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Abstract

The accurate predictions and principled uncertainty measures provided by GP
regression incur O

(
n3
)

cost which is prohibitive for modern-day large-scale appli-
cations. This has motivated extensive work on computationally efficient approxi-
mations. We introduce a new perspective by exploring robustness properties and
limiting behaviour of GP nearest neighbour (GPnn) prediction. We demonstrate
through theory and simulation that as the data-size n increases, accuracy of esti-
mated parameters and GP model assumptions become increasingly irrelevant to
GPnn predictive accuracy. Consequently, it is sufficient to spend small amounts of
work on parameter estimation in order to achieve high MSE accuracy, even in the
presence of gross misspecification. In contrast, as n → ∞, uncertainty calibration
and NLL are shown to remain sensitive to just one parameter, the additive noise-
variance; but we show that this source of inaccuracy can be corrected for, thereby
achieving both well-calibrated uncertainty measures and accurate predictions at
remarkably low computational cost. We exhibit a very simple GPnn regression
algorithm with stand-out performance compared to other state-of-the-art GP ap-
proximations as measured on large UCI datasets. It operates at a small fraction of
those other methods’ training costs, for example on a basic laptop taking about 30
seconds to train on a dataset of size n = 1.6× 106.

1 Introduction

We first briefly review the computational cost of exact GP regression and the motivation for this paper:
Given n training samples X,y, where X ∈ Rn×d has feature vector xi ∈ Rd in its i’th row and
y ∈ Rn, exact GP regression [36] makes use of an n× n gram matrix K = KX,θ constructed from a
pre-specified positive definite covariance function c(·, ·) : Rd ×Rd → R+ together with length-scale,
additive-noise variance and kernel-scale “hyperparameters” θ = (l, σ2

ξ , σ
2
f ). In the training phase

estimates of the hyperparameters, θ̂ = (l̂, σ̂2
ξ , σ̂

2
f ), are obtained by minimising the loss function

loss(θ) = − log p(y|X,θ) =
1

2
{yTK−1

θ y + log |Kθ|+ n log(2π)}. (1)

Then for subsequent predictions the predictive distribution at a point x∗ ∈ Rd is defined by
y∗ |X,y ∼ N (µ∗, σ∗ 2) (2)

µ∗ = k∗ TK−1y (3)

σ∗ 2 = σ̂2
f − k∗ TK−1k∗ + σ̂2

ξ (4)
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where K = Kθ̂ with components [K]ij = kθ̂(xi,xj); the vector k∗ has components k∗i =
kθ̂(xi,x

∗), and kθ(x,x
′) = σ2

fc(x/l,x
′/l) + δx,x′σ2

ξ with a “normalised” covariance function
c(·, ·) such that c(x,x) = 1. The derivation of these steps is based on the assumption that the
underlying random field is Gaussian, as is the additive noise with variance σ2

ξ .

The single cost-O
(
n3
)

step of inverting K is needed repeatedly to compute the loss. Sophisticated
implementations reduce this toward O

(
n2
)

([35]), but even that cost is generally impractical for
n > 106. For a survey of numerous GP approximations and their reduced costs see [19].

Machine learning methods must tackle massive data problems to handle many modern day appli-
cations. Revolutionary developments in neural network methodologies achieve this, but Bayesian
predictive methodologies, in particular GP regression with its major advantages of robustness and
uncertainty measures, are somewhat behind the curve. This motivates development of fast implemen-
tations retaining the accuracy and well-principled uncertainty of exact GPs.

2 Background and Paper Outline

A feature common to all mainstream GP approximations is that training and prediction processes make
joint use of the same underlying mathematical constructions. In the “subset-of-data” method the same
subset of data is used both for parameter estimation and prediction. Similarly, in the various Bayesian
committee methods ([18]) hyperparameters are estimated using a collection of subsets of data and
then the same subsets are used in combination to make predictions. In the variational ([14, 31])
and other inducing point methods parameters are estimated using a low rank approximation to the
kernel gram matrix and then the same low-rank matrix approximation is used to make predictions.
Despite being almost universally adopted there is no obvious reason why constraining algorithms to
use the same constructions for estimation and prediction will help rather than hinder the end goal of
high performance at low cost. Whilst there are some passing mentions of decoupling prediction and
estimation in the literature - e.g. [28, 1, 3] - it has not been adopted as a mainstream approach.

Our first observation is that allowing parameter-estimation and prediction processes to become
decoupled may provide the flexibility to greatly improve cost-accuracy trade-off. As shown in
Figure 1, GP approximations first obtain a point estimate of the kernel hyperparameters θ̂ from
training data and then feed θ̂ into a predictive process. Our end-goal is only to obtain accurate and
well-calibrated predictive distributions of y∗ at each target point x∗; obtaining accurate parameter
estimates is not a goal in itself. It follows that the computational budget devoted to parameter
estimation need only be sufficient to provide parameters capable of delivering accurate and well-
calibrated predictions.

Parameter estimation

Training data (X,y)

Prediction

Training data (X,y)

Target point x∗

Distribution of y∗ |X,y at x∗θ̂

Figure 1: Flowchart of the GP regression procedure. The dashed box indicates the usual approach of
combining the parameter estimation and prediction tasks under one strategy.

This need not mean that θ̂ is an accurate estimate of the parameters which leads us to the second
observation and main theoretical component of this paper: In section 5, theory and simulations reveal
that under widely applicable circumstances, as n increases the mean squared error (MSE) predictive
accuracy obtained from GP nearest neighbour prediction becomes increasingly insensitive to model
misspecification, i.e. insensitive to the wrong choice of covariance function, to the choice of l̂, σ̂2

f

and σ̂2
ξ and even insensitive to departures from Gaussian model assumptions made for the underlying

stochastic process and additive noise. Similarly the negative log likelihood (NLL) predictive-accuracy
becomes insensitive to all of those factors apart from the variance of the additive noise σ̂2

ξ . In 6.1
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we describe a simple calibration step that corrects for the latter inaccuracy thereby achieving near
optimal limiting NLL values in addition to well-calibrated uncertainty measures whilst leaving the
well-behaved MSE values completely unaltered. We apply these overall observations to construct a
highly efficient, accurate and well calibrated regression algorithm in section 6.

Our key contributions: Demonstration of GPnn robustness against model and parameter misspec-
ification through theory and simulation (5); derivation of explicit formulae for the limiting MSE,
NLL and calibration performance of GPnn as n → ∞ (5.1); translation of this theory into a new GP
approximation framework with stand-out performance relative to other state-of-the-art GP approxi-
mations (6,7.1); a simple generic method for re-calibrating uncertainty measures in GP regression
with immediate applications to improving calibration of other GP approximations such as SVGP
(6.1); achievement of massive scalability for GPs, for example a 100× speed-up over state-of-the-art
methods on a 1.6×106 training set whilst also improving upon their performance (7.1); demonstrating
that provably best possible MSE, NLL and calibration performance can be closely approached on
data that is grossly misspecified relative to GP model assumptions (7.2).

3 Performance Measures, Weak and Strong Calibration

Along with many other GP publications we use mean squared error MSE (or its square root RMSE)
and negative log likelihood (NLL), both computed from held-aside test data, to assess predictive
performance. These are simply the mean values of e∗i = (y∗i − µ∗

i )
2 and l∗i = 0.5 · (log σ∗ 2

i + (y∗i −
µ∗
i )

2/σ∗ 2
i + log 2π) respectively. However, we find those measures alone inadequate for determining

how well calibrated a predictive distribution is. We define “weakly calibrated” prediction to mean that
Ey∗ | X,y

{
(y∗ − µ∗)2/σ∗ 2

}
= 1 and accordingly use “calibration” to be a measure of how well the

average value of z∗i = (y∗i −µ∗
i )

2/σ∗ 2
i over test-data agrees with 1. This choice of metric (also made

use of in [16]) can be motivated as follows: For a well-calibrated GP the expected squared deviation
of y∗i from µ∗

i should match the corresponding predictive variance σ∗
i
2 (2), i.e. Ey∗ | X,y {z∗} = 1.

Hence, observing an average of z∗ values close to 1 is consistent with a necessary condition for
effective calibration. In practice, we find that GP approximation methods can fall well short of
this condition (e.g. see the LHS plot in Figure 4, and Table 3 for those results in tabular form)
whilst this is not evident from their MSE and NLL values alone. A better measure of calibration
(“strong-calibration”) would have been to see how well percentiles of the predictive distributions
agree with those observed in test data, e.g. see [24], but we defer such a refinement to future work.

4 Prediction Method and Sources of Misspecification

4.1 GP Nearest Neighbour Prediction

We now describe what we mean by “GP nearest neighbour (GPnn) prediction”. Assume that we are
given parameters θ̂ = (l̂, σ̂2

ξ , σ̂
2
f ) obtained from the parameter estimation phase of Figure 1. Then to

compute the estimated pointwise-distribution of y∗ at x∗ indicated in Figure 1 we find the m nearest
training-set neighbours N = N(x∗) to x∗ and apply exactly the same GP prediction formulae as
in (2), (3) and (4) but with X ∈ Rn×d replaced by N ∈ Rm×d and y ∈ Rn replaced by yN ∈ Rm.
Note that in this setup conditioning on N(x∗) is equivalent to conditioning on the full input matrix
X . We obtain:

y∗ |N(x∗),yN ∼ N (µ∗
N , σ∗ 2

N ) (5)

µ∗
N = k̂∗

N
T K̂−1

N yN (6)

σ∗ 2
N = σ̂2

f − k̂∗
N
T K̂−1

N k̂∗
N+ σ̂2

ξ (7)

where we have used hatted notation in a generic manner to cover all the potential sources of mis-
specification (4.2) that might arise when we carry out these predictions. The µ∗

N , σ∗ 2
N parameters are

substituted for µ∗, σ∗ 2 when computing the performance measures described in section 3.

Note: In this paper we use Euclidean distance for nearest neighbour assignment but more generally
could employ a metric defined by the covariance function - see A. For the covariance functions used
in this paper these metrics are “equivalent” because one is a monotonic function of the other.
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In our algorithmic implementations we replace an exact m nearest neighbour algorithm with a much
more efficient approximate nearest neighbour algorithm as discussed in section 6. However for the
purpose of the theoretical analysis of robustness in section 5 this distinction can be ignored.

