
A Proofs

Proof of Theorem 3.1. By the definition of P1, it holds that π∗ ∈ Π(P0,P1). It suffices to show that
π∗ attains the optimal cost. Let Cost(π) be the value of weak OT functional for a plan π, i.e.,

Cost(π) def
=

∫
X
C(x, π(·|x))dP(x).

We consider weak OT (2) between P0 ∈ P(X) and P1 ∈ Pp(X) and use its dual form (7):

Cost(P0,P1) = sup
f

{∫
X
fC(x)dP0(x) +

∫
Y
f(y)dP1(y)

}
=

sup
f

{∫
X

inf
ν∈Pp(Y)

{C(x, ν)−
∫
Y
f(y)dν(y)}dP0(x) +

∫
Y
f(y)dP1(y)

}
≥∫

X
inf

ν∈Pp(Y)
{C(x, ν)−

∫
Y
f∗(y)dν(y)}dP0(x) +

∫
Y
f∗(y)dP1(y).

Now we use the fact that π∗(·|x) minimizes (8) for all x ∈ X :∫
X

inf
ν∈Pp(Y)

{C(x, ν)−
∫

f∗(y)dν(y)}dP0(x) +

∫
Y
f∗(y)dP1(y) =

=

∫
X

{
C(x, π∗(·|x))−

∫
Y
f∗(y)dπ∗(y|x)

}
dP0(x) +

∫
Y
f∗(y)dP1(y) =∫

X
C(x, π∗(·|x))dP0(x)−

∫
X

∫
Y
f∗(y)dπ∗(y|x) dP0(x)︸ ︷︷ ︸

=dπ∗
0 (x)

+

∫
Y
f∗(y)dP1(y) =

∫
X
C(x, π∗(·|x))dP0(x)−

∫
X×Y

f∗(y)dπ∗(x, y) +

∫
Y
f∗(y)dP1(y) =∫

X
C(x, π∗(·|x))dP0(x)−

∫
Y
f∗(y)dπ∗

1(y) +

∫
Y
f∗(y)dP1(y) =∫

X
C(x, π∗(·|x))dP0(x) +

∫
Y
f∗(y)d(P1 − π∗

1)(y)︸ ︷︷ ︸
=0 since π∗

1=P1

=

∫
X
C(x, π∗(·|x))dP0(x) = Cost(π∗). (18)

We see that Cost(π∗) is not greater than the optimal Cost(P0,P1), i.e., π∗ is optimal. At the same
time, from the derivations above, it directly follows that f∗ is an optimal potential.

Proof of Theorem 3.2. We are going to use our Theorem 3.1. First, we check that (13) holds for
π∗(·|x) defined by (14). Analogously to [42, Theorem 1], for each x ∈ X , we derive

inf
ν∈Pp(Y)

{Cc,ϵ(x, ν)−
∫
Y
f∗(y)dν(y)} = inf

ν∈Pp(Y)

{∫
Y

[
c(x, y)− f∗(y)

]
dν(y)− ϵH(ν)

}
︸ ︷︷ ︸

def
=Gx(ν)

.

Minimizing Gx, one should consider only ν ∈ Pp,ac(Y) ⊂ Pp(Y). Indeed, for ν /∈ Pp,ac(Y), it
holds that Gx(ν

∗) = +∞ since c(x, y) is lower bounded and −H(ν) = +∞. We continue

inf
ν∈Pp,ac(Y)

{
− ϵ

∫
Y
log exp

(
f∗(y)− c(x, y)

ϵ

)
dν(y) + ϵ

=−H(ν)︷ ︸︸ ︷∫
Y
log

dν(y)

dy
dν(y)

}
=

inf
ν∈Pp,ac(Y)

{
− ϵ

∫
Y
log

(
Zx · dπ

∗(y|x)
dy

)
dν(y) + ϵ

∫
Y
log

dν(y)

dy
dν(y)

}
=

−ϵ logZx + inf
ν∈Pp,ac(Y)

{
− ϵ

∫
Y
log

dπ∗(y|x)
dy

dν(y) + ϵ

∫
Y
log

dν(y)

dy
dν(y)

}
=

14

−ϵ logZx + inf
ν∈Pp,ac

ϵKL (ν∥π∗(·|x)) . (19)

Since π∗(·|x) ∈ Pp,ac(Y), by the assumption of the current Theorem, we conclude that it is the
unique minimum of Gx(ν) in Pp,ac(Y). Now to apply our Theorem 3.1, it remains to check that all
its assumptions hold. We only have to check that Cc,ϵ given by (6) is lower bounded, jointly lower
semi-continuous and convex in the second argument.

Analogously to (19), we derive

Cc,ϵ(x, ν) =

∫
Y
c(x, y)dν(y)− ϵH(ν) = −ϵ logMx︸ ︷︷ ︸

≥−ϵ logM

+ϵKL (ν∥νx)︸ ︷︷ ︸
≥0

≥ −ϵ logM, (20)

where dνx(y)
dy

def
= M−1

x exp
(
− c(x,y)

ϵ

)
. This provides a lower bound on the cost Cc,ϵ. From

the first equality in (20), we see that Cc,ϵ is jointly lower semi-continuous because the first term∫
Y c(x, y)dν(y) is jointly lower semi-continuous by the assumptions and the entropy term −H(ν) is

lower semi-continuous in P1(Y) [48, Ex. 45] and hence in Pp(Y) as well (p ≥ 1). The last step is
to note that Cc,ϵ(x, ν) is convex in ν thanks to the convexity of −H(ν).

Finally, if
∫
X Cc,ϵ

(
x, π∗(·|x)

)
dP0(x)<∞, then −

∫
X H

(
π∗(·|x)

)
is finite. Let U be the subset of

plans π ⊂ Π(P0,P1) where −
∫
X H

(
π(·|x)

)
is finite. It is not empty since π∗ ∈ U . At the same

time, it is a convex set and functional π 7→ −
∫
X H

(
π(·|x)

)
dP0(x) is strictly convex in U thanks to

the strict convexity of the (negative) entropy ν 7→ −H(ν) on the set of distributions where it is finite.
Thus, π 7→

∫
X Cc,ϵ

(
x, π(·|x)

)
dP0(x) is strictly convex in U and π∗ is the unique minimum.

For completeness, we note that if
∫
X Cc,ϵ

(
x, π∗(·|x)

)
dP0(x) = +∞, this situation is trivial, as the

cost of every plan turns to be equal to +∞. As a result, every plan is optimal.

Proof of Proposition 3.3. Deriving the actual form of π∗(·|x) is an easy exercise. We substitute (15)
into (14) and use the quadratic cost c(x, y) = ||y−x||2

2 :

dπ∗(y|x)
dy

=
1

Zx
exp

(
f∗(y)− c(x, y)

ϵ

)
=

1

Zx
exp

(
ϵ log

∑N
n=1 wnQ(y|bn, ϵ−1An)− ||y−x||2

2

ϵ

)
=

1

Zx

(N∑
n=1

wnQ(y|bn, ϵ−1An)

)
exp(−||y − x||2

2ϵ
) =

1

Zx

N∑
n=1

wn

(
Q(y|bn, ϵ−1An) exp(−

||y − x||2

2ϵ
)

)
=

1

Zx

N∑
n=1

wn

(
exp

[
− 1

2
(y − bn)

T An

ϵ
(y − bn)

]
exp(−||y − x||2

2ϵ
)

)
=

1

Zx

N∑
n=1

wn

(
exp

[
− 1

2
(y − bn)

T An

ϵ
(y − bn)−

||y − x||2

2ϵ

])
=

1

Zx

N∑
n=1

wn

(
exp

[
− 1

2
(y − bn)

T An

ϵ
(y − bn)−

1

2
(y − x)T

I

ϵ
(y − x)

])
=

1

Zx

N∑
n=1

wn

(
exp

[
− 1

2

{
(y − bn)

T An

ϵ
(y − bn) + (y − x)T

I

ϵ
(y − x)

}])
. (21)

Next, we prove that (we write just µn instead of µn(x) for simplicity):

(y − bn)
T An

ϵ
(y − bn) + (y − x)T

I

ϵ
(y − x) =

15

(y − µn)
TΣ−1

n (y − µn) + (x− bn)
T (

I

ϵ
− Σn

ϵ2
)(x− bn). (22)

