
Penguin: Parallel-Packed Homomorphic Encryption
for Fast Graph Convolutional Network Inference

Ran Ran
North Carolina State University

rran@ncsu.edu

Nuo Xu
Lehigh University

nux219@lehigh.edu

Tao Liu
Lawrence Technological University

tliu3@ltu.edu

Wei Wang
Anonym, Inc.

wei@anonymco.com

Gang Quan
Florida International University

gaquan@fiu.edu

Wujie Wen
North Carolina State University

wwen2@ncsu.edu

Abstract

The marriage of Graph Convolutional Network (GCN) and Homomorphic En-
cryption (HE) enables the inference of graph data on the cloud with significantly
enhanced client data privacy. However, the tremendous computation and memory
overhead associated with HE operations challenges the practicality of HE-based
GCN inference. GCN inference involves a sequence of expensive matrix-matrix
multiplications, and we observe that directly applying the state-of-the-art HE-based
secure matrix-matrix multiplication solutions to accelerate HE-GCN inference
is far less efficient as it does not exploit the unique aggregation mechanism of
two-dimension graph node-features in GCN layer computation. As a result, in this
paper, we propose a novel HE-based ciphertext packing technique, i.e.,Penguin,
that can take advantage of the unique computation pattern during the HE-GCN
inference to significantly reduce the computation and memory overhead associated
with HE operations. Specifically, Penguin employs (i) an effective two-dimension
parallel packing technique for feature ciphertext with optimal graph node parti-
tioning and graph feature interleaving, and (ii) an interleaved assembly technique
that can effectively make use of blank slots to merge ciphertexts after feature
reduction and thus significantly reduce costly rotation operations. We perform
detailed theoretical analysis to support our arguments. In the meantime, our ex-
perimental results also show that Penguin can achieve up to ∼ 10× speedup and
around ∼ 79% reduction in computational memory overhead, significantly out-
performing state-of-the-art solutions. To the best of our knowledge, this is the
first work that can ensure the protection of both graph structure and features when
accelerating HE-GCN inference on encrypted data. Our code is publicly available
at https://github.com/ranran0523/Penguin.

1 Introduction

Graph Convolution Neural Networks (GCNs) have recently demonstrated phenomenal performance
for many privacy-sensitive applications such as social networks [34], cross-domain recommendation
systems [35], and personal healthcare [18]. A popular solution for clients seeking to leverage these
advanced GCN models is to utilize cloud-based inference services. However, clients often hesitate
to share their graph data with the public cloud due to concerns about sensitive information, such as
graph structure and node features that reveal personal social relationships and medical records. To
address this privacy concern, one viable approach is to adopt the Homomorphic Encryption (HE)
scheme [3, 6, 7]. By performing the entire inference computation on the cloud using encrypted data,

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/ranran0523/Penguin

Latency
(s)

Latency(ms)

Rotation

PMult

Add

6.2

0.297

0.318

6.44CMult
Rotation+CMult

PMult+Add
Non-Linear

(a) (b)

Linear

96.70% 99.98%

Linear
Latency

Total
Latency

(c)

Latency Memory

Feature-wise
Node-wise

R
el

at
iv

e
R

at
io

Node-Feature-joint
1.0

0.76

0.21
0.35

0.09

Figure 1: (a) Latency comparison of different HE operations under same encryption parameter and
hardware environment; (b) Latency breakdown of linear/nonlinear HE operations in a typical GCN
layer computation. (Detailed settings in Sec. 4.1). (c) Single optimization and wasted ciphertext slots
have a negative effect on memory utilization and computation latency.

the privacy of client data is significantly enhanced. This enables privacy-preserving GCN inferences
while ensuring that sensitive information remains confidential.

While the idea of embedding HE into GCN inference on graph data seems appealing, it faces several
significant challenges: Firstly, similar to HE-based CNN inference on non-graph data (such as
for using convolutional neural networks (CNN) [10, 4, 8, 23, 2, 19, 26, 17, 14]), the enhanced
privacy would come at the cost of the tremendously escalated computational overhead associated
with HE operations (e.g., ciphertext (ct) rotations/multiplications, additions), which could be orders
of magnitude higher than the counterparts in the non-encrypted computation [10, 29, 16]. Secondly,
existing solutions focusing on alleviating computation overhead of HE-based CNN inference may
not be applicable or optimal to GCNs due to computing pattern differences between the CNN
and GCN [21]. For example, a GCN layer’s computation is dominated by the special consecutive
matrix multiplications (A ·X ·W) for 2-dimensional feature-node aggregation–feature aggregation
via multiplying a high dimensional feature matrix X with weight matrix W , followed by graph
node aggregation with A, while a CNN layer’s computation is bottlenecked by multi-channel 2D
convolutions. Thirdly, simply treating the above critical matrix operations in HE-based GCN
inference as a traditional encrypted matrix-matrix multiplication (MM) problem for speedup is
sub-optimal because: 1) state-of-the-art (SOTA) HE-based MM acceleration often requires the matrix
to satisfy some special properties, e.g. square matrix with size 64× 64 [15], while GCN matrices
like feature matrix X are typically irregular depending on applications (i.e. 2708 × 1433 in Cora
dataset [32]); 2) SOTA solutions focus on a one-time MM without considering the consecutive MMs
incurred by the two-dimensional feature-node aggregation, as well as the further processing of MMs’
result in the next GCN layer. This leads to inefficient ciphertext space utilization and unnecessary HE
operations, which further translates into prolonged HE-GCN inference, as we shall show in Sec. 4.2.

