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Abstract

Numerous studies have been conducted to investigate the properties of large-scale
temporal graphs. Despite the ubiquity of these graphs in real-world scenarios,
it’s usually impractical for us to obtain the whole real-time graphs due to privacy
concerns and technical limitations. In this paper, we introduce the concept of Live
Graph Lab for temporal graphs, which enables open, dynamic and real transaction
graphs from blockchains. Among them, Non-fungible tokens (NFTs) have become
one of the most prominent parts of blockchain over the past several years. With
more than $40 billion market capitalization, this decentralized ecosystem produces
massive, anonymous and real transaction activities, which naturally forms a com-
plicated transaction network. However, there is limited understanding about the
characteristics of this emerging NFT ecosystem from a temporal graph analysis
perspective. To mitigate this gap, we instantiate a live graph with NFT transaction
network and investigate its dynamics to provide new observations and insights.
Specifically, through downloading and parsing the NFT transaction activities, we
obtain a temporal graph with more than 4.5 million nodes and 124 million edges.
Then, a series of measurements are presented to understand the properties of the
NFT ecosystem. Through comparisons with social, citation, and web networks,
our analyses give intriguing findings and point out potential directions for future
exploration. Finally, we also study machine learning models in this live graph to
enrich the current datasets and provide new opportunities for the graph community.
The source codes and dataset are available at https://livegraphlab.github.io.

1 Introduction

Temporal graphs provide an accurate representation of real-world systems, including social networks,
transaction networks and the Web [5, 38, 39, 41], etc. By investigating temporal graphs, we can gain
insights into the temporal dynamics and understand how these systems evolve and function [86, 6].
Notably, a growing number of graph mining algorithms [36, 25, 85] and graph systems [69, 35, 13]
have been developed. However, with this continuously growing trend, several severe issues emerge,
which limit the further development of graph community. In the current literature, studies are usually
conducted on a set of outdated and incomplete graphs. The majority of the aforementioned graphs
are either not easily available or their graph structures are incomplete since they cannot record all the
interactions in graph. Moreover, even through all the interactions are recorded, they might not be
shareable in a public and timely evolving manner, such as social networks in companies like Meta
and Tencent. Thus, for meaningful temporal graph analysis and benchmarks, we need open graph
datasets that evolve dynamically and are easily accessible in a timely manner.

To bridge this gap, we propose the concept of Live Graph Lab, which provides live graphs according to
blockchain transactions. Specifically, we offer a set of tools for downloading, parsing, cleaning, and
analyzing blockchain transactions to empower the analyses of transaction graphs. It not only alleviates
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Table 1: Comparisons among different types of graph datasets.
Categories Datasets Open Timely Evolving Complete Structure Timestamp

Social Network ego-Twitter [45] ! % % %

Citation Network DBLP [70] ! % % !

The Web web-Google [44] ! % % %

Blockchain Live Graph Lab ! ! ! !

the researchers’ burden of accessing massive raw transaction data, but also brings a considerable
of opportunities to conduct experiments in the real-world scenario for temporal graph studies. Our
introduced live graphs have several unique characters like open availability, dynamic evolution and
real transactions due to the inherent characteristics of the decentralized blockchain. Therefore, it is
of great importance to investigate the properties of these live graphs to provide new insights for graph
algorithms and systems.

Today, as blockchain technology becomes more widespread, the token economy is gradually emerging.
Non-fungible tokens (NFTs) have seen tremendous growth with its market capitalization reaching
over $40 billion. Notably, one of the digital work named “Everydays: The First 5000 Days” 1 by
artist Beeple was sold for $69 million, which makes NFTs become the center of attention. This
phenomenon also leads to an increasing number of enthusiasts participating in this emerging concept.
At the same times, it generates massive, anonymous and real transaction activities, which naturally
forms a complex NFT transaction network. Although traditional networks like social networks and
citation networks have been extensively studied, they are often outdated due to their lack of constantly
updating. To enrich the current datasets and overcome their limitations, we instantiate a live graph
with NFT transaction network by synchronizing a full Ethereum node, thus it continuously keeps up
with the latest Ethereum block and includes all the transaction data. To investigate the characteristics
of this live NFT transaction network, we present a temporal graph extracted from a specific time
period spanning from 2017 to 2022, which comprises over 4.5 million nodes and 124 million edges.
Then, comprehensive analyses are performed, and the results demonstrate that our presented live
graph exhibits a variety of characteristics, offering exciting opportunities for the graph community.
To summarize, the main contributions and findings are as follows:

• We introduce the concept of live graph lab, which focuses on open, dynamic and real graphs.
• We instantiate a live graph with NFT transaction network and provide a systemic analysis, which

demonstrates interesting properties like fast-growing, highly-active, ect.
• Graph machine learning models are investigated in the live graph, and the experimental results

indicate that live graphs pose new challenges and opportunities for the graph community.

2 Related Datasets

Graph has gained significant attention from both academic and industrial communities. A wide range
of benchmark datasets have been proposed to facilitate the research in graph community. Among
them, SNAP [43] and Network Data Repository [60] provide diverse types of graphs including social
networks, web networks, etc. AMiner [70] offers comprehensive citation networks extracted from
DBLP, ACM and Microsoft Academic Graph. Chartalist [63] presents a set of blockchain datasets to
enable machine learning model development. Although these datasets are publicly available, they
are not constantly updated in a nearly real-time manner. Take social network as an example, the
ego-Twitter [45] in SNAP project was released more than 10 years ago. Thus, the graph properties
presented in these benchmarks may no longer be suitable in the current context. Meanwhile, their
graph structures are usually incomplete due to privacy policy constraints or technical limitations.
However, these characters are important for various downstream applications. For instance, if the
graph is incomplete or their characteristics have changed significantly, the learning outcomes could
be ineffective and even misleading in the graph learning tasks. To enrich the current datasets and
overcome their limitations, we propose the concept of Live Graph Lab, which supports various
experiments for temporal graph algorithms. We provide a detailed comparison of these datasets in
Table 1. Specifically, the proposed live graph lab has the following properties: (1) it is open and

1https://en.wikipedia.org/wiki/Everydays:_the_First_5000_Days
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Table 2: Statistics of the dataset.
Descriptions Statistics
Start date (mm-dd-yyyy, UTC) 07-12-2017 13:49
End date (mm-dd-yyyy, UTC) 08-01-2022 06:50
Number of NFT collections 97,667
Number of NFT tokens 77,991,885
Number of account addresses 4,531,020
Number of transactions 124,660,813

publicly available; (2) it is constantly evolving in a nearly real-time manner; (3) it is complete (i.e,
all interactions are fully recorded); (4) it has realistic timestamp. Moreover, previous blockchain
datasets mainly focus on fungible token transactions. However, Non-Fungible Tokens (NFTs), which
are a vital component of the Ethereum, have been overlooked by existing works. Our work covers
this gap by delving into this emerging NFT ecosystem.

3 Dataset Details

In this paper, we instantiate a live graph with NFT transaction network in the Ethereum blockchain. We
first provide an overview of the blockchain background. Then, we give a comprehensive explanation
of the graph construction process. Note that, our methodologies are applicable to other bolckchains
like Solana and Polygon, etc.

3.1 Background

Blockchain and Ethereum. Blockchain, a distributed ledger technology, has attracted continuous
attention recent years and is made up of securely linked blocks with cryptography techniques [53],
where each block contains information of the previous block (e.g., cryptographic hash). Ethereum is
a decentralized, programmable blockchain, which means users can construct various decentralized
applications on the blockchain. Ether (ETH) is the native cryptocurrency of Ethereum, and every
transaction incurred in the Ethereum needs a specific fee paid in ETH.

Smart Contract and Non-Fungible Token. Smart contract is an important feature in the Ethereum
blockchain [88], which is a computer program that runs on the Ethereum to automatically execute or
control relevant events and actions according to its logic. Smart contracts have largely reduced the
requirements for trusted intermediaries, fraud losses and arbitration costs, etc. Non-Fungible Token
(NFT) is one of the most successful applications on Ethereum. NFTs are tokens that can be used
to represent the ownership of any unique asset such as image, video and audio, etc. Different from
fungible items where one dollar is exchangeable for another one dollar, NFTs are not interchangeable
with each other, since they all have unique properties and are not divisible.