4.2 Sources of Misspecification

For the remainder of the paper we extend our theory and notation to encompass several (possibly
simultaneous) sources of misspecification: standard GP theory assumes that data comes from a latent
Gaussian random field GRF [σ2

fc(./l, ./l)] specified by covariance function c(·, ·) and parameters
l, σ2

f . The construction of the matrix Kθ in section 1 assumes data to have arisen from this GRF with
i.i.d N (0, σ2

ξ ) additive noise. Henceforth, we limit covariance functions c(x,x′) to be stationary, i.e.
to vary only with (x− x′). The forms of (possibly simultaneous) misspecifications to be accounted
for in the theoretical treatment of 5.1 are: (a) parameter σ2

ξ wrongly specified as σ̂2
ξ , (b) (normalised)

covariance function c(·, ·) wrongly specified as ĉ(·, ·), (c) parameters l, σ2
f misspecified as l̂, σ̂2

f

(relevant only if c(·, ·) not misspecified), (d) true additive noise is not Gaussian and (e) the data is
generated by a non-Gaussian weakly stationary random field WSRF rather than a GRF .

5 GP nearest neighbour Limits and Robustness

In this section we investigate the behaviour of MSE, NLL and calibration for GPnn prediction as
n → ∞, showing how all of these performance measures become increasingly less sensitive to
hyperparameter accuracy, kernel choice and the above departures from the GP model assumptions.

5.1 Theory

Assumptions: The true generative model from which the data arises is yi = f(xi)+ ξi with ξi
iid∼ Pξ ,

f(x) ∼ WSRF [σ2
fc(./l, ./l))] and yi | f(xi) ∼ Pξ where the variance of the distribution Pξ is

σ2
ξ . Neither the WSRF nor the additive noise distribution Pξ need be Gaussian. The training x

values are i.i.d. The MSE, NLL and calibration statistics on the test set are derived according to the
nearest neighbour GP prediction process (4.1) and subject to any/all forms of misspecification in 4.2.
Additionally, we assume that if and only if the mth nearest neighbour converges to the test point
under c, then it also converges under ĉ (A:Definition 10).

Result: Given a size-n training set X and test point x∗ in the support (A:Definition 9) of the
measure of x, let fMSE

n (θ̂) = Ey,y∗ {e∗N}, fNLL
n (θ̂) = Ey,y∗ {l∗N}, fCAL(θ̂) = Ey,y∗ {z∗N}; where

expectations are w.r.t. the true generative process for y and y∗ and the performance measures
e∗N , l∗N , z∗N (section 3) are for the nearest neighbour prediction process. Note that these are the
expected (rather than mean) values of the performance measures described in section 3 and the
dependence on n is implicit in the construction of the nearest neighbour sets N = Nm(x∗) used for
prediction. Then we have:
Theorem 1 (GPnn limits). As n → ∞, fMSE

n , fCAL
n , fNLL

n → fMSE
∞ , fCAL

∞ , fNLL
∞ a.e w.r.t. the

(i.i.d.) measure on x ∈ X and x∗, and pointwise as functions of θ̂ where:

(i) fMSE
∞ (θ̂) = σ2

ξ (1 +m−1)±O
(
m−2

)
(ii) fCAL

∞ (θ̂) =
σ2
ξ

σ̂2
ξ
±O

(
m−2

)
(iii) fNLL

∞ (θ̂) = 1
2

{
log
(
σ̂2
ξ (1 +m−1)

)
+

σ2
ξ

σ̂2
ξ
+ log 2π

}
±O

(
m−2

)
.

Setting θ̂ = θ (and in particular σ̂2
ξ = σ2

ξ ) in the above provides matched-parameter limiting results.

Proof sketch. It is quite straightfoward to derive expressions for each of the expectations
fMSE
n , fCAL

n , fNLL
n since these only depend on the known marginal covariance matrices of the

(misspecified) WSRF . We then use results concerning asymptotic convergence of Euclidean nearest
neighbours, in combination with some standard linear algebra results and continuity properties, to
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Figure 2: Behaviour of performance metrics as functions of kernel hyperparameters for increasing
training set sizes n. The black dashed line denotes the true parameter value; the red dashed line shows
the limiting behaviour as n → ∞ and the green dashed line shows the limiting behaviour when the
hyperparameters are correct (the red and green dashed lines coincide for MSE). True l is shown in
the title; additionally σ2

ξ = 0.1, σ2
f = 0.9, d = 20. When not varied, the assumed parameters are

σ̂2
ξ = 0.2, σ̂2

f = 0.8, l̂ = l. Finally we generate the input data from the measure Px = N
(
0, 1

dId
)
.

obtain the stated limits. Note that in the expression for fMSE
∞ (θ̂) above the right hand side must

always exceed σ2
ξ since this is an absolute lower bound on MSE performance; likewise fCAL

∞ (θ̂) is
constrained to be non-negative. See full proof (A)..

Interpretation: The MSE results of Theorem 1 show that to within a small factor (e.g. m−1 = 0.0025
when m = 400 as for all reported runs of our algorithm) the best possible MSE will be achieved in
the limit. The NLL results also tell us (by setting σ2

ξ = σ̂2
ξ ) what the best possible limiting NLL value

is, but only according to the possibly misspecified Gaussian model. The corrupting influence of an
incorrect value of σ̂2

ξ on the limiting NLL value is clearly evident from the expression for fNLL
∞ and

the picture is similar for calibration.

Remark 2. Theorem 1 shows that isotropic (e.g. RBF and Matérn) kernels converge to the best
possible MSE as n → ∞ even on data generated with independent lengthscales on each x coordinate.

Note that 1 refers to pointwise convergence whereas we believe uniform convergence results should
also be obtainable, e.g. perhaps of the form (or similar):

Conjecture 3. EX,x∗

{
fMSE
n (θ̂)

}
→ fMSE

∞ = σ2
ξ (1 +m−1)±O

(
m−2

)
uniformly as a function of

θ̂ as n → ∞.

This particular conjecture would hold, for example, if the l.h.s. were shown to be a continuous
function of θ̂ reducing monotonically and pointwise to the limit with n (by Dini’s theorem). We also
have initial results on rate of convergence in Theorem 1 which we defer to a later publication once
more fully extended.

5.2 Simulation of Limits and Robustness at Scale

At first sight it seems infeasible to demonstrate the above robustness and limit properties empirically
on GP data-sets of size 106 or above. One major obstacle being the generation of GP synthetic
datasets at this size which is computationally prohibitive even allowing for the speedups described in
[29]. Fortunately we can avoid the need for large-scale data-generation, in addition to achieving other
major efficiencies, by adopting the approach described in Algorithm 1.

The simulation algorithm gains its efficiency by exploiting the locality of the GPnn prediction process
at x∗ whereby the predictive distribution only makes use of a size-(m+ 1) marginal distribution of
the full distribution of (y, y∗) over Rn+1. (By the definition of a Gaussian process this marginal is a
(low dimensional) multivariate Gaussian distribution from which samples can cheaply be generated).
The following lemma is proved in Appendix B:
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Algorithm 1 Simulation of GPnn Robustness and Limiting Behaviour
Input: n (training size), n∗ (test size), m (number of nearest neighbours), d (x-dimension), c(·, ·)

(generative covariance function), θ (generative kernel parameters), P (.) (x-distribution)
Set-up phase A:

1. Produce the n training x-values and n∗ test x∗-values by sampling independently from
P (.).

2. Find the n∗ size- m nearest neighbour sets N(x∗
i ) for test points x∗

i (i = 1, . . . , n∗).
3. Generate n∗ GP samples yi ∈ Rm+1 from N (0,KU,θ) where U = N(x∗

i ) ∪ {x∗
i }.

4. Store (N(x∗
i ), {yi,j}mj=1) which will be used for predictions in Phase B together with

y∗i = yi,(m+1) ∈ R, the true y value at x∗
i .

Robustness Evaluation phase: B
For several choices of assumed covariance function ĉ(·, ·) and parameters θ̂:
For i = 1, . . . , n∗ do:

1. Compute predictive distribution N (µ∗
i , σ

∗ 2
i ) at x∗

i based on ĉ, θ̂ and (N(x∗
i ), {yi,j}mj=1).

2. Update NLL, MSE and calibration statistics using µ∗
i , σ

∗ 2
i and y∗i .

Output: NLL, MSE and calibration stats for range of covariance and parameter assumptions.

Lemma 4 (Algorithm 1 validity). The MSE, NLL and calibration estimates returned by Algorithm
1 are equally valid to those that would be obtained by applying the full GPnn predictive process
(exactly as described in subsection 4.1) to synthetic data sets of size n.

Figure 2 shows how the observed performance metrics approach the limiting behaviour as n increases.
In particular, from the RHS plot we see that as n increases, MSE becomes increasingly insensitive
to departure of l̂ from the true value l = 1. This is a consequence of (what appears to be uniform)
convergence of MSE toward constant value σ2

ξ = 0.1 (the best achievable MSE) as predicted by
Theorem 1 (i). In practical terms: once a practitioner selects a particular kernel family, the accuracy
of the hyperparameter l̂ becomes less and less critical to MSE predictive accuracy with increasing n,
so that expenditure on estimating it accurately provides diminishing returns.

The interpretation of the leftmost two plots is similar albeit somewhat more involved: The dotted
red lines show the asymptotic dependence on the misspecification of the noise-variance as predicted
by Theorem 1 (ii) and (iii), i.e. plots of y = 0.1

σ̂2
ξ

and y = 1
2{log σ̂

2
ξ +

0.1
σ̂2
ξ
+ log 2π} where 0.1 = σ2

ξ

is the true noise value used to generate the synthetic GP data. We again see evidence of uniform
convergence toward this limiting behaviour with increasing n. The green horizontal dotted lines show
the limiting values of NLL and calibration (y = 1

2{log σ
2
ξ +1+ log 2π} and y = 1 respectively) that

can be achieved if the incorrect σ̂2
ξ value is replaced by the correct value σ2

ξ . This underlines the
importance of estimating this particular parameter more accurately in order to obtain improved NLL
and uncertainty calibration for large n. Further plots from Algorithm 1, showing dependence of each
metric on all of the parameters, are given in Figure 6.

