗1‖2 − E(‖x∗1‖2)}a{‖x∗2‖2 − E(‖x∗2‖2)}b(−2x∗1

Tx∗2)
cHy(y1,y2)

]
= 0 (S.8)

for all 2a+ c < s. Similarly, (S.8) also holds true as long as 2b+ c < s. Therefore, we have, when
2min(a, b) + c < s, (S.8) holds true. It further implies that (S.8) holds true when a + b + c < s.
This together with (S.7), imply that

HSIC(x,y) = k
(s)
0

∑
2a+c=s

1

a!a!c!
E

[
{‖x∗1‖2 − E(‖x∗1‖2)}a

{‖x∗2‖2 − E(‖x∗2‖2)}a(−2x∗1
Tx∗2)

cHy(y1,y2)

]
+ o(p−sκx/2). (S.9)

In addition, HSIC(x,y) is of order O(p−sκx/2). Moreover, similar to deriving (S.8), we can show
that

E
{
(‖x∗1‖2)a1(‖x∗2‖2)a2(−2x∗1

Tx∗2)
cHy(y1,y2)

}
= 0

for all a1 + a2 + c < s. Then (S.9) can be further reduced to

HSIC(x,y) = k
(s)
0

∑
2a+c=s

1

a!a!c!
E
{
‖x∗1‖2a‖x∗2‖2a(−2x∗1

Tx∗2)
cHy(y1,y2)

}
+ o(p−sκx/2).

By the definition of MD2(x | y), we have

MD2(x | y) = E{(x1 − Ex)T(x2 − Ex)L(y1,y2)} = E{xT
1x2Hy(y1,y2)}.

Then by noting that (x∗1
Tx∗2)

c = {x∗1
⊗c}Tx∗2

⊗c, we have

HSIC(x,y) = k
(s)
0

∑
2a+c=s

(−2)c

a!a!c!
MD2(x∗⊗c‖x∗‖2a | y) + o(p−sκx/2).
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This completes the proof of the first assertion.

When both dimensions p and q diverge to infinity, we first combine (S.5) and (S.6), as well as the fact
that (x∗1

Tx∗2)
c = {x∗1

⊗c}Tx∗2
⊗c, to obtain that for each s1 ∈ N+,

K(x1,x2) =

s1∑
i=0

k
(i)
0

a1!b1!c1!

∑
a1+b1+c1=i

(−2)c1
[
{‖x∗1‖2 − E(‖x∗1‖2)}a1{x∗1

⊗c1}T

{‖x∗2‖2 − E(‖x∗2‖2)}b1x∗2
⊗c1
]
+ op(p

−s1κx/2)

=

s1∑
i=0

∑
a1+b1+c1=i

k
(i)
0 (−2)c1
a1!b1!c1!

h(x∗1, a1, c1)
Th(x∗2, b1, c1) + op(p

−s1κx/2),

where h(x∗1, a1, c1) = {‖x∗1‖2 − E(‖x∗1‖2)}a1{x∗1
⊗c1}. Then by the definition of Hx(x1,x2) in

(3), we have

Hx(x1,x2) =

s1∑
i=0

∑
a1+b1+c1=i

k
(i)
0 (−2)c1
a1!b1!c1!

[
{h(x∗1, a1, c1)− Eh(x∗1, a1, c1)}T

{h(x∗2, b1, c1)− Eh(x∗2, b1, c1)}
]
+ op(p

−s1κx/2).

With similar arguments, we can also derive that, for each s2 ∈ N+,

Hy(y1,y2) =

s2∑
j=0

∑
a2+b2+c2=j

l
(j)
0 (−2)c2
a2!b2!c2!

