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Abstract

Artificial intelligence (AI) systems possess significant potential to drive societal
progress. However, their deployment often faces obstacles due to substantial
safety concerns. Safe reinforcement learning (SafeRL) emerges as a solution to
optimize policies while simultaneously adhering to multiple constraints, thereby
addressing the challenge of integrating reinforcement learning in safety-critical sce-
narios. In this paper, we present an environment suite called Safety-Gymnasium,
which encompasses safety-critical tasks in both single and multi-agent scenar-
ios, accepting vector and vision-only input. Additionally, we offer a library of
algorithms named Safe Policy Optimization (SafePO), comprising 16 state-of-
the-art SafeRL algorithms. This comprehensive library can serve as a validation
tool for the research community. By introducing this benchmark, we aim to
facilitate the evaluation and comparison of safety performance, thus fostering
the development of reinforcement learning for safer, more reliable, and respon-
sible real-world applications. The website of this project can be accessed at
https://sites.google.com/view/safety-gymnasium.

1 Introduction

AI systems possess enormous potential to spur societal progress. However, their deployment is
frequently hindered by substantial safety considerations [1; 2; 3; 4]. Distinct from pure reinforcement
learning (RL), Safe reinforcement learning (SafeRL) seeks to optimize policies while concurrently
adhering to multiple constraints, addressing the challenge of employing RL in scenarios with critical
safety implications [5; 6; 7; 8; 9]. This strategy proves particularly pertinent in real-world applications
such as autonomous vehicles [10] and healthcare [11], where system failures or unsafe actions can
result in grave consequences, such as accidents or harm to individuals. In large language models
(LLMs), some studies have also shown that the toxicity of the models can be reduced through SafeRL
[12; 13]. Incorporating safety constraints ensures adherence to predefined boundaries and regulatory
standards, fostering trust and enabling exploration in environments with high-risk potential. Overall,
SafeRL is instrumental in guaranteeing the dependable operation of intelligent systems in intricate
and high-stake domains.
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Simulation environments have become instrumental in fostering the advancement of RL. Eminent
examples such as Gym [14], Atari [15], and dm-control [16] underline their importance. These
versatile platforms permit researchers to swiftly design and execute varied tasks, thus enabling
efficient evaluation of algorithmic effectiveness and intrinsic limitations. However, within the
sphere of SafeRL, there is a notable dearth of dedicated simulation environments, which impedes
comprehensive exploration of SafeRL. In recent years, there have been strides to address this gap.
DeepMind presented AI-Safety-Gridworlds, a suite of RL environments showcasing various safety
properties of intelligent agents [17]. Afterward, OpenAI introduced the Safety Gym benchmark suite,
a collection of high-dimensional continuous control environments incorporating safety-robot tasks
[18]. Over the past two years, several additional environments have been developed by researchers,
including safe-control-gym [19], MetaDrive [20], etc.

Compared to Safety Gym1 Safety-Gymnasium inherits and expands the settings of some tasks of
Safety Gym, aiming to bolster the community’s growth further. Compared with Safety Gym, we have
made the following major improvements:

• Refactoring of the physics engine. Safety Gym utilizes mujoco-py to enable Python-based
customization of MuJoCo components. However, mujoco-py stopped updates and support after
2021. In contrast, Safety-Gymnasium supports MuJoCo directly, eliminating the reliance
on mujoco-py. This facilitates access to the latest MuJoCo features (e.g., rendering speed and
accuracy improved, etc.) and lowers the entry barrier, particularly due to mujoco-py’s dependency
on specific GCC versions and more.

• Extension of Agent and Task Components. Safety Gym initially supports only three agents and
tasks. On this basis, Safety-Gymnasium has been further expanded, introducing more diverse
agents and task components and expanding safety tasks to cover multi-agent domains. Finally,
Safety-Gymnasium launched a high-dimensional test component based on Issac-Gym [21],
further enriching the benchmark.

• Enhanced Visual Task Support. The visual components of Safety Gym are simplistic (consist-
ing of basic geometric shapes), and mujoco-py relies on OpenGL for visual rendering, which
results in significant virtualization performance loss on headless servers. In contrast, Safety-
Gymnasium, built on MuJoCo, achieves rendering speeds on CPU that are twice as fast as the
former. Additionally, it offers more comprehensive visual component support.

• Easy Installation and High Customization. Safety Gym is cumbersome to install and relies
heavily on the underlying software. One of the design motivations of Safety-Gymnasium is the
ease of use so that everyone can focus on algorithm design. Safety-Gymnasium can be easily
installed with one simple command pip install safety-gymnasium. While benefiting from the
highly integrated framework, Safety-Gymnasium only needs 100 lines of code to customize
the required environment.

In this work, we introduce Safety-Gymnasium, a collection of environments specifically for SafeRL,
built upon the Gymnasium [14; 22] and MuJoCo [23]. Enhancing the extant Safety Gym framework
[18], we address various concerns and expand the task scope to include vision-only and multi-agent
scenarios. Additionally, we released SafePO, a single-file style algorithm library containing over 16
state-of-the-art algorithms. Collectively, our contributions are enumerated as follows:

• Environmental Components. We provide various safety-oriented tasks under the umbrella
of Safety-Gymnasium. These tasks encompass single-agent, multi-agent, and vision-based
challenges, each with varying constraints. Our environments are categorized into two primary
types: Gymnasium-based, featuring agents of escalating complexity for algorithm verification and
comparison, and Issac-Gym-based, incorporating sophisticated agents that harness the parallel
processing power of Issac-gym’s GPU. This empowers researchers to explore SafeRL algorithms
in complex scenarios. Further details can be found in Section 4.

• Algorithm Components. We offer the SafePO algorithm library, which comprises a single-file
style housing 16 diverse algorithms. These algorithms encompass both single-agent and multi-
agent approaches, along with first-order and second-order variants, as well as Lagrangian-based

1Again, we have no intention of attacking Safety Gym; the contribution of Safety Gym to the SafeRL
community cannot be ignored, and Safety Gym also inspired this work. We hope that through our efforts,
Safety-Gymnasium can further promote the development of SafeRL and give back to the entire RL community.
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and Projection-based methods. Through meticulous decoupling, each algorithm’s code resides in
an individual file. A more in-depth exploration of SafePO is presented in Section 5.

• Insights and Analysis. Combining Safety-Gymnasium and SafePO, we conduct a detailed
analysis of existing algorithms. Our analysis encompasses 16 algorithms across 54 distinct envi-
ronments, covering various scenarios such as single-agent and multi-agent setups with varying
constraint complexities. This analysis delves into each algorithm’s strengths, constraints, and
avenues for enhancement. We provide access to all metadata, fostering community verification
and encouraging further research. Further details can be found in Section 6.

2 Related Work

Safety Environments In RL, agents need to explore environments to learn optimal policies by
trial and error. It is currently typical to train RL agents mostly or entirely in simulation, where
safety concerns are minimal. However, we anticipate that challenges in simulating the complexities
of the real world (e.g., human-AI collaborative control [1; 2]) will cause a shift towards training
RL agents directly in the real world, where safety concerns are paramount [20; 24; 25]. OpenAI
includes safety requirements in the Safety Gym [18], which is a suite of high-dimensional continuous
control environments for measuring research progress on SafeRL. Safe-control-gym [19] allows for
constraint specification and disturbance injection onto a robot’s inputs, states, and inertial properties
through a portable configuration system. DeepMind also presents a suite of RL environments,
AI-Safety-Gridworlds [17], illustrating various safety properties of intelligent agents.

SafeRL Algorithms CMDPs have been extensively studied for different constraint criteria [26;
27; 28; 29]. With the rise of deep learning, CMDPs are also moving to more high-dimensional
continuous control problems. CPO [30] proposes the first general-purpose policy search algorithm
for SafeRL with guarantees for near-constraint satisfaction at each iteration. However, CPO’s policy
updates hinge on Taylor approximations and the inversion of high-dimensional Fisher information
matrices. These approximations can occasionally lead to inappropriate policy updates. FOCOPS [31]
applies a primal-dual approach to solve the constrained trust region problem directly and subsequently
projects the solution back into the parametric policy space. Similarly, CUP [32] offers non-convex
implementations through a first-order optimizer, thereby not requiring a strong approximation of the
convexity of the objective.

3 Preliminaries

3.1 Constrained Markov decision process

SafeRL [6; 33] is often formulated as a Constrained Markov decision process (CMDP) [6], which is a
tuple M = (S,A,P, R, C, µ, γ). Here S and A are the state space and action space correspondingly.
P(s′|s, a) is the probability of state transition from s to s′ after taking action a. R(s′|s, a) denotes
the reward obtained by the agent performing action a in state s and transitioning to state s′. The
set C =

{
(ci, bi)

}m

i=1
, where ci are cost functions: ci : S × A → R and the cost thresholds are

bi, i = 1, · · · ,m. µ(·) : S → [0, 1] is the initial state distribution and the discount factor γ ∈ [0, 1).

A stationary parameterized policy πθ is a probability distribution defined on S ×A, πθ(a|s) denotes
the probability of taking action a in state s. We use Πθ = {πθ : θ ∈ Rp} to denote the set of
all stationary policies and θ is the network parameter needed to be learned. Let Pπθ

∈ R|S|×|S|

denotes a state transition probability matrix and the components are: Pπθ
[s, s′] = Pπθ

(s′|s) =∑
a∈A πθ(a|s)P(s′|s, a), which denotes one-step state transition probability from s to s′ by executing

πθ. Finally, we let ds0πθ
(s) = (1− γ)

∑∞
t=0 γ

tPπθ
(st = s|s0) to be the stationary state distribution

of the Markov chain starting at s0 induced by policy πθ and dµπθ
(s) = Es0∼µ(·)[d

µ
πθ
(s)] to be the

discounted state visitation distribution on initial distribution µ.

The objective function is defined via the infinite horizon discounted reward function where
for a given πθ, we have JR(πθ) = E[

∑∞
t=0 γ

tR(st+1|st, at)|s0 ∼ µ, at ∼ πθ]. The cost func-
tion is similarly specified via the following infinite horizon discount cost function: JC

i (πθ) =
E[
∑∞

t=0 γ
tCi(st+1|st, at)|s0 ∼ µ, at ∼ πθ].
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Then, we define the feasible policy set ΠC as : ΠC = ∩m
i=1{πθ ∈ Πθ and JC

i (πθ) ≤ bi}. The goal
of CMDP is to search the optimal policy π⋆: π⋆ = argmaxπθ∈ΠC J

R(πθ).