6 A Highly Scalable GP Nearest Neighbour Regression Algorithm

6.1 Parameter Estimation

Parameter Estimation Phase 1 The first step of parameter estimation (Figure 1) involves randomly
selecting a small subset E of the training data to obtain a first-pass estimate θ̂ = (l̂, σ̂2

ξ , σ̂
2
f ). Small

subsets yield sub-optimal θ̂ values, yet as shown in 7.1, these are capable of yielding strong MSE
performance due to the robustness properties of section 5. We use the method in section 3.1 of [7]
to estimate parameters from E, randomly partitioning E into w size-s subsets (ws = e) and using
a block diagonal approximation (with w blocks of size s × s ) to the full e × e gram matrix. For
Table 1 we set e = 3000, s = 300,m = 10. For strong computational efficiency we set e = |E| to a
small constant value no matter the size of n. Thus as n grows, an increasingly small portion of the
data is used for this phase of parameter estimation and the associated cost does not increase with n.
Note that other choices of cheap parameter estimation could be substituted here.
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Parameter Estimation Phase 2 (calibration) As shown in section 5, NLL and calibration per-
formance derived from θ̂ = (l̂, σ̂2

ξ , σ̂
2
f ) remain very sensitive to inaccuracies in σ̂2

ξ . An additional
“calibration step” is used to refine those parameters: We randomly select a size c calibration set C
(which is otherwise unused) from the training data and proceed according to Algorithm 2.

Algorithm 2 Calibration of Predictive Distribution

Input: A size c subset C of (x∗, y∗) pairs from the training data, parameters θ̂ = (l̂, σ̂2
ξ , σ̂

2
f ).

1. For each (x∗
i , y

∗
i ) ∈ C use the efficient GPnn predictive algorithm of 6.2, with covariance

function ĉ(., .) and parameters θ̂ = (l̂, σ̂2
ξ , σ̂

2
f ), to obtain an estimate of the mean and

variance, µ∗
i , σ

∗ 2
i of the predictive distribution of y∗i at x∗

i .

2. Compute α = 1
c

∑c
i=1

(y∗
i −µ∗

i )
2

σ∗ 2
i

.

Output: Calibrated parameters θ̂′ = (l̂, α · σ̂2
ξ , α · σ̂2

f ).

Note that this process not only adjusts the noise variance estimate σ2
ξ but also the kernel scale

parameter σ2
f . In so doing it simultaneously calibrates the predictive distribution and improves NLL

performance whilst leaving unchanged the MSE performance obtained from the original parameter
estimates θ̂ = (l̂, σ̂2

ξ , σ̂
2
f ). The lemma below is straightforward to prove (Appendix C):

Lemma 5 (Calibration). The parameters θ̂′ output from Algorithm 2 produce GPnn predictions that
(a) achieve perfect (weak) calibration on C, (b) minimise NLL on C over all choices of α and (c)
produce the same MSE as θ̂ does on any choice of test set.
Remark 6. Algorithm 2 can be applied to other GP methods, such as SVGP, to improve calibration.

Table 1 uses c = 1000; a simple refinement would be to select c automatically (e.g. using a bootstrap)
with optional manual override. Where accurate uncertainty calibration is paramount practitioners
could devote much larger CPU resources to this phase (which is also easily distributed); when no
uncertainty measures are to be used this calibration step can be bypassed altogether.

6.2 Efficient Nearest Neighbour Prediction

In order to implement GPnn prediction described in 4.1 we use the scikit-learn NearestNeighbors
package ([22]). This implements an efficient approximate nearest neighbour algorithm whereby
one-time work is carried out to construct a table (at O(dn log n) (see e.g. [9, 21]) and counted
within the total training times quoted) which subsequent calibration/test predictions then make use
of. Query compute-costs are described in the associated documentation, e.g. O(d log n) for the
Ball-tree algorithm which the default automated algorithm selection in SciKit-Learn should at least
match. In contrast, exact kNN costs are listed in the documentation as O(dn). As is evident in
Table 2, Figure 3 and the quoted query and table-setup complexities, the nearest neighbour work
increases with x-dimension d. Alternative nearest neighbour algorithms and/or dimension-reduction
techniques to help address this are yet to be investigated. We set the number of nearest neighbours
to be m = 400 for all usages in this paper having observed minimal sensitivity to this parameter
on independent synthetic datasets. Although a simple cross-validation procedure could be followed
if tuning of m is desired (at an increase in computational overhead), we wished to minimise such
fine-tuning to emphasise the simplicity and robustness of the method we present, noting the strong
performance we obtain despite this. At first glance, prediction complexity might appear restrictive,
but some empirical tests on a laptop reveal comparable performance to SVGP prediction (Table 5).

7 Experimental Performance of GPnn Regression

7.1 Performance on Real World Datasets

Implementational Details1: Comparisons are made between our method and the state-of-the-
art approaches of SVGP [14] and five distributed methods ([15, 2, 33, 7] and [18] following the
recommendation in [4]). We have chosen not to include other highly-performant approximations

1https://github.com/ant-stephenson/gpnn-experiments/
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Table 1: RMSE and NLL results (mean and standard deviation over 3 runs) for the best distributed
method (w.r.t. MSE), SVGP and our method.

NLL RMSE
Distributed OURS SVGP Distributed OURS SVGP

Dataset n d

Poletele 4.6e+03 19 0.0091 ± 0.015 -0.214 ± 0.019 -0.0667 ± 0.017 0.241 ± 0.0033 0.195 ± 0.0042 0.226 ± 0.0059
Bike 1.4e+04 13 0.977 ± 0.0057 0.953 ± 0.013 0.93 ± 0.0043 0.634 ± 0.004 0.624 ± 0.0079 0.606 ± 0.0033
Protein 3.6e+04 9 1.11 ± 0.0051 1.01 ± 0.0016 1.05 ± 0.0059 0.733 ± 0.0038 0.666 ± 0.0014 0.688 ± 0.0043
Ctslice 4.2e+04 378 -0.159 ± 0.052 -1.26 ± 0.01 0.467 ± 0.016 0.237 ± 0.012 0.132 ± 0.00062 0.384 ± 0.0064
Road3D 3.4e+05 2 0.685 ± 0.0041 0.371 ± 0.004 0.608 ± 0.018 0.478 ± 0.0023 0.351 ± 0.0014 0.443 ± 0.008
Song 4.6e+05 90 1.32 ± 0.0012 1.18 ± 0.0045 1.24 ± 0.0012 0.851 ± 6.7e-05 0.787 ± 0.0045 0.834 ± 0.0011
HouseE 1.6e+06 8 -1.34 ± 0.0013 -1.56 ± 0.0065 -1.46 ± 0.0046 0.0626 ± 5.2e-05 0.0506 ± 0.00072 0.0566 ± 0.00011

(e.g. structured kernel interpolation (SKI) methods and their extensions ([37, 39, 11])), since, to our
knowledge, none have supplanted these methods in the community as ubiquitous benchmarks on
general datasets. Parameters for our method are given in 6.1 and 6.2. SVGP used 1024 inducing
points; the distributed methods all used randomly selected subsets of sizes as close as possible to 625.
The learning rate for the Adam optimiser was 0.01 for SVGP and 0.1 for our method and distributed
methods. All runs in Table 1 used the the squared exponential (“RBF”) covariance function. A
“pre-whitening” process (E.1) was applied to x values for all methods and the y values normalised
(using training data-derived means and sds) to have mean zero and variance 1. More complete details
are given in E. SVGP was run on a single Tesla V100 GPU with 16GB memory; all distributed
methods run on eight Intel Xeon Platinum 8000 CPUs sharing 32GB of memory. Our method was
run on a Macbook Pro with 2.4 GHz Intel core i5. See D for a full explanation of our selection and
pre-processing of datasets which, apart from Protein, are taken from the UCI repository.

Results Runs were made on three randomly selected 7/9, 2/9 splits into training and test sets. Table 1
shows MSE and NLL results for our method alongside SVGP and distributed method (note: n =
training set size). The table shows only the best of the five distributed methods’ results (w.r.t. MSE)
but full results and details of all methods and all three performance measures are given in E. Complete
calibration results are also plotted in Figure 4. With the exception of the Bike dataset our method is
found to outperform all methods simultaneously for both MSE and NLL, and calibration likewise
bar a narrow second place on the Song dataset. Table 2 and Figure 3 show that this is achieved
whilst undercutting the training costs of the other methods, an effect that is very pronounced for
large training sets (e.g. approximately 100× faster than the other methods at n = 1.6 × 106 on
House Electric). Figure 3 shows that a significant portion of time involves calibration; this can be
parallelised (or eliminated if uncertainty is not required). Note also that larger timings observed for
higher dimensional datasets are due to slower performance of the approximate nearest neighbour
algorithm (6.2) in that regime, both for nn table construction and calibration. As discussed in 6.2,
future improvements may reduce this effect. It is very interesting that “curse-of-dimensionality”
has not impacted on the method’s MSE, NLL or calibration competitiveness at large d. This was
despite the fact that a PCA analysis of the training x values showed no concentration within a low
dimensional space (as to be expected given the prewhitening that has been applied (subsection E.1).

Conjecture 7. Robustness to “curse-of-dimensionality” is at least partially explained by the increase
in the intrinsic data-length-scale by a factor of order

√
d that must arise in order for GP methods to

be effective.

The heuristic reasoning behind this conjecture is as follows: Unless length scale increases with d
the kernel gram matrix will exhibit an abundance of exceptionally small off-diagonal entries and
hence be unable able to gain significant predictive power. A

√
d increase serves to counterbalance

this effect and seems consistent with length scales recovered from real data in practice.

