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Abstract

Accurately depicting the complex traffic scene is a vital component for autonomous
vehicles to execute correct judgments. However, existing benchmarks tend to
oversimplify the scene by solely focusing on lane perception tasks. Observing
that human drivers rely on both lanes and traffic signals to operate their vehicles
safely, we present OpenLane-V2, the first dataset on topology reasoning for traffic
scene structure. The objective of the presented dataset is to advance research in
understanding the structure of road scenes by examining the relationship between
perceived entities, such as traffic elements and lanes. Leveraging existing datasets,
OpenLane-V2 consists of 2,000 annotated road scenes that describe traffic elements
and their correlation to the lanes. It comprises three primary sub-tasks, including
the 3D lane detection inherited from OpenLane, accompanied by corresponding
metrics to evaluate the model’s performance. We evaluate various state-of-the-art
methods, and present their quantitative and qualitative results on OpenLane-V2 to
indicate future avenues for investigating topology reasoning in traffic scenes.

1 Introduction

In recent years, the availability of large-scale datasets and benchmarks has greatly facilitated research
on autonomous driving. A critical aspect would be understanding the complex driving environment,
which is the prerequisite for reasonable decisions. Many datasets [1, 10, 18, 44, 45] focus on
perceiving visible lanelines to keep vehicles on the right track, while others [13, 14, 37, 39, 46]
are specified in acquiring traffic information through detecting traffic signals. Nevertheless, this
separation of tasks represents a limited understanding of the driving scene. For instance, when driving
into a crossroad without any visible laneline, an autonomous vehicle might wonder which direction
to go. Meanwhile, when a vehicle proceeds into an intersection where there is a green light presented,
it is still possible that the traffic signal does not control the lane in which the car is driving. In this
work, we build a strong association among traffic elements and lanes, aiming to create a topology
relationship of the physical world and thus facilitate decision-making in the downstream tasks.

To keep autonomous vehicles driving in the correct position, the concept of lanes needs to be
introduced. The perception of lanelines, which are the visible separation of lanes, is well explored.
Previous datasets [1, 18, 25, 45] annotate lanelines on images in the perspective view. Such a 2D
representation is insufficient to fulfill real-world requirements. When projecting 2D laneline into
bird’s-eye-view (BEV) space, lane direction would diverge/converge if the height dimension is
ignored, leading to improper action decisions in the planning and control module in challenging
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Figure 1: Motivation and Overview of OpenLane-V2. The dataset comprises various types
of annotations, including instances and topology relationships. The directed centerlines provide
trajectories for self-driving cars, and their connectivities build the lane network. Traffic elements with
semantic labels deliver real-time traffic information. The associations between centerlines and traffic
elements imply that a traffic element controls some particular lanes based on traffic rules.

scenarios. Recent works [8, 10, 44] define lanelines in the 3D space but still limit the labeling range
within the front-view image. Studies on HD map learning [27, 28] incorporate multi-view images to
perceive visible road entities, namely lanelines, road boundaries, and pedestrian crossings. However,
serving as separations of neighboring lanes, the visible lanelines might not benefit downstream tasks
directly. In common circumstances, vehicles follow the center of lanes, i.e., lane centerlines, to drive
on the road. To generate this type of invisible and conceptual trajectories, post-processing techniques
are required based on the perceived lanelines. However, the desired trajectory becomes empty and
the vehicle loses guidance when lanelines are absent, such as driving into a crossroad that typically
does not have markings.

Similarly, the perception of traffic signals is formulated as a classic 2D detection problem on front-
view images. Though traffic elements on the roads, such as traffic lights and road signs, provide
practical and real-time information, existing formulations [13, 14] emphasize the accuracy of their
positions but ignore proper guidance for cars on the road. The reason is that one traffic signal may
control one or several lanes according to predefined traffic rules. Given that all traffic elements within
a scene are perceived simultaneously, there exists the possibility for vehicles to be confused about
which is the appropriate traffic instruction to obey. Hence, topology relationships between centerlines
and traffic elements are established to assign traffic information to a particular lane.

As depicted in Figure 1, we seek to unify the aforementioned tasks and provide a comprehensive
understanding of driving scenes, including the static entities such as lanes and traffic elements, along
with their topology relationships. To this end, we propose the OpenLane-V2 dataset to shed light on
the task of scene structure perception and reasoning. The requirement of perception is to obtain
correct instance-level information, such as positions and semantic meanings, from captured scenes,
while reasoning is to deduce topology relationships of perceived entities to generate a reasonable
understanding of the environment. For the newly defined task, we strive to make our metric capable
of covering all aspects of the task. The OpenLane-V2 Score (OLS) summarizes model performances
with its component of DET and TOP scores for perception and reasoning respectively. Section 4
describes the proposed tasks and metrics.