3.2 Raw Data

The statistic information of our dataset is summarized in Table 2. To access the transaction information
in Ethereum, Geth, a golang implementation of Ethereum client software, is launched to facilitate
the synchronization of the ledger on Ethereum mainnet. When the client synchronizes to the latest
block, we extract all the blocks before Aug 1st, 2022 (i.e., from block #0 to block #15,255,104).
Then, we parse all the transaction data and log data via toolkit Ethereum ETL2. Thanks to the
well-defined standards in NFT communities, it is convenient for us to extract the information we need.
Specifically, according to the standard of EIP-721, every NFT smart contract must implement the
standard interfaces including transfer, approval, ownerof and balanceOf, etc. For those smart contract
that do not strictly follow the EIP-721 standard, we remove those smart contracts and its relevant
transactions from our data. For the remaining data, we filter out all the transfer events triggered by
its smart contracts to extract the NFT transactions. This is because the ownership change of any
NFT will emit a transfer event identified by the event topic Keccack256 hash 0xddf...3ef. In the NFT
transfer event, it contains four key contents including the Keccack256 hash, the sender’s address, the
receiver’s address, and the transferred NFT token ID. The time when the transaction occurs can be

2https://ethereum-etl.readthedocs.io/en/latest/
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Figure 1: Evolution of nodes and edges.

retrieved from the block that the event was found. Once we have obtained all of these key information,
we can know when and which NFTs are transferred among different wallet addresses and the prices
they are sold.

By parsing the transfer events, we find out that there are 97,667 NFT collections with 77,991,885 NFT
tokens, where each collection contains different number of NFT tokens (e.g., varying from thousands
to millions). Meanwhile, 124,660,813 transactions are extracted, and among them 4,531,020 users
(i.e., we regard each wallet address as a user) participate in the transactions. It is worthy noting that
there are over 100,000 NFT collections according to Etherscan3. However, as we have mentioned,
some of them are not standard NFT tokens (i.e., they do not strictly follow the EIP-721 standard),
and we remove them from our data. Thus, our method almost extracts all the NFT collections.

3.3 Graph Construction

We investigate the structure and dynamics of all these transactions by constructing a directed temporal
graph G = (N , E , T ), where N and E denote the node set and edge set, respectively. That’s to say,
we only count once for those addresses that have repetitive interactions. T is a set of timestamps
when the interactions happen. We use t(e) to denote the timestamp when edge e is formed, and t(u)
represents when the node u is added into the graph. Thus, at(u) = t− t(u) reflects node u’s age at
time t. For any given time t, graph Gt consists of all the nodes as well as edges until time t. Note that,
since we have accurate timestamps for the arrival of each node and edge, our investigation of graph
dynamics is at a much finer granularity compared with the majority of existing studies [5, 41].

4 Observations and Analyses

To have a better understanding of the instantiated live graph, we start the analyses from the following
perspectives: (1) Structural properties, which investigate how its nodes and edges change as time
goes on; (2) Dynamic behaviors, which are graph specific properties such as how hub-nodes and
bi-directional edges are formed. More comprehensive analyses are given in the Appendix C and D.

4.1 Structural Properties

To fully understand how active is the NFT transaction network, we measure the evolution of nodes
and edges over the time. Specifically, we set the time granularity to a yearly yardstick. Since our
data started from the July of 2017 and ended at the August of 2022, the statistical information for
2017 and 2022 only has a half year’s data. Figure 1a and 1b show the annual growth of nodes and
edges in a log-scale. As observed, there is a rapid increase in the number of nodes and edges, which
become 28K and 165K times larger within the six years. It means the NFT transaction network is
highly active and growing at a fast speed.

To further figure out what leads to the growth, we analyse the newly added nodes in each pair of
consecutive years. New nodes could join the network through different ways (i.e., mint, buy or
airdrop NFTs). Among them, mint is the most common and easy way to obtain NFTs, where only a
small number of gas fee is needed to pay. Figure 1a presents the trend of newly added mint nodes and
non-mint nodes. We notice that the number of mint nodes added into the network is approximately
the same magnitude of the total nodes at that time. Therefore, mint NFTs dominates the growth of

3https://etherscan.io/tokens-nft
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Figure 2: Correlation between hub nodes, new connections and mutual edges.

nodes in the network at present, meanwhile the number of non-mint nodes are also increasing at a
high velocity. These two phenomena result in the expansion of nodes.

Figure 1b also shows the trend of added bidirectional edges and self-edges. We can see that the
number of bidirectional edges only account for a small volume. Unlike social networks where the
edges are highly mutual, the NFT market is an anonymous ecosystem and the probability of mutually
interacting with each other is relatively low. These bidirectional edges might happen in the scenarios
of swap or wash trading activities [73]. We also notice that there exist a very few self-loops in the
network, which means these addresses transact with themselves. This abnormal phenomenon might
be caused by a mistake input for the received address or these transactions are executed for testing.
Furthermore, to characterize how active are these addresses, we compute the percentage of edges in
which new nodes have links from or to old nodes, and the percentage of edges which only contain
links between new nodes. Here, we refer to new nodes as the nodes created in the current year, and
old nodes indicate the nodes that have existed in the previous years. Figure 1c demonstrates that
more than 50% percent of newly added edges are constituted by the connections between new nodes
and old nodes, except for the year of 2021. This indicates that most of the addresses remain active as
the NFT ecosystem become mature. It is also very interesting to note that the newly created addresses
are highly active in 2021, and at the same time, the whole NFT market capitalization reaches over
$40 billion USD dollars in this year.

For completeness, we also show the degree distribution of the NFT transaction network in Figure 1d
with log-log scale. As expected, it follows a power-law distribution. We observe that some nodes
have the degree of 1, which indicates they did not conduct any other transactions after the NFTs
were minted or transferred. There also exist several high degree hubs that are extremely active and
interacts with more than thousands of different addresses. Among them, a special Null address (i.e.,
0x000...000)4 has the highest degree, since every NFT mint activity will create a link from the Null
address to the mint address.

4.2 Dynamic Behaviors

Evolution of Hub Nodes. The node degree shows a heavily long-tailed distribution (i.e., Figure 1d),
and the assortativity raises year by year (i.e., Figure 4a in Appendix C). Both these two measurements
are highly relevant to the evolving of hub nodes in the transaction network. Figure 2a and 2b illustrate
the correlations between node degrees and its number of new connections in two consecutive years.
We use blue color to present the node degree distribution in the previous year, and then red color
indicates the number of connections from new nodes in the current year. As expected, we can find
that if a node had high degree in the previous year, it would have high probability to get more new
node connections in the current year. Moreover, this observation is also validated by measuring their
Pearson Correlation Coefficients. We evaluate the correlation coefficients between node degrees
and its number of new node connections (in year 2018-2019 and 2019-2020), which are 0.2266 and
0.5476, respectively. The results reveal that these two factors are positively relevant. Thus, we can
draw the conclusion that the NFT transaction network follows preferential attachment growth model
[54, 32], i.e., “the rich gets richer”.

Next, we analyze the distribution of the hub nodes. Specifically, we note that half of the top-100
largest hub nodes are smart contract addresses. This is understandable, since smart contracts play an
important role in providing various services (e.g., NFT fractionalization and staking) to other users

40x0000000000000000000000000000000000000000
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in the network. Thus, they tend to have high degrees once they are frequently used by others. The
transactions with such smart contracts result in the increase of assortativity. Furthermore, there also
exist some hub nodes that are not smart contracts. For instance, we observe that address 0x8a0...7005

is the fifth largest hub nodes with the degree of 69,458. After checking its transactions manually,
we find that all its transactions are about HyperNFT tokens, and it holds more than 180,000 such
kind of tokens. Since it is strange, we then check its transactions in details and discover that this
address creates a transaction every a few minutes, where the ID of the transacted NFT token is in a
continuous and increase order. According to these clues, it is very certain that this address is a bot,
which makes frequent transactions to pretend it’s very prosperous to attract more users to join in. The
hub nodes are responsible for the spreading of information in the network, thus it is necessary to
investigate the properties of hub nodes.