7.2 Performance on Massive Synthetic Datasets

We generated size 5× 107 datasets using the 15-variable deterministic Oakley and O’Hagan function
[20, 30] with i.i.d. variance-σ2

ξ additive noise sampled from a zero-mean Laplacian distribution (with
much wider tails than N (0, σ2

ξ )). This function has 5 inputs contributing significantly to output
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Table 2: Corresponding recorded training times (with mean
and standard deviation from 3 runs) associated to the metrics
in Table 1, i.e. recorded at the same time and with the time
given for the “distributed” method relating to the best per-
forming model in terms of MSE. Mean times are rounded to
3 s.f. and standard deviation to 2.

Train time/s
Distributed OURS SVGP

Dataset n d

Poletele 4.6e+03 19 17.1 ± 0.66 28.8 ± 0.22 11.9 ± 0.081
Bike 1.4e+04 13 43.5 ± 0.64 28.4 ± 0.12 32.3 ± 0.15
Protein 3.6e+04 9 98.9 ± 1.7 27.7 ± 0.19 81.1 ± 1.1
Ctslice 4.2e+04 378 86.9 ± 1.7 76.1 ± 4.6 98.2 ± 1.8
Road3D 3.4e+05 2 1200.0 ± 110.0 27.9 ± 1.3 760.0 ± 8.0
Song 4.6e+05 90 1050.0 ± 110.0 138.0 ± 5.8 1080.0 ± 14.0
HouseE 1.6e+06 8 3110.0 ± 250.0 32.0 ± 0.34 3720.0 ± 17.0

104 105 106

n

101

102

103

Model
Dist.
SVGP
OURS
OURS
d
>20
<20

Figure 3: Training times (s) for each
model with “high” dimensional datasets
highlighted.†: without calibration.
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Figure 4: Experiment results on a suite of UCI datasets. Optimal calibration performance is 1
(indicated by a black dashed line). Lower is better for NLL and RMSE. Y-axis truncated for
readability for Calibration due to very large values on the “Ctslice” dataset. NLL is rescaled relative
to the most extreme model performance. “symlog” refers to logarithmic axis rescaling applied to the
y-axis on both positive and negative values (“symmetric”).

variance, 5 with smaller effect, and 5 with almost no effect. These properties are poorly matched by
the isotropic covariance functions being applied, resulting in gross misspecification of the assumed
GRF model and the additive noise. Figure 5 shows performance achieved with both the squared
exponential (“RBF”) covariance function and the exponential (Matérn 1/2) covariance function. It is
very interesting to note the improvement in convergence rate achieved by the exponential kernel. (see
Remark 2 for a potential explanation of why isotropic covariance functions are so effective at large
n).

Remark 8. We checked to see whether this strong exponential kernel performance extended to UCI
datasets. Surprisingly, given that it is not recommended for use in GP regression (e.g. [36] page
85), it produced best RMSE performance across the board when compared with RBF and Matérn
3/2 kernels (Table 4), with Road3D RMSE reducing from 0.351 to 0.098. Exponential-kernel NLL
performance was everywhere best apart from Ctslice and calibration was also better in most cases.

8 Discussion

Related work: The basic “subset-of-data” approximation ([3]) also achieves training efficiency by
using a small portion of training data and can achieve surprisingly goods results ([3], [35] section
5.1, [13]). But it typically would need a much greater proportion of training data than we are using
for large n due to its failure to leverage the power of large training sets for prediction; this explains
why it is not consistently competitive with other methods. Passing references to the decoupling
of prediction and estimation have been made, e.g. [28, 1, 3], but not shown to be as consistently
powerful as we have found, nor justified in terms of robustness theory or explored as a mainstream
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Figure 5: Behaviour of performance metrics on the Oakley and O’Hagan function-derived dataset
([20, 30]) as a function of data size, n. The horizontal green line indicates the limiting behaviour if
the predictive and generative were to match. Shaded regions indicate 95% confidence intervals for
the fitted curves.

approach. Various works (primarily from the geospatial community) make use of nearest neighbour
(NN) techniques for GPs (e.g. [34, 25, 28, 6, 5, 8, 32, 38]). Vecchia ([34]) uses NNs to approximate
likelihoods for parameter estimation, whilst Stein ([28]) adapts this work to REML using more
distant points as well as NNs, again for parameter estimation purposes. In contrast, our focus is on
using NNs for prediction, and whilst we have found passing references to its explicit use for this
purpose (e.g. [27]) we have found little or no discussion of effectiveness in comparison to other
methods on large datasets and no detailed accompanying analysis of its robustness properties and
how these can achieve very high efficiency at scale. [5] gives a construction of a hierarchical fully
Bayesian model (‘NNGP’) derived using collections of NN sets. This approach adds considerable
computational overhead and code-complexity, e.g. use of Gibbs sampling. Whilst fully Bayesian
treatment of hyperparameters is explored in the ML literature, e.g. [17], it has not been adopted by the
ML community for use at scale due to its high computational cost relative to empirical Bayes methods
([17], section 5). Bearing this in mind, we consider the extension given in [8] for improved scalability
(Algorithm 5 - ‘conjugate NNGP’) to be more relevant. In this hybrid method some hyperparameters
are recovered as ‘empirical-Bayes’ point-estimates via grid-based search and the remainder treated in
a fully Bayesian fashion using a conjugate prior with some choice of hyper-hyperparameters. This
results in a Student-t predictive distribution, rather than Gaussian, but with equal first moment to ours
and variance differing only by a (hyper-hyperparameter dependent) multiplicative factor; an effect
that our recalibration step would render redundant (see F.1). Recent work ([32, 38]) extends local
geospatial GP methods into sparse variational ML applications. ‘VNNGP’ is shown to be competitive
with other methods in [38] despite adding further approximations into the model. We note that when
using all observations as the inducing points their predictive mechanism matches ours, up to choice of
parameter estimation. We believe these pre-existing works, which differ significantly in approach and
perspective, complement our own, which emphasizes the benefits of decoupling parameter estimation
from prediction, the robustness properties that can be achieved at large scales, the efficacy of a simple
recalibration step and can be run at high scale with a simple algorithm on an off-the-shelf laptop.

Limitations and Future Research: Our results exhibit a leap in speed and performance for GP
regression at scale, but there remains more to be done to fully explain and extend performance (as
evidenced by our remarks and conjectures). This is particularly so for high dimensional problems
where (a) a faster nearest neighbour algorithm would have a particularly big pay-off and (b) there
is a need to explain why “curse-of-dimensionality” appears not to have damaged the method’s
competitiveness (see Conjecture 7). Extensions of theory to broader aspects of GP robustness, rates
of convergence and “strong calibration” (section 3) are current areas of some the authors’ ongoing
work.
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A Theoretical GPnn Results

A.1 Preliminary results

Let ρ(x,x′) = σf

√
1− c(x/l,x′/l) be the kernel-induced distance function over Rd ([23]). We

define x(j,n)(x
∗) as the jth nearest neighbour random variable to a test point x∗ under ρ, which

we abbreviate to x(j) when the context is clear, and x(j)(x
∗) ∈ Nm(x∗) as the realised jth nearest

neighbour of the test point x∗ from a training set X . From this we define ϵi = ρ2(x(i),x
∗) and

ϵij = ρ2(x(i),x(j)).

Definition 9 (Support). Let Px be the probability measure of x and Sρ
x,ϵ the closed ball of radius

ϵ > 0 under the metric ρ centred at x. Then we define support(Px) = {x : Px(S
ρ
x,ϵ) > 0 ∀ ϵ > 0}.

Definition 10 (Weakly-faithful). We define a pair of metrics ρ(·, ·), ρ̂(·, ·) to be weakly-faithful w.r.t.
each other if the following condition holds: The mth nearest neighbour under ρ̂ converges to the test
point as n → ∞ if and only if the mth nearest neighbour under ρ converges to the test point in the
limit.

Assumptions

(A1) x
iid∼ Px and x∗ ∈ support(Px) under the generative metric defined by c(·, ·).

(A2) c(·, ·), ĉ(·, ·) are stationary kernels whose induced distance functions are weakly faithful
metrics (Definition 10).

(A3) yi = f(xi)+ ξi with ξi
iid∼ Pξ , f(x) ∼ WSRF(σ2

fc(./l, ./l)) and yi | f(xi) ∼ Pξ and
E[ξ] = 0, E[ξ2] = σ2

ξ .

Note: Assumption (A2) is not overly restrictive and encompasses commonly used kernels such as all
those mentioned in this paper.

Lemma 11. ϵi → 0 and ϵij → 0 as n → ∞ a.e. with respect to the measure over x ∈ Rd, Px, for
i, j ≤ m, m

n → 0 and under (A1-2).

Proof. Lemma 6.1 of [12] states that
∥∥x(m,n)(x)− x

∥∥ n→∞−−−−→ 0 with probability one (with respect
to Px). Their proof can be generalised immediately to state that ρ(x(m,n)(x),x)

n→∞−−−−→ 0 by using
our definition of support, 9, that directly invokes the metric ρ. Hence ϵi → 0 for all i ≤ m (since
x∗ is in support(Px)). Since ρ is a metric it satisfies the triangle inequality; hence ρ(x(i),x(j)) ≤
ρ(x(i),x

∗) + ρ(x(j),x
∗)

n→∞−−−−→ 0 for all i, j ≤ m.

Lemma 12. For an m-GPnn under the assumptions (A1-3),

lim
n→∞

k∗
N
TK−1

N k∗
N = σ2

f − σ2
ξm

−1 +O
(
m−2

)
.

