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A Supplementary Material

A.1 Ethics Statement

The MM-Fi human subject study in this paper has been reviewed and approved by the IRB committee
at the Nanyang Technological University (IRB-2022-1067). The MM-Fi data has been de-identified
by facial blur. The subject recruitment is voluntary, and the involved subject has been informed that
the de-identified data was made publicly available for research purposes. As far as we know, this
research does not endanger any person directly. Nevertheless, it is acknowledged that pose estimation
and activity recognition research can potentially be used with malicious intent, such as user behavior
monitoring.

A.2 Dataset Documentation

Modality and Action Category. The MM-Fi dataset contains six modalities including RGB, infra,
depth, mmWave, LiDAR and WiFi CSI with open and widely used data formats, and consists of
4 environments for domain diversity. Demonstration videos can be referred to our project page
(https://ntu-aiot-lab.github.io/mm-fi). 40 volunteers participated in the data collection progress with
10 volunteers in one environment. The recommended actions contain daily actions and rehabilitation
actions, which are summarized in Table 1. Besides, illustration of all actions by a volunteer can be
viewed in the action checklist (i.e., demo image sequence of each action).

Distribution and Maintenance. The dataset with recommended instructions on how to download
and use is maintained in our GitHub repository (https://github.com/ybhbingo/MMFi_dataset) with
a registered DOI, which we will update timely according to the users’ and community’s advice. In
addition, for the accessibility of dataset and long-term preservation, we have uploaded dataset to
Google Drive, Baidu Netdisk and Alibaba Cloud with long-term cloud storage service (links are
shared in the GitHub repository). We provide two ways of downloading the dataset: whole zip file
download and multi-split download. The original dataset is organized in a clear structure so that users
could check the recovered dataset conveniently, which can be shown by Figure 2.

Dataset Toolbox. For convenient data loading, we have transformed the sensing data from different
modalities into the open and widely used data formats, which are listed in Table 2. We also
developed the dataset toolbox in the GitHub repository (https://github.com/ybhbingo/MMFi_dataset)
that provides the dataloader for PyTorch deep learning framework. The users can download the
data from the link and follow the instructions in our GitHub repository to load the data easily. The
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Action Description Category Action Description Category

A01 Stretching and relaxing Rehabilitation activities A15 Lunge (toward left) Rehabilitation activities

A02 Chest expansion (horizontal) Daily activities A16 Lunge (toward right) Rehabilitation activities

A03 Chest expansion (vertical) Daily activities A17 Waving hand (left) Daily activities

A04 Twist (left) Daily activities A18 Waving hand (right) Daily activities

A05 Twist (right) Daily activities A19 Picking up things Daily activities

A06 Mark time Rehabilitation activities A20 Throwing (toward left) Daily activities

A07 Limb extension (left) Rehabilitation activities A21 Throwing (toward right) Daily activities

A08 Limb extension (right) Rehabilitation activities A22 Kicking (toward left) Daily activities

A09 Lunge (toward left-front) Rehabilitation activities A23 Kicking (toward right) Daily activities

A10 Lunge (toward right-front) Rehabilitation activities A24 Body extension (left) Rehabilitation activities

A11 Limb extension (both) Rehabilitation activities A25 Body extension (right) Rehabilitation activities

A12 Squat Rehabilitation activities A26 Jumping up Rehabilitation activities

A13 Raising hand (left) Daily activities A27 Bowing Daily activities

A14 Raising hand (right) Daily activities

Table 1: The action list including daily activities and rehabilitation activities.

Modality Data format Data size File extension Modality Data format Data size File extension

RGB Numpy array 297× 17× 2 .npy WiFi CSI MATLAB matrix 297× 3× 114 .mat

infra1 Numpy array 297× 17× 2 .npy infra2 Numpy array 297× 17× 2 .npy

mmWave Binary 297 clouds .bin LiDAR Binary 297 clouds .bin

Depth Image 297× 640× 480 .png

Table 2: The data formats for different modalities.

anonymized version of RGB images, preserving the identifiable information of volunteers (already
with permissions from all volunteers), can be accessed after the application forms.