Inherited from the OpenLane dataset [8], which is the first real-world and large-scale 3D lane
dataset, OpenLane-V2, provides lane annotations in 3D space to reflect their properties in the real
world. The directed lane centerlines and their connectivity serve as map-like perception results
to facilitate downstream tasks. In addition to the annotations of traffic elements, we establish
relationships between centerlines and traffic elements. That is, the correspondence between a lane
and a traffic element is denoted as valid if and only if the traffic element controls the lane. With these
representations, self-driving vehicles understand the current driving scenarios and know where to go
or whether to accelerate. For more details on the proposed dataset, please refer to Section 3.
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Figure 2: Roadmap of lane detection datasets. Most of the previous works provide only 2D labels.
Benefiting from the pioneering OpenLane dataset [8], lane annotations in 3D space have gained great
popularity in recent years. Taking one step further, the OpenLane-V2 dataset extends the annotation
range of 3D lanes to encompass multi-view images and includes topology relationships to promote
the task of scene understanding.

To sum up, our contributions are as follows:

• We present the OpenLane-V2 dataset for benchmarking the task of scene understanding. To
the best of our knowledge, OpenLane-V2 is the first dataset that focuses on topology reason-
ing in the autonomous driving domain. Tasks and corresponding metrics are dedicatedly
designed to evaluate model performance on the proposed benchmark.

• Built on top of awesome benchmarks, OpenLane-V2 includes massive images collected
from various cities worldwide. It contains 2.1M instance-level annotations and 1.9M positive
topology relationships. All annotations are carefully validated.

• We provide a development kit for easy access to the proposed dataset. Besides, plug-ins to
prevail deep learning frameworks for training models would be jointly maintained with the
community. The test server and leaderboard will also be maintained for fair comparisons.

2 Related Work

2.1 3D Lane Detection

The task of lane detection has been pursued for several years (Figure 2). Previous works [1, 2, 25, 40,
42, 43] provided 2D laneline annotations in the perspective view. CULANE [31] collected a large
scale of data and manually annotated the occluded lane markings with cubic splines. With multiple
sensors, AppolloScape [18] included per-pixel lane mark labeling in 35 classes. BDD100K [45]
labeled lanes attributes of continuity (full or dashed) and direction (parallel or perpendicular) on a
massive amount of data. However, the scope of annotation is still limited in the 2D space on front-
view images. OpenLane [8] was the first large-scale, real-world 3D laneline dataset. It is equipped
with a wide span of diversity in both data distribution and task applicability. In the spirit of it, the
OpenLane-V2 dataset provides 3D annotations of lanes, which cover the whole surrounding area of
the ego vehicle. Instead of focusing on the visible lanelines, annotations of conceptual centerlines
in the proposed dataset serve as the trajectory guidance for downstream tasks. Moreover, as human
drivers also observe situations from backward, we provide lane annotations in all directions of the
ego car within a long range.

2.2 Traffic Element Recognition

Over the last decade, existing datasets have annotated traffic elements on images from the driving
scenarios. Table 1 summarizes the relevant counterparts. Most of the works in the early 2010s [4, 16,
30, 37, 39] comprised a small amount of data. GTSRB [37] collected data from multiple German
landscapes and showed that neural networks could outperform human test persons in detecting traffic
signs. MTSD [13] made a step forward in both scale and diversity that contained 100K street-level
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Table 1: Comparison of current traffic element datasets. "# Img.", "# Cls.", and "# Anno." denote
the number of images, classes, and annotations respectively. "Track." implies that a traffic element
has a unique tracking ID in different frames. "Corr." indicates whether the correspondences between
lanes and traffic elements are annotated. * We decompose semantic labels of traffic elements into base
attributes and omit elements that require OCR to acquire their meanings for vision-centric perception.

Dataset # Img. # Cls. # Anno. Track. Corr. Resolution Region Year

LaRA [11] 11K 4 9K ✓ ✗ 640×480 France 2009
Stereopolis [4] 847 4 251 ✗ ✗ 960×1080 France 2010
GTSRB [37] 5K 43 39K ✓ ✗ 1360×1024 Germany 2012
LISA [30] 6K 49 7K ✗ ✗ 1280×960 USA 2012
GTSDB [16] 900 43 1K ✗ ✗ 1360×800 Germany 2013
BelgiumTS [39] 9K 62 13K ✗ ✗ 1628×1236 Belgium 2013
RTSD [34] 179K 156 104K ✓ ✗ - Russia 2016
TT100K [46] 100K 221 26K ✗ ✗ 2048×2048 China 2016
BSTLD [3] 13K 15 24K ✓ ✗ 1280×720 USA 2017
DTLD [14] - 344 230K ✗ ✗ 2048×1024 Germany 2018
MTSD [13] 100K 313 325K ✗ ✗ - Worldwide 2020
OpenLane-V2 466K 13* 258K* ✓ ✓ - Worldwide 2023

images worldwide from diverse scenes, geographical locations, and varying weather and lighting
conditions. Though with dedicated labels, previous datasets mainly pay attention to the correct
location of traffic elements and are limited in the understanding of traffic elements. In addition to the
positional label of traffic elements, we provide annotations on topology relationships of presented
objects, enabling autonomous vehicles to have an understanding of the driving environment.