To better understand the computation cost of HE operations that dominate the HE-GCN inference
latency, we profile the latency of different HE operations using one GCN layer with 32 hidden units
and the Cora dataset with 2708 graph nodes and 1433 (32) input (output) features per node. All
HE operations are defined in Sec. 2. For generality, we assume both feature matrix and adjacency
matrix are encrypted, which is a typical case in inductive learning (e.g. dynamic graph structure in
link prediction) [22]. Without loss of generality, the same indexed features from different nodes are
packed as a ciphertext (feature-wise packing) and the encrypted matrices are diagonal-encoded for
MMs (detailed settings in Sec. 4.1). As Figure 1 (a) shows, first, the latency of ciphertext rotation
and ciphertext multiplication (CMult) can be much higher than other operations like plaintext (pt)
multiplication (PMult) or Addition, e.g. > 20× Rotation v.s. PMult. Furthermore, about > 99%
latency comes from the linear operations (mainly HE rotation and CMult due to the consecutive MMs),
instead of the nonlinear operations (ReLU replaced by a square function) due to feature reduction
in GCN (from 1433 input features to 32 output features). Meanwhile, for linear latency, Rotation
and CMult dominate the latency (e.g. > 96% of total) as the size of the adjacency matrix could
be quite large (Cora: 2708×2708) in the GCN problem. Last, we profile the latencies of different
ciphertext packing formats under the same evaluation setup as (b) in Figure 1 (c). From the profiling
result in Figure 1 (c), either the node-wise packing format (e.g. 1 ciphertext contains one node’s 1433
features) or the feature-wise packing format (e.g. 1 ciphertext contains the same indexed features
from 2707 nodes) could not effectively perform the HE-GCN inference. With node-feature-joint

2

packing format (e.g. 1 ciphertext packs 32 features and 128 nodes) by our proposed Two-Dimension
Parallel-Packing (see Sec. 3.2), the ciphertext size is fully exploited, and the total HE operation count
reaches a minimum, leading to significantly reduced latency and memory cost. These results indicate
that the key to accelerating the HE-based GCN inference is to significantly reduce the rotation and
CMult operations with a GCN-dedicated ciphertext packing format.

To this end, we propose Penguin, a novel HE ciphertext packing framework dedicated to accelerating
GCN inference with the consideration of encrypting both graph structure and features simul-
taneously (both adjacency matrix A and input feature matrix X). The driving vision of Penguin
is: feature ciphertext packing (X) for efficient HE-based GCN inference needs to be designed in a
manner that is aware of the unique GCN computation–both the left-side graph node aggregation
AX and right-side feature aggregation (XW), instead of optimization in one direction (either AX
or XW). In this way, the whole ciphertext space can be efficiently utilized with minimized slot
waste, enabling the significant reduction of ciphertext number (memory overhead) as well as the
expensive HE rotation and CMult operations under the single instruction multiple data (SIMD)
architecture. Our major contributions are three-fold: 1) We propose an efficient two-dimension
parallel packing technique for ciphertext via optimal graph node partition and feature interleaving.
By performing the feature-level aggregation first and formulating the HE computation overhead
as a constrained optimization problem, we analytically obtain the best feature-node partition that
can maximize the usage of ciphertext space and minimize the costly HE operations. Experimental
results are well consistent with theoretical analysis. 2) We propose an interleaved assembling (IA)
technique to efficiently merge ciphertexts with blank slots incurred by feature dimension reduction in
the feature aggregation stage. This extra-level optimization further significantly reduces the number
of ciphertexts and associated HE operations. 3) We comprehensively evaluate our proposed Penguin
for CKKS-based GCN inference using Cora-based graph node classification, Citeseer-based link
prediction, and Pubmed-based link prediction. Results show that our method achieves by up to
about 10× inference speedup and 79% memory overhead reduction, significantly outperforming the
state-of-the-art solutions. To the best of our knowledge, this is the first work focusing on accelerating
the HE-based private graph convolutional neural network inference on encrypted graph data, of
which both the sensitive graph features and graph structure are protected.

2 Preliminary

CKKS Homomorphic Encryption Scheme. Homomorphic Encryption (HE) allows computations
on encrypted data. HE has different categories according to the different computation types they
support. The Leveled HE (LHE) schemes support a limited number of additions or multiplications
while Fully HE (FHE) allows an arbitrary number of computations using a bootstrapping procedure
that can effectively refresh the ciphertext and obtain a new ciphertext that encrypts the same value
but has lower noise [9]. In this work, we focus on reducing the number of bottlenecked operations in
CKKS–one of the promising LHEs, without considering the costly bootstrapping.

CKKS [6] is an LHE scheme and its security is based on the hardness of ring learning with errors
(RLWE) problem. CKKS allows arithmetic operations on encrypted data over fixed-point numbers
with predefined precision, which makes it an ideal candidate for performing machine learning tasks
where most of the computations are approximate. The supported homomorphic operations include
ciphertext addition Add ∼ (ct1 + ct2), ciphertext multiplication CMult ∼ (ct1 × ct2), plaintext
multiplication PMult ∼ (ct × pt), ciphertext Rotation ∼ ρ(ct, k). The rotation is to apply Galois
automorphisms of the cyclotomic extension to the plaintext polynomials in encrypted form resulting
in a cyclic shift of the slot vector. Among these four operations, Rotation and CMult are substantially
slower (∼ 20× slower) than ciphertext-plaintext addition and multiplication as shown in our runtime
performance of CKKS in Figure 1 due to the expensive key-switching operation [23].