3.2 Constrained Markov Game

Safe multi-agent reinforcement learning is often formulated as a Constrained Markov Game
(N ,S,A,P, µ, γ,R,C, b). Here, N = {1, . . . , n} is the set of agents, S and A =

∏n
i=1 Ai are the

state space and the joint action space (i.e., the product of the agents’ action spaces), P : S×A×S → R
is the probabilistic transition function, µ is the initial state distribution, γ ∈ [0, 1) is the discount fac-
tor, R : S×A → R is the joint reward function, C =

{
Ci

j

}i∈N
1≤j≤mi is the set of sets of cost functions

(every agent i has mi cost functions) of the form Ci
j : S ×Ai → R, and finally the set of correspond-

ing cost threshold is given by b =
{
bij
}i∈N
1≤j≤mi . At time step t, the agents are in a state st, and every

agent i takes an action ait according to its policy πi
(
ai | st

)
. Together with other agents’ actions, it

gives a joint action at =
(
a1t , . . . , a

n
t

)
and the joint policy π(a | s) =

∏n
i=1 π

i
(
ai | s

)
. The agents

receive the reward R ( st,at), meanwhile each agent i pays the costs Ci
j

(
st, a

i
t

)
, ∀j = 1, . . . ,mi.

The environment then transits to a new state st+1 ∼ P (· | st,at).

The objective of reward function are J(π) ≜ Es0∼ρ0,a0:∞∼π,s1:∞∼p[
∑∞

t=0 γ
tR(st,at)], and costs

function are J i
j(π) ≜ Es0∼ρ0,a0:∞∼π,s1:∞∼p

[∑∞
t=0 γ

tCi
j

(
st, a

i
t

)]
≤ cij , ∀j = 1, . . . ,mi.

We are examining a fully cooperative setting where all agents share a common reward function.
Consequently, the goal of safe multi-agent RL is to identify the optimal policy that maximizes the
expected total reward while simultaneously ensuring that the safety constraints of each agent are
satisfied. Then we define the feasible joint policy set πC = ∩n

i=1{πθ ∈ Πθ and J i
j(π) ≤ cij ,∀j =

1, . . . ,mi}. The goal of CMG is to search the optimal policy π⋆ = argmaxπθ∈ΠC J(πθ).

4 Safety Environments: Safety-Gymnasium

Safety-Gymnasium provides a seamless installation process and minimalistic code snippets to basic
examples, as shown in Figure 1. Due to the limited space of the paper, we provide a more detailed
description (e.g., detailed instructions, the composition of the robot’s observation space and action
space, dynamic structure, physical parameters, etc.) in Appendix B and Online Documentation2.

"""
Install from PyPI:

pip install safety-gymnasium
"""
import safety_gymnasium
# Create the safety-task environment
env = safety_gymnasium.make(“SafetyPointGoal1-v0”, render_mode=“human”)
# Reset the environment
obs, info = env.reset()
while True:

# Sample a random action
act = env.action_space.sample()
# Step the environment: costs are returned
obs, reward, cost, terminated, truncated, info = env.step(act)
if terminated or truncated:

break

Figure 1: Using Safety-Gymnasium to create, step, render a specific safety-task environment.

4.1 Gynasium-based Learning Environments

In this section, we introduce Gymnasium-based environment components from three aspects: (1) the
robots (both single-agent and multi-agent); (2) the tasks that are supported within the environment;
(3) the safety constraints that are upheld.

2Online Documentation: www.safety-gymnasium.com
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Supported Robots As shown in Figure 2, Safety-Gymnasium inherits three pre-existing agents
from Safety Gym [18], namely Point, Car, and Doggo. By meticulously adjusting the model
parameters, we have successfully mitigated the issue of excessive oscillations during the runtime of
Point and Car agents. Building upon this foundation, we have introduced two additional robots:
racecar [34; 35], and ant [23], to enrich the single-agent scenarios. As for multi-agent robots, we
have leveraged certain configurations from multi-agent MuJoCo [36], deconstructing the original
single-agent structure and enabling multiple agents to control distinct body segments. This design
choice has been widely adopted in various research works [37; 38; 39].

(a). Ant (b). Half Cheetah (c). Humanoid (d). Hopper (e). Walker2D

(a). Point (b). Car (d). Doggo (e). Ant(c). Racecar

Figure 2: Upper: The Single-Agent Robots of Gymnasium-based Environments. Lower: The
Multi-Agent Robots of Gymnasium-based Environments.

Supported Tasks As shown in Figure 3, the Gymnasium-based learning environments support the
following tasks. For a more detailed task specification, please refer to our online documentation3.

• Velocity. The robot aims to facilitate coordinated leg movement of the robot in the forward (right)
direction by exerting torques on the hinges.

• Run. The robot starts with a random initial direction and a specific initial speed as it embarks on
a journey to reach the opposite side of the map.

• Circle. The reward is maximized by moving along the green circle and not allowed to enter the
outside of the red region, so its optimal path follows the line segments AD and BC.

• Goal. The robot navigates to multiple goal positions. After successfully reaching a goal, its
location is randomly reset while maintaining the overall layout.

• Push. The objective is to move a box to a series of goal positions. Like the goal task, a new
random goal location is generated after each achievement.

• Button. The objective is to activate a series of goal buttons distributed throughout the environment.
The agent’s goal is to navigate towards and contact the currently highlighted button, known as
the goal button.

Supported Constraints As shown in Figure 3, the Gymnasium-based environments support the
following constraints. For a more detailed task specification, please refer to our online documentation.

• Velocity-Constraint involves safety tasks using MuJoCo agents [23]. In these tasks, agents aim
for higher reward by moving faster, but they must also adhere to velocity constraints for safety.
Specifically, in a two-dimensional plane, the cost is computed as the Euclidean norm of the
agent’s velocities (vx and vy).

3Task Specification Documentation: https://www.safety-gymnasium.com/en/latest/components_
of_environments/tasks.html
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(b). Pillars (c). Hazards (d). Sigwalls (e). Vases (f). Gremlins(a). Velocity Constraints

(a). Velocity (b). Run (c). Circle (d). Goal (e). Button (f). Push

Figure 3: Upper: Tasks of Gymnasium-based Environments; Lower: Constraints of Gymnasium-
based Environments.

• Pillars are employed to represent large cylindrical obstacles within the environment. In the
general setting, contact with a pillar incurs costs.

• Hazards are utilized to model areas within the environment that pose a risk, resulting in costs
when an agent enters such areas.

• Sigwalls are designed specifically for Circle tasks. Crossing the wall from inside the safe area to
the outside incurs costs.

• Vases represent static and fragile objects within the environment. Touching or displacing these
objects incurs costs for the agent.

• Gremlins represent moving objects within the environment that can interact with the agent.

4.1.1 Vision-only tasks

Vision-only SafeRL has gained significant attention as a focal point of research, primarily due to
its applicability in real-world contexts [40; 41]. While the initial iteration of Safety Gym offered
rudimentary visual input support, there is room for enhancing the realism of its environment. To
effectively evaluate vision-based SafeRL algorithms, we have devised a more realistic visual envi-
ronment utilizing MuJoCo. This enhanced environment facilitates the incorporation of both RGB
and RGB-D inputs (as shown in Figure 5). An exemplar of this environment is depicted in Figure 4,
while comprehensive descriptions are available in Appendix B.5.

(a) Race (b) The Vision Input of Race (c) FormulaOne (d) The Vision Input of FormulaOne

Figure 4: Vision-only Tasks of Gymnasium-based Environments.

4.2 Issac-Gym-based Learning Environments

In this section, we introduce Safety-DexterousHands, a collection of environments built upon
DexterousHands [42] and the Isaac Gym engine [21]. Leveraging GPU capabilities, Safety-
DexterousHands enables large-scale parallel sample collection, significantly accelerating the training
process. The environments support both single-agent and multi-agent settings. These environments
involve two robotic hands (refer to Figure 6 (a) and (b)). In each episode, a ball randomly descends
near the right hand. The right hand needs to grasp and launch the ball toward the left hand, which
subsequently catches and deposits it at the target location.
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(a) step=0 (b) step=150 (c) step=300 (d) step=450 (e) step=600 (f) step=750

Figure 5: The RGB and RGB-D input of Gymnasium-based Environments.

(a) Hand Catch Over (b): Hand Over (c): Dynamics (d): Safety Joint (e): Safety Finger

Figure 6: Tasks of Safety-DexterousHands.

For timestep t, let xb,t, xg,t to be the position of the ball and the goal, dp,t to denote the positional
distance between the ball and the goal dp,t = ∥xb,t − xg,t∥2. Let da,t denote the angular distance
between the object and the goal, and the rotational difference is dr,t = 2arcsinmin{|da,t|, 1.0}.
The reward is defined as follows, rt = exp{−0.2(αdp,t + dr,t)}, where α is a constant balance of
positional and rotational reward.

Safety Joint constrains the freedom of joint ④ of the forefinger (refer to Figure 6 (c) and (d)). Without
the constraint, joint ④ has freedom of [−20°, 20°]. The safety tasks restrict joint ④ within [−10°, 10°].
Let ang_4 be the angle of joint ④, and the cost is defined as: ct = I(ang_4 ̸∈ [−10°, 10°]).

Safety Finger constrains the freedom of joints ②, ③ and ④ of forefinger (refer to Figure 6 (c) and
(e)). Without the constraint, joints ② and ③ have freedom of [0°, 90°] and joint ④ of [−20°, 20°].
The safety tasks restrict joints ②, ③, and ④ within [22.5°, 67.5°], [22.5°, 67.5°], and [−10°, 10°]
respectively. Let ang_2, ang_3, ang_4 be the angles of joints ②, ③, ④, and the cost is defined as:

ct = I(ang_2 ̸∈ [22.5°, 67.5°], or ang_3 ̸∈ [22.5°, 67.5°], or ang_4 ̸∈ [−10°, 10°]). (1)

5 Safe Policy Optimization Algorithms: SafePO

This section provides a detailed discussion of the design of SafePO. Features such as strong perfor-
mance, extensibility, customization, visualization, and documentation are all presented to demonstrate
the advantages and contributions of SafePO.

Correctness For a benchmark, it is critical to ensure its correctness and reliability. Firstly, each
algorithm is implemented strictly according to the original paper (e.g., ensuring consistency with the
gradient flow of the original paper, etc.). Secondly, we compare our implementation with those line
by line for algorithms with a commonly acknowledged open-source code base to double-check the
correctness. Finally, we compare SafePO with existing benchmarks (e.g., Safety-Starter-Agents4 and
RL-Safety-Algorithms5) and SafePO outperforms or achieves comparable performance with other
existing implementations, as shown in Table 1.

4Safety-Starter-Agents: https://github.com/openai/safety-starter-agents
5RL-Safety-Algorithms: https://github.com/SvenGronauer/RL-Safety-Algorithms
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Natural PG
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Lagrangian
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Stage

PID Control
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MAPPO

MAPPO-Lag
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Stage

HAPPO

Constrained 
Optimization

SafePO

Pure Policy

TRPO

Benchmarking 
Tools

Efficient 
Command

Policy 
Evaluator

Customized 
Configuration

Keyboard 
ControllerUser Interface

Single / Multi-Agent Pipeline

Gymnasium / Isaac-Gym APIEnvironment Wrapper

Safe Navigation: Button, Push, Multi-Goal, etc.

Safe Velocity: Multi/Single-agent, Ant, Swimmer, Humanoid, etc.