2.3 Scene Understanding

Understanding the driving scene plays a vital role in autonomous driving, especially in complicated
scenarios. Few datasets focus on the comprehension of captured scenes. Current datasets [19, 23,
24, 29] comprised 2D images on which there are only a small amount of objects. Datasets in the
human-object interaction domain [7, 15] limited the labeled relationship to the interactions between
human beings and detected objects. The aforementioned datasets include annotations such as "cat-
ride-snowboard", which are relationships between closely located objects. However, in our case, a
traffic light may correspond to a lane in the distance rather than a closer one. To predict the correct
relationships, models are required to have an understanding of the predefined traffic rules.

In the field of autonomous driving, previous works try to understand the intention of perceived
entities. Tian et al. [38] provided pairwise relationships between moveable objects, e.g., vehicles and
pedestrians. Singh et al. [36] defined events as triplets, which comprise agents with their actions
and locations. Other datasets paid attention to the intention and future behavior of driver [21, 32]
or non-driver [22, 33] agents. While most of the existing tasks focus on the behavior of foreground
movable objects, understanding the static background is also important for the downstream planning
module [9, 17, 20, 35]. In this work, we emphasize the understanding of the driving scene, which
provides trajectory information for self-driving vehicles.

3 OpenLane-V2

In this section, we give an overview of the OpenLane-V2 dataset, which is publicly available in our
repository. Built on top of the Argoverse 2 [41] and nuScenes [5] datasets, which are both distributed
under the CC BY-NC-SA 4.0 license, the proposed dataset includes images in 2,000 scene segments
collected worldwide under different challenging environments, covering noon and night, sunny and
rainy days, downtown and suburbs. Based on the provided HD maps and through a dedicated labeling
process, we deliver high-quality annotations with the help of experienced annotators and multiple
validation stages. The proposed dataset is under the CC BY-NC-SA 4.0 license, while the code is
under the Apache License 2.0.
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Table 2: Statistics of OpenLane-V2. All frames are accompanied by annotations. The annotation
range is larger to the front and back compared to that in current methods, which is commonly set to
±30m. # is an abbreviation for the number of. * Front-view images are transposed to 1550 × 2048.

subset_A subset_B

Split Train Val Test Train Val Test

Sample Rate 2Hz
Annotation Range ±50m (x-axis), ±25m (y-axis)

# Camera 7 6
Image Resolution 2048 × 1550* 1600 × 900
Avg. Duration of Scene Segments 15s 20s

# Scene Segment 700 150 150 700 150 150
Avg. # Centerline per Frame 26.34 26.44 26.50 24.32 24.80 23.82
Avg. # Traffic Element per Frame 3.70 3.69 2.80 3.58 3.76 3.25
Avg. # Connection per Centerline 1.90 1.89 1.89 1.83 1.79 1.84
Avg. # Corresponded Centerline per Traffic Element 0.71 0.83 0.91 0.54 0.52 0.58

3.1 Raw Data Acquisition

As camera-centric methods attract a large amount of attention in academia and industry, we incorpo-
rate multi-view images from original datasets. Due to differences in sensor setups, whereby image
data is independently collected in Argoverse 2 [41] and nuScenes [5], we divide the proposed dataset
into subset_A and subset_B respectively, as described in Table 2. The subset_A comprises scenes
from six cities: Austin (3.1%), Detroit (11.7%), Miami (35.4%), Pittsburgh (35.0%), Palo Alto
(2.2%), and Washington D.C. (12.6%), while the subset_B is collected from two cities: Boston
(55.0%) and Singapore (45.0%). The subset_A includes 3.0% night scenes and 1.1% rain scenes,
while the subset_B includes 11.7% night scenes and 17.4% rain scenes. Despite discrepancies in
camera settings, the coordinate system is unified and right-handed. For ego coordinate, the x-axis
is positive forwards, the y-axis is positive to the left, and the z-axis is positive upwards. Camera
intrinsics, extrinsics, and ego-vehicle poses in the global coordinate system are provided.

3.2 Centerlines and Their Connectivity

In the provided HD maps, map elements are represented as lane segments, containing boundary,
mark type, neighbors, predecessors, successors, etc. The problem is that lanelines are divided based
on rules for constructing HD maps but not visually apparent marks, as the primary objective is
to map the world rather than facilitate autonomous driving directly. This characteristic introduces
unnecessary noise and hinders the learning process of models. In this work, we represent a single lane
as an instance. To generate the ground truth of centerlines, we first regress their locations using the
boundary information from HD maps. We then merge lanes with only one predecessor or successor
to ensure the continuity of lanes. Lanes are separated into different instances if and only if in the
cases of intersection, fork, and merge. Topology relationship is then provided on the merged lanes.