Indeed,

(y − bn)
T An

ϵ
(y − bn) + (y − x)T

I

ϵ
(y − x) =

yT
An

ϵ
y − 2bTn

An

ϵ
y + bTn

An

ϵ
bTn + yT

I

ϵ
y − 2xT I

ϵ
y + xT I

ϵ
x =

yT (
An + I

ϵ
)︸ ︷︷ ︸

Σ−1
n

y − 2(Anbn + x)T
I

ϵ
y + bTn

An

ϵ
bn + xT I

ϵ
x =

yTΣ−1
n y − 2(Anbn + x)T

I

ϵ
y + bTn

An

ϵ
bn + xT I

ϵ
x =

yTΣ−1
n y − 2 (Anbn + x)T (An + I)−1︸ ︷︷ ︸

µT
n

(An + I)

ϵ︸ ︷︷ ︸
Σ−1

n

y + bTn
An

ϵ
bn + xT I

ϵ
x =

yTΣ−1
n y − 2µT

nΣ
−1
n y + bTn

An

ϵ
bn + xT I

ϵ
x =

yTΣ−1
n y − 2µT

nΣ
−1
n y + µT

nΣ
−1
n µn − µT

nΣ
−1
n µn + bTn

An

ϵ
bn + xT I

ϵ
x =

(y − µn)
TΣ−1

n (y − µn)− µT
nΣ

−1
n µn + bTn

An

ϵ
bn + xT I

ϵ
x =

(y − µn)
TΣ−1

n (y − µn) + bTn
An

ϵ
bn − µT

nΣ
−1
n µn + xT I

ϵ
x =

(y − µn)
TΣ−1

n (y − µn) + bTn
An

ϵ
bn − (Anbn + x)T

Σn

ϵ
Σ−1

n

Σn

ϵ
(Anbn + x) + xT I

ϵ
x =

(y − µn)
TΣ−1

n (y − µn) + bTn
An

ϵ
bn − (Anbn + x)T

Σn

ϵ2
(Anbn + x) + xT I

ϵ
x =

(y − µn)
TΣ−1

n (y − µn) + bTn
An

ϵ
bn −

(Anbn)
T Σn

ϵ2
Anbn − 2(Anbn)

T Σn

ϵ2
x− xT Σn

ϵ2
x+ xT I

ϵ
x =

(y − µn)
TΣ−1

n (y − µn) + bTn
An

ϵ
bn − (Anbn)

T Σn

ϵ2
Anbn −

2(Anbn)
T Σn

ϵ2
x+ xT (

I

ϵ
− Σn

ϵ2
)x =

(y − µn)
TΣ−1

n (y − µn) + bTn
An

ϵ
bn − bTn

AT
nΣnAn

ϵ2
bn −

2(Anbn)
T Σn

ϵ2
x+ xT (

I

ϵ
− Σn

ϵ2
)x =

(y − µn)
TΣ−1

n (y − µn) + bTn
An −AT

n
Σn

ϵ An

ϵ
bn − 2(Anbn)

T Σn

ϵ2
x+ xT (

I

ϵ
− Σn

ϵ2
)x =

(y − µn)
TΣ−1

n (y − µn) + bTn
An −AT

n
Σn

ϵ An

ϵ
bn − 2bTn

AnΣn

ϵ2
x+ xT (

I

ϵ
− Σn

ϵ2
)x =

(y − µn)
TΣ−1

n (y − µn) + bTn
An −AT

n
Σn

ϵ An

ϵ
bn −

2bTn

ϵΣ−1
n︷ ︸︸ ︷

(An + I) Σn − Σn

ϵ2
x+ xT (

I

ϵ
− Σn

ϵ2
)x =

(y − µn)
TΣ−1

n (y − µn) + bTn
An −AT

n
Σn

ϵ An

ϵ
bn − 2bTn

ϵI − Σn

ϵ2
x+ xT (

I

ϵ
− Σn

ϵ2
)x =

16

(y − µn)
TΣ−1

n (y − µn) + bTn
An −AT

n
Σn

ϵ An

ϵ
bn − 2bTn (

I

ϵ
− Σn

ϵ2
)x+ xT (

I

ϵ
− Σn

ϵ2
)x =

(y − µn)
TΣ−1

n (y − µn) + bTn
An −AT

n
Σn

ϵ An

ϵ
bn −

bTn (
I

ϵ
− Σn

ϵ2
)bn + (x− bn)

T (
I

ϵ
− Σn

ϵ2
)(x− bn) =

(y − µn)
TΣ−1

n (y − µn) + (x− bn)
T (

I

ϵ
− Σn

ϵ2
)(x− bn) +

bTn
An −AT

n
Σn

ϵ An

ϵ
bn − bTn (

I

ϵ
− Σn

ϵ2
)bn =

(y − µn)
TΣ−1

n (y − µn) + (x− bn)
T (

I

ϵ
− Σn

ϵ2
)(x− bn) +

bTn (
An −AT

n
Σn

ϵ An

ϵ
− I

ϵ
+

Σn

ϵ2
)bn =

(y − µn)
TΣ−1

n (y − µn) + (x− bn)
T (

I

ϵ
− Σn

ϵ2
)(x− bn) +

bTn (
An(I − Σn

ϵ An)

ϵ
− I

ϵ
+

Σn

ϵ2
)bn =

(y − µn)
TΣ−1

n (y − µn) + (x− bn)
T (

I

ϵ
− Σn

ϵ2
)(x− bn) +

bTn (
An(I − Σn

ϵ (ϵΣ−1
n − I))

ϵ
− I

ϵ
+

Σn

ϵ2
)bn =

(y − µn)
TΣ−1

n (y − µn) + (x− bn)
T (

I

ϵ
− Σn

ϵ2
)(x− bn) +

bTn (
An(

Σn

ϵ)− I + Σn

ϵ

ϵ
)bn =

(y − µn)
TΣ−1

n (y − µn) + (x− bn)
T (

I

ϵ
− Σn

ϵ2
)(x− bn) +

bTn (
(ϵΣ−1

n − I)Σn

ϵ − I + Σn

ϵ

ϵ
)bn =

(y − µn)
TΣ−1

n (y − µn) + (x− bn)
T (

I

ϵ
− Σn

ϵ2
)(x− bn) + bTn (

I − Σn

ϵ − I + Σn

ϵ

ϵ
)bn =

(y − µn)
TΣ−1

n (y − µn) + (x− bn)
T (

I

ϵ
− Σn

ϵ2
)(x− bn).

Next, we substitute (22) into (21)

1

Zx

N∑
n=1

wn

(
exp

[
− 1

2

{
(y − bn)

T An

ϵ
(y − bn) + (y − x)T

I

ϵ
(y − x)

}])
=

1

Zx

N∑
n=1

wn

(
exp

[
− 1

2

{
(y − µn)

TΣ−1
n (y − µn) + (x− bn)

T (
I

ϵ
− Σn

ϵ2
)(x− bn)

}])
=

1

Zx

N∑
n=1

wn exp(−
1

2
(y − µn)

TΣ−1
n (y − µn)) exp(−

1

2
(x− bn)

T (
I

ϵ
− Σn

ϵ2
)(x− bn)) =

1

Zx

N∑
n=1

wn(2π)
D
2

√
det(Σn)N (y|µn,Σn)Q(x|bn,

I

ϵ
− Σn

ϵ2
) =

1

Zx

N∑
n=1

wn(2π)
D
2

√
det(Σn)Q(x|bn,

I

ϵ
− Σn

ϵ2
)︸ ︷︷ ︸

w̃n

N (y|µn,Σn)) =

17

1

Zx

N∑
n=1

w̃nN (y|µn,Σn) =
1∑N

n=1 w̃n

N∑
n=1

w̃nN (y|µn,Σn) =

N∑
n=1

w̃n∑N
n=1 w̃n

N (y|µn,Σn) =

N∑
n=1

γnN (y|µn,Σn).

which finishes the derivation of the expression for the density of π∗(·|x).