Safety Vision: FormulaOne, Race, Building, Fading, etc.

Safe Manipulation: ShadowHandOver, FreightFrankaCloseDrawer, etc.

Figure 7: The Architecture of SafePO

Extensibility SafePO enjoys high extensibility thanks to its architecture (as shown in Figure 7).
New algorithms can be integrated into SafePO by inheriting from base algorithms and only imple-
menting their unique features. For example, we integrate PPO by inheriting from policy gradient
and only adding the clip ratio variable and rewriting the function that computes the loss of policy π.
Similarly, algorithms can be easily added to SafePO.

Logging and Visualization Another necessary functionality of SafePO is logging and visualization.
Supporting both TensorBoard and WandB, we offer code for visualizing more than 40 parameters and
intermediate computation results to inspect the training process. Standard parameters and metrics such
as KL-divergence, SPS (step per second), and cost variance are visualized universally. Special features
of algorithms are also reported, such as the Lagrangian multiplier of Lagrangian-based methods,
gTH−1g, gTH−1b, ν∗, and λ∗ of CPO, proportional, integral, and derivative of PID-Lagrangian
algorithms, etc. During training, users can inspect the changes of every parameter, collect the log file,
and obtain saved checkpoint models. The complete and comprehensive visualization allows easier
observation, model selection, and comparison.

Documentation In addition to its code implementation, SafePO comes with an extensive docu-
mentation6. We include detailed guidance on installation and propose solutions to common issues.
Moreover, we provide instructions on simple usage and advanced customization of SafePO. Official
information concerning maintenance, ethical, and responsible use are stated clearly for reference.

Table 1: A comparison between SafePO and other implementations. Results are based on 10
evaluation iterations using over 3 seeds under cost_limit=25.00. J̄R stands for normalized reward
from PPO’s performance, J̄C signifies normalized cost relative to cost_limit, and AvgR/AvgC
represents the ratio of the means of both across 10 environments. The ↑ indicates higher rewards are
better, while the ↓ indicates lower costs (when beyond the threshold of 1.00) are better. Gray and
Black depicts violation and compliance with the cost_limit.

CPO TRPO-Lag PPO-Lag FOCOPS
SafePO (Ours) Safety Starter Agents RL-Safety-Algorithms SafePO (Ours) Safety Starter Agents RL-Safety-Algorithms SafePO (Ours) Safety Starter Agents SafePO (Ours) Original Implementation

Safety Navigation J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓
CARBUTTON1 0.08 1.75 0.34 3.65 -0.06 3.30 -0.04 1.08 0.02 0.78 -0.05 0.63 0.01 0.47 0.02 0.67 0.04 1.21 0.53 6.02
CARGOAL1 0.78 1.63 0.94 2.49 0.46 1.25 0.82 1.09 0.72 1.04 0.72 0.91 0.43 0.39 0.52 0.52 0.52 0.93 0.79 2.45
POINTBUTTON1 0.12 1.61 0.70 3.01 0.03 3.25 0.27 1.29 0.21 0.92 0.04 0.87 0.22 1.32 0.17 0.96 0.25 1.53 0.70 3.74
POINTGOAL1 0.78 1.10 0.81 1.99 0.28 2.05 0.72 0.91 0.65 0.94 0.33 0.72 0.47 1.50 0.66 0.77 0.56 1.32 0.81 1.53

Safety Velocity J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓
ANTVEL 0.52 0.56 0.31 0.93 0.40 1.09 0.53 0.15 0.32 0.76 0.44 0.70 0.54 0.22 0.31 0.61 0.55 0.60 0.52 0.39
HALFCHEETAHVEL 0.40 0.23 0.30 1.13 0.31 0.97 0.43 1.01 0.25 0.79 0.43 0.67 0.44 0.04 0.30 0.93 0.42 0.12 0.44 0.04
HOPPERVEL 0.73 0.48 0.35 0.93 0.26 0.68 0.59 0.71 0.41 1.11 0.24 0.57 0.58 0.89 0.29 1.20 0.66 0.30 0.74 0.53
HUMANOIDVEL 0.71 0.01 0.05 0.19 0.36 0.83 0.72 2.38 0.05 0.01 0.71 0.79 0.72 0.76 0.07 0.09 0.71 0.93 0.73 0.43
SWIMMERVEL 0.51 0.82 0.38 1.11 0.41 0.82 0.66 0.84 0.43 1.67 0.41 1.02 0.57 1.11 0.38 1.18 0.47 1.30 0.68 0.71
WALKER2DVEL 0.39 0.81 0.44 1.85 0.05 0.67 0.51 0.77 0.46 0.67 0.51 1.34 0.44 0.20 0.47 0.81 0.50 0.68 0.48 0.74

AvgR/AvgC 0.56 0.27 0.17 0.51 0.40 0.46 0.64 0.41 0.52 0.39

6SafePO’s Documentation: https://safe-policy-optimization.readthedocs.io
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6 Experiments and Analysis

(a) Average Episodic Reward of Algorithms (b) Bar Chart Categorizing Algorithms into Four Classes Based on Average Episodic Cost

Figure 8: A bar chart analyzing the performance of different algorithms. The left graph compares
episodic reward with PPO-Lag [18] (or MAPPO-Lag [39] for multi-agent). The right graph shows
episodic costs proportionally under varying constraints. Single-agent data is from 40 navigation and
6 velocity tasks, and multi-agent data is from all 8 velocity tasks in Safety-Gymnasium.

Table 2: The performance of single-agent algorithms. J̄R stands for normalized reward from PPO’s
performance, and J̄C signifies normalized cost relative to cost_limit. The ↑ indicates higher
rewards are better, while the ↓ indicates lower costs (when beyond the threshold of 1.00) are better.
Gray and Black depicts breach and compliance with the cost_limit, while Green represents the
optimal policy, maximizing reward within safety constraints.

PPO PPO-Lag TRPO-Lag CPPO-PID RCPO CPO PCPO CUP FOCOPS

Safety Navigation J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓
ANTBUTTON1 1.00 4.42 0.09 0.86 0.23 1.95 0.10 0.70 0.16 2.07 0.12 4.01 0.03 1.01 0.03 0.17 0.01 0.46
ANTCIRCLE1 1.00 16.81 0.79 2.56 0.65 1.05 0.69 1.90 0.63 1.04 0.47 1.07 0.28 1.87 0.60 0.82 0.02 1.22
ANTGOAL1 1.00 1.81 0.26 0.94 0.25 0.74 0.47 1.94 0.29 0.78 0.19 0.55 0.09 0.42 0.34 1.33 0.09 0.67
ANTPUSH1 1.00 1.90 0.13 0.00 0.30 0.00 0.13 0.00 0.33 0.00 0.17 0.00 0.07 0.00 0.20 0.00 -0.30 0.03
CARBUTTON1 1.00 16.09 0.01 0.47 -0.04 1.08 -0.10 0.40 -0.19 1.73 0.08 1.75 0.02 1.90 0.04 5.50 0.04 1.21
CARCIRCLE1 1.00 8.42 0.81 0.82 1.69 2.77 1.61 1.79 1.70 3.11 1.67 3.13 1.41 1.99 0.76 1.04 0.84 1.12
CARGOAL1 1.00 2.38 0.43 0.39 0.82 1.09 0.03 2.47 0.55 0.86 0.78 1.63 0.61 1.42 0.19 0.63 0.52 0.93
CARPUSH1 1.00 7.16 0.46 0.78 1.38 0.70 0.03 0.47 1.11 1.42 0.83 1.14 0.64 2.36 0.32 0.95 0.29 0.36
DOGGOBUTTON1 1.00 7.57 0.01 0.03 0.00 1.27 0.01 0.07 0.01 0.09 0.00 0.15 0.00 0.25 0.02 0.45 0.06 3.68
DOGGOCIRCLE1 1.00 33.14 0.77 0.46 0.67 1.37 0.82 2.16 0.55 1.32 0.66 1.22 0.31 0.55 0.80 2.04 0.73 4.49
DOGGOGOAL1 1.00 2.28 0.05 0.00 0.18 0.69 0.00 0.00 0.16 2.08 0.30 0.50 0.00 0.00 0.00 0.90 0.04 1.27
DOGGOPUSH1 1.00 1.31 0.09 0.00 0.53 0.78 0.32 0.44 0.54 1.55 0.46 0.00 0.36 0.00 0.30 0.68 0.64 3.40
POINTBUTTON1 1.00 6.06 0.22 1.32 0.27 1.29 0.00 0.84 0.12 1.13 0.12 1.61 0.08 2.19 0.18 1.26 0.25 1.53
POINTCIRCLE1 1.00 8.10 0.86 0.93 1.67 1.35 1.72 2.09 1.66 1.42 1.69 1.74 1.33 2.26 0.82 0.62 0.84 0.89
POINTGOAL1 1.00 1.93 0.47 1.50 0.72 0.91 0.31 1.05 0.53 0.99 0.78 1.10 0.71 0.82 0.46 0.73 0.56 1.32
POINTPUSH1 1.00 2.31 0.98 1.33 0.85 1.00 0.35 0.35 5.30 0.94 2.22 0.80 1.72 1.25 2.32 0.80 1.13 2.51
RACECARBUTTON1 1.00 13.73 -0.01 1.94 -0.02 1.77 -0.16 2.06 -0.07 1.19 0.00 2.44 0.02 1.82 0.00 5.23 -0.10 3.37
RACECARCIRCLE1 1.00 15.87 0.83 1.90 0.80 2.18 0.58 1.33 0.83 2.07 0.79 0.81 0.22 2.87 0.74 3.53 0.77 2.11
RACECARGOAL1 1.00 4.26 0.26 0.51 1.19 0.77 -0.04 1.07 0.88 0.83 1.18 2.58 0.33 0.24 0.13 1.22 0.31 0.62
RACECARPUSH1 1.00 2.34 -0.40 0.00 0.74 1.79 -0.84 2.87 0.58 1.92 0.94 0.13 -0.16 0.18 -0.06 3.79 0.30 2.04

Safety Velocity J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓
ANTVEL 1.00 38.33 0.54 0.22 0.53 0.15 0.51 0.41 0.52 0.56 0.52 0.56 0.38 0.41 0.55 0.94 0.55 0.60
HALFCHEETAHVEL 1.00 36.77 0.44 0.00 0.43 1.01 0.48 0.04 0.36 0.56 0.40 0.23 0.25 0.63 0.40 0.17 0.42 0.12
HOPPERVEL 1.00 22.00 0.58 0.89 0.59 0.71 0.73 0.44 0.58 0.59 0.73 0.48 0.65 0.51 0.73 0.21 0.66 0.30
HUMANOIDVEL 1.00 38.42 0.72 0.76 0.72 2.38 0.73 0.00 0.68 0.82 0.71 0.01 0.64 0.01 0.68 0.80 0.71 0.93
SWIMMERVEL 1.00 6.61 0.57 1.11 0.66 0.84 0.91 0.92 0.54 0.90 0.51 0.82 0.50 0.69 0.59 0.96 0.47 1.30
WALKER2DVEL 1.00 36.11 0.44 0.20 0.51 0.77 0.27 0.36 0.49 0.15 0.39 0.81 0.27 0.71 0.44 0.18 0.50 0.16

Reward and Cost. Episodic reward and cost exhibit a trade-off relationship. Unconstrained
algorithms aim to maximize reward through risky behaviors. HAPPO [37] achieves higher rewards
compared to MAPPO [38] across 8 velocity-based tasks, accompanied by a simultaneous increase
in average costs. SafeRL algorithms tend to maximize reward while adhering to constraints. As
depicted in Table 2, in the velocity task, compared to PPO [43], PPO-Lag [18] achieves a reduction
of 98% in cost while only experiencing a decrease of 45% in reward.