Proof. From Lemma 11 we have that limn→∞ k(x(j)(x
∗),x∗) = limn→∞(σ2

f − ϵi) = σ2
f and

limn→∞ k(x(i)(x
∗),x(j)(x

∗)) = limn→∞(σ2
f − ϵij) = σ2

f . As a result, k∗
N → σ2

f1 and

K∞ := lim
n→∞

KN = σ2
ξI + σ2

f11
T . (8)
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Now using Sherman-Morrison and the continuity of matrix inverse and matrix-matrix products:

(A+ bcT )−1 = A−1 − A−1bcTA−1

1 + cTA−1b
(9)

(K∞)−1 = (σ2
ξI + σ2

f11
T )−1 =

1

σ2
ξ

(
I − σ2

f

11T

σ2
ξ + σ2

f1
T1

)
(10)

1T (K∞)−11 =
m

σ2
ξ

(
1−

mσ2
f

σ2
ξ +mσ2

f

)

=
m

σ2
ξ

(
1−mσ2

f

1

mσ2
f

(
1−

σ2
ξ

mσ2
f

+
σ4
ξ

m2σ4
f

−O
(
m−3

)))

=
1

σ2
f

−
σ2
ξ

mσ4
f

+O
(
m−2

)
. (11)

Thus,

lim
n→∞

k∗
N
TK−1

N k∗
N = σ4

f1
T (K∞)−11 = σ2

f − σ2
ξm

−1 +O
(
m−2

)
. (12)

Lemma 13 (WSRF expectations). Under (A3), Ey,y∗{yy∗} = k∗ and Ey{yyT } = K.

Proof. By assumption on the covariance properties of y and the independence and zero-mean of
the additive noise, Ey{yiyj} = k(xi,xj). Extending this to the joint distribution over y, y∗ is
straightforward and gives the results stated.

Lemma 13 is subsequently assumed to be in use throughout A.2.

A.2 Limit proofs

In the following statements only misspecification of type (d) and/or (e) (subsection 4.2) is considered
to be at work.

Lemma 14 (MSE limit). Under the assumptions (A1-3), for fixed m < ∞, the predictive GPnn given
in subsection 4.1 converges pointwise in the sense of MSE wrt Px-a.e. as

lim
n→∞

fMSE
n (θ) = σ2

ξ (1 +m−1)−O
(
m−2

)
.

Proof. This follows from Lemma 12 by expanding the definition of MSE:

lim
n→∞

fMSE
n (θ) = lim

n→∞
Ey,y∗

{
|y∗ − µ∗

N |2
}

= lim
n→∞

[
Ey∗{y∗2}+ Ey{µ∗

N
2} − 2Ey,y∗{k∗

N
TK−1

N yNy∗}
]

= σ2
f + σ2

ξ − lim
n→∞

Ey{µ∗
N

2}

= σ2
ξ (1 +m−1)−O

(
m−2

)
.

Since Ey{µ∗
N

2} = Ey{k∗
N
TK−1

N yNyT
NK−1

N k∗
N} = k∗

N
TK−1

N k∗
N, and by assumption

Ey,y∗{yNy∗} = k∗
N, even under a WSRF generative model (Lemma 13).

Corollary 15 (NLL limit).

lim
n→∞

fNLL
n (θ) =

1

2
log
(
σ2
ξ (1 +m−1)

)
+

1

2
+

1

2
log 2π −O

(
m−2

)
.
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Proof. The proof follows straightforwardly from Lemma 12 and because σ∗ 2
N = σ2

f + σ2
ξ −

k∗
N
TK−1

N k∗
N.

2Ey,y∗ {l∗N} = Ey,y∗

{
log σ∗ 2

N +
(y∗ − µ∗

N )2

σ∗ 2
N

+ log 2π

}
= log σ∗ 2

N + 1 + log 2π

lim
n→∞

2Ey,y∗ {l∗N} = log
(
σ2
f + σ2

ξ − (σ2
f − σ2

ξm
−1 +O

(
m−2

)
)
)
+ 1 + log 2π

= log
(
σ2
ξ (1 +m−1)−O

(
m−2

))
+ 1 + log 2π

= log σ2
ξ +m−1 + 1 + log 2π −O

(
m−2

)
.

A.2.1 Full misspecification

For the remainder of A.2 we assume that the full range of possible misspecifications ((a)-(e)) outlined
in subsection 4.2 are in action. We refer to this case as “fully-misspecified” and introduce the notation
µ̂∗
N , σ̂∗ 2

N to be understood to mean the predictive mean and variance under these misspecifications.

Lemma 16 (Fully misspecified MSE limit). For a fully misspecified model, asymptotically

lim
n→∞

fMSE
n (θ̂) = σ2

ξ (1 +m−1)±O
(
m−2

)
.

provided the misspecified kernel distance metric is weakly faithful in the sense that the mth nearest
neighbour converges under both the true and misspecified metrics (Definition 10).

Proof.

Ey

{
Ey∗

[
(y∗ − µ̂∗

N )2 | y
]}

= Ey

{
Ey∗

[
y∗2 − 2y∗µ̂∗

N + (µ̂∗
N )2 | y

]}
= Ey

{
σ∗ 2
N + µ∗ 2

N − 2µ∗
N µ̂∗

N + (µ̂∗
N )2

}
= σ∗ 2

N︸︷︷︸
(a)

+k∗
N
TK−1

N k∗
N︸ ︷︷ ︸

(b)

−2k∗
N
T K̂−1

N k̂∗
N︸ ︷︷ ︸

(c)

+ k̂∗
N
T K̂−1

N KNK̂−1
N k̂∗

N︸ ︷︷ ︸
(d)

.

We can use standard results to state that (a) + (b) = σ2
f + σ2

ξ . Then we define γ̂ =
σ̂2
f

σ̂2
ξ+mσ̂2

f
and

expand it in terms of m−1:

1−mγ̂ =
σ̂2
ξ

mσ̂2
f

−
σ̂4
ξ

m2σ̂4
f

+O
(
m−3

)
.

In a manner similar to Lemma 12 we use this result to compute:

lim
n→∞

(c) = σ2
f1

T σ̂−2
ξ (I − γ̂11T )1σ̂2

f

=
σ2
f σ̂

2
f

σ̂2
ξ

m(1−mγ̂)

=
σ2
f σ̂

2
f

σ̂2
ξ

(
σ̂2
ξ

σ̂2
f

−
σ̂4
ξ

mσ̂4
f

)
+O

(
m−2

)
= σ2

f −
σ2
f σ̂

2
ξ

mσ̂2
f

+O
(
m−2

)
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and

lim
n→∞

(d) =
σ̂4
f

σ̂4
ξ

1T (I − γ̂11T )(σ2
ξI + σ2

f11
T )(I − γ̂11T )1

=
σ̂4
f

σ̂4
ξ

1T
[
σ2
ξI + σ2

f11
T − 2σ2

ξ γ̂11
T + γ̂2σ2

ξm11T − 2σ2
f γ̂m11T + σ2

f γ̂
2m211T

]
1

=
σ̂4
f

σ̂4
ξ

m(σ2
ξ +mσ2

f )
[
1− 2mγ̂ +m2γ̂2

]
=

σ̂4
f

σ̂4
ξ

m(σ2
ξ +mσ2

f )(1−mγ̂)2

=
σ̂4
f

σ̂4
ξ

m(σ2
ξ +mσ2

f )

(
σ̂4
ξ

m2σ̂4
f

− 2
σ̂6
ξ

m3σ̂6
f

+O
(
m−4

))

= σ2
f +

σ2
ξ

m
− 2

σ2
f

σ̂2
f

σ̂2
ξ

m
±O

(
m−2

)
,

where we have used the expansion of 1−mγ̂ given earlier. Putting these results together gives

lim
n→∞

fMSE
n (θ̂) = lim

n→∞
[(a) + (b)− 2(c) + (d)]

= σ2
f + σ2

ξ − 2

(
σ2
f −

σ2
f σ̂

2
ξ

mσ̂2
f

)
+ σ2

f +
σ2
ξ

m
− 2

σ2
f

σ̂2
f

σ̂2
ξ

m
±O

(
m−2

)
= σ2

ξ (1 +m−1)±O
(
m−2

)
.

Lemma 17 (Calibration limit under full misspecification).

lim
n→∞

fCAL
n (θ̂) =

σ2
ξ

σ̂2
ξ

±O
(
m−2

)
.

Proof. We use continuity to write

lim
n→∞

Ey,y∗

{
(y∗ − µ̂∗

N )2

σ̂∗ 2
N

}
=

(
lim
n→∞

1

σ̂∗ 2
N

)(
lim

n→∞
fMSE
n (θ̂)

)
.

By direct application of Lemma 12 σ̂∗ 2
N

n→∞−−−−→ σ̂2
ξ (1 +m−1)−O

(
m−2

)
and thus

lim
n→∞

fCAL
n (θ̂) =

σ2
ξ

σ̂2
ξ

±O
(
m−2

)
.

Corollary 18 (NLL limit under full misspecification).

lim
n→∞

fNLL
n (θ̂) =

1

2
log
(
σ̂2
ξ (1 +m−1)

)
+

1

2

σ2
ξ

σ̂2
ξ

+
1

2
log 2π ±O

(
m−2

)
.

Proof. We start with

2fNLL
n (θ̂) = Ey,y∗

{
log σ̂∗ 2

N +
(y∗ − µ̂∗

N )2

σ̂∗ 2
N

+ log 2π

}
.

For the second term we use Lemma 17 so that we have

lim
n→∞

2fNLL
n (θ̂) = log σ̂2

ξ +m−1 +
σ2
ξ

σ̂2
ξ

+ log 2π ±O
(
m−2

)
.

Proof of Theorem 1. We construct the proof using all of the intermediate results given above. In
particular item (i) follows from Lemma 16, item (ii) from Lemma 17 and item (iii) from Corollary 18.
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B Validity of Algorithm 1 (Proof of Lemma 4)

Proof of Lemma 4. We prove the result for MSE, the proofs for NLL and calibration being essentially
identical.

The proof involves showing that Algorithm 1 is exactly equivalent to Algorithm 1b, an al-
ternative scheme which self-evidently provides valid estimates of MSE on size-n synthetic
datasets:
Algorithm 1b Simulation of GPnn Robustness and Limiting Behaviour (Expensive)

1. Generate a size-n set of i.i.d. training x-values X = {xi}ni=1 with xi ∼ Px (X is held
constant henceforth).

2. Generate n∗ i.i.d. test points x∗
i ∼ Px.

3. Generate n∗ separate independent synthetic GP samples yi ∈ R(n+1) corresponding to each
of the values (x∗

i , X).

4. From within X take the m nearest-neighbours N(x∗
i ) to the test point x∗

i .