The annotation of a centerline is provided in 3D space through an ordered list of points. Specifically,
for a centerline [p1, ..., pn], p1 = (x1, y1, z1) represents the starting point of the lane, while pn =
(xn, yn, zn) denotes the ending point. Note that the ego car is located at (0, 0, 0) for each frame, and
values of the z-axis of subset_B are set to 0, as its HD maps exclude the height information. We set n
to 201 in the given data, but subsample 11 points for each lane for efficient evaluation. The direction
of a centerline, from the starting point to the ending point, denotes that a vehicle should follow the
direction when driving on this lane based on the predefined traffic rules. Topology relationships are
provided as adjacency matrixes for each frame based on the ordering of centerlines. Since a lane is
directed and represented as a list of points, the connection of two lanes means that the ending point
of a lane is connected to the starting point of another lane. Statistically, about 90% of frames have
more than 10 centerlines, while about 10% have more than 40. Most lanes have one predecessor or
successor, but in complex scenarios such as crossroads, the number can be up to 7.

3.3 Traffic Elements and Their Correspondence to Centerlines

Traffic elements, such as traffic lights, road markings, and road signs, provide valuable instructions
for autonomous vehicles. As critical traffic elements are usually exhibited in the front view, and
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their accurate 3D locations are not required for guiding autonomous vehicles, we only annotate
them in 2D format on the front-view images. Each traffic element is annotated with a 2D bounding
box (x1, y1, x2, y2), where (x1, y1) is the top-left corner and (x2, y2) is the bottom-right corner.
Additionally, we label the attributes of each traffic element. In detail, the attribute of elements, whose
semantic meaning is unobservable, is set to unknown, while valid elements are annotated as red,
green, yellow, go_straight, turn_left, turn_right, no_left_turn, no_right_turn, u_turn, no_u_turn,
slight_left, or slight_right, resulting in 13 various attributes in total. Note that those traffic elements
having composite attributes would be divided into multiple annotations with decomposed attributes
sharing the same bounding box. For instance, a road sign, which is at the position of (x1, y1, x2, y2)
and with the meaning of "go straight and turn left", is divided into two bounding boxes, namely
(x1, y1, x2, y2, go_straight) and (x1, y1, x2, y2, turn_left). The class imbalance should be noticed
in that specific traffic elements, such as u_turn, are much rarer than the common ones like traffic
lights in red or green.

The correspondence of a lane and a traffic element forms a regulation for vehicles driving in a
particular lane. The construction of relationships between spatially relevant lanes and traffic elements
is straightforward. For instance, a lane is controlled by the road marking which is located within its
boundary. However, most of the centerlines and traffic elements do not fit into this case. We utilize
the following principles for the labeling process. For those traffic element which does not contain
directional information, it is associated with centerlines on which only going straight is permitted.
Traffic elements with directional information, such as traffic lights in the shape of a left arrow, control
the corresponding lanes going in the same direction. Note that traffic elements are only associated
with centerlines outside the intersection.

4 Task Definition & Evaluation Metric

In this section, we introduce the tasks and metrics in OpenLane-V2. The primary task of the proposed
benchmark is scene structure perception and reasoning, which requires the model to recognize lanes
and their dynamic drivable states in the surrounding environment. The challenge includes detecting
lane centerlines and traffic elements, recognizing the attributes of traffic elements, and reasoning
about the topology relationships on perceived entities. We further divide the primary task into three
subtasks: 3D lane detection, traffic element recognition, and topology recognition. The OpenLane-V2
Score (OLS), which is the average of various metrics from different subtasks, is defined to describe
the overall performance of the primary task:

OLS =
1

4

[
DETl + DETt + f(TOPll) + f(TOPlt)

]
, (1)

where f is a scale function to emphasize the task of topology reasoning.

4.1 3D Lane Detection

In the spirit of the OpenLane dataset [8], which is the first real-world and the largest scaled 3D
lane dataset to date, we provide lane annotations in 3D space. We define the subtask of 3D lane
detection as perceiving directed 3D lane centerlines from the given multi-view images covering a
fully panoramic field-of-view (FOV).