Randomness and Oscillation. The randomness of tasks is correlated with the oscillation of algo-
rithms’ performance. All SafeRL algorithms achieve average episodic costs within the cost_limit
for velocity tasks. The divergence in episodic rewards between algorithms is negligible, and the
distribution of optimal policies is tightly clustered. However, pronounced oscillations are present
in navigation tasks characterized by high stochasticity. Out of the 20 navigation tasks examined,
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optimal policies are spread out more, leading to observable differences in algorithm performance
across various tasks.

Table 3: The normalized performance of SafePO’s
multi-agent algorithms on Safety-Gymnasium.

MAPPO HAPPO MAPPO-Lag MACPO

Safety Velocity J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓ J̄R ↑ J̄C ↓
2X4ANTVEL 1.00 35.76 1.26 39.12 0.57 0.00 0.51 0.14
4X2ANTVEL 1.00 38.01 1.07 34.34 0.50 0.00 0.50 0.01
2X3HALFCHEETAHVEL 1.00 39.02 1.11 37.70 0.35 0.01 0.49 1.28
6X1HALFCHEETAHVEL 1.00 39.23 1.09 37.74 0.28 0.02 0.36 0.37
3X1HOPPERVEL 1.00 22.58 1.04 22.05 0.47 0.00 0.22 1.03
9|8HUMANOIDVEL 1.00 6.34 2.79 17.18 0.54 0.84 0.53 1.30
2X3WALKER2DVEL 1.00 22.99 1.55 33.67 0.60 0.01 0.27 1.21

Lagrangian vs. Projection. In contrast
to projection-based methods, the Lagrangian-
based methods tend to display more oscillation.
A notable disparity becomes apparent upon ex-
amining the oscillatory patterns in the episodic
cost around the designated safety constraints dur-
ing training, as presented in Figure 8(b). Both
CPO [30] and PPO-Lag [18] demonstrate oscil-
lations; however, those exhibited by PPO-Lag
are more conspicuous. This discrepancy is man-
ifested in a higher proportion of instances clas-
sified as Strongly Unsafe and Strongly Safe for PPO-Lag, while CPO maintains a more centered
distribution. Nevertheless, an excessively cautious policy has the potential to undermine performance.
In contrast, the projection-based method PCPO [3] exhibits lower average costs and rewards in
navigation and velocity tasks than CPO. This distinction is further accentuated when examining the
contrast between MACPO and MAPPO-Lag.

Lagrangian vs. PID-Lagrangian. Incorporating a PID controller within the Lagrangian-based
framework proves to be effective in mitigating inherent oscillations. As shown in Figure 8, CPPO-PID
[44] displays episodic rewards during training that closely resemble those of PPO-Lag. However,
CPPO-PID demonstrates a reduced frequency of instances entering the Strongly Unsafe region,
resulting in a more significant proportion of Safe states and improved safety performance.

7 Limitations and Future Works

Ensuring safety remains a paramount concern. Across various tasks, safety concerns can be trans-
formed into corresponding constraints. However, a limitation of this study is its inability to encompass
all forms of constraints. For instance, safety constraints related to human-centric considerations
are paramount in human-AI collaboration, yet these considerations have not been fully integrated
within the scope of this study. This work focuses on safety tasks within a simulated environment and
introduces an extensive testing component. However, the transferability of the results to complex
real-world safety-critical applications may be limited. A promising work for the future involves
transferring policy refined within the Safety-Gymnasium to physical robotic platforms, which holds
profound implications.
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A Details of Experimental Results

A.1 Hyperparameters Analysis

This section presents the disclosure of SafePO hyperparameters settings and their rationales. We
employed the Generalized Advantage Estimation (GAE)[45] method to estimate the values of rewards
and cost advantages and used Adam[46] for learning the neural network parameters.

Single-agent Algorithm Settings. The models employed in the single-agent algorithms were 3-layer
MLPs with Tanh activation functions and hidden layer sizes of [64, 64], for more intricate navigation
agents Ant and Doggo, hidden layers of [256, 256] were employed.

Multi-agent Algorithms Settings. The models employed in the multi-agent algorithms were 3-layer
MLPs with ReLU activation functions and hidden layer sizes of [128, 128].

Table 4: Hyperparameters of SafePO algorithms in Safety-Gymnasium tasks. Second-order algo-
rithms set the parameters to the actor model directly, instead of iterative gradient descent, so the Actor
Learning Rate of them are marked Gray.

PG/PPO/PPO-Lag Value
Discount Factor γ 0.99
Target KL 0.02
GAE λ 0.95
Number of SGD Iterations 40
Training Batch Size 20000
Actor Learning Rate 0.0003
Critic Learning Rate 0.0003
Cost Limit 25.00
Clip Coefficient 0.20
Lagrangian Initial Value 0.001
Lagrangian Learning Rate 0.035
Lagrangian Optimizer Adam

TRPO/TRPO-Lag Value
Discount Factor γ 0.99
Target KL 0.01
GAE λ 0.95
Number of SGD Iterations 10
Training Batch Size 20000
Actor Learning Rate None
Critic Learning Rate 0.001
Cost Limit 25.00
Conjugate Gradient Iterations 15
Lagrangian Initial Value 0.001
Lagrangian Learning Rate 0.035
Lagrangian Optimizer Adam

CPPO-PID Value
Discount Factor γ 0.99
Target KL 0.02
GAE λ 0.95
Number of SGD Iterations 40
Training Batch Size 20000
Actor Learning Rate 0.0003
Critic Learning Rate 0.0003
Cost Limit 25.00
Clip Coefficient 0.20
PID Controller Kp 0.10
PID Controller Ki 0.01
PID Controller Kd 0.01

NPG/RCPO Value
Discount Factor γ 0.99
Target KL 0.01
GAE λ 0.95
Number of SGD Iterations 10
Training Batch Size 20000
Actor Learning Rate None
Critic Learning Rate 0.001
Cost Limit 25.00
Conjugate Gradient Iterations 15
Lagrangian Initial Value 0.001
Lagrangian Learning Rate 0.035
Lagrangian Optimizer Adam

HAPPO/MAPPO/MAPPO-Lag Value
Discount Factor γ 0.99
Target KL 0.016
GAE λ 0.95
Number of SGD Iterations 5
Training Batch Size 10000
Actor Learning Rate 0.0005
Critic Learning Rate 0.0005
Cost Limit 25.00
Clip Coefficient 0.20
Lagrangian Initial Value 0.00001
Lagrangian Learning Rate 0.78
Lagrangian Optimizer SGD

CPO Value
Discount Factor γ 0.99
Target KL 0.01
GAE λ 0.95
Number of SGD Iterations 10
Training Batch Size 20000
Actor Learning Rate None
Critic Learning Rate 0.001
Cost Limit 25.00
Conjugate Gradient Iterations 15
CPO Searching Steps 15
Step Fraction 0.80

PCPO Value
Discount Factor γ 0.99
Target KL 0.01
GAE λ 0.95
Number of SGD Iterations 10
Training Batch Size 20000
Actor Learning Rate None
Critic Learning Rate 0.001
Cost Limit 25.00
Conjugate Gradient Iterations 15
PCPO Searching Steps 200
Step Fraction 0.80

CUP Value
Discount Factor γ 0.99
Target KL 0.02
GAE λ 0.95
Number of SGD Iteration 40
Training Batch Size 20000
Actor Learning Rate 0.0003
Critic Learning Rate 0.0003
Cost Limit 25.00
Clip Coefficient 0.20
CUP λ 0.95
CUP ν 2.00

FOCOPS Value
Discount Factor γ 0.99
Target KL 0.02
GAE λ 0.95
Number of SGD Iteration 40
Training Batch Size 20000
Actor Learning Rate 0.0003
Critic Learning Rate 0.0003
Cost Limit 25.00
Clip Coefficient 0.20
FOCOPS λ 1.50
FOCOPS ν 2.00

MACPO Value
Discount Factor γ 0.99
Target KL 0.01
GAE λ 0.95
Number of SGD Iteration 15
Training Batch Size 10000
Actor Learning Rate None
Critic Learning Rate 0.0005
Cost Limit 25.00
Conjugate Gradient Iterations 10
MACPO Searching Steps 10
Step Fraction 0.50

Lagrangian Multiplier Settings. Lagrangian-based methods are sensitive to hyperparameters. We
present the following detailed description of the settings for both the naive and the PID-controlled
Lagrangian multiplier.

• Lagrangian Initial Value: The initial value of the Lagrangian multiplier. It impacts the
early-stage performance of the Lagrangian-based methods. A higher initial value promotes
safer exploration but may impede task completion. Conversely, a lower initial value delays
the agent’s exploration of safe policies.

• Lagrangian Learning Rate: The learning rate of the Lagrangian multiplier. A high learning
rate induces excessive oscillations, impedes convergence speed, and hinders the algorithm’s
ability to attain the desired solution. Conversely, a low learning rate slows down convergence
and adversely affects training.

• PID Controller Kp: The PID controller’s proportional gain determines the output’s response
to changes in the episodic costs. If pid_kp is too large, the Lagrangian multiplier oscillates,
and performance deteriorates. If pid_kp is too small, the Lagrangian multiplier updates
slowly, also impacting performance negatively.

• PID Controller Kd: The PID controller’s derivative gain governs the output’s response to
changes in the episodic costs. If pid_kd is too large, the Lagrangian multiplier becomes
excessively sensitive to noise or changes in the episodic costs, leading to instability or
oscillations. If pid_kd is too small, the Lagrangian multiplier may not respond quickly or
accurately enough to changes in the episodic costs.

• PID Controller Ki: The PID controller’s integral gain determines the controller’s ability to
eliminate the steady-state error by integrating the episodic costs over time. If pid_ki is too
large, the Lagrangian multiplier may become overly responsive to previous errors, adversely
affecting performance.
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A.2 Performance Table of Safety-Gymnasium

Table 5: The performance of SafePO algorithms on Safety-Gymnasium. All experimental outcomes
were derived from 10 assessment iterations encompassing multiple random seeds and under the
experimental setting of cost_limit=25.00. The ↑ indicates higher rewards are better, while the
↓ indicates lower costs (when beyond the threshold of 25.00) are better. Gray and Black depicts
breach and compliance with the cost_limit, while Green represents the optimal policy, maximizing
reward within safety constraints.