Environmental Details. To enhance the diversity of the MM-Fi dataset, we acquired data from four
distinct environmental settings (referred to as E01, E02, E03, and E04). Within each environment, a
cohort of ten participants was enlisted to execute a series of 27 commonplace human activities. As
shown in Fig. 1, the sensor platform is deployed both horizontally and vertically within Room 1 and
Room 2, respectively, contributing to 4 environmental settings. While both rooms share identical
dimensions (8.5 meters in length and 7.8 meters in width), they exhibit distinct spatial layouts, which
leads to diverse and varied sensor signals.

Data Processing. It is worth noting that for modalities with fixed input size from sensors, we have
reformed the sensing data into the common structured formats, i.e. an array structure in Numpy or
MATLAB, as shown in Table 2. For LiDAR data, since the original point cloud contains redundant
information (the laser scanner provides reflected data for all directions in our LiDAR device, Liu
but we only focus on the areas of interests where the subject stands), we have filtered the whole
cloud using bounding boxes. While for the mmWave modality, the number of points varies with the
body movement, indicating that even two consecutive frames would likely have different data sizes.
To enhance the sensing quality, we have aggregated five adjacent frames into a new frame for use.
Furthermore, padding is adopted for mmWave and LiDAR point clouds produced by the PyTorch
dataloader, in which the padded size is determined by the largest sample size within the batch. For
WiFi CSI data, there are some “-inf” values in some sequences. The “-inf” number comes from the
noise or empty frames from the CSI tool. In our benchmark, we deal with these numbers by linear
interpolation. To facilitate the users, we have embedded these processing codes into our dataset tool.
When the user loads our WiFi CSI data, these numbers will be handled by linear interpolation. The
codes can be found here.

Temporal Segment Annotation Process. As presented in Section 4.3, we provide the temporal
segment labels to enable temporal action segmentation and to provide more fine-grained samples. The
segment annotation process is performed by human annotators with an automated segment annotation

2

https://docs.google.com/forms/d/e/1FAIpQLSf_-qwJSsxY05yTfxFlqMZNCRLNozxL9EC_kMLGWuxNliU_TQ/viewform?usp=sf_link
https://github.com/ybhbingo/MMFi_dataset/blob/c58e8746a6645ec7c37dba19c0c10c20530cf89e/mmfi_lib/mmfi.py#L233-L245


Figure 1: The illustration of the four environmental settings. The experiment is carried out in two
rooms (Room 1 and Room 2), whose length and width are both 8.5m and 7.8m respectively.

program that feeds the human annotators with the long sequence frame-by-frame, and enables the
generation of temporal segments through human selected breakpoints. Each breakpoint is essentially
a frame that implies the end of an action. Each sequence is annotated by at least 5 human annotators.
To ensure correct segment annotation, a voting process is performed after all human annotations are
collected, where the breakpoints that are selected by the majority of the annotators are viewed as
the ground-truth breakpoints. The resulting action segments are frames between each breakpoint.
The resulting fine-grained samples are recorded in a “.csv” file with sample records as shown in
Table 3. The records includes the Environment, Subject, Action, and Segments information, where
the different segments are represented by the beginning and end frames.

Environment Subject Action Segments

E01 S01 A02 1-24; 25-50; 51-78; 79-105; 106-132; 133-160; 161-188; 189-218; 219-247; 248-277; 278-297

E01 S03 A18 1-15; 16-28; 29-41; 42-54; 55-67; 68-82; 83-96; 94-110; 111-124; 125-139; 140-152; 153-167; 168-181; 182-196; 197-210; 211-225; 226-239; 240-254; 255-267; 268-282; 283-297

Table 3: The data formats for different modalities.