5. Corresponding to each test point x∗
i evaluate the function e∗i

′ = fi(yi) = (y∗i − µ∗
N (y′

i))
2.

Where, as defined in Equation 6, µ∗
N = k̂∗

N
T K̂−1

N y′
i with N = N(xi) and where y′

i ∈ Rm

is formed from the components of yi corresponding to N = N(xi).

6. Compute the average 1
n∗

∑n∗

i=1 e
∗
i
′ to obtain the MSE statistic.

Algorithm 1b clearly provides a valid evaluation of the MSE arising from the full GPnn prediction
process described in section 3 (albeit at prohibitive expense for large n). Hence it is sufficient to
prove that Algorithm 1 is equivalent to Algorithm 1b. We do so by applying two minor alterations to
Algorithm 1b in succession whose combined effect is to convert it to Algorithm 1. We also show that
throughout this process equivalence is maintained with Algorithm 1b thus completing the proof:

Change 1: Let yi = (y∗i ,y
′
i,y

′′
i ) where (y∗i ,y

′
i) ∈ R(m+1) with y′

i corresponding to the
x-values in N(x∗

i ). Since each function fi(yi) in line 5 above only depends on the components
(y∗i ,y

′
i) of the (n + 1)-long vector yi we can equally write e∗i

′ = fi(y
∗
i ,y

′
i) and hence truncate

each of the vectors yi to (y∗i ,y
′
i) before evaluating e∗i

′ in 5 and this clearly leaves the output of
Algorithm 1b completely unchanged.

Change 2: Note (by a standard property of multivariate normal distributions) that each of
the truncated vectors (y∗i ,y

′
i) are i.i.d. from the multivariate normal distribution whose covariance

Σ is the kernel gram matrix corresponding to just (x∗
i , N(x∗

i )). Hence it is legitimate to change
the (inefficient) way of sampling (y∗i ,y

′
i) (via the large sample y) to direct sampling from N (0,Σ)

whilst still maintaining equivalence with Algorithm 1b.

In this way we arrive at Algorithm 1.

C Parameter Calibration (Proof of Lemma 5)

Proof of Lemma 5. (a) Replacing parameters θ̂ = (l̂, σ̂2
ξ , σ̂

2
f ) with θ̂′ = (l̂, ασ̂2

ξ , ασ̂
2
f ) changes all of

the σ∗
i
2 values to ασ∗

i
2 and therefore changes the calibration value on C from α = 1

c

∑c
i=1

(y∗
i −µ∗

i )
2

σ∗ 2
i

to α/α = 1. (b) The NLL on C arising from parameters (l̂, ασ̂2
ξ , ασ̂

2
f ) is 1

2c

∑c
i=1{log

(
ασ̂2

ξ

)
+

(y∗i − µ∗
i )

2/(ασ∗ 2
i ) + log 2π)} which, on taking first and second derivatives w.r.t. α, is found to

be uniquely minimised by α = 1
c

∑c
i=1

(y∗
i −µ∗

i )
2

σ∗ 2
i

. (c) It is easily shown that replacing parameters

(σ̂2
ξ , σ̂

2
f ) by (kσ̂2

ξ , kσ̂
2
f ) (for any k > 0) in the formula for µ∗ (Equation 3 and Equation 6) does not
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alter µ∗. Hence the value of MSE = 1
n∗

∑n∗

i=1(y
∗
i − µ∗

i )
2 on any size-n∗ test set is unchanged when

parameters θ̂′ are used in place of θ̂.

D Real world datasets

We consider a variety of datasets from the standard UCI machine learning repository2. These datasets
are commonly used in the GP literature (see [10] for instance) and are, in principle, easily available
online. In practice, we encountered some difficulties: the dataset documentation is often limited;
the dataset names commonly used in other published papers do not always match the UCI database
naming and important details about data pre-processing, which features to use etc, are often omitted.
There are numerous attempts on GitHub and elsewhere at cataloguing these datasets along with any
pre-processing, however we had limited success using them, with many appearing unmaintained. Our
focus in this work is on testing our methods on a variety of real world datasets and in a way that is,
as far as possible, consistent with other papers. We therefore rejected datasets about which there is
ambiguity over the correct features to use, or even which column to regress on or for which outlier
rejection is required but undocumented elsewhere.

Referring to the datasets used in [10], we were able to locate the following:

• Song (https://archive.ics.uci.edu/ml/machine-learning-databases/00203/
YearPredictionMSD.txt.zip)

• Bike (https://archive.ics.uci.edu/ml/machine-learning-databases/00275/
Bike-Sharing-Dataset.zip)

• Poletele (https://archive.ics.uci.edu/ml/machine-learning-databases/
parkinsons/telemonitoring/parkinsons_updrs.data)

• Keggdirected (https://archive.ics.uci.edu/ml/machine-learning-databases/
00220/Relation%20Network%20(Directed).data)

• Keggundirected (https://archive.ics.uci.edu/ml/
machine-learning-databases/00221/Reaction%20Network%20(Undirected)
.data)

• CTSlice (https://archive.ics.uci.edu/ml/machine-learning-databases/
00206/slice_localization_data.zip)

• Road3d (https://archive.ics.uci.edu/ml/machine-learning-databases/
00246/3D_spatial_network.txt)

• Protein (https://archive.ics.uci.edu/ml/machine-learning-databases/
00265/CASP.csv)

• Buzz (https://archive.ics.uci.edu/ml/machine-learning-databases/00248/
regression.tar.gz)

• HouseElectric (HouseE) (https://archive-beta.ics.uci.edu/dataset/235/
individual+household+electric+power+consumption)

We were unable to find any documentation on the Kegg datasets to indicate which of the columns
should be used as the independent variable (the regressor) and neither is this mentioned in any
literature of which we are aware. Initial runs of standard exact GP training and prediction produced
RMSEs much higher that reported in [10]. Combining these two observations, we chose to exclude
both Kegg datasets. Likewise we faced problems with Buzz. An analysis of the y values revealed a
small proportion of extremely large outliers that we found could unduly distort performance results
(e.g. depending on whether these outliers appeared in the test set for some of the random splits).
With the lack of documentation we were unable to identify an outlier rejection scheme that we were
confident would be consistent with results quoted in other papers. For this reason we have excluded
Buzz.

The choice of (x, y) value that we applied for each of the used datasets is as follows:

2https://archive-beta.ics.uci.edu, accessed April 2023.

19

https://archive.ics.uci.edu/ml/machine-learning-databases/00203/YearPredictionMSD.txt.zip
https://archive.ics.uci.edu/ml/machine-learning-databases/00203/YearPredictionMSD.txt.zip
https://archive.ics.uci.edu/ml/machine-learning-databases/00275/Bike-Sharing-Dataset.zip
https://archive.ics.uci.edu/ml/machine-learning-databases/00275/Bike-Sharing-Dataset.zip
https://archive.ics.uci.edu/ml/machine-learning-databases/parkinsons/telemonitoring/parkinsons_updrs.data
https://archive.ics.uci.edu/ml/machine-learning-databases/parkinsons/telemonitoring/parkinsons_updrs.data
https://archive.ics.uci.edu/ml/machine-learning-databases/00220/Relation%20Network%20(Directed).data
https://archive.ics.uci.edu/ml/machine-learning-databases/00220/Relation%20Network%20(Directed).data
https://archive.ics.uci.edu/ml/machine-learning-databases/00221/Reaction%20Network%20(Undirected).data
https://archive.ics.uci.edu/ml/machine-learning-databases/00221/Reaction%20Network%20(Undirected).data
https://archive.ics.uci.edu/ml/machine-learning-databases/00221/Reaction%20Network%20(Undirected).data
https://archive.ics.uci.edu/ml/machine-learning-databases/00206/slice_localization_data.zip
https://archive.ics.uci.edu/ml/machine-learning-databases/00206/slice_localization_data.zip
https://archive.ics.uci.edu/ml/machine-learning-databases/00246/3D_spatial_network.txt
https://archive.ics.uci.edu/ml/machine-learning-databases/00246/3D_spatial_network.txt
https://archive.ics.uci.edu/ml/machine-learning-databases/00265/CASP.csv
https://archive.ics.uci.edu/ml/machine-learning-databases/00265/CASP.csv
https://archive.ics.uci.edu/ml/machine-learning-databases/00248/regression.tar.gz
https://archive.ics.uci.edu/ml/machine-learning-databases/00248/regression.tar.gz
https://archive-beta.ics.uci.edu/dataset/235/individual+household+electric+power+consumption
https://archive-beta.ics.uci.edu/dataset/235/individual+household+electric+power+consumption
https://archive-beta.ics.uci.edu


• Song. The first column is y, all remaining columns are x.

• Bike. We use hour.csv. The y value is cnt. dteday (the date) is transformed to just be
the integer representation of the day. instant is just an index so is dropped. registered
and casual are dropped as registered + casual = cnt.

• Poletele. The y value is total_UPDRS. The columns subject# and test_time are not
relevant to the problem so are dropped.

• CTSlice. y value is the final column. The first column is dropped as it is just an index. We
additionally drop six columns which are constant over the majority of the dataset, namely
columns 59, 69, 179, 189, 279 and 351.

• Road3d. y value is the final column. The first column is dropped as it is just an index.

• Protein. This dataset was processed as per https://github.com/hughsalimbeni/
bayesian_benchmarks, whereafter we used our own random (seeded) train/test split.

• HouseElectric. y value is the column labelled “Global active power”, rescaled by 1000/60
and with “Sub metering 1,2,3” columns subtracted. We convert the date column into day-of-
year/365 and the time column into time of day in minutes. Further, we remove any rows
with null entries.

We note that although we are using a standard set of real-world datasets, it is not always clear exactly
how others in the field have carried out their own preprocessing, limiting the ability to make direct
comparisons to other results reported in the literature.