(a) The performance of SafePO single-agent algorithms on Safety-Gymnasium.

PPO PPO-Lag CPPO-PID TRPO-Lag RCPO CPO PCPO CUP FOCOPS

Safety Navigation JR JC JR JC JR JC JR JC JR JC JR JC JR JC JR JC JR JC

ANTBUTTON1 38.70 110.60 3.63 21.60 4.06 17.45 8.93 48.70 6.16 51.70 4.50 100.30 1.27 25.35 1.26 4.25 0.22 11.55
ANTBUTTON2 36.15 95.00 2.72 14.85 2.86 28.70 8.66 49.45 8.66 37.40 4.63 35.60 3.04 27.50 1.60 32.90 -0.04 6.80
ANTCIRCLE1 94.04 420.30 74.31 63.90 64.90 47.50 61.02 26.30 59.42 26.00 43.74 26.80 26.47 46.85 56.77 20.50 2.27 30.50
ANTCIRCLE2 84.80 736.00 65.72 22.45 64.49 39.85 66.75 22.75 63.04 19.00 53.74 43.90 16.41 15.85 42.65 10.80 4.78 66.30
ANTGOAL1 82.02 45.30 21.33 23.60 38.79 48.55 20.64 18.50 23.38 19.60 15.35 13.80 7.31 10.50 27.98 33.25 6.99 16.75
ANTGOAL2 86.14 165.60 1.01 0.00 0.10 0.00 4.44 13.45 6.27 54.00 0.85 4.60 0.02 0.00 0.76 1.15 0.08 1.15
ANTPUSH1 0.46 47.55 0.06 0.00 0.06 0.00 0.14 0.00 0.15 0.00 0.08 0.00 0.03 0.00 0.09 0.00 -0.14 0.70
ANTPUSH2 0.77 139.20 0.01 0.02 0.02 0.00 0.01 0.00 0.10 0.00 0.05 0.00 0.02 0.00 0.02 0.10 0.07 0.20
CARBUTTON1 15.74 398.81 0.11 11.87 -1.70 10.03 -0.66 26.90 -3.16 43.20 1.30 43.73 0.27 47.60 0.68 137.47 0.60 30.23
CARBUTTON2 19.32 333.82 1.23 46.14 -1.83 26.55 -2.23 17.98 -0.02 27.09 -0.10 36.97 0.49 38.54 0.80 154.50 0.07 53.49
CARCIRCLE1 21.92 208.73 17.91 20.62 35.71 44.87 37.42 69.30 37.78 77.77 37.10 78.23 31.37 49.80 16.89 25.88 18.63 27.98
CARCIRCLE2 19.75 401.83 16.27 29.88 30.80 40.37 33.23 54.20 33.74 42.17 33.42 78.97 27.93 70.40 14.74 15.46 15.60 31.20
CARGOAL1 32.57 58.91 14.57 9.84 1.00 61.71 27.49 27.28 18.49 21.45 26.23 40.71 20.64 35.41 6.38 15.67 17.58 23.22
CARGOAL2 31.59 215.74 0.59 16.81 0.12 23.09 3.27 47.18 2.61 25.45 3.55 32.63 1.83 57.82 2.45 125.80 3.28 23.01
CARPUSH1 1.13 181.04 0.49 19.60 0.03 11.83 1.48 17.60 1.19 35.50 0.89 28.50 0.68 59.03 0.34 23.86 0.31 8.96
CARPUSH2 1.03 46.87 0.54 43.32 0.57 37.37 0.43 38.63 0.12 27.57 0.15 19.03 0.29 60.10 0.41 82.20 -0.28 40.42
DOGGOBUTTON1 27.23 189.30 0.33 0.80 0.22 1.67 0.01 31.75 0.30 2.25 0.03 3.70 -0.06 6.20 0.67 11.17 1.52 91.90
DOGGOBUTTON2 29.84 194.60 0.10 1.00 0.16 2.70 -0.05 17.05 0.07 0.00 0.03 1.40 0.01 8.01 0.35 43.37 0.22 2.10
DOGGOCIRCLE2 41.90 442.70 30.13 14.20 34.82 62.03 21.97 46.75 20.68 37.35 20.41 32.55 15.41 24.05 33.08 58.33 28.91 122.80
DOGGOCIRCLE1 41.61 828.50 32.03 11.50 34.26 53.93 27.86 34.20 22.93 32.90 27.65 30.55 12.94 13.70 33.45 50.97 30.29 112.20
DOGGOGOAL1 43.10 57.10 2.00 0.00 0.13 0.00 7.88 17.25 6.82 52.05 12.73 12.40 0.14 0.00 0.16 22.47 1.88 31.80
DOGGOGOAL2 42.04 123.30 0.06 0.00 0.09 0.00 0.02 0.00 0.06 0.00 0.03 0.00 0.06 0.00 0.28 3.33 0.08 0.00
DOGGOPUSH2 0.82 32.70 -0.02 0.00 0.08 0.00 0.16 0.00 0.18 0.00 0.54 39.08 0.14 0.00 0.22 52.70 0.52 0.00
DOGGOPUSH1 0.90 32.70 0.08 0.00 0.29 11.03 0.48 19.40 0.49 38.80 0.41 0.00 0.32 0.00 0.27 17.10 0.58 85.10
POINTBUTTON1 26.10 151.38 5.83 32.98 -0.12 20.88 7.13 32.31 3.01 28.14 3.20 40.16 2.18 54.74 4.70 31.39 6.60 38.27
POINTBUTTON2 27.96 166.74 0.27 31.49 0.44 30.87 4.87 24.94 7.90 53.82 5.58 47.68 1.12 41.49 3.52 61.98 1.29 26.13
POINTCIRCLE1 54.57 202.54 47.00 23.28 93.84 52.23 90.87 33.83 90.65 35.53 92.10 43.50 72.81 56.53 44.98 15.50 46.06 22.36
POINTCIRCLE2 54.39 397.54 41.60 19.92 83.67 45.27 82.62 6.63 83.39 7.40 85.22 21.20 79.22 22.67 41.45 30.98 42.38 20.96
POINTGOAL1 26.32 48.20 12.46 37.62 8.15 26.31 18.99 22.87 13.90 24.66 20.52 27.44 18.79 20.48 11.99 18.15 14.77 32.95
POINTGOAL2 26.43 159.28 0.59 59.43 -0.56 60.37 4.18 26.80 1.84 29.19 2.65 42.40 1.32 37.66 1.00 162.97 2.71 18.63
POINTPUSH1 0.82 57.80 0.80 33.18 0.29 8.87 0.70 24.93 4.35 23.47 1.82 19.90 1.41 31.33 1.90 19.98 0.93 62.64
POINTPUSH2 1.39 42.82 0.52 25.90 1.01 25.87 1.05 56.07 0.54 29.83 1.50 29.17 0.59 27.57 1.26 56.08 0.44 39.24
RACECARBUTTON1 8.48 343.15 -0.05 48.55 -1.37 51.57 -0.18 44.25 -0.63 29.70 0.02 60.95 0.13 45.45 0.04 130.63 -0.88 84.20
RACECARBUTTON2 5.77 284.15 -0.58 22.35 -0.64 31.80 0.19 65.00 0.38 18.45 0.01 32.90 0.04 51.95 -0.40 72.57 -0.40 57.65
RACECARCIRCLE1 81.62 396.80 67.49 47.55 47.66 33.13 65.54 54.55 67.39 51.75 64.77 20.20 18.05 71.65 60.68 88.33 62.77 52.85
RACECARCIRCLE2 82.61 831.00 46.85 26.05 28.04 47.37 60.83 45.65 61.40 33.00 59.17 48.30 8.81 35.05 41.50 16.13 52.38 35.10
RACECARGOAL1 11.29 106.40 2.90 12.70 -0.42 26.87 13.40 19.20 9.89 20.70 13.30 64.50 3.72 5.90 1.47 30.57 3.47 15.40
RACECARGOAL2 9.61 158.25 0.08 54.40 -0.85 30.50 0.40 14.30 0.55 16.80 1.19 109.85 0.69 41.90 -0.09 62.33 0.17 93.05
RACECARPUSH1 0.50 58.45 -0.20 0.00 -0.42 71.83 0.37 44.75 0.29 48.00 0.47 3.30 -0.08 4.50 -0.03 94.70 0.15 51.00
RACECARPUSH2 0.58 213.95 0.37 43.85 -0.08 24.07 -0.12 5.50 -0.03 0.00 0.23 9.55 -0.51 49.75 -1.54 101.50 -0.54 56.00

Safety Velocity JR JC JR JC JR JC JR JC JR JC JR JC JR JC JR JC JR JC

ANTVEL 5899.64 943.57 3221.90 5.43 3070.67 10.23 3157.40 3.63 3087.03 14.12 3116.77 14.10 2276.19 10.18 3297.29 23.56 3291.30 15.07
HALFCHEETAHVEL 7013.92 933.18 3025.42 0.00 3336.80 1.09 2952.08 25.23 2520.50 13.95 2738.36 5.68 1743.71 15.64 2765.42 4.28 2873.14 2.88
HOPPERVEL 2378.23 543.14 1347.98 22.30 1709.13 11.11 1377.89 17.67 1355.69 14.85 1713.22 12.12 1519.59 12.79 1716.35 5.37 1538.79 7.43
HUMANOIDVEL 9117.61 959.76 6586.70 18.95 6620.69 0.00 6552.06 59.85 6236.18 20.57 6486.40 0.22 5863.98 0.18 6181.80 19.88 6502.90 23.23
SWIMMERVEL 121.23 171.21 68.10 27.68 109.34 22.92 79.63 20.98 64.73 22.56 61.49 20.46 60.48 17.31 70.86 23.93 55.87 32.62
WALKER2DVEL 6312.27 899.82 2756.61 4.90 1704.06 8.90 3209.78 19.18 3072.07 3.72 2440.82 20.15 1698.31 17.73 2739.50 4.39 3116.08 3.93

(b) The performance of SafePO multi-agent algorithms on Safety-Gymnasium.

MAPPO HAPPO MAPPO-Lag MACPO

Safety Velocity JR JC JR JC JR JC JR JC

2X4ANTVEL 4259.52 894.06 5368.61 978.06 2423.47 0.00 2169.23 3.39
4X2ANTVEL 4309.05 950.33 4613.69 858.50 2171.40 0.00 2172.31 0.17
2X3HALFCHEETAHVEL 5057.63 975.50 5605.98 942.56 1750.96 0.33 2470.29 32.06
6X1HALFCHEETAHVEL 5061.53 980.67 5540.57 943.56 1439.38 0.61 1830.65 9.33
3X1HOPPERVEL 2115.35 564.56 2207.50 551.33 1002.01 0.00 461.25 25.78
9|8HUMANOIDVEL 974.50 158.61 2718.48 429.61 526.69 21.00 512.29 32.50
2X1SWIMMERVEL 39.88 101.89 51.95 267.00 27.89 59.73 -4.02 20.83
2X3WALKER2DVEL 2691.41 574.72 4183.34 841.83 1618.98 0.33 714.18 30.22

Experimental Results Analysis.