Mutual Interaction Edges. In the previous study, we find that the reciprocity of the transaction
network is relatively low, which is around 0.1 in the end (i.e., Figure 4c in Appendix C). This is quite
different from the property in the social networks, where the reciprocity is very high and the value is
above 0.7 [39]. One possible reason is that people are prone to mutually following and interacting
with their friends in the social networks, since it does not cost anything. However, it becomes different
in the NFT transaction network, because we do not know who we are actually interacting with and
every action costs in the blockchain. To uncover the reciprocity’s characteristics, we focus on the
mutual interaction edges. Specifically, we are interested in if two nodes are mutually interacting with
each other, i.e., reciprocal edges ⟨u, v⟩t and ⟨v, u⟩t̂, what their maximum time interval distribution
|t− t̂| looks like, i.e., the maximum delay in days of the reciprocity. Figure 2c shows that mutual
interaction edges forming within one day account for the highest proportion, and the maximum time
interval can reach to more than 1,000 days. According to Figure 2d, we can observe that about 15%
of the reciprocal edges are formed almost simultaneously among those bi-directional edges, and more
than 70% of them are formed within 90 days. From these observations, we can conclude that the NFT
transaction network can not be regarded as an undirected network due to its low reciprocity value,
and the simultaneously formed bi-directional edges can be a good indicator to judge the abnormal
activities. For instance, it may be caused by the token transfers among the accounts controlled by a
same person.

To further investigate this phenomenon, we want to know how many address pairs are suspicious in
these bi-directional links. We first conduct some statistics for all NFT transaction addresses, which
involves the following two factors: the number of transactions (including from transactions and to
transactions) and the number of distinctly interacted addresses. Then, if one address has very limited
transactions and it only interacts with a specific address, it is highly possible that these two addresses
are of same person’s wallets. This is because this address is actually not active, but it responses
promptly in the bi-directional links. Similarly, another situation is although one address has a lot
of transactions, it interacts with one specific address frequently and the specific address accounts
for a large ratio of the total transactions. They may also belong to same person’s wallets. Based on
these two observations, we define the following two rules to identify the suspicious address pairs:
1) one of them makes less than 5 transactions or 2) the transaction ratios between them is larger
than 0.8. If they satisfy at least one of the rules, we then believe these two addresses are likely to be
same person’s wallets. According to these rules, we discover that 33.72% of those simultaneously
formed bi-directional links have high probability of being suspicious. This observation provides a
new perspective for detecting anomaly transactions.

5 Downstream Applications

The above analyses provide a general overview of this live graph’s properties. Our results demonstrate
that the transaction network is highly active and evolving at a fast speed. These properties put forward
new challenges for various downstream tasks. Next, we investigate three widely studied tasks.

5.1 Temporal Link Prediction

Link prediction lies at the core of graph analysis and mining. The link prediction’s goal is to predict
whether a pair of node would form a link, which has been extensively used in diverse real-world
scenarios like recommendation [79, 7] and knowledge graph completion [55], just to name a few. In

50x8a01fa5a77311bbcf29e293d8ecb48707cfdb700
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this section, we focus on temporal link prediction, i.e., we try to forecast future interactions based on
the historical transactions. Specifically, we investigate the snapshot-based representation for temporal
link prediction via graph neural networks [36, 25]. Since each edge e has a timestamp τe, we utilize a
sequence of graph to depict the temporal transaction network G = {Gt}Tt=1, where each snapshot
is a static graph Gt = (Nt, Et, Tt) with Et = {e ∈ E|τe ≤ t}. Through modeling the sequential
information of different graph snapshots, we could leverage the information available up to time t to
forecast possible edges at time t+ 1. Although various approaches have been proposed for temporal
link prediction, it is unclear whether they can achieve satisfied performance in this highly active and
large-scale temporal transaction network.

Graph Neural Networks. GNNs have gained great success in numerous learning tasks on graphs
including node classification [36, 25], graph classification [84, 83] and link prediction [82, 75].
The objective of GNN is to acquire effective node representations through iteratively aggregating
messages from its local neighborhood. Specifically, the l-th layer of a GNN model can be formulated
as follows:

hl
v = AGGl

({
MSGl(hl−1

u ,hl−1
v )|u ∈ N (v)

}
,hl−1

v

)
where hl

v is the node representation for node v at layer l and N (v) represents node v’s neighborhood.
MSG(·) indicates the message-passing function, which propagates information from its neighbors.
AGG(·) is the aggregation function, which updates its representation with node’s neighborhood
representations. For a L layers GNN, it aggregates information from the L-hop neighborhood.
Different GNN architectures can have different message-passing and aggregation functions. The
original GNN model is designed for static graphs, thus it cannot capture the underlying temporal
information within the graph. To incorporate the evolving property, existing works utilize RNNs
[28, 14] to aggregate information from different graph snapshots. Hence, the dynamic GNN models
have much more parameters compared with the vanilla GNNs, which is more difficult to scale to
large graphs due to the back propagation through time constraints.

Models. We compare a number of recent state-of-the-art dynamic GNN models. (1) Dyngraph2vec
[21] captures the temporal transitions with a deep architecture with dense and recurrent layers. (2)
TGCN [87] integrates GCN with GRU to learn complex spatial and temporal dependencies. (3)
EvolveGCN [56] use a RNN to adapt the graph convolutional network parameters. (4) GCRN
[62] generalize TGCN with either GRU or LSTM. Moreover, it uses ChebNet [15] to encode the
graph structure information, and separate GNNs are applied to compute different gates of RNNs.
(5) DynGEM [22] utilizes deep autoencoder to perform graph embedding, then local and global
constraints are employed to keep node representations being stable over time. (6) Roland [81] is an
efficient learning framework designed for temporal GNNs, which updates its parameters through a
combination of incremental training and meta-learning strategies [19, 20].

Settings. For dataset, we remove all the transactions associated with the Null address, which results
in 3.13 million nodes and 23.13 million edges in the directed graph. We set node feature as 1 for all
the nodes and utilize area under the curve (AUC) as well as mean reciprocal rank (MRR) as evaluation
metrics. For every node u connected by a positive edge (u, v) at time t, we randomly select 100
negative edges originating from node u. Subsequently, we determine the rank of the score for edge
(u, v) among all the sampled negative edges. AUC characterizes the probability of ranking positive
node more highly than negative nodes. MRR denotes the average of reciprocal ranks computed across
all nodes. Following the settings in Roland [81], we utilize two different train-test splits: fixed-split
and live-update. Among them, the fixed-split setting assesses the models using all the edges from the
last 20% graph snapshots. Although it is widely used in the existing works, the fixed-split might
produce misleading results based on edges merely from the last few graph snapshots, since the graph
structure could constantly evolve in the real world scenario. To eliminate this bias, we also utilize
live-update split to test the models, which evaluates their performance over all the available graph
snapshots. 10% of edges are used to determine the early-stop condition in this setting.

Results. We present the link prediction results in Table 3. Specifically, we use three different time
granularities (i.e, days, weeks and months) to construct the graph snapshot sequences, which results
in 1,657 graph snapshots, 253 graph snapshots and 60 graph snapshots, respectively. All the models’
performance is evaluated under two different settings, i.e., fixed-split and live-update. We notice
that as the time granularity becomes coarser, the models’ performance drops. This is because the
NFT transaction network is highly active, which is about 68 million transaction volume per day on
average in 2021. Thus, it will be more difficult to predict all the possible links in a long time period.
Meanwhile, we can observe very high AUC scores in a daily time granularity, which indicates the

7



Table 3: Temporal link prediction performance in fixed split and live-update settings. We repeat
experiments with three different seeds to report the mean as well as standard deviation of AUC and
MRR. We also present the results under different time snapshot granularities, e.g., days, weeks and
months. OOM means out-of-memory.