Graph Convolution Neural Network. To extract the hidden graph features H , the 2-dimensional
feature-node aggregation of a typical GCN layer can be often abstracted as [21]:

H = σ(D̃j
− 1

2 ÃjD̃j
− 1

2XW) (1)

Where X ∈ RN×F is the input feature matrix. Wj ∈ RF×F ′
represents weight parameters to

transform the input features from an input dimension F to an output dimension F ′ (feature level
aggregation). D̃j . Ãj is the adjacency matrix with self-loop. The XW term is implemented by

3

1 1 1 0 0 0 0 0

0 0 0 1 0 0 0 0

Feature-Aggregation Node-Aggregation

Figure 2: Feature-Optimized Packing Ciphertext Computation Flow.

a fully-connected (FC) layer (node level aggregation) and then multiplied with the normalized

adjacency matrix D̃j
− 1

2 ÃjD̃j
− 1

2 . Finally, a non-linear activation function σ (e.g. ReLU) is applied
to get one GCN layer’s output feature matrix H . Throughout this work, we refer A as the normalized
adjacency matrix since normalization could be absorbed in a pre-processing step.

Threat Model. We adopt a threat model setting consistent with prior works [10, 15, 4, 8, 19, 23, 28].
A client uploads private and sensitive data to the cloud for obtaining the online machine learning
model prediction results. The cloud server is semi-honest (e.g. honest but curious). To ensure data
privacy, the client encrypts their own data by HE and decrypts this inference result by their private
key. In this work, we focus on encrypting both graph node features X and the normalized adjacency
matrix A. The clients run the decoder of GAE [22] at their end because this step does not involve
trained model parameters on the cloud server.

3 Method

Overview. The GCN inference A ·X ·W can be separated into the two-dimension (A ·X on the
nodes and X ·W on the features) aggregation on feature matrix X . When we perform HE matrix
multiplication on the encrypted feature matrix (ciphertexts), it is inevitable that we need to perform
HE rotation on the same ciphertext. Unfortunately, the rotation operation not only incurs high latency
but also generates a huge number of ciphertext copies that consume a large amount of memory space.
In this section, we propose a holistic solution set to systematically address these issues.

In order to effectively reduce the number of ciphertexts involved in HE computation, our design is
built upon the feature-wise packing since multiplying W often leads to a lower feature dimension.
However, for non-densely packed ciphertexts, feature-wise packing is further subject to the data
alignment issue, resulting in extra rotations. To overcome this challenge, we propose the two-
dimension parallel-packing. In addition, considering that the layer-wise feature number reduction
would result in many wasted slots, we further propose the interleaved assembling to efficiently merge
such ciphertexts.

3.1 Motivation of Feature-Oriented Ciphertext Packing

The major inference computation in GCN can be illustrated as A ·X ·W , where A ∈ RN×N is the
normalized adjacency matrix used for node-wise aggregation, X ∈ RN×F is the input feature matrix,
and W ∈ RF×F ′

is the weight matrix used for feature-wise aggregation. Apparently, we can choose
A · X or X · W as the first step, which will not change the final product. However, considering
that matrix X is encrypted as ciphertexts, the order of computation will affect the efficiency since
the ciphertexts with fewer dimensions will reduce the required HE operations and copies of the
ciphertexts. For example, if F ′ < F , we first perform X ·W to produce an intermediate product with
fewer dimensions, i.e., RN×F ′

. This will reduce the computational overhead and latency in the next
step A ·X . On the contrary, if F < F ′, we first perform A ·X .

We explore two ciphertext packing design options that could lead to minimized computational
overhead of a single-dimension aggregation (either graph node or feature). One is the feature-wise
packing, where one ciphertext only packs one feature data from different nodes. The number of
ciphertexts is proportional to feature number. The other is the node-wise packing, where the number
of ciphertexts is equal to the number of graph nodes. However, in this case, the number of graph

4

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

(a)

Interleaved Assembling

(b)

1 0 1 0 1 0 1 0

0 1 0 10 1 0 1

Figure 3: (a) The Two-Dimension Parallel-Packing. (b) The Interleaved Assembling.

nodes (or ciphertexts) does not change during inference, this inevitably results in too many wasted
empty slots in the ciphertexts and thus would yield more HE rotations. As the example in Figure 2
shows, we assume the ciphertext packing size is 8, adjacency matrix A ∈ R4×4, weight matrix
W ∈ R4×1, and feature matrix X ∈ R4×4. The 4 feature-wise packing ciphertexts can be reduced to
1 ciphertext after feature aggregation, which only needs 4 ciphertext-multiplication (CMult) in the
next adjacency matrix multiplication. If using the node-wise packing, we still need 16 CMult in the
next step. Therefore, we choose feature-wise packing in our design.

3.2 Two-Dimension Parallel-Packing

Optimization Problem Formulation Following the definition in the previous section, we assume
that the ciphertext has M available slots for packing data and consider the following general case:
M > N and M > F . As shown in Figure 2, after the feature-wise packing, the same features of
different data from feature matrix X are encoded into the same ciphertext X = [ct1 . . . ctF] and
then multiplied with weights wij to get matrix X ′ = XW = [ct′1, . . . , ct

′
F ′] in the same feature-wise

packing format (see Eq.(2)).

ct′j =

F∑
i=1

cti ⊗ wij , j ∈ F ′ (2)

For node-wise aggregation, we need to perform diagonal-encoded matrix multiplication [12] on
ciphertexts F ′ individually. However, due to M > N , we need to generate the corresponding
ciphertext copies with each data aligned by rotating each ciphertext twice and scaling with the mask
vector then summing (see Eq.(3)).

ct′ij = ρ(ct′j , i)⊗msi + ρ(ct′j ,−(N − i))⊗ms−(N−i), i ≥ 1 (3)

After that, we multiply them with the corresponding diagonal-encoded vector di of adjacency matrix
A and sum up them to get the node-wise aggregation result of A ·X ′ (see Eq.(4)).

ct′′j =

N−1∑
i=0

(ct′ij)⊗ di, ct′0j = ct′j (4)

In this process, we can find that data alignment issue for non-densely packed ciphertexts leads to
extra rotations. We propose the two-dimension parallel-packing to solve it. Our idea is to leverage
the matrix partition to fully pack data in all slots and amortize the HE computation cost.