Given a pair of curves, namely a ground truth vl = [p1, ..., pn] and a prediction v̂l = [p̂1, ..., p̂k], their
geometric similarity is measured by the discrete Fréchet distance [12]. Specifically, a coupling L is
defined as a sequence of pairs between points in v and v̂:

(pa1 , p̂b1), ..., (pam , p̂bm), (2)
where 1 = a1 ≤ ai ≤ aj ≤ am = n and 1 = b1 ≤ bi ≤ bj ≤ bm = k for all i < j. Then the norm
||L|| of a coupling L is defined as the distance of the most dissimilar pair in L. The Fréchet distance
of a pair of curves is the minimum norm of all possible coupling:

DFréchet(vl, v̂l) = min{||L|| | ∀ possible L}. (3)
We define a threshold t ∈ T that a pair of centerlines would be regarded as unmatched if their distance
is greater than t. Then DETl is averaged over match thresholds of T = {1.0, 2.0, 3.0}:

DETl =
1

|T|
∑
t∈T

APt. (4)
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The AP score is the area under the precision-recall curve, defined as
∫ 1

0
p(r)dr, where p and r

denote precision and recall respectively. Note that as the defined annotation range is relatively large
compared to previous datasets, accurate perception of lanes in the distance would be challenging.
Thus, the matching thresholds are relaxed for centerlines at a distance based on the distance between
the ground truth lane and the ego car. For instance, a lane at a distance would be thresholded on 1.2t
while another lane in a closer region would be thresholded on 1.1t for the same threshold t ∈ T.

4.2 Traffic Element Recognition

Traffic elements and their attribute provide crucial information for autonomous vehicles. The attribute
represents the semantic meaning of a traffic element, such as the red color of a traffic light. In this
subtask, on the given image in the front view, the location of traffic elements and their attributes are
demanded to be perceived simultaneously. Compared to typical 2D detection datasets, the challenge
is that the size of traffic elements is tiny due to the large scale of outdoor environments.

To preserve consistency to the distance mentioned above, we modify the common IoU (Intersection
over Union) measure as a distance that:

DIoU (vt, v̂t) = 1− |vt ∩ v̂t|
|vt ∪ v̂t|

, (5)

where vt and v̂t are the ground truth and predicted bounding box respectively. We consider IoU
distance as the affinity measure with a match threshold of 0.75. The DETt score is utilized to measure
the performance of traffic elements detection and is averaged over different attributes A that:

DETt =
1

|A|
∑
a∈A

APa. (6)

4.3 Topology Reasoning

We first define the task of recognizing topology relationships in the field of autonomous driving. On
the perceived entities, the topology relationships are built. For simplicity, we divide the graph on
all entities into two subgraphs. The connectivity of directed lanes establishes a map-like network
and is denoted as the lane graph (Vl, Ell). Note that the edge set Ell ⊆ Vl × Vl is asymmetric, as
the incoming and outgoing edges of a lane represent the connection on its starting and ending points
respectively. An entry (i, j) in Ell is positive if and only if the ending point of the lane vi is connected
to the starting point of vj . Besides, the undirected graph (Vl ∪ Vt, Elt) describes the correspondence
between centerlines and traffic elements. It can be seen as a bipartite graph that positive edges only
exist between Vl and Vt.

The TOP score, which is an mAP metric adapted from link prediction in the graph domain, is utilized
to evaluate model performance on the matched graphs. Given a ground truth graph G = (V,E)

and a predicted one Ĝ = (V̂ , Ê), it is possible that the number of predicted vertices is not equal to
that of ground truth. We first build a projection between predictions and ground truth to preserve
true positive vertices, according to the entity-specific similarity measures, namely Fréchet and IoU
distances for centerlines and traffic elements respectively. The resulting vertex set V̂ ′ needs to fulfill
the requirements such that V = V̂ ′ and V̂ ′ ⊆ V̂ ∪ {vd}, where {vd} is a set of dummy vertices.
Then the TOP score is the averaged mAP between (V,E) and (V̂ ′, Ê′) over all vertices:

TOP =
1

|V |
∑
v∈V

∑
n̂′∈N̂ ′(v) P (n̂′)1(n̂′ ∈ N(v))

|N(v)|
, (7)

where N(v) denotes the neighbors of vertex v, P (v) is the precision of vertex v in the ordered list
ranked by predicted confidences, and positive edges are those whose confidence is greater than 0.5.
The TOPll is for topology among centerlines on the graph (Vl, Ell), while the TOPlt is for topology
between lane centerlines and traffic elements on the graph (Vl ∪ Vt, Elt).
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Table 3: Quantitative results on the OpenLane-V2 val split. It is observed that the model design of
how to represent centerlines in the network has an impact on model performance. "Instance" denotes
that a centerline is represented as a single query in the network, while "Point Set" indicates that a
centerline is described by a set of independent points.

subset_A subset_B

Method Design OLS DETl DETt TOPll TOPlt OLS DETl DETt TOPll TOPlt

STSU [6] Instance 25.4 12.7 43.0 0.5 15.1 21.2 8.2 43.9 0.0 9.4
VectorMapNet [28] Point Set 20.8 11.1 41.7 0.4 5.9 16.3 3.5 49.1 0.0 1.4
MapTR [27] Point Set 20.0 8.3 43.5 0.2 5.9 21.1 8.3 54.0 0.1 3.7
TopoNet [26] Instance 35.4 29.2 48.0 4.1 19.3 33.2 24.3 55.0 2.5 14.2

5 Experiments

In this section, we adapt and evaluate multiple state-of-the-art methods on the proposed OpenLane-V2
dataset. Visualizations and analysis are then reported to investigate the impact of different design
choices on model performance.