E Additional Implementation Details

E.1 Pre-whitening of Data

For all datasets covered in subsection 7.1 the following “whitening” preprocessing step is adopted:
Let y be the vector of all regressor values in the training dataset only, and X the matrix of all
regressands in the training dataset only, where each row of X is a feature. Let µy, σ

2
y be the sample

mean and variance of y respectively in the training dataset, then the whitened y values used in both
the training and test set are simply σ−1

y (y − µy). Let µX ,ΣX be the sample mean and covariance
matrix of X respectively . Let ΣX = MMT , then the whitened x values in both the training and test
data are 1√

d
M−1(x− µX), where d is the feature dimension of X . Note: the performance metrics

given in subsection 7.1 are expressed in terms of the whitened y values rather than the y values in
their original form. This appears to be common practice in the literature and has no bearing on the
comparative performance of the different methods within this paper.

E.2 Test-Set Batching

To prevent excessive memory consumption, we perform all predictions for the distributed and
variational methods in batches of 1000 points at a time. Where this is not possible (e.g. for especially
large datasets), we use smaller batches of 500 or 250 points, as appropriate.

E.3 Additional Implementation Details for SVGP

We use the sparse variational inducing point approach of [14], following the implementation
provided by GPyTorch, which in particular uses a Choleksy decomposition to parameterise the
covariance matrix of the variational prior. We broadly follow the SVGP implementation exam-
ple provided by https://docs.gpytorch.ai/en/stable/examples/04_Variational_and_
Approximate_GPs/SVGP_Regression_CUDA.html. In particular, we follow their example in us-
ing the Adam optimiser to train our model over 100 epochs with a minibatch size of 1024 and a
learning rate of 0.01. We opt to use 1024 inducing points. All experiments under this method are
run on a SageMaker ml.p3.2xlarge instance, consisting of a single Tesla V100 GPU with 16GB of
memory.
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E.4 Additional Implementation Details for Distributed methods

A good introduction to distributed methods for Gaussian process inference is [7]. Here we run
the product-of-experts (PoE) [15], generalised product-of-experts (gPoE) [2], Bayesian committee
machine (BCM) [33], robust Bayesian committee machine (rBCM) [7] and generalised robust
Bayesian committee machine (GrBCM) [18] following the recommendation in [4] to aggregate in
f -space. There are three components to any distributed method: the hyperparameter inference, the
partitioner and the aggregator. Hyperparameter estimation is the same for all of the methods: we use
the method in section 3.1 of [7], randomly partitioning the entire training set into subsets of size 625
(or as close as possible with equal-sized experts given that in general n is not a multiple of 625). A
block diagonal approximation (with n/625 blocks) is then used to approximate to the full n×n gram
kernel matrix. To recover hyperparameters with this we use Gaussian Process models with a zero
prior mean and a scaled square-exponential kernel. Training is conducted using the Adam optimiser
with a learning rate of 0.1 over 100 optimiser iterations. Once the hyperparameters are trained, we
run our distributed prediction mechanism to evaluate performance against the test-set. The 625-sized
partitioned blocks are referred to as “experts” and the shared hyperparameter values are distributed to
each expert and held fixed thereafter. In the aggregator, or distributed prediction phase, each expert
produces an individual predictive distribution and these are then aggregated to a final predictive mean
and variance for each of our test points. GRBCM prediction is a little more complex than this as it
makes use of an additional “communications” expert as explained in [18], aggregating in f -space as
recommended in [4]. We provide timing statistics for training these models.

We use our own GPyTorch-based implementation of distributed GP approximations. All exact GP
calculations are performed using GPyTorch using the default settings (so 20 Lanczos iterations
throughout and a CG tolerance of 1 for hyperparameter inference, and 10−3 for posterior predictions).
For all of our experiments, we utilise an AWS t3.2xlarge instance (consisting of 8 Intel Skylake
Processors and 32 GB of RAM).

E.5 Reproducibility

All code used to generate tables and figures in this document can be found at https://github.
com/ant-stephenson/gpnn-experiments/.

F Related Work

F.1 NNGP

An hierarchical Bayesian approach to nearest neighbour GPs is derived in [5], who construct a full
stochastic process allowing an end-to-end probabilistic approach they term ‘NNGP’ derived from
a ‘parent’ GP using collections of nearest neighbour sets forming a ‘reference’ set. This work is
modified in various ways in [8] including by adaption to a hybrid empirical-Bayes/fully-Bayesian
approach to improve scalability. This is described in Algorithm 5 which presents an MCMC-free
approach (‘conjugate NNGP’) where some parameters are estimated via K-fold cross-validation and
the remainder are given conjugate priors to allow exact posterior inference. Under this model, the
marginal predictive distribution is Student-t with mean and variance expressions that match that
given by GPnn up to a scaling factor on the variance. Here we will go into more detail to make this
connection explicit. First of all, note that they use an alternative parameterisation to us, specifying
an inverse lengthscale (ϕ), a ratio (α) of noise variance (τ2) to kernelscale (σ2) and a vector of
coefficients for their linear mean function (β, which we can neglect since we focus exclusively on
mean-zero GPs).
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In Algorithm 5 they go on to give the following expressions for the predictive mean and variance:

z = M(s,N(s, k))

w = solve(M [N(s, k), N(s, k)], z)

m0 = ŷ(s) = dot(x(s), g(k)) + dot(w, (y[N(s, k)]− dot(X[N(s, k), ], g(k))))

u = x(s)− dot(X[N(s, k), ], w)

v0 = dot(u, gemv(V (k), u)) + 1 + α− dot(w, z)

̂Var(y(s)) = b∗σ(k)v0/(a
∗
σ(k)− 1)

We can see that the predictive mean m0 matches our own in the mean-zero setting. In particular,
in this case the only non-zero term is dot(w, y[N(s, k)]) which can be re-written in our notation as
k∗
N
TK−1

N yN . Note that this expression is, for fixed α, independent of choice of kernelscale. This
can be seen using the notation given in section 1: k∗

N
TK−1

N yN = σ2
fc

∗
N
T (σ2

fCN + σ2
ξI)

−1yN =

c∗N
T (CN + αI)−1yN .

In addition to this, the predictive variance is equivalent to ours up to multiplicative scaling S =

b∗σ(k)/[σ
2
f (a

∗
σ(k)− 1)]; i.e. ̂Var(y(s)) = Sσ∗ 2

N , which be seen as follows: In the mean-zero case we
have v0 = 1+α−dot(w, z) which can again be re-written in our notation as 1+σ2

ξ/σ
2
f−c∗N

TC−1
α,Nc∗N

(where Cα,N = CN + αI). Hence, if we rescale this by a factor of σ2
f we exactly obtain the GPnn

predictive variance, so that ̂Var(y(s)) = b∗σ(k)v0/(a
∗
σ(k) − 1) = b∗σ(k)σ

∗ 2
N /[σ2

f (a
∗
σ(k) − 1)] as

claimed. Since GPnn uses an additional recalibration step to rescale all predictive variances by a
single shared multiplicative factor, the factor S between the two methods can be made effectively
redundant: i.e. if our recalibration step (Algorithm 2) were applied to their method, the two methods
would become equivalent with respect to RMSE and weak-calibration (setting aside differences in
parameter estimation and their associated costs).

We reemphasise that whilst GPnn and Conjugate NNGP pointwise predictions can be related as
above, the latter is given in the form of a t-distribution which, even with matched first two moments,
will have a different shape to that of a Normal distribution. As such, the (Gaussian) NLL performance
measure is no longer a valid choice to assess this model. RMSE and weak-calibration remain
distribution-agnostic however.
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G Further simulation results
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Figure 6: Behaviour of performance metrics as functions of kernel hyperparameters for increasing
training set sizes n. The black dashed line denotes the true parameter value; the red dashed line shows
the limiting behaviour as n → ∞ and the green dashed line shows the limiting behaviour when the
hyperparameters are correct. Simulations run with d = 20, l = 0.5, σ2

ξ = 0.1, σ2
f = 0.9. Assumed

parameters when constant: σ̂2
ξ = 0.2, σ̂2

f = 0.8, l̂ = 0.5.
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H Further Results on UCI Datasets

H.1 Results for all distributed methods

Table 3: Results for all methods on all metrics.
Calibration NLL RMSE

Dataset n d Model

Bike 1.4e+04 13

BCM 1.02 ± 0.02 1.0 ± 0.0065 0.66 ± 0.0043
GPOE 0.873 ± 0.012 1.03 ± 0.0069 0.664 ± 0.0054
GRBCM 0.893 ± 0.014 0.977 ± 0.0057 0.634 ± 0.004
OURS 0.974 ± 0.087 0.953 ± 0.013 0.624 ± 0.0079
POE 1.03 ± 0.022 1.01 ± 0.0083 0.664 ± 0.0054
RBCM 1.01 ± 0.02 1.0 ± 0.0065 0.659 ± 0.0043
SVGP 0.898 ± 0.011 0.93 ± 0.0043 0.606 ± 0.0033

Ctslice 4.2e+04 378

BCM 5.04 ± 0.28 1.43 ± 0.13 0.311 ± 0.0052
GPOE 0.435 ± 0.013 0.422 ± 0.0015 0.347 ± 0.0027
GRBCM 1.13 ± 0.11 -0.159 ± 0.052 0.237 ± 0.012
OURS 1.04 ± 0.085 -1.26 ± 0.01 0.132 ± 0.00062
POE 6.39 ± 0.27 2.08 ± 0.12 0.347 ± 0.0027
RBCM 4.16 ± 0.25 0.987 ± 0.11 0.28 ± 0.0048
SVGP 0.865 ± 0.026 0.467 ± 0.016 0.384 ± 0.0064

Houseelectric 1.6e+06 8

BCM 1.27 ± 0.0046 -1.33 ± 0.0009 0.0634 ± 3.5e-05
GPOE 0.908 ± 0.0065 -1.43 ± 0.0016 0.0638 ± 7.7e-05
GRBCM 1.25 ± 0.011 -1.34 ± 0.0039 0.063 ± 0.00026
OURS 1.08 ± 0.21 -1.56 ± 0.0065 0.0506 ± 0.00072
POE 1.28 ± 0.006 -1.32 ± 0.0018 0.0638 ± 7.7e-05
RBCM 1.24 ± 0.0054 -1.34 ± 0.0013 0.0626 ± 5.2e-05
SVGP 0.911 ± 0.038 -1.46 ± 0.0046 0.0566 ± 0.00011