Models
Fixed Split

Snapshot Days Snapshot Weeks Snapshot Months
AUC MRR AUC MRR AUC MRR

Dyngraph2vec OOM OOM OOM OOM OOM OOM
TGCN 53.64±1.60 14.24±2.60 61.55±6.24 36.16±6.60 74.87±4.99 45.97±4.46
EvolveGCN OOM OOM OOM OOM OOM OOM
GCRN-GRU 95.86±0.03 71.48±0.49 93.14±0.18 68.44±0.05 86.74±0.80 58.23±1.23
GCRN-LSTM 94.12±0.92 68.51±2.36 92.90±0.43 67.66±0.31 86.44±0.92 58.71±0.84
DynGEM OOM OOM OOM OOM OOM OOM
Roland-MA 95.93±0.15 66.34±0.23 93.53±0.13 65.06±0.43 86.23±0.85 54.93±1.42
Roland-MLP 65.46±6.10 43.76±5.94 73.34±7.87 42.04±16.8 85.88±2.22 57.58±4.12
Roland-GRU 73.33±11.5 49.45±8.91 91.48±1.67 66.28±1.86 86.59±0.88 59.37±1.54

Live Update
Dyngraph2vec OOM OOM OOM OOM OOM OOM
TGCN 58.22±5.76 17.77±10.7 59.94±8.44 22.67±19.3 75.01±2.66 43.16±0.75
EvolveGCN OOM OOM OOM OOM OOM OOM
GCRN-GRU 80.95±1.92 39.13±0.39 85.34±0.26 46.08±1.43 81.40±0.34 43.68±0.39
GCRN-LSTM 79.12±2.14 37.83±1.16 84.73±0.34 42.89±3.34 81.24±0.80 41.47±3.00
DynGEM OOM OOM OOM OOM OOM OOM
Roland-MA 90.47±0.66 49.79±0.95 88.74±0.37 50.77±1.13 83.93±0.95 47.11±1.16
Roland-MLP 56.32±8.06 22.16±15.4 70.88±10.5 40.91±10.8 79.38±4.47 46.51±2.61
Roland-GRU 60.04±5.08 27.29±6.26 75.93±19.2 48.66±13.7 84.36±0.46 50.75±0.83

models have a better capability of distinguishing the positive and the negative edges in this short time
scenarios. Also, the performance in live-update setting is a little lower than the fixed-split setting.
This is caused by the pattern shifts in different graph snapshots, which implies the patterns indeed
evolve over the time. Therefore, we can conclude that it is necessary to model the NFT transaction
network in a finer time granularity, and at the meantime this will result in longer graph snapshot
sequence, which puts forward more challenges to model the temporal information.

5.2 Temporal Node Classification

Node classification plays a crucial role in understanding the attributes, behaviors, and relationships of
nodes in temporal graphs, offering valuable insights in diverse applications. By predicting the label
of nodes at a particular time t, we gain a temporal perspective that deepens our understanding of
how nodes evolve over time and their dynamic characteristics. Specifically, we focus on categorizing
nodes according to their transaction behaviors. They can be generally classified into five distinct
classes: daily traders, weekly traders, monthly traders, yearly traders and the remaining traders. We
first filter out nodes that only have one transaction. Then, each node’ maximum transaction interval
is calculated. If the maximum interval is within one day, we call it daily trader. Likewise, if the
maximum interval is within one week and larger than one day, we call it weekly trader, and so forth.
This process results in a large-scale directed graph with about 1.80 million nodes and 21.83 million
edges. Following the setting of EvoloveGCN [56], we use the first 80% graph snapshots as training
set, the following 10% graph snapshots as validation set and the last 10% graph snapshots as test set.
Similar to temporal link prediction task, we use the same set of GNN models and add a multi-class
classification layer. Furthermore, nodes’ degrees are encoded as features. The number of transactions
between two nodes and their latest interaction timestamp are transformed as edge features. Two
commonly used metrics (i.e., accuracy and recall) are employed to assess the model’s performance.

Results. The node classification results are illustrated in Table 4 and key observations are as follows.
Three granularities, i.e., days, weeks and months, are utilized to generate the temporal graph snapshot
sequences. In accordance with the temporal link prediction task, we can draw similar conclusions.
Roland could consistently outperform other baselines, and its variant Roland-MA (moving-average)
stands out due to its parameter-free design and remarkable capability to capture evolving patterns.
On the other hand, TGCN fails to achieve satisfactory performance because of the gradient vanishing
problem in longer sequences. GCRN-GRU and Roland-GRU address this issue by utilizing separate
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Table 4: Node classification performance in fixed split setting. We repeat experiments with three
different seeds to report the mean as well as standard deviation of Accuracy and Recall.

Models Snapshot Days Snapshot Weeks Snapshot Months
Accuracy Recall Accuracy Recall Accuracy Recall

Dyngraph2vec OOM OOM OOM OOM OOM OOM
TGCN 18.48±2.66 31.15±3.16 43.97±4.57 32.99±2.34 47.45±3.49 32.53±2.95
EvolveGCN OOM OOM OOM OOM OOM OOM
GCRN-GRU 41.06±3.30 34.75±2.93 46.78±0.72 34.79±0.42 47.42±2.16 28.97±3.22
GCRN-LSTM 46.14±3.29 35.19±3.61 48.04±2.37 31.58±1.75 49.32±2.01 35.39±1.49
DynGEM OOM OOM OOM OOM OOM OOM
Roland-MA 51.02±2.01 28.77±3.23 50.39±0.45 26.33±3.95 47.96±2.69 22.33±3.07
Roland-MLP 48.46±3.18 30.62±3.94 47.59±3.39 31.67±3.62 45.74±4.75 35.04±3.47
Roland-GRU 49.88±2.15 33.38±3.91 46.63±3.07 33.85±1.48 50.04±0.37 32.17±2.72

Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5

Figure 3: Five most common wash trading patterns.

GNNs or leveraging previous and current snapshots. Furthermore, the scalability of several baselines
is limited and they experience out-of-memory (OOM) issues. Among the three time granularities, the
month granularity is generally the most difficult scenarios. This is because with a month granularity,
the time period between snapshots is longer compared with the day and week granularities. As a
result, it becomes more challenging to accurately predict the temporal patterns and changes in node
behaviors. The longer time gap between snapshots increases the complexity of modeling the evolving
dynamics of the network and introduces more uncertainty, leading to decreased performance in terms
of classification accuracy and recall. Therefore, we can conclude that given the highly active NFT
transaction network, it is essential for the model to use a finer time granularity. Nonetheless, this
choice results in longer graph snapshot sequences, presenting additional difficulties in accurately
capturing the temporal information.

5.3 Continuous Subgraph Matching

Continuous Subgraph Matching (CSM) plays a vital role in numerous real-time graph applications.
The goal of CSM is to identify and report the occurrences of a given query graph Q within a temporal
graph stream G. It can be utilized in various scenarios. For example, when setting the query graph
Q as wash trading patterns in e-commerce, CSM could identify the anomaly transaction patterns
in the graph via exactly matching [58]. Similarly, representing query graph as rumor patterns in
social network could help to detect and prevent the spread of rumors [74]. In this subsection, we set
the query graphs as the frequent wash trading patterns in the NFT transactions. According to the
definition in [73, 47], wash trading is an activity where the seller is on the both sides of the trade. The
goal of wash trading is to influence the price or create the illusion that the item is very popular, which
produces artificial activities in the marketplace. Wash trading has been prohibited by many countries.
However, due to the anonymous nature of the blockchain, wash trading has become a severe issue in
the NFT market6, which accounts for a large volume in the whole NFT transactions. For instance, the
CryptoPunk’s 9, 998-th NFT was traded between two wallets for 124,457 ETH (about $534 million
USD), in which the buyer paid to the seller, then the seller transferred the money back to the buyer.
Thus, it is important to detect the wash trading transactions to uncover the anomaly behaviors and
reduce the risks in the market. We resort to CSM to identify the wash trading transactions. Five most
common wash trading patterns are shown in Figure 3. As can be seen, all of them contain at least one
cycle. Here is a toy example that exemplifies Pattern 1: Address A (0x744...282) initiated the sale of
Azuki token 1,215 to Address B (0xd39...263). Subsequently, Address B sold the token to Address

6https://cryptopotato.com/over-33-of-nft-volume-is-wash-trading-bitscrunch-ceo-interview/
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Table 5: Comparison of different frameworks on query time.
Query Patterns Model Query Time (ms)

Queries Counts SymBi Graphflow TurboFlux RapidFlow
p1 19,338 1.22×104 1.11×104 1.11×104 5.93×102

p2 2,243,232 1.19×104 1.44×104 1.51×104 6.13×102

p3 3,012,738 1.11×104 1.13×104 1.08×104 5.83×102

p4 9,472,960 1.24×104 1.43×104 6.06×104 6.45×102

p5 3,154,355,868 1.34×105 4.24×105 7.72×104 5.84×102

C (0xeaa...c0f), and eventually, Address C sold it back to Address A. These transactions happened
within half an hour, and interestingly, the token’s price surged from 8.98 ETH to 11.99 ETH. Such
activity can raise suspicions of wash trading. We will use them as query graphs in the experiments to
simulate the wash trading detection procedure. More details are given in Appendix E.