5.1 Baselines

In our experiments, various models are involved, including STSU [6], VectorMapNet [28],
MapTR [27], and TopoNet [26]. STSU utilizes a DETR-like neural network to detect centerlines and
then derive their connectivity by a successive MLP module. Since it is designed for monocular image
inputs and contains the BEV representation as intermedia results, we adapt it to multi-view inputs by
concatenating BEV embeddings from different views. VectorMapNet directly represents each map
element as a sequence of points and predicts positional information in an auto-regressive manner.
MapTR models each map element as a point set with a group of equivalent permutations to deal with
geometrical ambiguity. For both methods, the BEV range is expanded to fit dataset requirements. As
for training, we supervise VectorMapNet and MapTR with centerlines and use the element queries in
the Transformer decoder as instance queries to produce topology relationships. TopoNet is specifi-
cally designed for the task of scene structure understanding that it utilizes instance-level queries for
both centerlines and traffic elements to handle their locations and topology relationships. Note that
except for TopoNet, methods mentioned above are further appended with heads for predicting traffic
elements and topology.

5.2 Results

Quantitative results on the OpenLane-V2 dataset are illustrated in Table 3. It is not surprising that the
DETl scores are low for all methods, since the task of centerline perception is challenging for existing
networks. Different from detecting visible lanelines, the centerline is invisible, which requires models
to deduce their position by obtaining references from the neighboring lanelines. Additionally, the
direction of centerlines is determined by the entire scene, adding extra complexity to the task. For
traffic elements recognition, the tiny size of traffic elements, as depicted in Figure 3, also introduces
difficulty for the models. As the TOP scores require a match between ground truths and predictions,
performance on the connectivity between centerlines is not ideal due to the unsatisfactory perception
results of centerlines. To increase model performance on topology reasoning, it is a must to generate
perception results that are sufficiently accurate compared to the ground truth.

In Figure 3, we present visualizations of predicted results in a complex crossroad. Although all
models provide an approximate shape of the intersection, their performance on the position and shape
of centerlines, as well as their topology relationship, can still be improved. STSU generates a large
number of false positive centerline predictions and fails to attach traffic information to centerlines. As
MapTR represents points of a lane independently in the networks, the predicted centerlines are not in
the shape of driving trajectories, which are commonly smooth. Meanwhile, although VectorMapNet
utilizes a point set to describe a centerline as well, its auto-regressive design ensures a proper shape
of centerlines. VectorMapNet, MapTR, and TopoNet can only provide partially correct results on the
semantic information of lanes, namely the correspondence between centerlines and traffic elements. A
potential solution could be introducing more prior, such as knowledge of traffic rules, to the network
for reasoning about the association between traffic elements of a lane.
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Figure 3: Qualitative results of various algorithms. Traffic lights in red and green are emphasized
with red and green boxes respectively. The bird’s-eye-view is truncated at ±25m along the x-axis.

6 Conclusion

In this paper, we introduce OpenLane-V2, aiming to facilitate the task of scene structure perception
and reasoning. The lane network is represented by lane centerlines and their connectivity, while
traffic information is described by traffic elements with semantic meanings and their association with
lanes. Tasks and metrics are described in detail for future research usage. We adapt various methods
and demonstrate their performance on the proposed dataset. We hope this dataset will encourage the
research community to design and develop neural networks on the defined tasks, and further promote
research in the field of autonomous driving.

Limitations. Due to limitations in available resources, the proposed dataset is built on top of existing
datasets, and its data scale is the same as previous datasets. We believe that including more driving
scenes will further increase its diversity. Moreover, although the lane networks with traffic information
benefit the downstream tasks, we do not include the planning task in the proposed dataset, as it also
requires knowledge of moveable objects, such as cars and pedestrians, for collision avoidance. We
leave the integration of static and dynamic entities to future work.

Impact. Based on previous sections, it is evident that the released dataset is used for research purposes.
Models trained or evaluated on this dataset should not be directly used for direct deployment or any
real-world application. It should be noted that the proposed dataset does not provide any guarantee,
particularly in safety-critical situations.

Acknowledgements

This work was supported by National Key R&D Program of China (2022ZD0160104) and NSFC
(62206172). We thank reviewers for their fruitful comments and the research community for partici-
pating in the OpenLane Topology Challenge 2023.

References
[1] Mohamed Aly. Real time detection of lane markers in urban streets. In IEEE IV, 2008.

[2] Karsten Behrendt and Ryan Soussan. Unsupervised labeled lane markers using maps. In ICCV
Workshop, 2019.