[
{h(y∗1, a2, c2)− Eh(y∗1, a2, c2)}T

{h(y∗2, b2, c2)− Eh(y∗2, b2, c2)}
]
+ op(q

−s2κy/2),

where l(j)0 is the j-th derivative of l0(·) evaluated at E‖y∗1 − y∗2‖2. We now make an assertion that if
cov(x⊗t1 ,y⊗t2) 6= 0 only when t1 ≥ s1 ∈ N+ and t2 ≥ s2 ∈ N+, we have

E

[
{h(x∗1, a1, c1)− Eh(x∗1, a1, c1)}T{h(x∗2, b1, c1)− Eh(x∗2, b1, c1)}

{h(y∗1, a2, c2)− Eh(y∗1, a2, c2)}T{h(y∗2, b2, c2)− Eh(y∗2, b2, c2)}
]
= 0 (S.10)

as long as either 2min(a1, b1) + c1 < s1 or 2min(a2, b2) + c2 < s2 holds true. With (S.10), it is
straightforward that HSIC(x,y) = E{Hx(x1,x2)Hy(y1,y2)} equals

∑
2a1+c1=s1

k
(s1)
0 (−2)c1
a1!a1!c1!

∑
2a2+c2=s2

l
(s2)
0 (−2)c2
a2!a2!c2!

E

[
{h(x∗2, a1, c1)− Eh(x∗2, a1, c1)}T

{h(x∗1, a1, c1)− Eh(x∗1, a1, c1)}{h(y∗1, a2, c2)− Eh(y∗1, a2, c2)}T

{h(y∗2, a2, c2)− Eh(y∗2, a2, c2)}
]
+ o(p−s1κx/2q−s2κy/2).

In addition, the leading term is clearly of order O(p−s1κx/2q−s2κy/2). Let (u1,v1) and (u2,v2) be
two independent copies of (u,v) with arbitrary given dimensions. Because

E{(x2 − Ex)T(x1 − Ex)(y1 − Ey)T(y2 − Ey)}
= tr[E{(x1 − Ex)(y1 − Ey)T(y2 − Ey)(x2 − Ex)T}],

which equals ‖cov(x,yT)‖2F . Then we have, the leading term in HSIC(x,y) further equals

∑
2a1+c1=s1

k
(s1)
0 (−2)c1
a1!a1!c1!

∑
2a2+c2=s2

l
(s2)
0 (−2)c2
a2!a2!c2!

∥∥∥∥cov{h(x∗, a1, c1), h(y∗, a2, c2)T}
∥∥∥∥2
F

.
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Recall that h(x∗, a1, c1) = {‖x∗‖2 − E(‖x∗‖2)}a1{x∗⊗c1}. It is clear that

cov{h(x∗, a1, c1), h(y∗, a2, c2)T} = cov{‖x∗‖2a1x∗⊗c1 , ‖y∗‖2a2y∗⊗c2 T}

if cov(x⊗t1 ,y⊗t2) 6= 0 only when t1 ≥ s1 ∈ N+ and t2 ≥ s2 ∈ N+. Then we conclude that

HSIC(x,y) =
∑

2a1+c1=s1

∑
2a2+c2=s2

k
(s1)
0 (−2)c1
a1!a1!c1!

l
(s2)
0 (−2)c2
a2!a2!c2!∥∥∥∥cov{‖x∗‖2a1x∗⊗c1 , ‖y∗‖2a2y∗⊗c2T}

∥∥∥∥2
F

+ o(p−s1κx/2q−s2κy/2).

Now it remains to verify (S.10). Without loss of generality, we assume a1 ≤ b1. Then when
2min(a1, b1) + c1 = 2a1 + c1 < s1,

E

[
{h(x∗1, a1, c1)− Eh(x∗1, a1, c1)}{h(y∗1, a2, c2)− Eh(y∗1, a2, c2)}T

]
= 0.

With the law of iterated expectation, (S.10) holds true. Similarly, we have, (S.10) also holds true when
2min(a2, b2)+ c2 < s2. This verifies that (S.10) holds true as long as either 2min(a1, b1)+ c1 < s1
or 2min(a2, b2) + c2 < s2 holds true. Therefore, the proof of the second part is completed.
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