Figure 3(a) shows our basic idea. We partition n (a power two number) graph nodes into a small
block to fully utilize the size of the ciphertext and encode the feature matrix X . In each ciphertext,
we actually pack n nodes corresponding to f different features together in an interleaved way. For
feature-wise aggregation, we adopt the baby-step algorithm [19, 15] to get the different output features
with good alignment. As shown in Figure 3 (a), the number of rotations 2(f − 1) used here for each
ciphertext depends on the number of different features f = M/n (we assume the output feature
F ′ ≥ f). Then, we continue to rotate each ciphertext for n − 1 times and perform the diagonal
encoded matrix multiplication [12] for A ·X . The total complexity of rotation is:

(n− 1) · (N · F ′/M) + (2(f − 1)) · (N/n · (F ′/f)) (5)

Since M = n · f , the total complexity is further equal to

(N · F ′/M) · ((n− 1) + 2(f − 1)) (6)

5

According to Cauchy-Schwarz inequality:
O(n+ 2f) ≥ O(2 ·

√
2nf/2) = O(2 ·

√
M) (7)

Where n = 2f , the total complexity of rotation reaches a minimum. Hence minimizing the number
of rotations can be modeled as an optimization problem:

argmin(f,n){(n− 1) + 2(f − 1)}s.t.

M = n ∗ f

f = 2k, k ∈ N+

M > N,M > F

(8)

Supporting Large Graph Eq. 8 assumes that the number of graph nodes should be smaller than
that of ciphertext slots (M > N), however, for scaled graph networks, it is possible that M ≤ N .
For example, the PubMed [32] contains 19717 nodes, which is far more than the 4096 ciphertext
slots. To address this, our method can be scalable to such cases by splitting a large graph into several
sub-graphs. Assuming we use feature-wise encoding and it requires 5 cts (each with 4096 slots) to
pack 1 feature. Accordingly, each feature will have 4 cts with fully packed 4096 nodes and 1 ct with
partially packed 3333 nodes. To solve the problem under the constraint–M ≤ N , we split N as:

N = x ·M +R (9)
where x = N mod M , R = N % M . Eq. 9 leads to one R×F sub-block matrix and x of M×F sub-
block matrices. For the R× F matrix, we refer to Eq. 7 to optimize the Rotation as N = R < M .
For other M × F sub-block matrices with N = M , we change the assumption from N < M to
N = M . Then, again with our proposed Two-Dimension Parallel-Packed ct, the total complexity of
rotations becomes:

(M · F ′/M) · ((n− 1) + 2(f − 1)) = F ′ · (n+ 2f − 3) (10)
The corner case f = 1 is different from that in the discussion of optimization problem formulation.
Because ct here is fully packed for n = M and does not have the data alignment issue. For
n = M,F = 1, the total complexity of Rotation becomes:

F ′ · (M − 1) (11)
Except for this corner case n = M,f = 1, the total complexity reaches a minimum when n = 2f .
We compare the previously proved minimum with the corner case n = M,f = 1 here, and get the
difference of rotations complexity as follows:

F ′ · ((M − 1)− (2
√
M − 3)) = F ′ · (M − 2

√
M − 4) = F ′ · (

√
M − 2)2 > 0 (12)

In general, since M is set as ≥ 211 to guarantee security level [17, 28], the above inequality 12
always holds. Thus, when considering a M×F matrix, the proposed Two-Dimension Parallel-Packing
can still reach the minimum at n = 2f .

3.3 Interleaved Assembling

In GCN inference, the reduction in feature size may result in wasted slots in two-dimension parallel-
packing. As the example shown in Figure 3(b), we optimally encode 32 different features into one
ciphertext at the beginning. After the feature extraction layer with 16 hidden units, the previous dense
encoded ciphertext will have half of the slots turn to blank. These blank slots in ciphertext bring
higher memory overhead, especially given that the adjacency matrix A is also encrypted, resulting in
more CMult operations thus computational overhead. We propose interleaved assembling to solve
this issue. Figure 3(b) shows our idea. We rotate the ct2 that contains node 5-8’s features by 1 slot
and then add it with ct1 that contains node 1-4’s features. After that, we have a new ciphertext ct′ that
contains 8 nodes with 1 feature. Meanwhile, we multiply the two mask vectors with the ciphertexts
for sub-square matrix A11 (for node 1-4) and A22 (for node 5-8) and get an interleaved assembled
ciphertext contains matrix A11 and A22. Then, by rotating ciphertext ct′ 3 times and performing
element-wise multiplication with new diagonal-encoded ciphertexts of the matrix A11 and A22, we
could get the results–ciphertext ct′1 of node 1-4 with the matrix A11 and node 5-8 with the matrix A22

simultaneously. In this way, the complexity of HE operations including both rotation and ciphertext
multiplication can be reduced by half. After that, we repeat the steps to perform multiplication on ct′

and ciphertext that contains A21 and A12 to get the ct′2. Based on the formula ct′′ = ct′1 + ρ(ct′2, 1),
we get the final result ciphertext ct′′ that multiples matrix (A11, A12, A21, A22). By leveraging such
an interleaved assembling, we could achieve f ′

f times reduction of the total computational complexity,
where f ′ is the number of features on the current ciphertext, and f is the number of features on the
ciphertext before feature reduction.

6

4 Evaluation

4.1 Experiment Setup

Datasets. We adopt the Cora [32], Citeseer [11] and Pubmed [32] scientific publication datasets for
graph learning. The Cora, Citeseer, and Pubmed contain 2708, 3327, and 19717 publication nodes
divided into 7, 6, and 3 classes respectively. And each node consists of 1433, 3703, and 500 unique
word features, respectively. To test the link prediction task [22], 90% of edges are removed and all
node features are retained on all datasets.