Additional Annotator Details. Besides the regular loss function for annotating optimization, there
usually exists body occlusion in a series of actions, which would cause failure of keypoints recognition
and thus lead to inaccurate ground truth. As a result, we have introduced the specific regularizer LA

for better annotation quality with expert knowledge from several action directors and volunteers. To
be specific, we take the action "throwing toward left" (A20) for instance to illustrate how we define
LA and handle the occlusion problem. When a volunteer faces toward the left side, the left part of the
body (including the left arm and the left hip joint) would not be observed by the sensors, so we put
more regularizer terms regarding the relative positions between the joints, which is denoted by:

LA =

N∑
n=1

{γ1 ∥d(pn,lp, pn,rp)− lp∥+ γ2 ∥d(pn,ls, pn,rs)− ls∥+ γ3h(pn)} , (1)

where pn,lp and pn,rp denote the left and right hip joint of nth frame, respectively. lp is the mean
hip distance for the specific volunteer. The first term in (1) regularizes the unobservable left hip.
Similarly, the second term is designed for the unobservable shoulder joint. The last term plays the
role of constraining all the joints so that they would be within the sensing area, and the arms and legs
would not be "bent" backward given the particular coordinates.

A.3 License Agreement

This work has been licensed under CC BY-NC 4.0, and we bear all responsibility in case of violation
of rights, the novelty of work, and privacy leaks.

A.4 Benchmark Implementation Details

We implemented all the baseline methods using the PyTorch framework and ensured that the hy-
perparameter settings matched those specified in the original papers. All the codes with a manual
(README) for benchmarking each modality can be checked in the link. To account for variability,
we conducted each experiment three times with different random seeds and reported the mean and
standard deviation of the results. Our experiments were performed on a local Ubuntu 20.04 server
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Figure 2: The expanded directory of original MM-Fi dataset.

equipped with 4 NVIDIA RTX 3090 GPUs, an AMD Ryzen PRO 3000WX Series Processor (64
Cores), and 128GB RAM. The learned weights for multi-modal fusion are summarized in Table 4.

A.5 Details of Baseline Models.

WiFi We utilize MetaFi++ as our baseline, which is based on a convolutional network and employs
a self-attention mechanism (in transformer) to learn the importance between different antennas.
This enables selective fusion of relevant information from antennas, resulting in enhanced spatial
capture capability and achieving state-of-the-art scores. There are approaches in the field of WiFi
pose estimation, e.g., GoPose, WiPose, and Winect, all of which only use convolutional methods.
Moreover, these methods handle WiFi data with only 30 subcarriers, while our MM-Fi has a higher
granularity of data with 114 subcarriers, so the inconsistency of data prevents us from using these
methods as baselines.

LiDAR and mmWave radar The current human pose estimation (HPE) methods for point cloud
consist of convolutional networks, graph neural network, and the recent transformer. We chose
Point Transformer [1] as our point cloud backbone because it shows state-of-the-art performance on
many point cloud recognition tasks. Its design utilizes the self-attention mechanism to minimize the
computational complexity for each layer and maximize the number of parallelizable calculations,
which perfectly matches the characteristic of point cloud data.

RGB The visual baseline (VideoPose3D) is a popular 2D-to-3D solution that transforms 2D
keypoints to the 3D keypoints, developed by Facebook Research. We choose this baseline since it has
been widely utilized in many human pose estimation benchmarks [1][2]. There are many other works
in computer vision for 3D human pose estimation, and we welcome the community to supplement
more benchmarking results on our dataset.

A.6 Additional Evaluation of RGB Model

Due the the difference of viewing angles between the Human3.6M [16] and our dataset, the pre-trained
model on Human3.6M does not achieve satisfactory performance on the MPJPE metric, though the
PA-MPJPE is significantly reduced due to the coordinates alignment. For better evaluation of the
MM-Fi’s RGB modality, the VideoPose3D [29] model has been further trained from scratch based on
the MM-Fi’s RGB modality. To be detailed, we use 81 2D-keypoint frames to generate one 3D-joint
frame on the equivalent of a padding size of 40. The Adam optimizer is adopted and the learning rate
decays from 0.001 gradually along epochs. The results are summarized in Table 5. We can observe
that the re-trained RGB model obtains the best performance compared to other modalities.
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Protocol 1 Protocol 2 Protocol 3