Poletele 4.6e+03 19

BCM 1.07 ± 0.029 0.00035 ± 0.019 0.243 ± 0.0048
GPOE 0.917 ± 0.02 0.0344 ± 0.013 0.246 ± 0.0038
GRBCM 0.872 ± 0.024 0.0091 ± 0.015 0.241 ± 0.0033
OURS 1.03 ± 0.073 -0.214 ± 0.019 0.195 ± 0.0042
POE 1.1 ± 0.036 0.00772 ± 0.016 0.246 ± 0.0038
RBCM 1.08 ± 0.029 0.00309 ± 0.018 0.243 ± 0.0048
SVGP 0.862 ± 0.035 -0.0667 ± 0.017 0.226 ± 0.0059

Protein 3.6e+04 9

BCM 1.04 ± 0.0097 1.14 ± 0.003 0.754 ± 0.0022
GPOE 0.925 ± 0.007 1.15 ± 0.0035 0.763 ± 0.0024
GRBCM 0.95 ± 0.012 1.11 ± 0.0051 0.733 ± 0.0038
OURS 0.991 ± 0.029 1.01 ± 0.0016 0.666 ± 0.0014
POE 1.07 ± 0.0088 1.15 ± 0.0033 0.763 ± 0.0024
RBCM 1.03 ± 0.0096 1.13 ± 0.003 0.752 ± 0.0022
SVGP 0.908 ± 0.016 1.05 ± 0.0059 0.688 ± 0.0043

Road3D 3.4e+05 2

BCM 1.01 ± 0.017 0.753 ± 0.007 0.514 ± 0.0035
GPOE 0.756 ± 0.012 0.819 ± 0.0054 0.529 ± 0.0037
GRBCM 0.873 ± 0.011 0.685 ± 0.0041 0.478 ± 0.0023
OURS 0.991 ± 0.041 0.371 ± 0.004 0.351 ± 0.0014
POE 1.07 ± 0.019 0.783 ± 0.0076 0.529 ± 0.0037
RBCM 0.976 ± 0.016 0.735 ± 0.0066 0.505 ± 0.0034
SVGP 0.9 ± 0.00094 0.608 ± 0.018 0.443 ± 0.008

Song 4.6e+05 90

BCM 1.56 ± 0.0063 1.32 ± 0.0012 0.851 ± 6.7e-05
GPOE 0.926 ± 0.00049 1.27 ± 3.4e-05 0.864 ± 7.5e-05
GRBCM 1.61 ± 0.11 1.46 ± 0.058 0.961 ± 0.035
OURS 0.99 ± 0.037 1.18 ± 0.0045 0.787 ± 0.0045
POE 1.61 ± 0.0067 1.34 ± 0.0013 0.864 ± 7.5e-05
RBCM 1.56 ± 0.0062 1.31 ± 0.0011 0.851 ± 6.4e-05
SVGP 0.991 ± 0.02 1.24 ± 0.0012 0.834 ± 0.0011
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H.2 Performance of different kernels

Table 4: Results on the UCI datasets using different kernel choices for our method and demonstrating
the apparent superiority of the exponential kernel in these cases.

Calibration
Distributed Ours (Exp) Ours (Matérn) Ours (RBF) SVGP

Dataset n d

Poletele 4.6e+03 19 0.872 ± 0.024 0.994 ± 0.15 0.971 ± 0.13 1.03 ± 0.073 0.862 ± 0.035
Bike 1.4e+04 13 0.893 ± 0.014 0.988 ± 0.098 0.971 ± 0.086 0.974 ± 0.087 0.898 ± 0.011
Protein 3.6e+04 9 0.95 ± 0.012 0.995 ± 0.038 0.993 ± 0.031 0.991 ± 0.029 0.908 ± 0.016
Ctslice 4.2e+04 378 1.13 ± 0.11 0.912 ± 0.071 1.04 ± 0.082 1.04 ± 0.085 0.865 ± 0.026
Road3D 3.4e+05 2 0.873 ± 0.011 1.09 ± 0.065 1.0 ± 0.054 0.991 ± 0.041 0.9 ± 0.00094
Song 4.6e+05 90 1.56 ± 0.0063 0.995 ± 0.033 0.994 ± 0.035 0.99 ± 0.037 0.991 ± 0.02
Houseelectric 1.6e+06 8 1.24 ± 0.0054 1.11 ± 0.29 1.08 ± 0.27 1.08 ± 0.21 0.911 ± 0.038

RMSE
Distributed Ours (Exp) Ours (Matérn) Ours (RBF) SVGP

Dataset n d

Poletele 4.6e+03 19 0.241 ± 0.0033 0.169 ± 0.0076 0.17 ± 0.0076 0.195 ± 0.0042 0.226 ± 0.0059
Bike 1.4e+04 13 0.634 ± 0.004 0.565 ± 0.0036 0.6 ± 0.0044 0.624 ± 0.0079 0.606 ± 0.0033
Protein 3.6e+04 9 0.733 ± 0.0038 0.58 ± 0.0068 0.629 ± 0.004 0.666 ± 0.0014 0.688 ± 0.0043
Ctslice 4.2e+04 378 0.237 ± 0.012 0.123 ± 0.004 0.126 ± 0.0024 0.132 ± 0.00062 0.384 ± 0.0064
Road3D 3.4e+05 2 0.478 ± 0.0023 0.0976 ± 0.013 0.27 ± 0.01 0.351 ± 0.0014 0.443 ± 0.008
Song 4.6e+05 90 0.851 ± 6.7e-05 0.776 ± 0.004 0.778 ± 0.0045 0.787 ± 0.0045 0.834 ± 0.0011
Houseelectric 1.6e+06 8 0.0626 ± 5.2e-05 0.045 ± 0.00025 0.0485 ± 0.0004 0.0506 ± 0.00072 0.0566 ± 0.0001

NLL
Distributed Ours (Exp) Ours (Matérn) Ours (RBF) SVGP

Dataset n d

Poletele 4.6e+03 19 0.0091 ± 0.015 -0.397 ± 0.028 -0.346 ± 0.032 -0.214 ± 0.019 -0.0667 ± 0.017
Bike 1.4e+04 13 0.977 ± 0.0057 0.854 ± 0.004 0.915 ± 0.0077 0.953 ± 0.013 0.93 ± 0.0043
Protein 3.6e+04 9 1.11 ± 0.0051 0.853 ± 0.013 0.95 ± 0.0061 1.01 ± 0.0016 1.05 ± 0.0059
Ctslice 4.2e+04 378 -0.159 ± 0.052 -1.05 ± 0.027 -1.31 ± 0.017 -1.26 ± 0.01 0.467 ± 0.016
Road3D 3.4e+05 2 0.685 ± 0.0041 -0.931 ± 0.14 0.109 ± 0.039 0.371 ± 0.004 0.608 ± 0.018
Song 4.6e+05 90 1.32 ± 0.0012 1.16 ± 0.0046 1.17 ± 0.0051 1.18 ± 0.0045 1.24 ± 0.0012
Houseelectric 1.6e+06 8 -1.34 ± 0.0013 -1.95 ± 0.028 -1.62 ± 0.0095 -1.56 ± 0.0065 -1.46 ± 0.0046

H.3 Prediction times

Table 5: Prediction times (in seconds) for GPnn and SVGP with 400 nearest-neighbours and 1024
inducing points respectively, over a small range of dataset sizes and dimensions.

n d GPnn SVGP
4.2e4 378 0.06 0.02
3.6e4 9 0.02 0.02
1.1e5 50 0.03 0.06
1.1e5 10 0.02 0.06
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I Overall Computational Expenditure

Our distributed and variational method experiments were conducted using cloud computing resources.
Experiments using our own method have been carried out on an author’s laptop. SVGP experiments
were run using a SageMaker virtual machine on a single Nvidia Tesla V100 GPU with 16GB memory.
Distributed method experiments were run using eight Intel Xeon Platinum 8000 CPU cores (t3.2xlarge
EC2 instances).

Below we will attempt to give reasonable indications of the amount of computational work expended
to obtain the results in this paper, though note that we are neglecting the work expended in the
development and research stages that did not directly contribute to the runs in the paper. As such,
the costs presented are representative of the costs of replicating our paper, not repeating the research
from scratch. Instead of reporting costs in dollars, we will report approximate computing hours for
each instance type. The reader can then estimate their own costs using the current instance costs in
the region of their choice, or under other cloud providers or even using on-premise compute.

Dataset Billed hours (1 GPU, 3 runs) Billed hours (8 CPUs, 3 runs of 5 methods)
bike 0.027 0.222
ctslice 0.082 0.546
houseelectric 3.713 256.776
poletele 0.010 0.079
protein 0.068 0.680
road3d 0.635 31.674
song 0.904 12.237

This gives a total of around 5.4 hours of compute time on a 1 GPU VM and 302.2 hours on an 8 CPU
VM.

26


	Introduction
	Background and Paper Outline
	Performance Measures, Weak and Strong Calibration
	Prediction Method and Sources of Misspecification
	GP Nearest Neighbour Prediction
	Sources of Misspecification

	GP nearest neighbour Limits and Robustness
	Theory
	Simulation of Limits and Robustness at Scale

	A Highly Scalable GP Nearest Neighbour Regression Algorithm
	Parameter Estimation
	Efficient Nearest Neighbour Prediction

	Experimental Performance of GPnn Regression
	Performance on Real World Datasets
	Performance on Massive Synthetic Datasets

	Discussion
	Theoretical GPnn Results
	Preliminary results
	Limit proofs
	Full misspecification


	Validity of Algorithm 1 (Proof of Lemma 4)
	Parameter Calibration (Proof of Lemma 5)
	Real world datasets
	Additional Implementation Details
	Pre-whitening of Data
	Test-Set Batching
	Additional Implementation Details for SVGP
	Additional Implementation Details for Distributed methods
	Reproducibility

	Related Work
	NNGP

	Further simulation results
	Further Results on UCI Datasets
	Results for all distributed methods
	Performance of different kernels
	Prediction times

	Overall Computational Expenditure