Now we prove that P1
def
= π∗

1 ∈ P2(Y). For each x, consider dπ∗(y|x)
dy =

∑N
n=1 γnN (y|µn(x),Σn).

Its second moment is given by
∑N

n=1 γn
(
∥µn(x)∥2 +TrΣn

)
. Note that

∥µn(x)∥ = ∥(An + I)−1(Anbn + x)∥ ≤
∥(An + I)−1∥ · ∥Anbn + x∥ ≤ ∥(An + I)−1∥ · (∥Anbn∥+ ∥x∥),

where ∥ · ∥ applied to matrix means the operator norm. Hence, one may conclude that ∥µn(x)∥2 is
upper bounded by some quadratic polynomial of ∥x∥, i.e., there exist constants αn ∈ R, βn ∈ R+

such that ∥µn(x)∥2 ≤ αn + βn · ∥x∥2. We derive∫
Y
∥y∥2dπ∗

1(y) =

∫
X

∫
Y
∥y∥2dπ∗(y|x) dπ∗

0︸︷︷︸
=dP0(x)

(x) =

∫
X

N∑
n=1

γn
(
∥µn(x)∥2 +TrΣn

)
dP0(x) ≤

∫
X

N∑
n=1

γn
(
αn + βn∥x∥2 +TrΣn

)
dP0(x) =

N∑
n=1

γn
(
αn +TrΣn

)
+

(N∑
n=1

βnγn
) ∫

X
∥x∥2dP0(x) < ∞

since P0 ∈ P2(X) by the assumption of the proposition.

It remains to prove that π∗ is the unique EOT plan. According to our Theorem 3.2, one only
has to ensure that

∫
X Cc,ϵ

(
x, π∗(·|x)

)
dP0(x) < ∞. Just for completeness, we highlight that∫

X Cc,ϵ

(
x, π∗(·|x)

)
dP0(x) is lower-bounded since Cc,ϵ is lower bounded, see the proof of The-

orem 3.2. Anyway, this is indifferent for us. We recall that π∗ is an optimal plan between P0 and
P1 = π∗

1 and f∗ is an optimal potential by our construction. Thanks to the duality, we have∫
X
Cc,ϵ

(
x, π∗(·|x)

)
dP0(x) =

∫
X
(f∗)Cc,ϵ(x)dP0(x) +

∫
Y
f∗(y)dP1(y) =∫

X

[
− ϵ logZx

]
dP0(x) +

∫
Y
f∗(y)dP1(y), (23)

where in transition to (23) we used our findings of line (19). Note that
∫
Y f∗(y)dP1(y) is finite since

f∗ ∈ C2(Y) is dominated by a quadratic polynomial, and we have already proved that P1 has finite
second moment. It remains to upper bound the first term in (23). We note that

Zx =

∫
Y
exp

(
f∗(y)− 1

2∥x− y∥2

ϵ

)
dy = (

√
2πϵ)D

∫
Y
exp

(
f∗(y)

ϵ

)
N (y|x, ϵI)dy ≥

(
√
2πϵ)D exp

(∫
Y

f∗(y)

ϵ
N (y|x, ϵI)dy

)
≥ (

√
2πϵ)D exp

(∫
Y

β + α∥y∥2

ϵ
N (y|x, ϵI)dy

)
= (24)

(
√
2πϵ)D exp

(
β + α(∥x∥2 + ϵD)

ϵ

)
, (25)

where in transition to line (24) we used the Jesnsen’s inequality and α, β ∈ R are some constants
for which f∗(·) ≥ β + α∥ · ∥2. They exist since f∗ ∈ C2(Y). Indeed, there exist α̃, β̃ : |f∗(·)| ≤
β̃ + α̃∥ · ∥2 ⇒ f∗(·) ≥ −β̃ − α̃∥ · ∥2, and we set α = −α̃, β = −β̃. In turn, line (25) uses the
explicit formula for the second moment of N (y|x, ϵI). We use (25) to upper bound the first term in
(23):∫
X

[
− ϵ logZx

]
dP0(x) ≤

∫
X

[
− ϵ log

(
{(
√
2πϵ)D exp

(
β + α∥x∥2 + αϵD

ϵ

)}]
dP0(x) =

18

−ϵD

2
log(2πϵ)− β − αϵD − α

∫
X
∥x∥2dP0(x).

It remains to note that the last value is finite, since P0 ∈ P2(X) by the assumption.

Proof of Corollary 3.4. We note that dπ∗(y|x)
dy ∝ exp

(f∗(y)− 1
2∥x−y∥2

ϵ

)
. Therefore,

exp
(f∗(y)

ϵ

)
∝ dπ∗(y|x)

dy
exp

(1

2ϵ
∥x− y∥2) ∝ dπ∗(y|x)

dy
·
[
N (y|x, ϵI)

]−1
. (26)

By comparing (26) with (11), we see that exp
(f∗(y)

ϵ

)
indeed coincides with the Schrödinger potential

ϕ∗(y). Formula (12) for the optimal drift follows from [38, Proposition 4.1]1.

Proof of Corollary 3.5. First, we prove that constructed P1
def
= π∗

1 actually has finite entropy. This is
needed to ensure that the assumptions of [38, Proposition 4.1]. This proposition provides the formula
for the optimal drift (12) via the Schrödinger potential. We write

0 ≤ KL (π∗
1∥N (·|0, I)) = −H(π∗

1)−
∫
Y
logN (y|0, I)dπ∗

1(y) =

−H(π∗
1) +

D

2
log(2π) +

1

2

∫
Y
∥y∥2dπ∗

1(y). (27)

From our Proposition 3.3 it follows that P1 = π∗
1 has finite second moment. Hence, the latter constant

in (27) is finite. Therefore, H(π∗
1) is upper bounded. To lower bound H(π∗

1), recall that each π∗(·|x)
is a mixture of N Gaussians (Proposition 3.3) with (x-independent) covariances Σn. Thus, its density
dπ∗(y|x)

dy is upper bounded by ξ
def
= maxn

[
(2π)−D/2

]
(detΣn)

−1/2 > 0 which also means that

dπ∗
1(y)

dy
=

∫
X

dπ∗(y|x)
dy

dπ∗
0(x) ≤

∫
X
ξdπ∗

0(x) ≤ ξ.

We conclude that

H(π∗
1) = −

∫
log

dπ∗
1(y)

dy
dπ∗

1(y) ≥ −
∫

log ξdπ∗
1(y) = − log ξ, (28)

i.e., H(π∗
1) is lower-bounded as well.

Having in mind our previous Corollary, we just substitute exp
(f∗(y)

ϵ

)
of LSE (15) potential f∗ as

the Schrödinger potential ϕ∗(y) to (12). We derive

v∗(x, t) = ϵ∇ log

∫
RD

N (y|x, (1− t)ϵI)φ∗(y)dy =

ϵ∇ log

∫
RD

N (y|x, (1− t)ϵI) exp(
f∗(y)

ϵ
)dy =

ϵ∇ log

∫
RD

N (y|x, (1− t)ϵI) exp(
ϵ log

∑N
n=1 wnQ(y|bn, ϵ−1An)

ϵ
)dy =

ϵ∇ log

N∑
n=1

wn

∫
RD

N (y|x, (1− t)ϵI)Q(y|bn, ϵ−1An))dy =

ϵ∇ log

N∑
n=1

wn

∫
RD

(
2πϵ(1− t)

)−D
2 exp(−(y − x)T

I

2ϵ(1− t)
(y − x))Q(y|bn, ϵ−1An)dy =

1The authors of [38] consider SB with the reversible Wiener prior R, i.e., the standard Brownian motion
starting at the Lebesgue measure. They deal with infT∈F(P0,P1) KL (T∥R) which matches (up to an additive
constant) our formulation (9) for ϵ = 1. Indeed, using the measure disintegration theorem, one can derive
KL (T∥R) = −H(P0) + KL (T∥W ϵ). For other ϵ > 0, the analogous equivalence holds true.