During the observation of the experimental results, we have discovered some Insightful findings that
are presented below:

• The Lagrangian method is a promising yet constrained baseline approach, successfully
optimizing rewards while adhering to constraints. However, its effectiveness heavily relies
on hyperparameters configuration, as discussed in Table A.1. Consequently, despite being a
dependable baseline, the Lagrangian method is not exempt from limitations.

• Second-order algorithms perform worse in achieving higher rewards in the MuJoCo velocity
series but better in navigation series tasks that require higher safety standards, i.e., achieving
similar or approximate rewards while minimizing the number and smoothness of cost
violations.
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B Details Documentation of Gymnasium-based Learning Environments

B.1 Single-agent Specification

(b) Point: back(a) Point: front (c) Point: left (d) Point: right

Figure 9: A different view of the robot: Point.

Table 6: The overall information of Point
Specific Action Space Box(-1.0, 1.0, (2,), float64)
Specific Observation Space (12, )
Observation High inf
Observation Low -inf

Table 7: The specific observation space of Point
Size Observation Min Max Name (in XML file) Joint/Site Unit

3 accelerometer -inf inf accelerometer site acceleration (m/s^2)
3 velocimeter -inf inf velocimeter site velocity (m/s)
3 gyro -inf inf gyro site anglular velocity (rad/s)
3 magnetometer -inf inf magnetometer site magnetic flux (Wb)

Table 8: The specific action space of Point
Num Action Control Min Control Max Name (in XML file) Joint/Site Unit

0 force applied on the agent
to move forward or backward -1 1 x site force (N)

1 velocity of the agent,
which is around the z-axis -1 1 z hinge velocity (m/s)

Point: As shown in Figure 9, Point operating within a 2D plane is equipped with two distinct
actuators: one for rotation and another for forward/backward movement. This decomposed control
system greatly facilitates the navigation of the robot. Moreover, there is a small square positioned in
front of the robot, aiding in the visual identification of its orientation. Additionally, this square plays
a crucial role in assisting the robot, named Point, to effectively push any boxes encountered during
its tasks. The overall information of Point, the specific action and observation space of Point is
shown in Table 6, Table 8, Table 7.

(b) Car: back(a) Car: front (c) Car: left (d) Car: right

Figure 10: A different view of the robot: Car.

Table 9: The overall information of Car
Specific Action Space Box(-1.0, 1.0, (2,), float64)

Specific Observation Space (24, )
Observation High inf
Observation Low -inf
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Table 10: The specific action space of Car
Num Action Control Min Control Max Name (in XML file) Joint/Site Unit

0 force to applied on left wheel -1 1 left hinge force (N)
1 force to applied on right wheel -1 1 right hinge force (N)

Table 11: The specific observation space of Car
Size Observation Min Max Name (in XML file) Joint/Site Unit

3 Quaternions of the rear wheel which are
turned into 3x3 rotation matrices -inf inf ballquat_rear ball unitless

3 Angle velocity of the rear wheel -inf inf ballangvel_rear ball anglular velocity (rad/s)
3 accelerometer -inf inf accelerometer site acceleration (m/s^2)
3 velocimeter -inf inf velocimeter site velocity (m/s)
3 gyro -inf inf gyro site anglular velocity (rad/s)
3 magnetometer -inf inf magnetometer site magnetic flux (Wb)

Car: As shown in Figure 10, the robot in question operates in three dimensions and features two
independently driven parallel wheels, along with a freely rolling rear wheel. This design requires
coordinated operation of the two drives for both steering and forward/backward movement. While
the robot shares similarities with a basic Point robot, it possesses added complexity. The overall
information of Car, the specific action and observation space of Car is shown in Table 9, Table 10,
Table 11.

(b) Racecar: back(a) Racecar: front (c) Racecar: left (d) Racecar: right

Figure 11: A different view of the robot: Racecar.

Table 12: The overall information of Racear
Specific Action Space Box([-20. -0.785], [20. 0.785], (2,), float64)

Specific Observation Space (12, )
Observation High inf
Observation Low -inf

Table 13: The specific action space of Racecar
Num Action Control Min Control Max Name (in XML file) Joint/Site Unit

0 Velocity of the
rear wheels. -20 20 diff_ring hinge velocity (m/s)

1 Angle of the front
wheel. -0.785 0.785 steering_hinge hinge angle (rad)

Table 14: The specific observation space of Racecar
Size Observation Min Max Name (in XML file) Joint/Site Unit

3 accelerometer -inf inf accelerometer site acceleration (m/s^2)
3 velocimeter -inf inf velocimeter site velocity (m/s)
3 gyro -inf inf gyro site anglular velocity (rad/s)
3 magnetometer -inf inf magnetometer site magnetic flux (Wb)

Racecar. As shown in Figure 11, the robot is closer to realistic car dynamics, moving in three
dimensions, it has one velocity servo and one position servo, one to adjusts the rear wheel speed to
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the target speed and the other to adjust the front wheel steering angle to the target angle. Racecar
references the widely known MIT Racecar project’s dynamics model. For it to accomplish the
specified goal, it must coordinate the relationship between the steering angle of the tires and the
speed, just like a human driving a car. The overall information of Racecar, the specific action and
observation space of Racecar is shown in Table 12, Table 13, Table 14.

Table 15: The overall information of Ant
Specific Action Space Box(-1.0, 1.0, (8,), float64)

Specific Observation Space (40, )
Observation High inf
Observation Low -inf

Table 16: The specific action space of Ant
Num Action Control Min Control Max Name (in XML file) Joint/Site Unit

0
torque applied on the

rotor between the torso
and front left hip

-1 1 hip_1 (front_left_leg) hinge torque (N m)

1
torque applied on the

rotor between the front
left two links

-1 1 angle_1 (front_left_leg) hinge torque (N m)

2
torque applied on the

rotor between the torso
and front right hip

-1 1 hip_2 (front_right_leg) hinge torque (N m)

3
torque applied on the

rotor between the front
right two links

-1 1 angle_2 (front_right_leg) hinge torque (N m)

4
torque applied on the

rotor between the torso
and back left hip

-1 1 hip_3 (back_leg) hinge torque (N m)

5
torque applied on the

rotor between the back
left two links

-1 1 angle_3 (back_leg) hinge torque (N m)

6
torque applied on the

rotor between the torso
and back right hip

-1 1 hip_4 (right_back_leg) hinge torque (N m)

7
torque applied on the

rotor between the back
right two links

-1 1 angle_4 (right_back_leg) hinge torque (N m)

Ant. As depicted in Figure 12, the quadrupedal robot, inspired by the model proposed in [45]. It
consists of a torso and four interconnected legs. Each leg is composed of two hinged connecting
limbs, which, in turn, are connected to the torso via hinges. To achieve movement in the desired
direction, coordination of the four legs is required by applying moments to the eight hinge drivers. For
a comprehensive understanding of the robot, please refer to Table 15, Table 16, and Table 17, which
provide an overview of the Ant robot, its specific action space, and observation space, respectively.

(b) Ant: back(a) Ant: front (c) Ant: left (d) Ant: right

Figure 12: A different view of the robot: Ant.
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Table 17: The specific observation space of Ant
Size Observation Min Max Name (in XML file) Joint/Site Unit

3 accelerometer -inf inf accelerometer site acceleration (m/s^2)
3 velocimeter -inf inf velocimeter site velocity (m/s)
3 gyro -inf inf gyro site anglular velocity (rad/s)
3 magnetometer -inf inf magnetometer site magnetic flux (Wb)

1 angular velocity of angle
between torso and front left link -inf inf hip_1 (front_left_leg) hinge angle (rad)

1 angular velocity of the angle
between front left links -inf inf ankle_1 (front_left_leg) hinge angle (rad)

1 angular velocity of angle
between torso and front right link -inf inf hip_2 (front_right_leg) hinge angle (rad)

1 angular velocity of the angle
between front right links -inf inf ankle_2 (front_right_leg) hinge angle (rad)

1 angular velocity of angle
between torso and back left link -inf inf hip_3 (back_leg) hinge angle (rad)

1 angular velocity of the angle
between back left links -inf inf ankle_3 (back_leg) hinge angle (rad)

1 angular velocity of angle
between torso and back right link -inf inf hip_4 (right_back_leg) hinge angle (rad)

1 angular velocity of the angle
between back right links -inf inf ankle_4 (right_back_leg) hinge angle (rad)

1 z-coordinate of the torso
(centre). -inf inf torso site position (m)

3 xyz-coordinate angular
velocity of the tors. -inf inf torso site angular velocity (rad/s)

2 sin() and cos() of angle
between torso and first link on front left -inf inf hip_1 (front_left_leg) hinge unitless

2 sin() and cos() of angle
between torso and first link on front left -inf inf ankle_1 (front_left_leg) hinge unitless

2 sin() and cos() of angle
between torso and first link on front left -inf inf hip_2 (front_right_leg) hinge unitless

2 sin() and cos() of angle
between torso and first link on front left -inf inf ankle_2 (front_right_leg) hinge unitless

2 sin() and cos() of angle
between torso and first link on front left -inf inf hip_3 (back_leg) hinge unitless

2 sin() and cos() of angle
between torso and first link on front left -inf inf ankle_3 (back_leg) hinge unitless

2 sin() and cos() of angle
between torso and first link on front left -inf inf hip_4 (right_back_leg) hinge unitless

2 sin() and cos() of angle
between torso and first link on front left -inf inf ankle_4 (right_back_leg) hinge unitless

B.2 Multi-agents Specification

(a) 2-ant: Render (b) 2-ant-diag: Render (c) 4-ant: Render (d) ant: Dynamics

Figure 13: A different view of the MA-Ant.

2-ant. The Ant is partitioned into 2 parts, the front part (containing the front legs) and the back
part (containing the back legs). The action space of agent-0 and agent-1 as shown in Table 18 and
Table 19.
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Table 18: The specific action space of 2-ant: agent-0
Num Action Control Min Control Max Name (in XML file) Joint Unit

0
Torque applied on the rotor
between the torso and front

left hip
-1 1 hip_1 (front_left_leg) hinge torque (N m)

1
Torque applied on the rotor

between the front left
two links

-1 1 angle_1 (front_left_leg) hinge torque (N m)

2
Torque applied on the rotor
between the torso and front

right hip
-1 1 hip_2 (front_right_leg) hinge torque (N m)

3
Torque applied on the rotor

between the front right
two links

-1 1 angle_2 (front_right_leg) hinge torque (N m)

Table 19: The specific action space of 2-ant: agent-1
Num Action Control Min Control Max Name (in XML file) Joint Unit

0
Torque applied on the rotor
between the torso and front

left hip
-1 1 hip_1 (front_left_leg) hinge torque (N m)

1
Torque applied on the rotor

between the front left
two links

-1 1 angle_1 (front_left_leg) hinge torque (N m)

2
Torque applied on the rotor
between the torso and front

right hip
-1 1 hip_2 (front_right_leg) hinge torque (N m)

3
Torque applied on the rotor

between the front right
two links

-1 1 angle_2 (front_right_leg) hinge torque (N m)

2-ant-diag. The Ant is partitioned into 2 parts, split diagonally, the front part (containing the front
legs) and the back part (containing the back legs). The action space of agent-0 and agent-1 as shown
in Table 20 and Table 21.