Results. Table 5 shows the key results of continuous subgraph matching. As we can see, RapidFlow
[68] is the most efficient algorithm, which demonstrates about 18-724x speedups compared with
the remaining frameworks. This is because the query reduction technique can significantly expedite
the query procedure through an optimized matching order. We also observe that no algorithm can
dominate others in different query patterns except RapiadFlow. Among them, SymBi [50] and
Graphflow [33] perform quite worst on pattern 5, which need 10x more time to produce the results.
SJ-Tree [13] and IEDyn [30, 31] cannot output the results within the time limit. The reason is that
SJ-Tree encounters memory exhaustion in the majority of cases, and IEDyn’s index update bears
too much overhead because of the maintenance for constant-delay enumeration. Furthermore, the
number of matched subgraphs increase from pattern 1 to pattern 5, however the query time does not
have too much difference in almost all the frameworks. We can conclude that these four frameworks
are applicable to large-scale graphs with dense structures. They can effectively serve as a bridge to
generate ground truth for continuous subgraph matching, providing valuable support for the training
of deep graph learning models.

6 Conclusion

In this paper, we propose the concept of Live Graph Lab, which includes blockchain based temporal
graphs that are openly accessible, fully recorded, and dynamically evolving over time. Specifically,
we instantiate a live graph using the NFT transaction network and investigate its dynamic properties
in a temporal graph analysis perspective. Our findings reveal both similar and distinct characteristics
when compared to traditional networks like social networks, citation networks, and the Web. Through
comprehensive experiments on the live graph, we uncover numerous insightful discoveries. The
proposed live graph overcomes the limitations of existing datasets and enhances the diversity in graph
research. We believe that the live graph lab will become an indispensable resource for the graph
community and open up new opportunities. There are also various other potential use cases, such as
identifying whether an account holds a specific type of tokens or predicting the range of tokens that
the account possesses, etc.

7 Border Impact and Limitation

The Live Graph Lab can facilitate researchers from graph community by offering comprehensive
blockchain based graphs via an easily accessible manner. Insights from this research can be directly
applied to improve the design, security, and user experience of NFT platforms, leading to sustainable
growth of the ecosystem. Meanwhile, as the live graph constantly records all the NFT transactions in
the Ethereum blockchain, the possibility of encountering malicious activities could become a concern,
such as bot transactions or wash trading, etc. It might also cause potential negative societal impacts.
Since the dataset consists of complete transactions associated with the wallet addresses, it could
enable the tracking of each wallet’s behaviors, habits, and financial activities. This kind of tracking
could be exploited for targeted advertising, manipulation, or surveillance. The dataset could also
make it possible for malicious actors to analyze the transaction patterns and manipulate the NFT
market, which could lead to unfair practices, price manipulation, and market instability.
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A Detailed Background

In this section, we explain the terminologies related to Ethereum blockchain, transactions and NFTs,
etc.

A.1 Blockchain and Ethereum

Blockchain, a distributed ledger technology, has drawn continuous attention recent years. Blockchains
are made up of securely linked blocks with cryptography techniques [53], where each block contains
information of the previous block (e.g., cryptographic hash). Then, consensus algorithms or protocols
are applied to validate transactions and keep them being consistent. By this way, the blockchain trans-
actions are immutable, traceable and publicly available. Ethereum is a decentralized, programmable
blockchain, which means users can construct various decentralized applications on the blockchain.
Ether (ETH) is the native cryptocurrency of Ethereum, and every transaction incurred in the Ethereum
needs a specific fee paid in ETH. According to the market capitalization, ETH is the second-largest
cryptocurrency behind Bitcoin.

A.2 Account and Transaction

Ethereum account is the key to access and explore the Ethereum ecosystem. Every Ethereum account
is associated with a unique address, akin to an email address for an inbox. The address can be used
to receive or send funds to the corresponding account. Accounts in the Ethereum can be classified
into two types: (1) Externally-owned account (EOA) and (2) Contract account. All the accounts are
denoted as a 64 character hex string.

Transactions are messages sent from one account to another account. One of the simplest transaction
is transferring ETH from one account to another, which will change the state of the Ethereum
Virtual Machine (EVM) and need to be broadcast to the whole Ethereum network. Each transaction
requires amount of fees to pay for the computation. The key information in a transaction includes
the receive address, the sender address, value, data, gas limit, and the max fee per gas, etc. There
are three categories of transactions within the Ethereum: 1) regular transactions, which indicates the
transactions between two externally-owned accounts; 2) contract deployment transactions, which are
special transactions without receive addresses; 3) execution of a contract, whose receive address is
the smart contract address. When the transaction is submitted, its life cycle can be simplified into the
following three steps: 1) an externally-owned account sends a transaction and generates a transaction
hash; 2) the transaction is broadcast across the network; 3) a validator verifies the transaction and
includes it into a block. Once the transaction is successfully executed, it can never be altered.

A.3 Smart Contract and Non-Fungible Token

Smart contract is an important feature in the Ethereum blockchain [88], which is a computer program
that runs on the Ethereum to automatically execute or control relevant events and actions according
to its logic. Smart contracts have largely reduced the requirements for trusted intermediaries, fraud
losses and arbitration costs, etc. As we have mentioned before, smart contracts also belong to a
type of Ethereum account, and it can interact with user accounts. Moreover, anyone can program a
smart contract and deploy it to Ethereum, as long as the code is complied successfully and can be
executed by the EVM. Smart contracts are the fundamental building blocks for various applications
like decentralized finance (DeFi) and game finance (GameFi).

Non-Fungible Token (NFT) is one of the most successful applications on Ethereum. NFTs are tokens
that can be used to represent the ownership of any unique asset such as image, video and audio.
Different from fungible items where one dollar is exchangeable for another one dollar, NFTs are not
interchangeable with each other, since they all have unique properties and are not divisible. Smart
contracts manage the ownership and the transferability of NFTs. Specifically, when NFTs are minted
or transferred, it triggers the code stored in the smart contract, and then the relevant actions are
executed. Each NFT token will have an owner after mint, and this information can be easily verified in
Ethereum. The NFTs can be bought and sold on any NFT market like OpenSea, LooksRare or X2Y2.
More recently, the NFT and DeFi have been combined to form a number of interesting applications
including NFT-backed loans, fractional ownership and certificates of authenticity.
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B Related Work

In this section, we present the related work on graph analysis.

Analyses of Social Networks, Citation Networks and the Internet. There exist lots of prior
works focusing on analysing social networks and citation networks like Flickr, Yahoo! 360 and
LiveJournal [5, 38, 39, 41]. These studies investigate the graph properties including density, degree
distribution and clustering coefficient, etc. Among them, [17] observed that the node degrees followed
a power-law distribution in most real-world networks. [9] studied the graphs from the perspective of
connectivity, where large strongly connected components (i.e., SCC) widely existed in the graphs.
[23] classified social network’s links into strong ties and weak ties, with strong ties indicating tighter
clustering. [77, 37] explained the social networks’ small-world phenomenon. [41] showed that the
citation graphs demonstrated denser densities and decreasing diameters as time goes by. Then, a
forest-fire graph generation model was proposed to simulate these phenomena. [64] proposed a
jellyfish model to describe the topology of the Internet, which abstracted the structure in a human
understandable way.

