
OpenLane-V2: Supplementary Material

A Overview

Our supplementary includes author statement, licensing, and implementation details of bench-
mark results for reproducibility. We also provide dataset documentation following the Datasheet
format [3], including distribution, maintenance plan, composition, collection, and other details of our
dataset.

B Author Statement

We bear all responsibilities for licensing, distributing, and maintaining our dataset.

C Licensing

The proposed dataset is under the CC BY-NC-SA 4.0 license, while the code in the repository is
under the Apache License 2.0.

D Datasheet

D.1 Motivation

For what purpose was the dataset created? We propose this dataset in order to accurately depict
the complex traffic scene and provide information for autonomous vehicles to execute accurate
judgments. The dataset comprises various types of annotations, including instances and topology
relationships. The directed centerlines offer trajectory guidance for self-driving cars, and their
connectivities build the lane network. Traffic elements with semantic labels deliver real-time traffic
information. The associations between centerlines and traffic elements imply that a traffic element
controls some particular lanes based on traffic rules.

Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g.,
company, institution, organization)? This dataset was created by Huijie Wang (OpenDriveLab),
Tianyu Li (OpenDriveLab), Yang Li (OpenDriveLab), Li Chen (OpenDriveLab), Chonghao Sima
(OpenDriveLab), Zhenbo Liu (Huawei), Bangjun Wang (OpenDriveLab), Peijin Jia (OpenDriveLab),
Yuting Wang (OpenDriveLab), Shengyin Jiang (OpenDriveLab), Feng Wen (Huawei), Hang Xu
(Huawei), Ping Luo (OpenDriveLab), Junchi Yan (OpenDriveLab), Wei Zhang (Huawei), and
Hongyang Li (OpenDriveLab).

Who funded the creation of the dataset? Shanghai AI Laboratory and Huawei.

D.2 Distribution

Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created? Yes, the dataset can be accessed
publicly on the Internet.

How will the dataset be distributed (e.g., tarball on website, API, GitHub)? The dataset is
available at https://github.com/OpenDriveLab/OpenLane-V2.
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D.3 Maintenance

Who will be supporting/hosting/maintaining the dataset? The authors will be supporting, host-
ing, and maintaining the dataset.

How can the owner/curator/manager of the dataset be contacted (e.g., email address)? Please
contact Huijie Wang (wanghuijie@pjlab.org.cn) and Hongyang Li (lihongyang@pjlab.org.cn).

Is there an erratum? No. We will make a statement if there is any.

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)?
Yes. New updates will be posted at https://github.com/OpenDriveLab/OpenLane-V2.

Will older versions of the dataset continue to be supported/hosted/maintained? Yes.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so? Yes. Please refer to https://github.com/OpenDriveLab/OpenLane-V2.

D.4 Composition

What do the instances that comprise the dataset represent? An instance of the dataset represents
a driving scene at a particular time point (time frame). Multi-view images provide a comprehensive
view of the driving scene. Annotations for each frame are provided as follows: (1) Centerlines
represent the midpoints of the lanes that vehicles should follow when driving on the road. (2) Traffic
elements describe objects that contain information for drivers, such as traffic lights that indicate when
to go or stop. (3) The topology relationship between centerlines represents the connectivity of the
lanes. (4) The topology relationship between centerlines and traffic elements indicates that a vehicle
driving in a particular lane must follow the traffic signal if and only if the topology between them
exists.

How many instances are there in total (of each type, if appropriate)? OpenLane-V2 consists
of 2,000 annotated road scenes with a total number of 72K frames. Each scene contains a varying
number of consecutive frames. Each scene includes multiple video frames that are annotated at a
frequency of 2Hz. The dataset has approximately 1.8 million annotations of lane centerlines and
about 0.25 million annotations of traffic elements.

Are relationships between individual instances made explicit? Frames in a single segment are
consecutively sampled at a rate of 2Hz. We offer annotations detailing the connectivity between lanes
and the relationships between lanes and traffic elements. These annotations are provided as adjacency
matrices for each frame.

Are there recommended data splits (e.g., training, development/validation, testing)? We have
already partitioned our dataset into three distinct splits: training, validation, and testing.

Is the dataset self-contained, or does it link to or otherwise rely on external resources? This
dataset is built on top of Argoverse 2 [8] and nuScenes [1], with additional annotations for the tasks
defined by us. However, we have reconstructed and redistributed the raw data to ensure that the
dataset is self-contained.

D.5 Collection Process

Who was involved in the data collection process (e.g., students, crowdworkers, contractors)
and how were they compensated (e.g., how much were crowdworkers paid)? Based on the
provided HD maps and through a labeling process, we deliver high-quality annotations with the
help of experienced annotators and multiple validation stages. Annotations on traffic elements and
topology relationships are made and verified by contractors.
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D.6 Use

What (other) tasks could the dataset be used for? It comprises three primary sub-tasks, including
3D lane detection, traffic element recognition, and topology reasoning.