Table 20: The specific action space of 2-ant-diag: agent-0
Num Action Control Min Control Max Name (in XML file) Joint Unit

0 Torque applied on the rotor
between the torso and front left hip -1 1 hip_1 (front_left_leg) hinge torque (N m)

1 Torque applied on the rotor
between the front left two links -1 1 angle_1 (front_left_leg) hinge torque (N m)

2 Torque applied on the rotor
between the torso and back right hip -1 1 hip_4 (right_back_leg) hinge torque (N m)

3 Torque applied on the rotor
between the back right two links -1 1 angle_4 (right_back_leg) hinge torque (N m)

Table 21: The specific action space of 4-ant: agent-1
Num Action Control Min Control Max Name (in XML file) Joint Unit

0 Torque applied on the rotor
between the torso and front right hip -1 1 hip_2 (front_right_leg) hinge torque (N m)

1 Torque applied on the rotor
between the front right two links -1 1 angle_2 (front_right_leg) hinge torque (N m)

2 Torque applied on the rotor
between the torso and back left hip -1 1 hip_3 (back_leg) hinge torque (N m)

3 Torque applied on the rotor
between the back left two links -1 1 angle_3 (back_leg) hinge torque (N m)

4-ant. The Ant is partitioned into 4 parts, with each part corresponding to a leg of the ant. The action
space of agent-0, agent-1, agent-2, and agent-3 as shown in Table 22, Table 23, Table 24 and Table 25.
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Table 22: The specific action space of 4-ant: agent-0
Num Action Control Min Control Max Name (in XML file) Joint Unit

0 Torque applied on the rotor
between the torso and front left hip -1 1 hip_1 (front_left_leg) hinge torque (N m)

1 Torque applied on the rotor
between the front left two links -1 1 angle_1 (front_left_leg) hinge torque (N m)

Table 23: The specific action space of 2-ant-diag: agent-1
Num Action Control Min Control Max Name (in XML file) Joint Unit

0 Torque applied on the rotor
between the torso and front right hip -1 1 hip_2 (front_right_leg) hinge torque (N m)

1 Torque applied on the rotor
between the front right two links -1 1 angle_2 (front_right_leg) hinge torque (N m)

Table 24: The specific action space of 4-ant: agent-2
Num Action Control Min Control Max Name (in XML file) Joint Unit

0 Torque applied on the rotor
between the torso and back left hip -1 1 hip_3 (back_leg) hinge torque (N m)

1 Torque applied on the rotor
between the back left two links -1 1 angle_3 (back_leg) hinge torque (N m)

Table 25: The specific action space of 4-ant: agent-3
Num Action Control Min Control Max Name (in XML file) Joint Unit

0 Torque applied on the rotor
between the torso and back right hip -1 1 hip_4 (right_back_leg) hinge torque (N m)

1 Torque applied on the rotor
between the back right two links -1 1 angle_4 (right_back_leg) hinge torque (N m)

In addition to the robots mentioned in this paper, we also provide other multi-agent versions of robots.
Due to space constraints, we did not elaborate on them extensively in the paper. However, you can
refer to https://www.safety-gymnasium.com/ for more detailed information.

B.3 Task Representation

(a) Velocity (b) Run (b) Circle (d) Goal (e) Button (f) Push

Figure 14: Tasks of Gymnasium-based Environments.

As shown in Figure 14, the Gymnasium-based learning environments support the following tasks:

Velocity: the robot aims to facilitate coordinated leg movement of the robot in the forward (right)
direction by exerting torques on the hinges.

Run: the robot starts with a random initial direction and a specific initial speed as it embarks on a
journey to reach the opposite side of the map.

Circle: the reward is maximized by moving along the green circle, and the agent is not allowed to
enter the outside of the red region, so its optimal constrained path follows the line segments AD and
BC. The reward function: R(s) = vT [−y,x]

1+|∥[x,y]∥2−d| , the cost function is C(s) = 1 [|x| > xlim], where
x, y are the coordinates in the plane, v is the velocity, and d, xlim are environmental parameters.
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Goal: the robot navigates to multiple goal positions. After successfully reaching a goal, its location is
randomly reset while maintaining the overall layout. Achieving a goal position, indicated by entering
the goal circle, yields a sparse reward. Additionally, a dense reward encourages the robot’s progress
by rewarding proximity to the goal.

Push: the objective is to move a box to a series of goal positions. Like the goal task, a new random
goal location is generated after each successful achievement. The sparse reward is earned when the
yellow box enters the designated goal circle. The dense reward consists of two components: one for
moving the agent closer to the box and another for bringing the box closer to the final goal.

Button: the objective is to activate a series of goal buttons distributed throughout the environment.
The agent’s goal is to navigate towards and make contact with the currently highlighted button, known
as the goal button. Once the correct button is pressed, a new goal button is selected and highlighted
while preserving the rest of the environment. The sparse reward is earned upon successfully pressing
the current goal button, while the dense reward component provides a bonus for progressing toward
the highlighted goal button.

B.4 Constraint Specification

(b) Pillars (c) Hazards (d) Sigwalls (e) Vases (f) Gremlins(a) Velocity Constraints

Figure 15: Constraints of Gymnasium-based Environments.

Velocity-Constraint consists of a series of safety tasks based on MuJoCo agents [23]. In these
tasks, agents, such as Ant, HalfCheetah, and Humanoid, are trained to move faster for higher
rewards, while also being imposed a velocity constraint for safety considerations. Formally, for an
agent moving on a two-dimensional plane, the velocity is calculated as v(s, a) =

√
v2x + v2y; for an

agent moving along a straight line, the velocity is calculated as v(s, a) = |vx|, where vx, vy are the
velocities of the agent in the x and y directions respectively. Then, cost(s, a) = [v(s, a) > vlimit],
Here, [P ] denotes a notation where the value is 1 if the proposition P is true, and 0 otherwise.

Pillars are employed to represent large cylindrical obstacles within the environment. In the general
setting, contact with a pillar incurs costs.

Hazards are utilized to model areas within the environment that pose a risk, resulting in costs when
an agent enters such areas.

Sigwalls are designed specifically for Circle tasks. They serve as visual representations of two or
four solid walls, which limit the circular area to a smaller region. Crossing the wall from inside the
safe area to the outside incurs costs.

Vases are specifically designed for Goal tasks. They represent static and fragile objects within the
environment. Touching or displacing these objects incurs costs for the agent.

Gremlins are specifically employed in the Button tasks. They represent moving objects within the
environment that can interact with the agent.

B.5 Vision-only Tasks

In recent years, vision-only SafeRL has gained significant attention as a focal point of research,
primarily due to its applicability in real-world contexts [40; 41]. While the initial iteration of
Safety Gym offered rudimentary visual input support, there is room for enhancing the realism and
complexity of its environment. To effectively evaluate vision-based safe reinforcement learning
algorithms, we have devised some more realistic visual tasks utilizing MuJoCo. This enhanced
environment facilitates the incorporation of both RGB and RGB-d inputs. More details can be
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referred to our online documentation: https://www.safety-gymnasium.com/en/latest/env
ironments/safe_vision.html.

(a) BuildingButton0 (b) BuildingButton1 (c) BuildingButton2

Figure 16: Overview of BuildingButton tasks.

The Level 0 of BuildingButton requires the agent to operate multiple machines within a construction
site.

The Level 1 of BuildingButton requires the agent to proficiently and accurately operate multiple
machines within a construction site, while concurrently evading other robots and obstacles present in
the area.

The Level 2 of BuildingButton requires the agent to proficiently and accurately operate multiple
machines within a construction site, while concurrently evading a heightened number of other robots
and obstacles in the area.

(a) BuildingGoal0 (b) BuildingGoal1 (c) BuildingGoal2

Figure 17: Overview of BuildingGoal tasks.

The Level 0 of BuildingGoal requires the agent to dock at designated positions within a construction
site.

The Level 1 of BuildingGoal requires the agent to dock at designated positions within a construction
site while ensuring to avoid entry into hazardous areas.

The Level 2 of BuildingGoal requires the agent to dock at designated positions within a construction
site, while ensuring to avoid entry into hazardous areas and circumventing the site’s exhaust fans.
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(a) BuildingPush0 (b) BuildingPush1 (c) BuildingPush2

Figure 18: Overview of BuildingPush tasks.

The Level 0 of BuildingPush requires the agent to relocate the box to designated locations within a
construction site.

The Level 1 of BuildingPush requires the agent to relocate the box to designated locations within a
construction site while avoiding areas demarcated as restricted.

The Level 2 of BuildingPush requires the agent to relocate the box to designated locations within a
construction while avoiding numerous hazardous fuel drums and areas demarcated as restricted.

(a) Race0 (b) Race1 (c) Race2

Figure 19: Overview of Race tasks.

The Level 0 of Race requires the agent to reach the goal position.

The Level 1 of Race requires the agent to reach the goal position while ensuring it avoids straying
into the grass and prevents collisions with roadside objects.

The Level 2 of Race requires the agent to reach the goal position from a distant starting point while
ensuring it avoids straying into the grass and prevents collisions with roadside objects.
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(a) FormulaOne0 (b) FormulaOne1 (c) FormulaOne2

Figure 20: Overview of FormulaOne tasks.

The Level 0 of FormulaOne requires the agent to maximize its reach to the goal position. For each
episode, the agent is randomly initialized at one of the seven checkpoints.

The Level 1 of FormulaOne requires the agent to maximize its reach to the goal position while
circumventing barriers and racetrack fences. For each episode, the agent is randomly initialized at
one of the seven checkpoints.

The Level 2 of FormulaOne requires the agent to maximize its reach to the goal position while
circumventing barriers and racetrack fences. For each episode, the agent is randomly initialized at
one of the seven checkpoints. Notably, the barriers surrounding the checkpoints are denser.

B.6 Some Issues about Safety Gym

(a) Safety-Gymnasium

(b) Safety-Gym

Figure 21: The difference between Safety-Gymnasium and Safety Gym.
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The bug of Natural Lidar. As shown in Figure 21, the original Natural Lidar in Safe-Gym7 has a
problem of not being able to detect low-lying objects, which may affect comprehensive environmental
observations.