To summarize, the major findings of existing works are as follows: 1) power law degree distribution,
where some nodes exhibit significantly large degrees; 2) preferential attachment growth model, where
the likelihood of a new node establishing a connection with an existing node is directly tied to the
degree of the existing node; 3) density of the graphs follows a rapid decline, and then becomes steady.
For surveys of graph analysis, interested readers can refer to [27, 76]. Although the graph analyses
are extensively studied in those networks, it is not clear whether these findings are still valid in this
emerging NFT transaction network.

Graph Analyses of Cryptocurrency Transaction Networks. Due to the decentralized nature of
blockchain, this makes it possible for everyone to access all the transaction information. Several
recent works have studied the properties of Bitcoin and other cryptocurrency transaction networks.
For instance, [26, 59, 48] studied the user behaviors in Bitcoin transaction network. [66] classified
and visualized the information extracted from the Bitcoin network. [80] and [1] forecast the price
of BTC via modeling the local topological structure of the Bitcoin graph. Apart from Bitcoin,
other cryptocurrencies like Zcash [34], EOS [29] and Monero [51] had also been conducted similar
analyses. [8] analyzed the transaction linkability in Zcash, which revealed the underlying privacy
concerns. [16, 2] discussed the key factors that impact the scalability of various blockchain systems.
[24] identified arbitrage behaviors among multiple cryptocurrency exchange markets (e.g., Kraken,
Coinbase and Gemini) through weighted cycle detection. However, the majority of these works are
performed on analyzing static graphs, whereas graphs are usually evolving over time in the real-world
scenarios. Moreover, the aforementioned studies that analyze Bitcoin and other cryptocurrencies
only involve transactions related to value or token transfers. Different from Bitcoin, recent popular
blockchains like Ethereum and Solana support deploying smart contracts to provide diverse services,
where human controlled accounts and program controlled agents coexist in the network, making the
transaction network even more complicated. It is of great interest to us to investigate this type of
transaction network.

Analyses of the Ethereum Blockchain. Given the possibility to access comprehensive information
within the blockchain transaction network, some recent efforts follow the pioneer studies on social
networks, citation networks and the Internet [39, 41, 64] to analyze the static Ethereum transaction
network. Particularly, [40] measured four interaction networks to give new insights on the Ethereum
graph properties. [18, 11] characterized major activities including money transfer and contract
creation on Ethereum via graph analysis. [46] learned from Ethereum graph to perform price anomaly
prediction. [86, 6] investigated the evolutionary dynamics of Ethereum activities through the lens of
temporal graphs.

Instead of studying all the transactions in the Ethereum, [65] only considered transactions relevant to
ERC20 tokens which were fungible tokens circulated in the Ethereum, and the results showed that
they presented obvious social signals in the trading network. [12] performed a systematic analyses
on the whole ERC20 token activities. [72] studied massive individual token networks from a graph
analysis perspective, and found that they were largely dominated by a single hub and spoke pattern.
Since tokens could be heavily influenced by various events like mint, burnt, transfer or staking, these
aforementioned works only provide a general intuition about the structure of token distributions, the
flow and spread of assets on the blockchain.
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Similar graph analysis approaches have also been applied to Non-fungible tokens (NFTs), where
NFT tokens are unique and not comparable with each other. For example, [78] used the Louvain
algorithm [71] to extract the community based structures from the networks, which characterized
the relationships between buyers and sellers. [52] showed that the NFT’s sale history and visual
appearance were two good indicators to predict its price. [10] analyzed several popular NFT projects,
and concluded that the structure of NFT networks was qualitatively similar to social networks. [73]
quantified suspicious wash trading behaviors in NFT market via closed cycle detection in the network.
Although NFTs play a crucial role in the Ethereum ecosystem, none of the aforementioned studies
explore the temporal properties of the NFT transaction network from the temporal graph point of
view.

C Basic Structure Properties

The following four properties are discussed in this section:

Assortativity characterizes the tendencies of nodes getting attached to similar nodes through a
specific metric. Following [4], we calculate the degree assortativity as follows:

α =
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(1)

where ki and kj represent the degrees at the ends of edge (i, j) ∈ E . |E| denotes the number of
edges. The assortativity α lies in the range of [-1, 1], where a positive α indicates that high degree
nodes have high probabilities of linking to other nodes with high degrees on average. In contrast,
when α is negative, it is a disassortative network and the high-degree nodes are more likely to link
to low-degree nodes. More specifically, when α = 0, we say the network is neutral, and neither the
tendencies of linking to high-degree nor low-degree nodes are observed. Figure 4a shows that the
assortativity of NFT transaction network is negative in the recent six years, and it increases year by
year, gradually approaching to zero. This indicates that the emerging transaction network is evolving
from disassortative to assortative, which means there are more and more hub nodes available for
themselves to connect to each other to increase the assortativity. A detailed analysis is given in
Section 4.2.

Density calculates the ratio of existing edges over the number of possible edges [49]. The density d
is 1 for a complete network, and it can be larger than 1 when self-loops or multi-edges are taken into
consideration. We compute the density of a directed network as follows:

d =
|E|

|V|(|V| − 1)
(2)

where |E| indicates the number of edges and |V| represents node numbers. As we can see in Figure
4b, the density drops rapidly, which indicates the network becomes sparser over time. The decrease
of density is mainly caused by the increment of edges are less than the node increment. It also means
that the network utilization is quite low and the interactions between different nodes are very limited
(i.e., one node only interacts with a few other nodes). This is understandable, since creating a account
(i.e., node) is free, but making transactions (i.e., creating edges) cost gas fees. This property is quite
different from citation networks [41], where density becomes denser over the time.

Reciprocity in a directed network is determined by the proportion of bidirectional edges to the
number of total edges [67, 3]. Formally, the reciprocity r is calculated as:

r =

∑
I((i, j) ∈ E

∧
(j, i) ∈ E))

|E|
(3)

where |E| indicates the number of edges. I(·) is an indicator function and it returns 1 when node
i and j have bidirectional edge, otherwise it returns 0. The trend of reciprocity is demonstrated in
Figure 4c. The relation between reciprocity and time is not monotonous. In general, it increases at
the first, and then decreases in the following several years. This may be due to the emerging of NFT
swapping, which allows users to swap their NFTs with each other. However, as time goes on, the
NFT market becomes more and more mature, and users are prone to trading instead of swapping their
NFTs to gain more profits.
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Figure 4: Evolution of network global properties with different time granularity.

Average Clustering Coefficient evaluates to what extend the nodes in a network tend to tightly
cluster together [61], which is computed by averaging local clustering coefficient across all nodes.
Node vi’s local clustering coefficient ci is the percentage of edges among its neighborhood divided
by all the possible edges between its neighborhood. We formulate the local clustering coefficient for
directed network as:

ci =
|{ejk : vj , vk ∈ Ni, ejk ∈ E}|

|Ni|(|Ni| − 1)
(4)

where Ni = {vj : eij ∈ E
∨
eji ∈ E} is the neighborhood of node i. Edge ejk indicates the link

between node j and node k. Thus, the equation for the average clustering coefficient is as follows:

c =
1

|V|

|V|∑
i=1

ci (5)

where |V| denotes the number of nodes. In Figure 4d, we present the clustering coefficient for the
NFT transaction network across six years. We can observe that the average clustering coefficient is
growing stably, which indicates the network is forming an increasing number of tightly connected
clusters or communities. One possible explanation is that those accounts in a tightly connected
clusters are actually controlled by the same person, and they utilize multiple accounts to conduct
money laundering and wash trading [73], etc.