19

ϵ∇ log

N∑
n=1

wn

∫
RD

exp(−(y − x)T
I

2ϵ(1− t)
(y − x))Q(y|bn, ϵ−1An)dy +

ϵ∇ log
((
2πϵ(1− t)

)−D
2︸ ︷︷ ︸

=0

)
=

ϵ∇ log

N∑
n=1

wn

∫
RD

exp(−(y − x)T
I

2ϵ(1− t)
(y − x)) exp(−(y − bn)

T An

2ϵ
(y − bn))dy =

ϵ∇ log

N∑
n=1

wn

∫
RD

exp
(
− 1

2(1− t)
{(y − x)T

I

ϵ
(y − x) + (y − bn)

T

At
n︷ ︸︸ ︷

(1− t)An

ϵ
(y − bn)}

)
dy

Next, we use (22) but with At
n instead of An and Σt

n instead of Σn. Also, we denote
µt
n = (At

n + I)−1(At
nbn + x):

ϵ∇ log

N∑
n=1

wn

∫
RD

exp
(
− 1

2(1− t)
{(y − x)T

I

ϵ
(y − x) + (y − bn)

T

At
n︷ ︸︸ ︷

(1− t)An

ϵ
(y − bn)}

)
dy =

ϵ∇ log

N∑
n=1

wn

∫
RD

exp

(
− 1

2(1− t)

{
(y − µt

n)
T
(
Σt

n

)−1
(y − µt

n)+

(x− bn)
T (

I

ϵ
−Σt

n

ϵ2
)(x− bn)

})
dy =

ϵ∇ log

N∑
n=1

{
wn exp

(
− 1

2
(x− bn)

T ϵI − Σt
n

ϵ2(1− t)
(x− bn)

)
∫
RD

exp
(
− 1

2
(y − µt

n)
T (Σt

n)
−1

(1− t)
(y − µt

n)
)
dy

}
=

ϵ∇ log

N∑
n=1

wnQ
(
x
∣∣bn, ϵI − Σt

n

ϵ2(1− t)

) ∫
RD

exp
(
− 1

2
(y − µt

n)
T (Σt

n)
−1

(1− t)
(y − µt

n)
)
dy =

ϵ∇ log

N∑
n=1

wnQ
(
x
∣∣bn, ϵI − Σt

n

ϵ2(1− t)

) ∫
RD

(2π)
D
2 det((1− t)Σt

n)
1
2N (y|µt

n, (1− t)Σt
n)dy =

ϵ∇ log

N∑
n=1

wnQ
(
x
∣∣bn, ϵI − Σt

n

ϵ2(1− t)

)
(2π(1− t))

D
2 det(Σt

n)
1
2

∫
RD

N (y|µt
n, (1− t)Σt

n)dy︸ ︷︷ ︸
=1

=

ϵ∇ log

N∑
n=1

wnQ
(
x
∣∣bn, ϵI − Σt

n

ϵ2(1− t)

)
(2π(1− t))

D
2 det(Σt

n)
1
2 =

ϵ∇ log

N∑
n=1

wnQ
(
x
∣∣bn, ϵI − Σt

n

ϵ2(1− t)

)
det(Σt

n)
1
2 + ϵ∇ log

(
(2π(1− t))

D
2

)︸ ︷︷ ︸
=0

=

ϵ∇ log

N∑
n=1

wn

√
det(Σt

n)Q
(
x
∣∣bn, ϵI − Σt

n

ϵ2(1− t)

)
,

which finishes the proof.

B Mixtures Benchmark Pairs: Details and Results

Parameters for constructing benchmark pairs. In our benchmark pairs, we choose all their
hyperparameters manually to make sure the constructed distributions P0,P1 are visually pleasant and

20

distinguishable. As P0, we always use the centered Gaussian whose covariance matrix is 0.25I . We
use LSE function (15) with N = 5 for constructing the distribution P1. In each setup, all An are the
same and given in Table 3. We pick wn such that γn = 1

5N (x|bn, (1ϵ I −
1
ϵ2Σn)

−1). We sample bn
randomly from a uniform distribution on a sphere with the radius R = 5.

D = 2 D = 16 D = 64 D = 128
ϵ = 0.1 1

16 I
1
16 I

1
16 I

1
16 I

ϵ = 1 1
16 I

1
16 I

1
16 I

1
16 I

ϵ = 10 9
40 I

1
100 I

1
100 I

1
100 I

Table 3: Matrices An that we use to construct our mixtures benchmark pairs.

Evaluation details. For computing BW2
2-UVP(π̂1,P1), we use 105 random samples from P1 and

105 random samples from learned distribution π̂1. For computing cBW2
2-UVP

(
π̂, π∗), we use the

hold-out test set containing 1000 samples x ∼ P0. We compute the expectation and covariance
matrices of π∗(·|x) analytically (Proposition 3.3) and we estimate the expectation and covariance
matrix of π̂(·|x) by using 103 samples. We present results of evaluation in Table 4 and Table 5.

We present an additional trivial baseline for the conditional metric cBW2
2-UVP

(
π̂, π∗), which is

given by the independent plan P0 × P1. We compare other methods with this baseline in Table 5.

ϵ=0.1 ϵ=1 ϵ=10

D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128

⌊LSOT⌉ - - - - - - - - - - - -
⌊SCONES⌉ - - - - 1.06 4.24 6.67 11.54 1.11 2.98 1.33 7.89
⌊NOT⌉ 0.016 0.63 1.53 2.62 0.08 1.13 1.62 2.62 0.225 2.603 1.872 6.12

⌊EgNOT⌉ 0.09 0.31 0.88 0.22 0.46 0.3 0.85 0.12 0.077 0.02 0.15 0.23
⌊ENOT⌉ 0.2 2.9 1.8 1.4 0.22 0.4 7.8 29 1.2 2 18.9 28

⌊MLE-SB⌉ 0.01 0.14 0.97 2.08 0.005 0.09 0.56 1.46 0.01 1.02 6.65 23.4
⌊DiffSB⌉ 2.88 2.81 153.22 232.67 0.87 0.99 1.12 1.56 - - - -

⌊FB-SDE-A⌉ 2.37 2.55 68.19 27.11 0.6 0.63 0.65 0.71 - - - -
⌊FB-SDE-J⌉ 0.03 0.05 0.25 2.96 0.07 0.13 1.52 0.48 - - - -

Table 4: Comparisons of BW2
2-UVP ↓ (%) between the target P1 and learned marginal π1. Colors

indicate the metric value: BW2
2-UVP ≤ 0.5,BW2

2-UVP ∈ (0.5, 1],BW2
2-UVP > 1.0.

ϵ=0.1 ϵ=1 ϵ=10

D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128

⌊LSOT⌉ - - - - - - - - - - - -
⌊SCONES⌉ - - - - 34.88 71.34 59.12 136.44 32.9 50.84 60.44 52.11
⌊NOT⌉ 1.94 13.67 11.74 11.4 4.77 23.27 41.75 26.56 2.86 4.57 3.41 6.56

⌊EgNOT⌉ 129.8 75.2 60.4 43.2 80.4 74.4 63.8 53.2 4.14 2.64 2.36 1.31
⌊ENOT⌉ 3.64 22 13.6 12.6 1.04 9.4 21.6 48 1.4 2.4 19.6 30

⌊MLE-SB⌉ 4.57 16.12 16.1 17.81 4.13 9.08 18.05 15.226 1.61 1.27 3.9 12.9
⌊DiffSB⌉ 73.54 59.7 1386.4 1683.6 33.76 70.86 53.42 156.46 - - - -

⌊FB-SDE-A⌉ 86.4 53.2 1156.82 1566.44 30.62 63.48 34.84 131.72 - - - -
⌊FB-SDE-J⌉ 51.34 89.16 119.32 173.96 29.34 69.2 155.14 177.52 - - - -
Independent 166.0 152.0 126.0 110.0 86.0 80.0 72.0 60.0 4.2 2.52 2.26 2.4

Table 5: Comparisons of cBW2
2-UVP ↓ (%) between the optimal plan π∗ and the learned plan π̂.

Colors indicate the ratio of the metric to the independent baseline metric:
ratio ≤ 0.2, ratio ∈ (0.2, 0.5), ratio > 0.5.