Modalities Setting weights weights weights

S1 [0.0432, 0.9568] [0.0553, 0.9447] [0.0614, 0.9386]
S2 [0.0131, 0.9869] [-0.0013, 1.0013] [-0.0230, 1.0230]I+L
S3 [0.2634, 0.7366] [0.2727, 0.7273] [0.4957, 0.5043]

S1 [0.7955, 0.2045] [1.0126, -0.0126] [0.8197, 0.1803]
S2 [0.9617, 0.0383] [0.8124, 0.1876] [0.9287, 0.0713]R+W
S3 [0.8786, 0.1214] [0.9459, 0.0541] [0.9166, 0.0834]

S1 [0.2146, 0.8506, -0.0652] [0.2251, 0.7902, -0.0053] [0.2251, 0.7802, -0.0053]
S2 [0.1494, 0.9645, -0.1139] [0.2251, 0.7802, -0.0053] [0.0664, 0.9434, -0.0098]R+L+W
S3 [0.4307, 0.7733, -0.2040] [0.7483, 0.3627, -0.1110] [0.8843, 0.1852, -0.0695]

S1 [0.1391, 0.9152, -0.0913, 0.0370] [0.1569, 0.8247, -0.0240, 0.0424] [0.0822, 0.9123, -0.0550, 0.0605]
S2 [0.1266, 0.9721, -0.1256, 0.0269] [0.0529, 0.9523, 0.0618, -0.0670] [0.0877, 0.9384, -0.0363, 0.0102]R+L+W+I
S3 [0.2319, 0.5135, 0.0378, 0.2167] [0.3965, 0.4997, -0.0761, 0.1799] [0.4144, 0.3995, -0.1052, 0.2913]

Table 4: The weight matrix for the multi-modal human pose estimation results. The weight order in
the weights column corresponds to that in the modalities column.

Protocol 1 Protocol 2 Protocol 3

Setting MPJPE (mm) PA-MPJPE (mm) MPJPE (mm) PA-MPJPE (mm) MPJPE (mm) PA-MPJPE (mm)

S1 64.7±0.5 34.8±0.1 68.5±1.4 31.5±0.1 60.5±0.4 32.5±0.2

S2 88.4±1.1 35.8±0.1 82.8±1.5 32.1±0.1 85.7±0.5 33.4±0.1

S3 104.8±0.7 40.4±0.1 82.8±1.5 32.1±0.1 85.7±0.5 33.4±0.1

Table 5: The performance of the re-trained RGB model on the MM-Fi dataset. The mean and standard
deviation of MPJPE are reported under 3 settings and 3 protocols.

A.7 Visualization

To intuitively show the HPE results of each modality, we visualize the results of HPE using four
modalities in Figure 3. It is shown that the results of RGB, LiDAR, and mmWave radar are quite
accurate, but WiFi-based HPE is not satisfactory due to the resolution limitation.

Figure 3: The visualization of human pose estimation using four modalities.

A.8 Benchmark on Skeleton-Based Action Recognition

The MM-Fi can also serve the skeleton-based action recognition task based on various data modalities.
Here we leverage the results obtained by human pose estimation to conduct a new benchmark.

Implementation Details. In the official split of HPE, we have 30 subjects for training and 10
subjects for testing. After HPE, we have 3D human joints of 10 subjects, which serve as the dataset
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for skeleton-based action recognition using various data modalities. Each sequence is divided by 30
frames to generate small clips for action recognition. We split the data into 7 subjects (11340 frames)
for training and 3 subjects (4860 frames) for testing. We leverage two novel skeleton-based action
recognition methods, AGCN [2] (CVPR’19) and CTRGCN [1] (CVPR’21), with their pre-trained
model parameters on NTU-RGBD datasets. The hyper-parameters for training follow the original
papers. The learning rate starts from 0.1 and decays by 10 at the 5th and 10th epochs. The models
are optimized by the SGD optimizer with a Nesterov momentum of 0.9. The models are trained for
20 epochs with a batch size of 32 and a weight decay of 0.0001.