The problem of observation space. In Safety Gym, by default, the observation space is presented
as a one-dimensional array. The implementation leads to all ranges in observation space to be
[−∞,+∞], as shown in the following code:

1if self.observation_flatten:
2self.obs_flat_size = sum([np.prod(i.shape) for i in

self.obs_space_dict.values ()])
3self.observation_space = gym.spaces.Box(-np.inf , np.inf ,

(self.obs_flat_size ,), dtype=np.float32)

While this representation does not lead to behavioral errors in the environment, it can be somewhat
misleading for users. To address this issue, we have implemented the Gymnasium’s flatten mechanism
in the Safety Gym to handle the representation of the observation space. This mechanism reorganizes
the observation space into a more intuitive and easily understandable format, enabling users to process
and analyze the observation data more effectively.

1self.obs_info.obs_space_dict = gymnasium.spaces.Dict(obs_space_dict)
2

3if self.observation_flatten:
4self.observation_space = gymnasium.spaces.utils.flatten_space(
5self.obs_info.obs_space_dict
6)
7else:
8self.observation_space = self.obs_info.obs_space_dict
9assert self.obs_info.obs_space_dict.contains(
10obs
11), f’Bad obs {obs} {self.obs_info.obs_space_dict}’
12

13if self.observation_flatten:
14obs =

gymnasium.spaces.utils.flatten(self.obs_info.obs_space_dict ,
obs)

15return obs

Missing cost information. In Safety Gym, by default, there are only two possible outputs for the
cost: 0 and 1, representing whether a cost is incurred or not.

1# Optionally remove shaping from reward functions.
2if self.constrain_indicator:
3for k in list(cost.keys()):
4cost[k] = float(cost[k] > 0.0) # Indicator function

We believe that this representation method loses some information. For example, when the robot
collides with a vase and causes the vase to move at different velocities, there should be different cost
values associated with it to indicate subtle differences in violating constraint behaviors. Additionally,
these costs incurred by the actions are accumulated into the total cost. In typical cases, algorithms
use the total cost to update the policy if the total cost generated by different obstacles is limited to
only two states 0 and 1, the learning potential for multiple constraints is lost when multiple costs are
triggered simultaneously.

Neglected dependency maintenance leads to conflicts.

The numpy =1.17.4 will cause the following problems:

1ValueError: numpy.ndarray size changed , may indicate binary
incompatibility. Expected 96 from C header , got 80 from PyObject

1AttributeError: module ’numpy’ has no attribute ’complex ’.

7https://github.com/openai/safety-gym
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C Details of Isaac Gym-based Learning Environments

C.1 Supported Agents

Safety-DexteroudsHand is based on Bi-DexHands (refer to [42] for more details). Bi-DexHands aims
to establish a comprehensive learning framework for two Shadow Hands, enabling them to possess a
wide range of skills similar to those of humans. The Shadow Hand’s joint limitations are as follows
(refer to Table 26). The thumb exhibits 5 degrees of freedom with 5 joints, while the other fingers
have 3 degrees of freedom and 4 joints each. The joints located at the fingertips are not controllable.
Similar to human fingers, the distal joints of the fingers are interconnected, ensuring that the angle
of the middle joint is always greater than or equal to that of the distal joint. This design allows the
middle phalange to be curved while the distal phalange remains straight. Additionally, an extra joint
(LF5) is located at the end of the little finger, enabling it to rotate in the same direction as the thumb.
The wrist comprises two joints, facilitating a complete 360-degree rotation of the entire hand.

Table 26: Finger range of motion.
Joints Corresponds to the number of Figure 22 Min Max

Finger Distal (FF1,MF1,RF1,LF1) 15, 11, 7, 3 0° 90°
Finger Middle (FF2,MF2,RF2,LF2) 16, 12, 8, 4 0° 90°

Finger Base Abduction (FF3,MF3,RF3,LF3) 17, 13, 9, 5 -15° 90°
Finger Base Lateral (FF4,MF4,RF4,LF4) 18, 14, 10, 6 -20° 20°

Little Finger Rotation(LF5) 19 0° 45°
Thumb Distal (TH1) 20 -15° 90°
Thumb Middle (TH2) 21 -30° 30°

Thumb Base Abduction (TH3) 22 -12° 12°
Thumb Base Lateral (TH4) 23 0° 70°

Thumb Base Rotation (TH5) 24 -60° 60°
Hand Wrist Abduction (WR1) 1 -40° 28°

Hand Wrist Lateral (WR2) 2 -28° 8°

Stiffness, damping, friction, and armature are also important physical parameters in robotics. For
each Shadow Hand joint, we show our DoF properties in Table 27. This part can be adjusted in the
Isaac Gym simulator.

Table 27: DoF properties of Shadow Hand.
Joints Stiffness Damping Friction Armature
WR1 100 4.78 0 0
WR2 100 2.17 0 0
FF2 100 3.4e+38 0 0
FF3 100 0.9 0 0
FF4 100 0.725 0 0
MF2 100 3.4e+38 0 0
MF3 100 0.9 0 0
MF4 100 0.725 0 0
RF2 100 3.4e+38 0 0
RF3 100 0.9 0 0
RF4 100 0.725 0 0
LF2 100 3.4e+38 0 0
LF3 100 0.9 0 0
LF4 100 0.725 0 0
TH2 100 3.4e+38 0 0
TH3 100 0.99 0 0
TH4 100 0.99 0 0
TH5 100 0.81 0 0
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Figure 22: Degree-of-Freedom (DOF) configuration of the Shadow Hand similar to the skeleton of a
human hand.

Table 28: Observation space of dual Shadow Hands.
Index Description
0 - 23 right Shadow Hand dof position

24 - 47 right Shadow Hand dof velocity
48 - 71 right Shadow Hand dof force

72 - 136 right Shadow Hand fingertip pose, linear velocity, angle velocity (5 x 13)
137 - 166 right Shadow Hand fingertip force, torque (5 x 6)
167 - 169 right Shadow Hand base position
170 - 172 right Shadow Hand base rotation
173 - 198 right Shadow Hand actions
199 - 222 left Shadow Hand dof position
223 - 246 left Shadow Hand dof velocity
247 - 270 left Shadow Hand dof force
271 - 335 left Shadow Hand fingertip pose, linear velocity, angle velocity (5 x 13)
336 - 365 left Shadow Hand fingertip force, torque (5 x 6)
366 - 368 left Shadow Hand base position
369 - 371 left Shadow Hand base rotation
372 - 397 left Shadow Hand actions

C.2 Task Representation

Hand Over

This scenario encompasses a specific environment comprising two Shadow Hands positioned opposite
each other, with their palms facing upwards. The objective is to pass an object between these hands.
Initially, the object will randomly descend within the area of the Shadow Hand on the right side. The
hand on the right side then grasps the object and transfers it to the other hand. It is important to
note that the base of each hand remains fixed throughout the process. Furthermore, the hand initially
holding the object cannot directly make contact with the target hand or roll the object towards it.
Hence, the object must be thrown into the air, maintaining its trajectory until it reaches the target
hand.
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In this task, there are 398-dimensional observations and 40-dimensional actions. The reward function
is closely tied to the positional discrepancy between the object and the target. As the pose error
diminishes, the reward increases significantly. The detailed observation space for each agent can be
found in Table 29, while the corresponding action space is outlined in Table 30.

Observations The observational space for the Hand Over task consists of 398 dimensions, as
indicated in Table 29. However, it is important to highlight that in this particular task, the base of the
dual hands remains fixed. Therefore, the observation for the dual hands is compared to a reduced
24-dimensional space, as described in Table 28.

Table 29: Observation space of Hand Over.
Index Description

0 - 373 dual hands observation shown in Table 28
374 - 380 object pose
381 - 383 object linear velocity
384 - 386 object angle velocity
387 - 393 goal pose
394 - 397 goal rot - object rot

Actions The action space for a single hand in the Hand Over task comprises 40 dimensions, as
illustrated in Table 30.

Table 30: Action space of Hand Over.
Index Description
0 - 19 right Shadow Hand actuated joint

20 - 39 left Shadow Hand actuated joint

Rewards Let the positions of the object and the goal be denoted as xo and xg respectively.
The translational position difference between the object and the goal, represented as dt, can be
computed as dt = ∥xo − xg∥2. Similarly, we define the angular position difference between
the object and the goal as da. The rotational difference, denoted as dr, is then calculated as
dr = 2arcsin(clamp(∥da∥2,max = 1.0)).

The rewards for the Hand Over task are determined using the following formula:
r = exp(−0.2(αdt + dr)) (2)

Here, α represents a constant that balances the rewards between translational and rotational aspects.

Hand Over Catch

This environment is made up of a half Hand Over, and Catch Underarm [42], the object needs to be
thrown from the vertical hand to the palm-up hand.

Observations The observational space for this combined task encompasses 422 dimensions, as
illustrated in Table 31.

Table 31: Observation space of Hand Over Catch.
Index Description

0 - 397 dual hands observation shown in Table 28
398 - 404 object pose
405 - 407 object linear velocity
408 - 410 object angle velocity
411 - 417 goal pose
418 - 421 goal rot - object rot

Actions The action space, consisting of 52 dimensions, is illustrated in Table 32, providing a
comprehensive representation of the available actions.
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Table 32: Action space of Hand Over Catch.
Index Description
0 - 19 right Shadow Hand actuated joint
20 - 22 right Shadow Hand base translation
23 - 25 right Shadow Hand base rotation
26 - 45 left Shadow Hand actuated joint
46 - 48 left Shadow Hand base translation
49 - 51 left Shadow Hand base rotation

Rewards Let’s denote the positions of the object and the goal as xo and xg, respectively. The
translational position difference between the object and the goal denoted as dt, can be calcu-
lated as dt = ∥xo − xg∥2. Additionally, we define the angular position difference between
the object and the goal as da. The rotational difference, denoted as dr, is given by the formula
dr = 2arcsin(clamp(∥da∥2,max = 1.0)). Finally, the rewards are determined using the specific
formula:

r = exp[−0.2(αdt + dr)] (3)
Here, α represents a constant that balances the translational and rotational rewards.

C.3 Constraint Specification

(a) Hand Catch Over (b): Hand Over (c): Dynamics (d): Safety Joint (e): Safety Finger

Figure 23: Tasks of Safety-DexterousHands.

Safety Joint constrains the freedom of joint ④ of the forefinger (please refer to Figure 23 (c) and (d)).
Without the constraint, joint ④ has freedom of [−20°, 20°]. The safety tasks restrict joint ④ within
[−10°, 10°]. Let ang_4 be the angle of joint ④, and the cost is defined as:

ct = I(ang_4 ̸∈ [−10°, 10°]). (4)

Safety Finger constrains the freedom of joints ②, ③ and ④ of forefinger (please refer to Figure 23 (c)
and (e)). Without the constraint, joints ② and ③ have freedom of [0°, 90°] and joint ④ of [−20°, 20°].
The safety tasks restrict joints ②, ③, and ④ within [22.5°, 67.5°], [22.5°, 67.5°], and [−10°, 10°]
respectively. Let ang_2, ang_3, ang_4 be the angles of joints ②, ③, ④, and the cost is defined as:

ct = I(ang_2 ̸∈ [22.5°, 67.5°], or ang_3 ̸∈ [22.5°, 67.5°], or ang_4 ̸∈ [−10°, 10°]). (5)
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