Colors for the Table 2. To assign a color for the metric BW2
2-UVP and cBW2

2-UVP for each ϵ in the
Table 2, we use the following rule: we assign the rank 1 if a method’s metric for a given dimension
D has the color green, the rank 2 if a method’s metric BW2

2-UVP has the color orange and the rank 3
if a method’s metric BW2

2-UVP has the color red. To get the average rank, we take the mean of 4
ranks obtained for each dimension D and round it (1.5 and 2.5 are rounded to 1 and 2 respectively).

Extra qualitative results of EOT/SB solvers. In Figure 5 and Figure 6, we present the additional
qualitative comparison of solvers on our mixtures benchmark pairs in D = 16 with ϵ ∈ {0.1, 10}.
The figures are designed similarly to Figure 3 for (D, ϵ) = (16, 1) in the main text. Note that case
ϵ = 10 (Figure 6) is extremely challenging; only ⌊EgNOT⌉ provides more-or-less reasonable results.

21

(a) Input and target. (b) ⌊MLE-SB⌉. (c) ⌊SCONES⌉. (d) ⌊NOT⌉. (e) ⌊EgNOT⌉.

(f) True EOT plan π∗. (g) ⌊ENOT⌉. (h) ⌊DiffSB⌉. (i) ⌊FB-SDE-A⌉. (j) ⌊FB-SDE-J⌉.

Figure 5: Qualitative results of EOT/SB solvers on our mixtures benchmark pair with
(D, ϵ) = (16, 0.1). The distributions are visualized using 2 PCA components of target distr. P1.

(a) Input and target. (b) ⌊MLE-SB⌉. (c) ⌊SCONES⌉. (d) ⌊NOT⌉. (e) ⌊EgNOT⌉.

(f) True EOT plan π∗. (g) ⌊ENOT⌉. (h) ⌊DiffSB⌉. (i) ⌊FB-SDE-A⌉. (j) ⌊FB-SDE-J⌉.

Figure 6: Qualitative results of EOT/SB solvers on our mixtures benchmark pair with
(D, ϵ) = (16, 10). The distributions are visualized using 2 PCA components of target distr. P1.

Computational complexity. Sampling from P0 is lightspeed as it is just sampling a Normal noise.
Sampling from P1 is also fast, as it is the Gaussian mixture (Proposition 3.3).

C Images Benchmark Pairs: Details and Results

Parameters for constructing image benchmark pairs. We fix N = 100 random samples from P0

for bn and choose all An ≡ I . We use wn such that γn = 1
100N (x|bn, (1ϵ I −

1
ϵ2Σn)

−1).

GLOW details. We use the code from the repository with the default parameters:

https://github.com/rosinality/glow-pytorch

After training, the latent variable z is sampled from N(0, σ2I) with σ2 = 0.49 for image generation.
That is, the image distribution P0 is produced by the mapping z ∼ N(0, σ2I) to the image space
with the learned normalizing flow G, i.e., P0

def
= G♯N (·|σ2I) in our construction.

22

https://github.com/rosinality/glow-pytorch

MCMC in the latent space of the normalizing flow. We test EOT/SB solvers in P1 → P0 direction,
i.e., recovering π∗(x|y) and generating clean samples x from noised y. Unfortunately, the reverse
conditional OT plans π∗(x|y) are not as tractable as π∗(y|x). However, we note that

dπ∗(x|y)
dy

∝ dπ∗(y|x)
dy

dP0(x)

dx
, (29)

i.e., the density of π∗(·|y) it known up to the normalizing constant. Recall that here P0 is constructed
using the normalizing flow and π∗(·|x) is a Gaussian mixture (Proposition 3.3), i.e., we indeed know
the values of both terms. Therefore, one may use the well-celebrated Langevin dynamics to sample
from π∗(y|x). Unfortunately, we found that such sampling in the image space is rather slow.

To overcome this issue, we employ the Langevin sampling in the latent space of the normalizing flow.
It is possible since the normalizing flow is a bijection between the space of images and the latent
space. We use the standard notation z for the latent variable and G : RD → RD for the normalizing
flow, i.e., x = G(z) ∼ P0 for z ∼ p(z)

def
= N (z|0, σ2I). In this case, we have

dπ∗(z|y)
dz

=
dπ∗(x|y)

dx
|det JG−1(x)| ∝ dπ∗(y|x)

dy

dP0(x)

dx
|det JG−1(x)| =

dπ∗(y|G(z)
)

dx

dP0(x)

dx
|det JG−1(x)|︸ ︷︷ ︸
p(z)

=
dπ∗(y|G(z)

)
dy

p(z),

and we can derive the score function ∇z log
dπ∗(z|y)

dz which is needed for the Langevin dynamic as

∇z log
dπ∗(z|y)

dz
= ∇z

dπ∗(y|G(z))

dy
+∇z log p(z). (30)

Hence, instead of doing non-trivial Langevin in the data space with ∇x
dπ∗(x|y)

dx , one may equivalently
do the sampling in the latent space by using the score (30) and then get x = G(z). We empirically
found this approach works much better, presumably due to the fact that (30) is just the score of the
Normal distribution which is slightly adjusted with the information coming from π∗(y|G(z)

)
.

For sampling, we employ the Metropolis-adjusted Langevin algorithm with the time steps
10−3, 10−4 and 10−5 for ϵ = 10, ϵ = 1 and ϵ = 0.1, respectively. It provides the theoretical
guarantees that the constructed Markov chain z1, z2, . . . , ... converges to the distribution dπ∗(z|y)

dz .
For initializing the Markov chain, we sample a pair (x, y) ∼ π∗ and use z = G−1(x) as the initial
state for the Langevin sampling to get new samples from π∗(·|y). This trick allows for improving
the stability of sampling and the convergence speed since it provides a good starting point. We use
N = 200 steps for all the setups for the Metropolis-adjusted Langevin algorithm.

In Figures 7 and 8, we provide additional examples of the samples from the ground truth plan π∗.

Metric 1. For each ϵ = 0.1, 1, 10 we prepare a test set with 104 samples from P0. We use this set
to calculate the FID [24] metric between the ground truth distribution P0 and the model’s marginal
distribution π1 to estimate how well the model restores the target distribution. This allows to access
the generative performance of solvers, i.e., the quality of generated images and matching the target
distribution. However, this metric does not assess the accuracy of the recovered EOT plan.

Metric 2. For each ϵ = 0.1, 1, 10, we prepare a test set containing 100 "noised" samples y ∼ P1 and
5K samples x ∼ π∗(·|y) for each "noised" sample y, i.e., 5K×100 images for each ϵ in consideration.
We propose to compute conditional FID to evaluate the difference between the conditional plans
π∗(·|y) and π̂(·|y). That is, for each y we compute FID between π∗(·|y) and π̂(·|y), and then average
the result for all test y. Clearly, such an evaluation is approximately 100×times more consuming
than computing the base FID. However, it allows us to fairly assess the quality of the recovered EOT
solution, and we recommend this metric as the main for future EOT/SB studies.

In Tables 6, 7, we present the evaluation results for ⌊ENOT⌉ [23]. We again emphasize that, to the
best of our knowledge, there is no scalable data→data EOT/SB solver to compare against. Hence,
we report the results as-is for future methods to be able to compare with them as the baseline.

Computational complexity. Sampling x ∼ P0 is just applying the trained GLOW neural network to
noise vectors z ∼ N (·|0, σ2I). Sampling y ∼ P1 (or y|x) takes comparable time, as it is just extra

23

sampling from the Gaussian mixture with x-dependent parameters (Proposition 3.3). In turn, as we
noted above, sampling x|y requires using the Langevin dynamic and takes considerable time. To
obtain 3 test sets of 5K samples y ∼ π∗(·|x) per each of 100 samples x ∼ P0, we employed 8×A100
GPUs. This generation of test datasets took approximately 1 week.

(a) ϵ = 0.1 (b) ϵ = 1 (c) ϵ = 10

Figure 7: Ground truth samples x ∼ π∗(·|y) on images benchmark pairs.

(a) ϵ = 0.1 (b) ϵ = 1 (c) ϵ = 10

Figure 8: Ground truth samples y ∼ π∗(·|x) on images benchmark pairs.

24

ϵ 0.1 1 10
FID 5.99 3.21 4.9

Table 6: Test FID of ⌊ENOT⌉ on our images
benchmark pairs.