[3] Karsten Behrendt, Libor Novak, and Rami Botros. A deep learning approach to traffic lights:
Detection, tracking, and classification. In ICRA, 2017.

9



[4] Rachid Belaroussi, Philippe Foucher, Jean-Philippe Tarel, Bahman Soheilian, Pierre Char-
bonnier, and Nicolas Paparoditis. Road sign detection in images: A case study. In ICPR,
2010.

[5] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu,
Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal
dataset for autonomous driving. In CVPR, 2020.

[6] Yigit Baran Can, Alexander Liniger, Danda Pani Paudel, and Luc Van Gool. Structured
bird’s-eye-view traffic scene understanding from onboard images. In ICCV, 2021.

[7] Yu-Wei Chao, Yunfan Liu, Xieyang Liu, Huayi Zeng, and Jia Deng. Learning to detect
human-object interactions. In WACV, 2018.

[8] Li Chen, Chonghao Sima, Yang Li, Zehan Zheng, Jiajie Xu, Xiangwei Geng, Hongyang Li,
Conghui He, Jianping Shi, Yu Qiao, et al. Persformer: 3d lane detection via perspective
transformer and the openlane benchmark. In ECCV, 2022.

[9] Li Chen, Penghao Wu, Kashyap Chitta, Bernhard Jaeger, Andreas Geiger, and Hongyang Li.
End-to-end autonomous driving: Challenges and frontiers. arXiv preprint arXiv:2306.16927,
2023.

[10] Xiaolei Chen, Wenlong Liao, Bin Liu, Junchi Yan, and Tao He. Opendenselane: A dense
lidar-based dataset for hd map construction. In ICME, 2022.

[11] Raoul De Charette and Fawzi Nashashibi. Real time visual traffic lights recognition based on
spot light detection and adaptive traffic lights templates. In IEEE IV, 2009.

[12] Thomas Eiter and Heikki Mannila. Computing discrete fréchet distance. 1994.

[13] Christian Ertler, Jerneja Mislej, Tobias Ollmann, Lorenzo Porzi, Gerhard Neuhold, and Yubin
Kuang. The mapillary traffic sign dataset for detection and classification on a global scale. In
ECCV, 2020.

[14] Andreas Fregin, Julian Muller, Ulrich Krebel, and Klaus Dietmayer. The driveu traffic light
dataset: Introduction and comparison with existing datasets. In ICRA, 2018.

[15] Saurabh Gupta and Jitendra Malik. Visual semantic role labeling. arXiv preprint
arXiv:1505.04474, 2015.

[16] Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Christian Igel.
Detection of traffic signs in real-world images: The german traffic sign detection benchmark. In
IJCNN, 2013.

[17] Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima, Xizhou Zhu, Siqi Chai, Senyao Du,
Tianwei Lin, Wenhai Wang, et al. Planning-oriented autonomous driving. In CVPR, 2023.

[18] Xinyu Huang, Peng Wang, Xinjing Cheng, Dingfu Zhou, Qichuan Geng, and Ruigang Yang.
The apolloscape open dataset for autonomous driving and its application. IEEE TPAMI, 2019.

[19] Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual
reasoning and compositional question answering. In CVPR, 2019.

[20] Xiaosong Jia, Yulu Gao, Li Chen, Junchi Yan, Patrick Langechuan Liu, and Hongyang Li.
Driveadapter: Breaking the coupling barrier of perception and planning in end-to-end au-
tonomous driving. In ICCV, 2023.

[21] Julian FP Kooij, Fabian Flohr, Ewoud AI Pool, and Dariu M Gavrila. Context-based path
prediction for targets with switching dynamics. IJCV, 2019.

[22] Julian Francisco Pieter Kooij, Nicolas Schneider, Fabian Flohr, and Dariu M Gavrila. Context-
based pedestrian path prediction. In ECCV, 2014.

10



[23] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting
language and vision using crowdsourced dense image annotations. IJCV, 2017.

[24] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-Tuset,
Shahab Kamali, Stefan Popov, Matteo Malloci, Alexander Kolesnikov, et al. The open images
dataset v4: Unified image classification, object detection, and visual relationship detection at
scale. IJCV, 2020.

[25] Seokju Lee, Junsik Kim, Jae Shin Yoon, Seunghak Shin, Oleksandr Bailo, Namil Kim, Tae-Hee
Lee, Hyun Seok Hong, Seung-Hoon Han, and In So Kweon. Vpgnet: Vanishing point guided
network for lane and road marking detection and recognition. In ICCV, 2017.

[26] Tianyu Li, Li Chen, Huijie Wang, Yang Li, Jiazhi Yang, Xiangwei Geng, Shengyin Jiang, Yuting
Wang, Hang Xu, Chunjing Xu, Junchi Yan, Ping Luo, and Hongyang Li. Graph-based topology
reasoning for driving scenes. arXiv preprint arXiv:2304.05277, 2023.