Furthermore, Figure 4 also illustrates the trends of different properties under different time granu-
larities. In particular, the networks constructed with different time granularities could highlight the
anomalies during its evolving procedure. Here, the anomaly means a property value that is much
more larger or smaller than the value in its neighborhood time periods. For instance, the reciprocity
in Figure 4c indicates that its value in the middle of 2018 is twice larger than that of the other time
period. Since this abnormal value is observed in a half-year granularity, we can dive into a finer time
scale, which is 3-month and monthly time scopes. The results are illustrated in Figure 5. As we can
see in Figure 5a, the reciprocity values are significantly different between the first and the second
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Figure 5: Finer time granularity analysis on reciprocity.
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Figure 6: Accounts’ active periods.

half of year 2018. Meanwhile, we further investigate the data with a monthly basis, which makes it
possible for us to locate the specific months. Figure 5b demonstrates that the anomaly is lasting from
January to August, and reaches its peak at February. These finer granularity analyses demonstrate
that monthly data may be more helpful in the scenario of anomaly detection.

D Dynamic Behavior Analyses

D.1 Active Period of Nodes

Based on our aforementioned analyses, the NFT transaction network is highly active with new nodes
continuously adding in. We now proceed to investigate the nodes’ active periods. Here, the node’s
active period is defined as the time interval between its first transaction and its last transaction. In this
case, we discard those nodes with only one transaction in the dataset. Figure 6 presents the statistical
information for node’s active duration in the scale of days. Note that, we only show the active periods
from 1 day to 40 days in Figure 6a. According to our data, 23.43% of the nodes have the active
period of 1 day, and up to 47.25% nodes’ active periods are 1 month. This is consistent with our
previous observations regarding the highly increasing number of edges. It’s worth noting that only
one account has the active period of nearly 5 years. After checking the data, we find out that this
node is associated with the Null address (i.e., 0x000...000). It is not a surprise, since all NFT mint
activities would build connections with the Null address. This also indicates that there exist new NFT
tokens being continuously minted, which reveals the fast growing speed of NFT market.

Then, we explore the impact of a node’s active period on the number of transactions it engages in.
One natural hypothesis is that the longer the node’s active period, the more transactions it will create,
which is consistent with the user behaviours in social networks. Figure 6b shows the number of
average transactions with different active periods. As can be seen, the active period and its average
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Figure 7: Distributions of tokens and collections.

transactions are positively correlated. The number of transactions increase exponentially as the active
periods become longer. We also notice two spikes with active periods of 8 days and 39 days. Among
them, address 0x610...6627 causes the spikes of average transactions in active periods of 8 days,
which is a Ethereum Name Service (ENS) migration contract to migrate second-level names from
the old registry and registrar to the new ones. It creates more than 685,000 transactions within 8
days. To summarize, even through there are some addresses with rather limited active periods, we
can generally conclude that most of the addresses are quite active with lots of transactions.

D.2 Holding Tokens and Collections

To reveal the characteristics of the NFT economy, we analyse the distributions of holding tokens and
collections for different accounts. Formally, we trace all the received tokens and sent tokens for each
account. Through this way, we can know the owner of each token and the quantity of tokens held by
an account. Figure 7a shows that both the accounts’ holding tokens and collections are power law
distributions. Specifically, 42.10% of the accounts hold only one token, and 58.50% of the accounts
hold tokens from one NFT collection. Moreover, there are about 81.70% accounts holding no more
than 10 tokens, and 91.40% of accounts hold tokens from no more than 10 collections. In the middle
of year 2022, the largest “holder” is the Null address (i.e., 0x000...000), which involves 809,125
tokens from 8,126 collections. Note that the Null address is a special account, and sending tokens
to Null address means destroying the tokens whereas receiving tokens from Null address indicates
minting tokens. There are several reasons that people destroy their tokens, including reducing the
supply to increase a collection’s value or rectifying error information in the tokens. Then, we look at
the next valid holding address. The second largest holder is associated with address 0x000...7a2 8,
which holds 381,570 tokens from 1,454 collections. Since it holds so many tokens, we are interested
in uncovering its identity. Therefore, we try to uncover all the relevant activities associated with the
address 0x000...7a2. First of all, we search the address in the Ethereum Name Service and find that
the address is bound with the name stronghands.eth9. Then, we search the keyword “stronghands”
with Google, and the results show that it is a blockchain community10, which supports issuing tokens,
trading NFTs and bridge integrations, etc.

Table 6 and Table 7 list the top-10 largest holders in the year of 2020 and 2021, respectively. As can
be seen, most top-10 holders in 2020 continue to be top-10 holders in 2021 as well. It is interesting to
note that the relative positions are almost same, except that address 0xd9a...6a5 and 0x721...ace swap
their positions in 2021, and the Null address becomes the second largest “holder”. Among them,
address 0xff1...2c8 drops out of the top-10 list in 2021, and address 0xe05...9d5 enters the top-10
list in 2021, which are annotated as bold. The little difference in top-10 list for year 2020 and 2021
indicates that it is very difficult to be one of the top holders for new users, since it costs a lot of money
to mint or buy NFTs. Moreover, when looking at the numbers in Table 6 and Table 7, we can find that

70x6109DD117AA5486605FC85e040ab00163a75c662
80x0008d343091ef8bd3efa730f6aae5a26a285c7a2
9https://app.ens.domains/address/0x0008d343091ef8bd3efa730f6aae5a26a285c7a2

10https://www.stronghands.io/
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Table 6: Top-10 accounts’ holding tokens and collections in 2020.
Account Address Tokens Collections
0x0008d343091ef8bd3efa730f6aae5a26a285c7a2 363,962 36
0x26cdee4269273e1ea5dfac6b5791df2656897738 343,413 14
0xe4a8dfca175cdca4ae370f5b7aaff24bd1c9c8ef 308,916 13
0xf7ee6c2f811b52c72efd167a1bb3f4adaa1e0f89 216,477 39
0x09c1e4c1adad99436b5c22a395174a1320ee716b 166,321 1
0xf33bd4edc6dcd7240966f20401014ad0018d065b 161,368 19
0xd9ab699e5e196139b8a1c8f70ead01b2137fc6a5 152,788 16
0x721931508df2764fd4f70c53da646cb8aed16ace 149,115 49
0x0000000000000000000000000000000000000000 143,849 683
0xff18298382948028f9d93c4e32be1382204022c8 140,025 22

Table 7: Top-10 accounts’ holding tokens and collections in 2021.
Account Address Tokens Collections
0x0008d343091ef8bd3efa730f6aae5a26a285c7a2 378,893 198
0x0000000000000000000000000000000000000000 365,565 1,914
0x26cdee4269273e1ea5dfac6b5791df2656897738 343,413 14
0xe4a8dfca175cdca4ae370f5b7aaff24bd1c9c8ef 308,880 13
0xf7ee6c2f811b52c72efd167a1bb3f4adaa1e0f89 217,172 83
0x09c1e4c1adad99436b5c22a395174a1320ee716b 166,321 1
0xe052113bd7d7700d623414a0a4585bcae754e9d5 163,499 1,467
0xf33bd4edc6dcd7240966f20401014ad0018d065b 161,413 20
0x721931508df2764fd4f70c53da646cb8aed16ace 159,464 204
0xd9ab699e5e196139b8a1c8f70ead01b2137fc6a5 152,788 16

the top holders’ tokens and collections are rapidly growing. One exception is the address 0x09c...16b,
which holds 166K tokens from the same collection (i.e., DozerDoll, a game dirven NFT). On average,
they hold 10K more tokens in 2021 compared with the year 2020. This is because there are more and
more tokens as well as collections. Figure 7b also verifies this observation. Take the year of 2021 as
an example, it increases 17,428 collections and 14 million tokens. Thus, the whole NFT ecosystem is
still in its bull market.