ϵ 0.1 1 10
cFID 40.5 19.8 14.47

Table 7: Test conditional FID of ⌊ENOT⌉ on our
images benchmark pairs

D Details of EOT/SB Solvers

D.1 Mixtures Benchmark Pairs

⌊LSOT⌉ [49]. We use the part of the code of ⌊SCONES⌉ solver from the authors’ repository

https://github.com/mdnls/scones-synthetic/blob/main/cpat.py

corresponding to learning dual OT potentials blob/main/cpat.py and the barycentric projection
blob/main/bproj.py in the Gaussian case with configuration blob/main/config.py.

⌊SCONES⌉ [14]. We use the aforementioned official code for training of dual OT potentials. We
employ sklearn.mixture.GaussianMixture with 20 components to approximate the score of
the target distribution. For the rest, we employ their configuration blob/main/config.py with
batch size=1024 and the learning rate for Langevin sampling is 5 · 10−4.

lr (potential and transport map) Tsteps σz

1e − 4 99 1.0

Table 8: ⌊NOT⌉ training parameters
for the mixture benchmark pairs experiment.

⌊NOT⌉ This algorithm [35, Algorithm 1] is a generic
algorithm for weak OT. It works for transport costs
C
(
x, π(·|x)

)
which are straightforward to estimate

by using samples of π(·|x). Entropic cost Cc,ϵ (6)
does not fit this requirement, as it is not easy to estimate entropy from samples. To do it, one has to
know the density of π(·|x). Thus, the authors of ⌊NOT⌉ skipped EOT setting. We fill this gap and do
a minor modification to their algorithm. As the base implementation, we use

https://github.com/iamalexkorotin/NeuralOptimalTransport

Instead of the multi-layer perceptron generator, we take a conditional normalizing flow with RealNVP
architecture with context-dependent latent normal distribution. This enables the access to the density
of π(·|x) and allows applying ⌊NOT⌉ algorithm to EOT. Our reimplementation is available at

https://github.com/Penchekrak/FlowNOT

Due to the decreased expressivity of RealNVP compared to MLP from ⌊NOT⌉, we do more optimiza-
tion steps for the transport map before updating potential as well as larger parameter count compared
to the original solver implementation for a similar task. We use the same set of hyperparameters
across all experiments with different (ϵ,D). The hyperparameters are summarized in Table 8.

⌊EgNOT⌉ [42] We use the official code for ⌊EgNOT⌉ from

https://github.com/PetrMokrov/Energy-guided-Entropic-OT.

K Ktest
√
η σ0 N

500 1000 0.05 1.0 1024

Table 9: ⌊EgNOT⌉ training parameters
for the mixture benchmark pairs experiment.

For our mixture benchmark pairs experiment, we
adapt the author’s setup for the Gaussian-to-Gaussian
experiment from their original paper [42, §5.2]. In
particular, we use the same architectures of neural
networks, see [42, Appendix C.2], but change the
hyper-parameters of [42, Algorithm 1], since the orig-
inal ones do not work properly when fitting Gaussian-to-Mixture. We hypothesize that the observed
failure is due to the short-run nature of the energy-based training algorithm. We suppose that sig-
nificantly increasing the number of Langevin steps K used at the training stage may leverage the
problem. The specific hyper-parameters of ⌊EgNOT⌉ algorithm are the same for all (ϵ,D) pairs and
provided in Table 9.

We initialize the learning rate as lr = 10−5 and decrease its value during the training. Similar to the
original implementation of [42] we use a replay buffer but found that a high probability (p = 0.95) of
samples reusage does not improve the quality and sometimes leads to unstable training. In turn, we
choose p = 0.5. The reported numbers in Tables 4, 5 are gathered by launching the training process

25

https://github.com/mdnls/scones-synthetic/blob/main/cpat.py
https://github.com/iamalexkorotin/NeuralOptimalTransport
https://github.com/Penchekrak/FlowNOT
https://github.com/PetrMokrov/Energy-guided-Entropic-OT

for approximately 50K iterations and reporting the best-obtained metric. We understand that such
an evaluation procedure is not ideal and does not provide statistically significant results. However,
the qualitative results reported in Table 2 seem to show the behaviour of ⌊EgNOT⌉ solver on our
benchmark setup and reveal the key properties of the approach.

⌊ENOT⌉ [23] We use the official code from

https://github.com/ngushchin/EntropicNeuralOptimalTransport

We use the same hyperparameters for this setup as the authors [23, Appendix E], except the number
of discretization steps N, which we set to 200 as well as for other Schrödinger Bridge based methods.
We also change the learning rate of the potential to 3 · 10−4 for the setups with ϵ = 10.

⌊MLE-SB⌉ [52]. We tested the official code from

https://github.com/franciscovargas/GP_Sinkhorn

Instead of Gaussian processes, we used a neural network as for ⌊ENOT⌉. We use N = 200
discretization steps as for other SB solvers, 5000 IPF iterations, and 512 samples from distributions
P0 and P1 in each of them. We use the Adam optimizer with lr = 10−4 for optimization.

⌊DiffSB⌉[15]. We utilize the official code from

https://github.com/JTT94/diffusion_schrodinger_bridge

with their configuration blob/main/conf/dataset/2d.yaml for toy problems. We increase the
number of steps of dynamics to 200 and the number of steps of the IPF procedure for dimensions 16,
64 and 128 to 30, 40 and 60, respectively.

⌊FB-SDE-J⌉[9]. We utilize the official code from

https://github.com/ghliu/SB-FBSDE

with their configuration blob/main/configs/default_checkerboard_config.py for the
checkerboard-to-noise toy experiment, changing the number of steps of dynamics from 100 to
200 steps. Since their hyper-parameters are developed for their 2-dimensional experiments, we
increase the number of iterations for dimensions 16, 64 and 128 to 15 000.

⌊FB-SDE-A⌉ [9]. We also take the code from the same repository as above. We base our configura-
tion on the authors’ one (blob/main/configs/default_moon_to_spiral_config.py) for the
moon-to-spiral experiment. As earlier, we increase the number of steps of dynamics up to 200. Also,
we change the number of training epochs during one IPF procedure for dimensions 16, 64 and 128 to
2,4 and 8 correspondingly.

D.2 Images Benchmark Pairs

⌊ENOT⌉ [23] As well as for the mixtures benchmark pairs, we use the official code from

https://github.com/ngushchin/EntropicNeuralOptimalTransport

We use the same hyperparameters for this setup as the authors [23, Appendix F] except the batch size
which we set to 16 (/blob/main/notebooks/Image_experiments.ipynb).

E Additional Study of Hyperparameters of Solvers

To show that the default solvers parameters described in Appendix D are already a good choice, we
additionally try different values of some of the most important hyperparameters. We consider each of
the solvers except ⌊LSOT⌉ because it is anyway known to poorly perform due to the systematic bias
in its solutions [31, 32]. For the evaluation, we consider the mixtures benchmark pair with D = 64
and ϵ = 1 where most of the solvers perform reasonably well. In the tables below, we use "∗" to mark
the hyperparameters that we use for comparisons in M4.1.

For ⌊ENOT⌉ solver, we consider the number of inner and outer problem iterations during the
optimization and present the results in Table 10. The obtained results show that the performance
increases slowly with increasing number of iterations of both types.

26

https://github.com/ngushchin/EntropicNeuralOptimalTransport
https://github.com/franciscovargas/GP_Sinkhorn
https://github.com/JTT94/diffusion_schrodinger_bridge
https://github.com/ghliu/SB-FBSDE
https://github.com/ngushchin/EntropicNeuralOptimalTransport

Outer iters
Inner iters

1 5 10 20

100 131.1 130.3 74.5 129.3
1000 28.77 47.36 25.91 20.16
10000 24.46 37.36 23.07∗ 18.03

Table 10: Comparison of cBW2
2-UVP ↓ (%) for ⌊ENOT⌉ on mixtures benchmark pairs for D = 64,
ϵ = 1 and different hyperparameters.