Models. We train 3 Graph Auto-Encoder (GAE) models with 2 hidden layers and 2 activation
layers on 3 different datasets, i.e., Cora, Citeseer, and Pubmed. The three models follow the same
GAE architecture in [22], and are implemented using the DGL library [33]. Table 1 lists the model
architecture and pertinent encryption parameters for encrypting both adjacency matrix A and feature
matrix X . We use x2 as the non-linear function [10] to replace the ReLU activation and apply the
ADAM optimizer to train the model for 200 epochs using a learning rate of 0.01. The accuracy of
each model (AUC in Link Prediction) is maintained at the original level.

Encryption parameters. For all tasks, we apply a scaling factor ∆ = 230 to ensure the accuracy of
the encrypted inference using CKKS. Each rescale consumes 30 bits of ciphertext modulus Q, and
there are 6 times rescale and corresponding 6 levels across the whole network. Thus, we set Q = 218,
and the polynomial degree N = 213 to guarantee a 128-bit security level. Additionally, the scale
factor of mask plaintext used in comparison with E2DM [15] & uSCORE [13] is set to 215.

Baseline designs. To better evaluate the proposed approach, we develop several baselines, including:

• Penguin-family. We implement several Penguin baselines by applying only our proposed two-
dimension parallel-packing technique (see Sec. 3.2). We set up different pairs of features and
nodes when optimizing the packing format. Table 2 lists the numbers of features/nodes selected.
Here Penguin(f, n) denotes that f features and n nodes are used in the corresponding baseline
design. Note that, the baseline designs with f = 1 or n = 1 are the extreme cases when only the
feature-wise or node-wise packing method is used.

• Penguin+IA. We develop two Penguin+IA baselines by further applying the proposed Interleaved
Assembling (IA) technique (see Sec. 3.3) to the Penguin-family.

• We also implement a set of state-of-the-art secure matrix matrix multiplication solutions, which
include Gazelle [17], HElayers [1], E2DM [15] and uSCORE [13]. To ensure a fair comparison,
we do not apply the activation pruning technique for multiplicative level reduction across all
implementations [28], as this technique is orthogonal to our proposed solutions.

Measurements. We use inference latency as our main performance metric, which is averaged over
20 simulations. Besides, we record the Homomorphic Operation Count (HOC), including the number
of rotations (Rotation), the number of ciphertext multiplications (CMult), etc. We also calibrate
the numbers of ciphertexts and memory usage. A lower number of these metrics indicates better
performance.

Environment. We conduct all experiments on a machine equipped with Threadripper 3975WX CPU
using the single thread setting to test the inference latency and train these GAE models with 2 Nvidia
3090 GPUs. We use Microsoft SEAL version 3.7.2 [31] to implement the RNS-variant of CKKS [5]
scheme.

Table 1: Model and encryption parameters.

Dataset # Layers Accuracy Encryption Parameters Mult Security
Hidden1 Hidden2 Activation (AUC) N Q P Level Level

Cora
32 16 x2

0.974
8192 218 30 6 128-bitCiteseer 0.747

PubMed 0.858

7

Table 2: Ablation study of Two-Dimension Parallel-Packing and Interleaved Assembling.

Dataset Packing-Format HOC # of Ciphertexts Memory (GB) Latency (s) Speedup (×)Rot CMult Others

Cora

Penguin(1433,1) 1048K 74K 282K 2708-2708-2708 2.38 7018.51 -
Penguin(1, 2708) 260K 130K 223K 1433-32-16 1.82 2475.78 2.83
Penguin(16,256) 9.7K 9.3K 157k 990-22-11 0.49 678.03 10.35
Penguin(32,128) 8.3K 124K 188K 990-22-22 0.65 871.15 8.06
Penguin(64,64) 13.5k 237k 365K 990-43-43 1.25 1650.28 4.25

Penguin(32,128)+IA 6.9K 9.3K 157K 990-22-11 0.49 660.67 10.62
Penguin(64,64)+IA 10.3K 9.3K 220k 989-22-11 0.49 693.13 10.13

Citeseer

Penguin(3703,1) 1521K 1110K 3852K 3327-3327-3327 2.92 9240.10 -
Penguin (1, 3327) 319K 160K 385K 3703-32-16 3.08 3064.91 3.01
Penguin(16,256) 110K 130K 324K 3016-26-13 1.40 950.30 9.72
Penguin(32,128) 9.8K 173K 367K 3016-26-26 1.62 1225.05 7.54
Penguin(64,64) 16.3K 346K 734K 3016-52-52 2.51 2429.47 3.80

Penguin(32,128)+IA 7.4K 130K 324K 3016-26-13 1.39 928.10 9.96
Penguin(64,64)+IA 12K 130K 387K 3016-26-13 1.39 982.08 9.41

PubMed

Penguin(19717,1) 5974K 817K 12687K 19717-19717-19717 9.75 44586.03 -
Penguin (1, 500) 1106K 4732K 4897K 2500-160-80 17.3 37727.58 1.18
Penguin(16,256) 69K 4673K 4837K 2496-156-78 3.76 30906.28663 1.44
Penguin(32,128) 59K 6151K 6314K 2480-155-155 11.6 40474.11 1.10
Penguin(64,64) 117K 12222K 12547K 2472-309-309 42.9 80424.70 0.55

Penguin(32,128)+IA 49K 4633K 4794K 2480-155-78 3.76 30522.43 1.46
Penguin(64,64)+IA 73K 4633K 4954K 2472-155-78 3.75 30701.59 1.45

4.2 Evaluation Results

4.2.1 Two-Dimension Parallel-Packing

Table 2 presents our evaluation results of the proposed two-dimension parallel-packing and interleaved
assembling approach. We find that the packing format Penguin(f, n = 1) performs the worst on
the three datasets due to having the largest number of HOCs and no slot packing optimization. This
results in significant latency and memory overhead. In particular, since PubMed contains more
encrypted features (number of cts), the same design performs worse on PubMed than on the other two
datasets. We use this Penguin(f, n = 1) as the baseline to compare the speed of other approaches.