E Evaluation Metric

We provide an example of calculating the topological metrics. Given a graph with eight vertices, and
vertex 1 whose ground-truth connected neighbors are {2, 3, 5, 8} and the predicted results are {4, 3,
5, 6, 7} sorted by confidences, we calculate the mAP score of the vertex 1 as follows:

mAP (1) =
FP (4) + TP (3) + TP (5) + FP (6) + FP (7)
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4
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,

(1)

where the first multiplier indicates if the predicted connection is correct or not, and the second one is
the precision of the predicted neighbors. Supposed that the mAPs of other vertices are 0, the TOP
score is averaged over all vertices:

TOP =
1

8

8∑
i=1

mAP (i)

=
7
24 + 0 + 0 + 0 + 0 + 0 + 0 + 0

8

=
7

192
≈ 0.036.

(2)

F Implementation Details

We adapt three state-of-the-art methods from centerline detection (STSU [2]) and map element
detection (VectorMapNet [6] and MapTR [5]) into the OpenLane-V2 benchmark. TopoNet [4], which
is specifically designed for the task of scene structure understanding, is also involved.

We train all models on both subset_A and subset_B of OpenLane-V2, and maintain consistency
in the input settings across all methods. For subset_A, the resolution of input images is 2048 ×
1550, except for the front-view image, whose resolution is 1550 × 2048. The front-view image is
cropped to 1550 × 1550, and zero padding is adopted to align the input resolution. For subset_B,
the resolution of input images is 1600 × 900. For data augmentation, resizing with a factor of 0.5
and color jitter is used by default. Training is performed on a cluster with 8 NVIDIA A100 GPUs.
Typically, a 24-epoch training run consumes approximately 16 hours.

TopoNet. We use ResNet-50 as the backbone, and the output feature is from the stages of C3, C4,
and C5. The size of BEV grids is set to 200 × 100. The loss weight of λclsTE , λregTE , λiouTE , λclsLC ,
and λregLC is set to 1.0, 2.5, 1.0, 1.5, and 0.025 respectively.

STSU employs EfficientNet-B0 [7] as the backbone. The model leverages a BEV positional em-
bedding and a DETR head to predict centerlines, and uses object queries in the decoder to predict
the connectivity of centerlines. We replace the original backbone with ResNet-50. To adapt to the
multi-view inputs, we reimplement STSU, where we compute and concatenate the BEV embedding
of images from different views. The concatenated embedding is then fed into the DETR encoder for
further processing. We preserve the original DETR decoder to predict the Bezier control points, which
are subsequently interpolated into 11 equidistant points. For the relationship between centerlines, the
prediction head of STSU is preserved. For the traffic element detection branch and head for topology
between lane and traffic elements, we employ the identical design as in TopoNet.
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VectorMapNet uses a DETR-like decoder to estimate key points, complemented by an auto-regressive
module to generate detailed positional information for a centerline instance. In our implementation,
the backbone setting is aligned with TopoNet. We expand the perception range to ±50m ×±25m
instead of ±30m × ±15m. We also interpolate the centerline outputs of VectorMapNet to fit our
setting during the prediction process. For topology prediction, we use the key point object queries
in the decoder as instance queries of centerlines. We retain most of the settings of the open-source
codebase of VectorMapNet. Due to its lack of support for 3D centerlines, we only predict 2D
centerlines within the BEV space and ignore the height dimension during evaluation.

MapTR. We align the backbone setting with TopoNet. The area of perception is increased to
±50m ×±25m. We set the number of point queries per lane to 11. In terms of topology prediction,
the average of point queries of an instance in the MapTR decoder is used as the object query of
a centerline. The traffic element head and topology head are configured in the same setting as in
TopoNet. The implementation is based on the open-source codebase of MapTR, and we predict only
2D centerlines in BEV and disregard the z dimension during inference, following the same approach
as in the VectorMapNet reimplementation.

G Illustrations

Figure 1: Illustration of how associations between centerlines and traffic elements benefit downstream
tasks. In this example, the left vehicle on the left-turn lane needs to slow down as the traffic light turns
red when T = 1, while the other vehicle could keep going straight at the same speed. Vehicles make
their decisions according to the attribute assigned to the specific centerline. We focus on building the
topology relationships to benefit inferring the corresponding attribute in this paper.
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Figure 2: Comparison of attribute assignment between lanelines and centerlines. Properties can
be attached to centerlines, such as the lane direction. In traditional frameworks, the assignment is
realized with two detection models (laneline detection and road elements detection) and complex
hand-crafted rules.

Figure 3: Comparison of the ambiguity between lanelines and centerlines. Centerlines are only
divided in some particular positions with apparent indications, such as splitting and merging of lanes,
while lanelines are divided in some visually continuous positions (i.e., the red box in the left figure).
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Figure 4: Example of "many to many" mapping in the dataset. The traffic element in the red box is
associated with three centerlines.

Figure 5: Illustration of centerlines in an intersection. The complex nature of multi-directional
connections in an intersection leads to a high number of centerlines.
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