For IPF-based SB solvers ⌊MLE-SB⌉, ⌊DiffSB⌉, ⌊FB-SDE-A⌉ and ⌊FB-SDE-J⌉, we try different
numbers of IPF iterations and the number of samples used in each iteration. We present the results in
Tables 11, 12, 13, 14. All of the IPF-based solvers learn an inversion of a diffusion process at each
IPF step but they differ in the way how this is done. The typical number of IPF steps used by each
algorithm is affected by this difference. The performance increases slowly with the increase of the
two hyperparameters considered, at the cost of a proportional increase in iterations or in the number
of samples used.

IPF iters
Samples per iter

64 128 256 512

100 23.45 24.50 16.64 14.23
1000 16.95 15.35 10.71 8.74
5000 11.55 11.24 12.96 8.41∗

Table 11: Comparison of cBW2
2-UVP ↓ (%) for ⌊MLE-SB⌉ on mixtures benchmark pairs for

D = 64, ϵ = 1 and different hyperparameters.

IPF iters
Samples per iter

64 256 512 1024

16 62.66 60.42 58.88 57.02
32 62.90 59.42 57.76∗ 55.08
64 62.84 59.46 57.78 55.01

Table 12: Comparison of cBW2
2-UVP ↓ (%) for ⌊DiffSB⌉ on mixtures benchmark pairs for D = 64,
ϵ = 1 and different hyperparameters.

IPF iters
Samples per iter

64 256 512

15000 173.16 163.04 160.5∗
30000 168.86 165.06 156.5

Table 13: Comparison of cBW2
2-UVP ↓ (%) for ⌊FB-SDE-J⌉ on mixtures benchmark pairs for

D = 64, ϵ = 1 and different hyperparameters.

IPF iters
Samples per iter

64 256 512 1024

16 40.86 40.43 39.76 37.74
32 40.44 38.90 38.36∗ 35.46
64 40.00 38.86 38.31 35.4

Table 14: Comparison of cBW2
2-UVP ↓ (%) for ⌊FB-SDE-A⌉ on mixtures benchmark pairs for

D = 64, ϵ = 1 and different hyperparameters.

For ⌊SCONES⌉ and ⌊EgNOT⌉ solvers, we consider the number of Langevin steps and the Langevin
step size and present the results in Table 15 and Table 16. For ⌊SCONES⌉ the results obtained show
that the performance increases slowly with increasing Langevin steps and decreasing Langevin step
size. For ⌊EgNOT⌉ the trends are slightly different, since the optimal Langevin step size seems to be
in the interval [0.1, 0.2]. Anyway, our selected parameters are reasonable ones because specifying an
enormously large number of Langevin steps for these solvers is sort of impractical.

Finally, for ⌊NOT⌉ we consider the number of inner problem steps and the hidden size of the used
neural network (conditional normalizing flow). We present results in Table 17.

27

Langevin step size
Langevin steps

64 256 512 1024

10−4 92.35 89.17 86.48 86.33∗
10−3 93.51 90.41 88.22 87.74

Table 15: Comparison of cBW2
2-UVP ↓ (%) for ⌊SCONES⌉ on mixtures benchmark pairs for

D = 64, ϵ = 1 and different hyperparameters.

Langevin step size
Langevin steps

100 200 500 1000

0.01 70.9 70.98 72.9 68.13
0.02 71.31 67.14 69.11 69.02
0.05 68.78 68.59 63.73∗ 56.84
0.1 64.52 57.45 52.35 51.9
0.2 58.22 60.08 58.93 41.31

Table 16: Comparison of cBW2
2-UVP ↓ (%) for ⌊EgNOT⌉ on mixtures benchmark pairs for

D = 64, ϵ = 1 and different hyperparameters.

Inner steps
Hidden size

64 128 192 256 320 384 448 512

1 93.14 167.05 149.52 189.0 89.1 161.66 176.43 175.67
5 82.64 86.09 82.18 190.04 147.31 105.46 103.5 150.76

10 163.47 146.68 53.26 137.47 100.84 171.65 115.84 126.96
100 18.68 21.4 14.64 18.08 16.66 20.64∗ 18.71 15.15
200 61.99 52.74 58.63 53.89 52.44 55.3 55.02 54.75

Table 17: Comparison of cBW2
2-UVP ↓ (%) for ⌊NOT⌉ on mixtures benchmark pairs for D = 64,
ϵ = 1 and different hyperparameters.

Discussion. From the results it can be seen that for the most solvers’ dependence on the considered
hyperparameters is almost monotonic and the hyperparameters chosen for the solver comparison on
the mixtures setup are in the region where the metric growth is almost saturated.

F Qualitative Evaluation of the Drift Learned with SB methods

Our benchmark primarily aimed at quantifying the recovered conditional EOT plan π̂(·|x). Thanks to
our Proposition 3.5, our benchmark provides not only the ground truth conditional EOT plan π∗(·|x),
but the optimal SB drift v∗(x, t) as well. This means that for SB solvers we may additionally compare
their recovered SB drift v̂ with the ground truth drift v∗. Here we do this for ⌊MLE-SB⌉, ⌊DiffSB⌉,
⌊ENOT⌉, ⌊FB-SDE-A⌉, ⌊FB-SDE-J⌉ solvers by using our mixtures pairs.

METRICS. Recall that Tv∗ is the Schrödinger bridge (10) and let Tv̂ denote the learned process:

dXt = v̂(x, t)dt+
√
ϵdWt, X0 ∼ P0.

Both Tv∗ and Tv̂ are diffusion processes which start at distribution P0 at t = 0 and have fixed
volatility ϵ. Their respective drifts are v∗ and v̂. For each time t ∈ [0, 1], consider

L2
fwd[t]

def
= ETv∗ ∥v∗(Xt, t)− v̂(Xt, t)∥2, (31)

L2
rev[t]

def
= ETv̂

∥v∗(Xt, t)− v̂(Xt, t)∥2. (32)
which are the expected squared differences between the ground truth v∗ and learned v̂ drifts at the
time t. In (31), the expectation is w.r.t. Xt coming from the true SB trajectories of Tv∗ , while in (32)
– w.r.t. the learned trajectories from Tv̂ . Reporting this metric for all the time steps, all the mixtures
pairs and solvers would be an overkill. In what follows, we use this metric for quantitative analysis.

First, for D = 16 and ϵ ∈ {0.1, 10}, we plot these metrics (as a function of time t). The results for
all the solvers are shown in Figure 9. Second, we provide Table 19 where for D ∈ {2, 16, 64, 128}
and ϵ ∈ {0.1, 10} report L2 metrics averaged over t ∈ [0, 1]. Namely, we report

KL (Tv∗∥Tv̂)
def
=

1

2ϵ

∫ 1

0

L2
fwd[t]dt and RKL (Tv∗∥Tv̂)

def
=

1

2ϵ

∫ 1

0

L2
rev[t]dt. (33)

28

(a) 1
2ϵ
L2

fwd[t] for (D, ϵ) = (16, 0.1) (b) 1
2ϵ
L2

rev[t] for (D, ϵ) = (16, 0.1)

(c) 1
2ϵ
L2

fwd[t] for (D, ϵ) = (16, 1) (d) 1
2ϵ
L2

rev[t] for (D, ϵ) = (16, 1)

Figure 9: L2 metrics between the ground truth drift v∗ and the drift v̂ learned by SB solvers.

We write "KL" and "RKL" not by an accident. Thanks to the well-celebrated Girsanov’s theorem,
these are indeed the forward and reverse KL divergences between processes Tv∗ and Tv̂ .

In all the SB solvers, we consider 200 time discretization steps t = { 1
200 ,

2
200 , . . . 1} for their training.

During testing, we evaluate L2 metrics (31) and (32) on the same time steps. To estimate (31) and
(32), we use 105 samples Xt which are taken from random trajectories of processes Tv∗ and Tv̂.
These trajectories are simulated via the standard Euler–Maruyama method.

ϵ=0.1 ϵ=1

D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128

⌊ENOT⌉ 0.61 5.49 6.59 10.36 0.86 1.64 11.43 37.53
⌊DiffSB⌉ 6.96 12.89 - - 12.28 >1000 >1000 >1000

⌊FB-SDE-A⌉ 6.9 11.08 - - 10.59 >1000 >1000 >1000
⌊FB-SDE-J⌉ 3.02 5.02 9.60 28.85 18.79 44.79 629.28 >1000
⌊MLE-SB⌉ 0.62 2.63 4.76 7.86 0.96 1.86 9.66 34.95

Table 18: Forward KL between the ground truth SB process Tv∗ and the process Tv̂

learned with SB solvers on our mixtures benchmark pairs.