Our results clearly show that our proposed two-dimension parallel-packing method can significantly
reduce the HOCs (especially the number of rotations) and the number of ciphertexts. For example,
on the Cora dataset, our Penguin(16, 256), Penguin(32, 128), and Penguin(64, 64) designs can
reduce the number of rotations from 1048K to 9.7K, 8.3K, and 13.5K, respectively, thus reducing
memory usage by ∼ 79%, ∼ 76%, and ∼ 47%, and reaching ∼ 10.35×, ∼ 8.06×, and ∼ 4.25×
speed up, respectively.

In particular, the results we observed are well consistent with the theoretical analysis. For example,
with M = f ∗ n = 4096, n = 2f , we have the theoretical minimum fmin =

√
2048 ≃ 45 (see

Section 3.2). We can observe that the baseline Penguin(32, 128) with f = 32, n = 128 is very close
to the theoretical minimum and achieves the best results among the three designs. Meanwhile, other
HOCs besides Rotation may increase under the optimal packing and affect the overall latency. For
example, Penguin(32, 128) yields more ciphertext multiplication (CMult) than Penguin(16, 256)
due to wasted slots from feature reduction, which can be further optimized using the proposed
Interleaved Assembling method.

Moreover, as our discussion of large graph in Section 3.2 indicates, all designs exhibit significantly
worse performance in the PubMed dataset compared to the other two datasets. This is because the
number of nodes in PubMed is significantly larger than the size of ciphertext (19717 ≫ 4096), which
means that it needs to be multiplied with a large 19717× 19717 adjacency matrix. Therefore, the
number of CMult ≫ number of Rot. However, our proposed packing technique can still improve the
performance in such cases.

4.2.2 Interleaved Assembling

Table 2 also reports the evaluation results of incorporating the two-dimensional parallel packing
and interleaved assembly methods. For example, in Cora, the number of rotations, the number of
CMult, and the number of other HOCs in the Penguin(32, 128) + IA design are further reduced
by 1.4K, 114.7K, and 31K, respectively, compared to the parallel-packing only Penguin(32, 128).
This makes Penguin(32, 128) + IA the best design on all datasets, i.e., with the minimum memory

8

Table 3: Compare with the state-of-the-art.
Dataset Method Security Level Latency (s) Amortized Latency Speedup (×)

Cora
Gazelle [17] 128-bit 3832.36 1.42 -

E2DM(64) [15] 98-bit 3150.74 1.16 1.22
HElayers [1] 128-bit 2102.47 0.78 1.82

uSCORE(32,128) [13] 98-bit 1727.12 0.64 2.22
Penguin(32,128)+IA 128-bit 660.57 0.24 5.92

Citeseer
Gazelle [17] 128-bit 4727.94 1.42 -

E2DM(64) [15] 98-bit 4561.15 1.37 1.04
HElayers [1] 128-bit 3044.58 0.92 1.54

uSCORE(32,128) [13] 98-bit 2377.50 0.72 1.97
Penguin(32,128)+IA 128-bit 928.10 0.28 5.07

Pubmed
Gazelle [17] 128-bit 158655.54 8.05 -

E2DM(64) [15] 98-bit 154530.49 7.84 1.03
HElayers [1] 128-bit 103283.56 5.24 1.54

uSCORE(32,128) [13] 98-bit 78843.49 4.00 2.01
Penguin(32,128)+IA 128-bit 30522.43 1.55 5.19

usage of 0.49GB, 1.39GB, and 3.76GB and a 10.62×, 9.96×, and 1.46× speedup on dataset Cora,
Citeseer, and PubMed, respectively. These results illustrate that our proposed interleaved assembly
can effectively reduce the wasted empty slots and save the number of ciphertexts selected in the
computation, thus significantly improving the efficiency based on the SIMD.

4.2.3 Compare with State-of-the-art Solutions

In our evaluation, we conduct a comparative analysis of our best-designed model, Penguin(32, 128)+
IA with several state-of-the-art (SOTA) solutions, including Gazelle [17], HElayers [1], E2DM [15]
and uSCORE [13]. All these SOTA solutions can speed up HE-GCN inference with the optimized
matrix-matrix multiplication. The results are summarized in Table 3.

It is worth noting that our approach uses encryption parameters which offer a 128-bit security level.
This security level is higher than that of the other two SOTA solutions, which can only guarantee
a 98-bit security level and require more multiplicative levels to mask the plaintexts. For a fair
comparison, we measure the amortized latency–the time required for link predictions of a single node.
As reported in Table 3, our method achieves an amortized latency of 0.24s on Cora, which is 5.92×,
4.83×, 3.25× and 2.67× faster than that of Gazelle, E2DM, HElayers and uSCORE, respectively.
The similar improvement can be observed across the Citeseer and PubMed.

The superiority of our method over other SOTA solutions can be attributed to two key factors:

The first reason is that all prior approaches are primarily designed to solve the single matrix-matrix
multiplication problem instead of two-way matrix multiplications in GCN inference. In GCN
inference, the computation pattern mainly consists of two computational components-the common FC
layer for graph feature aggregation (X ·W) and the adjacency matrix multiplication for graph node
aggregation (A ·X). These two components represent distinct and orthogonal computation patterns
for the input feature map. Consequently, optimizing only one of these directions leads to sub-optimal
performance. In contrast, our proposed "Penguin", which incorporates two-way parallel encoding
and an optimized sub-block matrix size, offers superior performance with theoretical guarantees.