[27] Bencheng Liao, Shaoyu Chen, Xinggang Wang, Tianheng Cheng, Qian Zhang, Wenyu Liu,
and Chang Huang. MapTR: Structured modeling and learning for online vectorized HD map
construction. In ICLR, 2023.

[28] Yicheng Liu, Yue Wang, Yilun Wang, and Hang Zhao. Vectormapnet: End-to-end vectorized
hd map learning. arXiv preprint arXiv:2206.08920, 2022.

[29] Cewu Lu, Ranjay Krishna, Michael Bernstein, and Li Fei-Fei. Visual relationship detection
with language priors. In ECCV, 2016.

[30] Andreas Mogelmose, Mohan Manubhai Trivedi, and Thomas B Moeslund. Vision-based traffic
sign detection and analysis for intelligent driver assistance systems: Perspectives and survey.
IEEE TITS, 2012.

[31] Xingang Pan, Jianping Shi, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Spatial as deep:
Spatial cnn for traffic scene understanding. In AAAI, 2018.

[32] Vasili Ramanishka, Yi-Ting Chen, Teruhisa Misu, and Kate Saenko. Toward driving scene
understanding: A dataset for learning driver behavior and causal reasoning. In CVPR, 2018.

[33] Amir Rasouli, Iuliia Kotseruba, and John K Tsotsos. Are they going to cross? a benchmark
dataset and baseline for pedestrian crosswalk behavior. In ICCV Workshop, 2017.

[34] Vladislav Igorevich Shakhuro and AS Konouchine. Russian traffic sign images dataset. Com-
puter optics, 2016.

[35] Chonghao Sima, Wenwen Tong, Tai Wang, Li Chen, Silei Wu, Hanming Deng, Yi Gu, Lewei
Lu, Ping Luo, Dahua Lin, and Hongyang Li. Scene as occupancy. In ICCV, 2023.

[36] Gurkirt Singh, Stephen Akrigg, Manuele Di Maio, Valentina Fontana, Reza Javanmard Ali-
tappeh, Salman Khan, Suman Saha, Kossar Jeddisaravi, Farzad Yousefi, Jacob Culley, et al.
Road: The road event awareness dataset for autonomous driving. IEEE TPAMI, 2022.

[37] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition. Neural networks, 2012.

[38] Yafu Tian, Alexander Carballo, Ruifeng Li, and Kazuya Takeda. Road scene graph: A
semantic graph-based scene representation dataset for intelligent vehicles. arXiv preprint
arXiv:2011.13588, 2020.

[39] Radu Timofte, Karel Zimmermann, and Luc Van Gool. Multi-view traffic sign detection,
recognition, and 3d localisation. Machine vision and applications, 2014.

[40] TuSimple. https://github.com/TuSimple/tusimple-benchmark, 2017.

11

https://github.com/TuSimple/tusimple-benchmark


[41] Benjamin Wilson, William Qi, Tanmay Agarwal, John Lambert, Jagjeet Singh, Siddhesh
Khandelwal, Bowen Pan, Ratnesh Kumar, Andrew Hartnett, Jhony Kaesemodel Pontes, et al.
Argoverse 2: Next generation datasets for self-driving perception and forecasting. arXiv preprint
arXiv:2301.00493, 2023.

[42] Tao Wu and Ananth Ranganathan. A practical system for road marking detection and recognition.
In IEEE IV, 2012.

[43] Hang Xu, Shaoju Wang, Xinyue Cai, Wei Zhang, Xiaodan Liang, and Zhenguo Li. Curvelane-
nas: Unifying lane-sensitive architecture search and adaptive point blending. In ECCV, 2020.

[44] Fan Yan, Ming Nie, Xinyue Cai, Jianhua Han, Hang Xu, Zhen Yang, Chaoqiang Ye, Yanwei Fu,
Michael Bi Mi, and Li Zhang. Once-3dlanes: Building monocular 3d lane detection. In CVPR,
2022.

[45] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vashisht
Madhavan, and Trevor Darrell. Bdd100k: A diverse driving dataset for heterogeneous multitask
learning. In CVPR, 2020.

[46] Zhe Zhu, Dun Liang, Songhai Zhang, Xiaolei Huang, Baoli Li, and Shimin Hu. Traffic-sign
detection and classification in the wild. In CVPR, 2016.

12


	Introduction
	Related Work
	3D Lane Detection
	Traffic Element Recognition
	Scene Understanding

	OpenLane-V2
	Raw Data Acquisition
	Centerlines and Their Connectivity
	Traffic Elements and Their Correspondence to Centerlines

	Task Definition & Evaluation Metric
	3D Lane Detection
	Traffic Element Recognition
	Topology Reasoning

	Experiments
	Baselines
	Results

	Conclusion