ϵ=0.1 ϵ=1

D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128

⌊ENOT⌉ 72.86 78.98 135.29 221.26 18.40 49.65 177.02 348.05
⌊DiffSB⌉ 11.85 21.16 - - 121.43 >1000 >1000 >1000

⌊FB-SDE-A⌉ 12.29 19.40 - - 100.22 >1000 >1000 >1000
⌊FB-SDE-J⌉ 8.03 12.11 17.16 49.32 64.37 123.68 >1000 >1000
⌊MLE-SB⌉ 18.03 28.24 163.34 254.16 22.80 86.07 296.97 636.27

Table 19: Reverse KL between the ground truth SB process Tv∗ and the process Tv̂

learned with SB solvers on our mixtures benchmark pairs.

DISCUSSION. Interestingly, we see that the forward KL divergence shows a smoother behaviour
than the RKL for almost all SB solvers. According to our evaluation, the ⌊MLE-SB⌉ and ⌊ENOT⌉
solvers mostly beat every other solver in the forward KL metric. At the same time, the RKL metric
of ⌊ENOT⌉ is surprisingly the worst. While we make all these observations, we do not know how

29

to explain them. We hope that the question of the interpretation of the KL and RKL values will be
addressed in future SB studies.

G Potential Societal Impact

Our proposed approach deals with generative models based on Entropic Optimal Transport and
Schrödinger Bridge principles. Such models form and emergent subarea in the field of machine
learning research and could be used for various purposes in the industry including image manipulation,
artificial content rendering, graphical design, etc. Our benchmark is a step towards improving the
reliability, robustness and transparency of these models. One potential negative of our work is that
improving generative models may lead to transforming some jobs in the industry.

H Building Benchmarks from Real Data

In this section, we present a simple heuristic recipe to build benchmark pairs similar to some
given real-world data. To illustrate the recipe, we consider toy 2D data example and several
single-cell datasets [36, 8]. Code and data for the experiments in this section can be found in
the benchmark_construction_examplesdata folder of our repository.

H.1 Recipe for Building Benchmark Pairs form Data.

For constructing distribution pairs similar to some given data, we consider a pair of original and target
datasets obtained from the true distributions P0 and P1, respectively. We heuristically initialize the
LSE potential (15) f∗(y) = ϵ log

∑N
n=1 wnQ(y|bn, ϵ−1An) with bn as cluster centers obtained from

the K-means clustering algorithm applied to the target data from P1. The weights wn are chosen to be
1/N and matrices An = λI are diagonal where λ is a manually-chosen parameter (shared between
all An). For any x the conditional plan π∗(·|x) for LSE potential f∗ is just a Gaussian mixture and
the mean of each its component is largely determined by bn (Proposition 3.3). We empirically found
that the resulting constructed distribution dP̂1(y) = dπ∗

1(y) =
∫
dπ∗(y|x)dP0(x) from P0 resembles

the Gaussian mixture approximation of the target dataset if one managed to find proper value of λ.

In the rest of this section, we use the described recipe to construct benchmark pairs from data to show
that the LSE parameterization of the potential provides a wide class of EOT/SB solutions and even
allows constructing a benchmark similar to real data.

H.2 Benchmark Pairs for 2D data.

Code and data for the experiment described in this section can be found in the folder
benchmark_construction_examples/2d_data of our repository.

To begin with, we present the results of constructing a benchmark pair from 2D data. We consider a
Gaussian distribution P0 as the source distribution and two moons P1 as the target distribution. We
aim to use the previously described recipe MH.1 to find parameters of the LSE potential to construct
an EOT solution between P0 and an approximation of P1 denoted as P̂1. Here we consider EOT with
ϵ = 0.05, use N = 100 for LSE potentials, and choose λ = 50. The result is in Figure 10.

As seen from the figure, the constructed target benchmark distribution P̂1 is similar to the target
distribution P1. In turn, the EOT plan maps x ∼ P0 to the close regions of the target distribution.

H.3 Single-cell RNA Data

Code and data for the experiment described in this section can be found in the folder
benchmark_construction_examples/single_cell_rna of our repository.

We consider the same setup as in [36, M5.2]. We use their data from the supplementary materials.2
The provided data displays the progression of human embryonic stem cells as they differentiate from
embryoid bodies into a range of cell types, such as mesoderm, endoderm, neuroectoderm, and neural

2https://openreview.net/forum?id=d3QNWD_pcFv

30

https://openreview.net/forum?id=d3QNWD_pcFv

Figure 10: Gaussian → Two Moons benchmark pair.

crest, throughout a span of 27 days. The cell samples (approximately 2000 ones per each time period)
were gathered at five distinct intervals (t0: day 0 to 3, t1: day 6 to 9, t2: day 12 to 15, t3: day 18
to 21, t4: day 24 to 27). These collected cells were evaluated via scRNAseq, subjected to quality
control filtering, and then projected onto a 5-dimensional feature space utilizing principal component
analysis (PCA).

To construct the benchmark pair using the LSE potential, we consider N = 250, ϵ = 100 and
λ = 100 and employ the train data at times t0 and t4. Then we use the constructed benchmark plan
π∗(·|x) to map source data at time t0 to the data at time t4 and obtain benchmark target distribution
samples P̂1. Finally, we fit TSNE [51] to the combined dataset of samples from P1 and P̂1 and
then plot their projections in Figure 11. The resulting plots are very similar, confirming that the
constructed benchmark target data resembles the considered single-cell target data.

Figure 11: TSNE visualization of Single-cell RNA target data and our constructed target data.

H.4 Single-cell Drugs Data

Code and data for the experiment described in this section can be found in the folder
benchmark_construction_examples/single_cell_drugs of our repository.

Method scGen cAE CellOT [8] EOT Benchmark (ours)
MMD↓ 0.0241 0.0074 0.0013 0.0036

Table 20: MMD↓ distances (on the test data) between the observed perturbed cells P1

and predicted responses from control cells P̂1.

In [8], the authors consider the problem of predicting single-cell drug responses for drugs with differ-
ent molecular effects, using melanoma cell lines profiled by 4i technology (single-cell technology).
Utilizing a blend of two melanoma tumor cell lines at a 1:1 ratio, a total of 21,650 cells were imaged.
Within this dataset, 11,526 cells existed in the untreated control state, 2,364 received Erlotinib
treatment, 2,650 underwent Imatinib treatment, 2,683 were subjected to Trametinib treatment, and

31

2,417 were treated with a combination of Trametinib and Erlotinib. After preprocessing, each cell is
described by 78 features. The train-test split with each drug is 80:20.

In this example, we consider cell data before treatment (P0) and after treatment with Erlotninib (P1).
For the construction of the benchmark pair using an LSE potential, we consider N = 250, ϵ = 1
and λ = 20. As with the single cell RNA data MH.3, we fit the TSNE [51] on a combined dataset of
samples from P1 and P̂1 and then plot their projections in Figure 11. As seen from the visualizations,
the TSNE projections of the real data and the mapped data are similar.

Figure 12: TSNE visualization of Single-cell Drugs target data and our constructed target data.

In addition, we quantitatively evaluate on the test data how well the constructed target distribution P̂1

matches the true data distribution P1. We employ the same MMD metric as the authors and present
the results in Table 20. The data for the baselines scGen, cAE and the authors’ method CellOT are
taken from [8]. As one can see, our approach is even better than two of the baselines considered.

32

	Proofs
	Mixtures Benchmark Pairs: Details and Results
	Images Benchmark Pairs: Details and Results
	Details of EOT/SB Solvers
	Mixtures Benchmark Pairs
	Images Benchmark Pairs

	Additional Study of Hyperparameters of Solvers
	Qualitative Evaluation of the Drift Learned with SB methods
	Potential Societal Impact
	Building Benchmarks from Real Data
	Recipe for Building Benchmark Pairs form Data.
	Benchmark Pairs for 2D data.
	Single-cell RNA Data
	Single-cell Drugs Data