The second compelling factor contributing to the excellence of our approach is the adaptability to
address the issue of wasted slots of ciphertext, a capability notably absent in prior methods. In
studies such as [15, 1, 13], traditional matrix-multiplication methods establish sub-block matrix
partitions based on square or rectangular sub-block matrices determined by the input weight matrix
size. However, these conventional methods face challenges in effectively managing the problem of
wasted slots that arise after feature aggregation in Graph Convolutional Network (GCN) inference.
As confirmed in Table 3, our two-way parallel packing method substantially improves HE-GCN
inference by leveraging the Interleaved Assembling technique that can effectively minimize the
wasted slots. This, in turn, leads to extra memory space and HOC reduction.

Putting all these together, our method clearly demonstrates its advantage over SOTA solutions in
accelerating HE-GCN inference.

9

5 Related Work

CryptoNets [10] is the first work that demonstrates the feasibility of building privacy-preserving
machine learning (PPML) by HE. However, the long inference latency and the inflexible packing
format make it hard to be applied to large-scale models and datasets. Another following work named
SHE [25], translates the nonlinear ReLU and Max Pooling operations as Boolean operations to
support the TFHE-based [7] PPML without modifying the pretrained models. There also exist many
multi-party computation (MPC) solutions that combine the two-party computation protocols [36]
with HE frameworks to achieve the low inference latency [30, 17, 26, 24, 27]. However, they suffer
from high communication overhead incurred by data transfer between multiple parties. Recent studies
such as LoLa [4], CHET [8], and HEAR [20] leverage the ciphertext packing technique to place
multiple data in the same ciphertext so that HE operations can be conducted efficiently via single
instruction multiple data (SIMD) for accelerating HE-based CNN inference. These approaches are
often not applicable or optimal to GCN inference due to the very different computation patterns
between the GCN and CNN. CryptoGCN [28] is the first attempt to build HE-based PPML for GCNs.
It packs the ciphertexts from individual node to relieve the adjacency matrix multiplication overhead.
However, they assume the adjacency matrix as plaintext, which is not applicable to dynamic graph
settings which require protecting both graph structure and features like our work.

Cheetah [14] aims to eliminate the need of costly rotation in HE-matrix multiplication. The basic
idea is to replace the dot-sum operation with two polynomials multiplications. However, it requires
communication between the client and server to perform ciphertext decryption and re-encryption
after each layer computation, e.g. after a convolutional layer. In contrast, our approach operates
within a “HE without-client-aid" setting. Here, the server only requires the client to encrypt and send
data to the server once, after which the server can perform the whole computation of inference and
only send the final encrypted result back to the client. It does not require the frequent communication
between client and server like [14]. Therefore, our work focuses on HE computation optimization.
In our view, our solution and [14]’s MPC+HE setting represent two distinct directions to realize
PPML. Each approach is tailored for different private inference scenarios. Hence, conducting a
direct comparison between our method and the approach in [14] could be challenging since they are
designed for different purposes and provide distinct advantages.

Gazelle [17] is a hybrid matrix multiplication algorithm based on mixture of naive implementation
and diagonal encoding method [12]. It is designed to handle the general matrix multiplication that
occurs in FC layers, where the output dimension is smaller than the input dimension. Additionally,
E2DM [15] and uSCORE [13] address encrypted matrix-matrix multiplication optimization by
breaking down the problem into small square matrix multiplications and facilitating consecutive matrix
multiplications.HElayers [1], on the other hand, leverages a tiles-tensor-based matrix-multiplication
technique for multiplying two square matrices and consumes less multiplicative depth compared
to [15]. While these general solutions have proven effective in various contexts, their efficiency is
limited when applied to accelerate Homomorphic Encryption-based Graph Convolutional Network
(HE-GCN) inference, as detailed in Section 4.2.

6 Conclusion

In this paper, we propose a two-dimension parallel packing technique for feature ciphertext by
optimizing the feature matrix partition size and further propose an interleaved assembling technique
to merge ciphertexts that have wasted slots from feature reduction in CKKS-based secure GCN
inference. These techniques can better save ciphertext memory and effectively reduce the number
of homomorphic operations required. Experimental results based on the GAEs for link prediction
and 3 popular graph datasets show that our solution can speed up the latency of the secure GCN
inference by 10× and reduce the memory requirement by more than 79%, greatly outperforming the
state-of-the-art solutions.

7 Acknowledgment

We thank all anonymous reviewers for their constructive comments and suggestions on this work.
This work is partially supported by the National Science Foundation (NSF) under Grants No. CNS-
2348733 and CNS- 2349538.

10

References
[1] Ehud Aharoni, Allon Adir, Moran Baruch, Nir Drucker, Gilad Ezov, Ariel Farkash, Lev

Greenberg, Ramy Masalha, Guy Moshkowich, Dov Murik, et al. Helayers: A tile tensors
framework for large neural networks on encrypted data. Proceedings on Privacy Enhancing
Technologies, 1(1):325–342, 2023.

[2] Fabian Boemer, Anamaria Costache, Rosario Cammarota, and Casimir Wierzynski. ngraph-he2:
A high-throughput framework for neural network inference on encrypted data. In Proceedings
of the 7th ACM Workshop on Encrypted Computing & Applied Homomorphic Cryptography,
pages 45–56, 2019.

[3] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3):1–
36, 2014.

[4] Alon Brutzkus, Ran Gilad-Bachrach, and Oren Elisha. Low latency privacy preserving inference.
In International Conference on Machine Learning, pages 812–821. PMLR, 2019.

[5] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song. A full rns
variant of approximate homomorphic encryption. In International Conference on Selected Areas
in Cryptography, pages 347–368. Springer, 2018.