D.3 Evolution of Diameters

We study the diameter of the NFT transaction network in this section, which reflects the communi-
cation efficiency among different nodes. Generally, the network’s diameter is defined as the largest
shortest path among all pairs of nodes in the network. As pointed out by [41, 42], this metric is very
sensitive to the noise in the network. For instance, a single long path would result in a large diameter.
Thus, we resort to the effective diameter used in [41], which is defined as the 90-th percentile of the
shortest path length among all pairs of nodes. Figure 8 presents the diameters as it evolves over time
by years. The blue line shows the diameter calculated with the whole transaction network, which
includes the special Null address. In contrast, the red line indicates the diameter computed without
the Null address, which means all the NFT minting and destroying activities are removed from the
network. We can observe that these two lines show totally different trends, i.e., one is increasing and
the other is decreasing. The final diameter is about 3.0 in 2022 when including the Null address, and
it is only half of the value when removing the Null address. It is surprised to see that the Null address
has such large influence on this property. With in-depth analysis, we find that there are about 3.5
million addresses connecting with the Null address, which accounts for 77.3% of the total addresses.
Thus, the Null address is a huge hub node, and provides a shortcut for nodes to reach each other. As a
result, the diameter is smaller in this situation, and every non-mint action would increase its value
when the network expands.

To eliminate the effect of the Null address, we focus on the analysis of diameter without Null address,
which reveals the transaction behavior patterns without mint. Similar to citation networks that the
diameter is shrinking observed by Leskovec et al [41], our results show that the diameter also shrinks
in NFT transaction network, i.e., decreasing from 5.94 to 4.72. Then, we explore the graph structure
to see whether we can explain the diameter shrinking phenomenon. Specifically, we observe that
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Figure 8: Effective diameter by years.

about 42.28% of the nodes have the degree of 1 in the final network. Those nodes with degree 1 are
the key factor that leads to the increase of diameter. Thus, we remove these degree 1 nodes, and
calculate the effective diameter of the remaining part. The value is 4.20, which shrinks again. After
that, we repeat this process again, and find that it only has 2.26% nodes with degree 1 in the remaining
part. Similarly, we delete those degree 1 nodes, and compute its effective diameter again, which is
4.28 and stays the same as before. This suggests that there is a giant component with extremely high
connectivity, and nodes with degree 1 is only a thin layer at the outside of the well-connected giant
component. This observation brings new challenges for some downstream tasks.

E More Analyses on Continuous Subgraph Matching

Frameworks. We evaluate the performance of six recent CSM frameworks in this section. (1)
SJ-Tree [13] proposes a lazy search algorithm, and the search strategy is determined by a vertex-to-
vertex basis, which depends on the likelihood of a matching in the vertex neighborhood. (2) IEDyn
[30, 31] randomly selects a node from query graph, then it products matching order by conducting
DFS on the query graph. (3) SymBi [50] employs a dynamic candidate space as an auxiliary data
structure for filtering. (4) Graphflow [33] first generates matching order offline, and then retrieves
it in online processing. (5) TurboFlux [35] employs a concise representation of the intermediate
results, and a novel edge transition model is proposed to identify the update operations that may
affect the current solutions. (6) RapidFlow [68] performs batch subgraph matching via designing a
query reduction technique, then dual matching is utilized to leverage the duality of the graph in the
matching procedure.

Settings. Similar to the link prediction task, we also remove all the transactions related to the
Null address, which gets rid of the impact of the extreme large degree node. In previous studies
[69, 35, 13], the initial graph is constructed using the first 90% of edges, while the rest 10% of edges
are employed as insertion streams. In our scenario, we know the exact time of each transaction,
thus we use NFT transactions from year 2017 to the end of 2021 as the initial graph, and then the
transactions in the year of 2022 are regarded as the insertion streams. Since the original nodes and
edges do not have fine-grained labels, each node is assigned a label randomly selected from a pool of
30 labels. We do not assign labels for edges following the previous works [69, 35]. For evaluation
metrics, we report the query time, which denotes the time taken by the online matching procedure
to execute. We discard the graph update time, since it’s same for all the frameworks. To complete
the experiments under an affordable time, a one-hour time limit is imposed for query processing
(i.e., 3.6× 106 ms). Additionally, we also calculate the number of matched subgraphs for each query
graph.

Results. As we have discussed in Section 4.2, there exist lots of hub nodes in the NFT transaction
network. Therefore, we are interested in whether updating the index of hub nodes will have a great
impact on the query time. Specifically, except Graphflow, all the remaining frameworks belong to
the index-based incremental computation. In this context, the query time consists of the index time,
which signifies the time spent on updating the index, and the enumeration time that enumerates the
matched results. Therefore, we first sort the node degrees in the descending order, and the results
show that the top-50 largest hub nodes have the largest degree with 433,114 and the smallest degree
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Figure 9: Query time with deleted hub nodes.

Table 8: Temporal link prediction results with live-update settings in sampled subset. We repeat
experiments with 3 random seeds to report the mean as well as standard deviation of AUC and MRR.
We also present the results under different time snapshot granularities, e.g., days, weeks and months.

Models Snapshot Days Snapshot Weeks Snapshot Months
AUC MRR AUC MRR AUC MRR

Dyngraph2vec 77.39±2.04 40.29±5.75 75.33±7.15 36.84±4.97 72.03±2.73 34.83±4.20
TGCN 95.49±0.78 62.40±7.89 91.09±0.46 41.69±7.82 86.13±1.33 43.67±6.23
EvolveGCN 84.34±2.81 40.91±7.96 79.13±0.92 40.72±3.82 78.40±3.33 42.86±3.71
GCRN-GRU 91.41±1.24 33.65±9.48 90.78±2.43 42.88±0.48 82.64±0.22 38.99±0.18
GCRN-LSTM 93.97±1.66 41.63±3.22 90.16±1.83 39.20±7.19 83.38±0.71 37.22±2.63
DynGEM 95.67±0.74 49.25±6.01 93.34±0.98 45.41±5.29 90.75±1.29 41.38±0.61
Roland-MA 97.55±0.59 37.18±6.76 94.59±0.50 44.26±1.26 87.69±2.17 37.98±4.61
Roland-MLP 96.38±1.07 60.44±10.0 89.25±0.89 52.32±3.20 87.89±0.96 42.02±3.37
Roland-GRU 96.52±0.08 69.34±2.68 92.83±0.82 52.74±2.60 91.01±0.77 41.59±2.02

with 7,623. Then, we delete the top-50 hub nodes sequentially and report the query time in Figure 9
for pattern 1 and pattern 3. Note that, we remove the randomly assigned node labels in this situation,
which counts the query time associated with the hub nodes. As can be seen, the query time almost
remains the same with acceptable fluctuations across all the frameworks except for RapidFlow. This
is because RapidFlow is extremely efficient (i.e, only taking several hundred milliseconds), thus a
slight fluctuation will be very obvious in the figure. We can conclude that these four frameworks are
applicable to graphs with dense structures. They can effectively serve as a bridge to generate ground
truth for continuous subgraph matching, providing valuable support for the training of deep graph
learning models.

F Temporal Link Prediction Results on Sampled Subset

To fully evaluate the models’ performance, we also sample a subset of data spanning from January
1st 2020 to August 31st 2020. This subset contains 88,112 nodes and 203,221 edges. We provide the
temporal link prediction results under live update setting in Table 8. As can be seen from the results,
we can draw similar conclusions. Notably, we also observe that with the increase in time granularity,
the performance of the models exhibits a corresponding decline within this sub-sampled dataset.

G TEA and TET Plots

Following the definitions in [57], we present Temporal Edge Appearance (TEA) and Temporal Edge
Traffic (TET) plots in Figure 10. Specifically, a TEA plot visualizes the proportion of recurring
edges compared to newly joined edges at each timestamp within a temporal graph. In Figure 10a,
the gray bar represents the count of edges that are previously observed, while the red bar signifies
the quantity of new edges generated at each subsequent time step. The TEA plot illustrates that our
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Figure 10: TEA and TET plots.

dataset exhibits a substantial proportion of newly formed edges at each time step, which means the
transaction graph is highly active. In contrast, a TET plot represents the recurrent pattern of edges
across different time intervals. Edges are colored to indicate whether they appear solely in the training
set (green), solely in the test set (red), or in both sets (orange). As it is time consuming to plot all the
124 million edges in the figure, we randomly sample 2 million edges and show the results in Figure
10b. We have tried to use all the data, but the plotting process was unable to complete within 12
hours. The sampled 2 million edges subset showcases a subtle recurrence pattern, which is consistent
with our analyses in previous sections.
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