[6] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for
arithmetic of approximate numbers. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 409–437. Springer, 2017.

[7] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Tfhe: fast fully
homomorphic encryption over the torus. Journal of Cryptology, 33(1):34–91, 2020.

[8] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin Lauter, Saeed Maleki, Madanlal
Musuvathi, and Todd Mytkowicz. Chet: an optimizing compiler for fully-homomorphic neural-
network inferencing. In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 142–156, 2019.

[9] Craig Gentry. A fully homomorphic encryption scheme. Stanford university, 2009.

[10] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John
Wernsing. Cryptonets: Applying neural networks to encrypted data with high throughput and
accuracy. In International conference on machine learning, pages 201–210. PMLR, 2016.

[11] C Lee Giles, Kurt D Bollacker, and Steve Lawrence. Citeseer: An automatic citation indexing
system. In Proceedings of the third ACM conference on Digital libraries, pages 89–98, 1998.

[12] Shai Halevi and Victor Shoup. Algorithms in helib. In Annual Cryptology Conference, pages
554–571. Springer, 2014.

[13] Zhicong Huang, Cheng Hong, Wen-jie Lu, Chenkai Weng, and Hunter Qu. More efficient
secure matrix multiplication for unbalanced recommender systems. IEEE Transactions on
Dependable and Secure Computing, 2021.

[14] Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jiansheng Ding. Cheetah: Lean and fast secure
two-party deep neural network inference. IACR Cryptol. ePrint Arch., 2022:207, 2022.

[15] Xiaoqian Jiang, Miran Kim, Kristin Lauter, and Yongsoo Song. Secure outsourced matrix
computation and application to neural networks. In Proceedings of the 2018 ACM SIGSAC
conference on computer and communications security, pages 1209–1222, 2018.

[16] Wonkyung Jung, Eojin Lee, Sangpyo Kim, Jongmin Kim, Namhoon Kim, Keewoo Lee,
Chohong Min, Jung Hee Cheon, and Jung Ho Ahn. Accelerating fully homomorphic en-
cryption through architecture-centric analysis and optimization. IEEE Access, 9:98772–98789,
2021.

11

[17] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. {GAZELLE}: A low
latency framework for secure neural network inference. In 27th USENIX Security Symposium
(USENIX Security 18), pages 1651–1669, 2018.

[18] Oussema Keskes and Rita Noumeir. Vision-based fall detection using st-gcn. IEEE Access,
9:28224–28236, 2021.

[19] Miran Kim, Xiaoqian Jiang, Kristin Lauter, Elkhan Ismayilzada, and Shayan Shams. Hear:
Human action recognition via neural networks on homomorphically encrypted data. preprint
arXiv:2104.09164, 2021.

[20] Miran Kim, Xiaoqian Jiang, Kristin Lauter, Elkhan Ismayilzada, and Shayan Shams. Secure
human action recognition by encrypted neural network inference. Nature communications,
13(1):1–13, 2022.

[21] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[22] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

[23] Eunsang Lee, Joon-Woo Lee, Junghyun Lee, Young-Sik Kim, Yongjune Kim, Jong-Seon No,
and Woosuk Choi. Low-complexity deep convolutional neural networks on fully homomorphic
encryption using multiplexed parallel convolutions. In International Conference on Machine
Learning, pages 12403–12422. PMLR, 2022.

[24] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. Oblivious neural network predictions via
minionn transformations. In Proceedings of the 2017 ACM SIGSAC conference on computer
and communications security, pages 619–631, 2017.

[25] Qian Lou and Lei Jiang. She: A fast and accurate deep neural network for encrypted data.
Advances in Neural Information Processing Systems, 32, 2019.

[26] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada
Popa. Delphi: A cryptographic inference service for neural networks. In 29th USENIX Security
Symposium (USENIX Security 20), pages 2505–2522, 2020.

[27] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving
machine learning. In 2017 IEEE symposium on security and privacy (SP), pages 19–38. IEEE,
2017.

[28] Ran Ran, Wei Wang, Quan Gang, Jieming Yin, Nuo Xu, and Wujie Wen. CryptoGCN: Fast
and scalable homomorphically encrypted graph convolutional network inference. In Alice H.
Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural
Information Processing Systems, 2022.

[29] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. On data banks and privacy
homomorphisms. Foundations of secure computation, 4(11):169–180, 1978.

[30] Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz Koushanfar. Deepsecure: Scalable provably-
secure deep learning. In Proceedings of the 55th annual design automation conference, pages
1–6, 2018.

[31] Microsoft SEAL (release 3.7). https://github.com/Microsoft/SEAL, September 2021.
Microsoft Research, Redmond, WA.

[32] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[33] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.
Deep graph library: A graph-centric, highly-performant package for graph neural networks.
preprint arXiv:1909.01315, 2019.

12

https://github.com/Microsoft/SEAL

[34] Le Wu, Peijie Sun, Richang Hong, Yanjie Fu, Xiting Wang, and Meng Wang. Socialgcn: An
efficient graph convolutional network based model for social recommendation. arXiv preprint
arXiv:1811.02815, 2018.

[35] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recom-
mender systems: a survey. ACM Computing Surveys (CSUR), 2020.

[36] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th Annual Symposium on
Foundations of Computer Science (sfcs 1986), pages 162–167. IEEE, 1986.

13

	Introduction
	Preliminary
	Method
	Motivation of Feature-Oriented Ciphertext Packing
	Two-Dimension Parallel-Packing
	Interleaved Assembling

	Evaluation
	Experiment Setup
	Evaluation Results
	Two-Dimension Parallel-Packing
	Interleaved Assembling
	Compare with State-of-the-art Solutions

	Related Work
	Conclusion
	Acknowledgment