Results. As shown in Table 6, we can see that both AGCN and CTRGCN perform the best using
RGB data since the two models are originally built upon RGB data and the human joints predicted by
RGBD are quite well in the manuscript (Table 3). The second best modality is the mmWave radar
point cloud, which is better than the LiDAR results. However, in Table 3 of the manuscript, it is
shown that the HPE results of LiDAR are better than those of mmWave. We think that the better
action recognition results of mmWave are caused by a more smooth prediction of sequences. The
WiFi data cannot enable action recognition, as we find that some frames of joints predicted by WiFi
are not robustly consistent. Another interesting finding is that CTRGCN performs better than AGCN
on public RGBD datasets, but for various data modalities in MM-Fi, AGCN performs better. This
implies that CTRGCN overfits some RGBD datasets and may not really generalize well on other
datasets.

AGCN [2] CTRGCN [1]
Top 1 (%) Top 5 (%) Top 1 (%) Top 5 (%)

WiFi 5.45 21.63 5.12 23.33
mmWave Radar 65.25 93.44 60.97 91.07

LiDAR 54.44 91.03 35.97 74.12
RGBD 87.78 99.42 66.98 93.60

Table 6: The benchmark results for skeleton-based action recognition.

A.9 More Uses: New Research Tasks

MM-Fi significantly expands the horizons of research by furnishing meticulously synchronized
multimodal human sensing data. As advised by the reviewer, we have encapsulated these novel
research directions as follows, and have incorporated these enhancements into the manuscript:

Cross-domain wireless sensing. The realm of wireless sensing is often challenged by recognition
performance disparities stemming from domain shifts, which arise due to variations in environments
and subjects. While this issue has garnered extensive exploration within action recognition based
on RGB data, it remains relatively uncharted within the context of Human Pose Estimation (HPE)
utilizing modalities such as mmWave, LiDAR, and WiFi. The MM-Fi dataset presents a unique
opportunity to address this gap by facilitating research into domain adaptation and generalization for
HPE on these emerging modalities. By enabling investigations into the adaptation of models across
diverse domains, MM-Fi opens avenues for enhancing the robustness and applicability of wireless
sensing technologies.

Cross-modal supervision for fine-grained wireless sensing. Previous works have showcased
the utility of WiFi and mmWave radar for action recognition tasks. However, MM-Fi introduces a
transformative dimension by offering meticulously synchronized multimodal data and comprehensive
annotations. Based on MM-Fi, cross-modal learning can enable these sparse data modality to achieve
fine-grained recognition tasks, e.g., human pose estimation and action segmentation.

Multi-modal wireless sensing. MM-Fi’s integration of five distinct modalities empowers re-
searchers to explore the potential of multi-modal wireless sensing, where different sensing tech-
nologies complement each other to achieve more comprehensive and accurate insights into human
behavior. For example, integrating RGB and WiFi can overcome the illumination issue of RGB-based
solutions. This dataset serves as a launchpad for pioneering investigations into techniques that fuse
information from LiDAR, mmWave radar, and WiFi signals to attain a holistic understanding of
human actions and interactions. As researchers delve into multi-modal fusion methods, the MM-Fi
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dataset becomes a valuable resource for the development of advanced solutions that leverage the
strengths of each modality, while compensating for their individual limitations.

A.10 Sensor Specifications

We briefly introduce the sensors used in our collection platform. Note that some sensors have very
high sampling rate or data resolution, but we do not use the maximum setting in our data collection.
The experimental setting has been illustrated in Section 3.

WiFi We develop a customized OpenWrt firmware for COTS WiFi devices (TP-Link N750) using
the Atheros CSI tool to enable a large-scale implementation of various CSI-enabled applications. Our
platform reports all the 114 subcarriers for the 40 MHz bandwidth on each antenna pair operating
on 5 GHz. The platform has 3 pairs of antennas with one on transmitter and three on receivers to
collect the CSI data based on our developed firmware tool, which finally provides a CSI data stream
of 100Hz after average sliding on the raw data.

Lidar Ouster OS1 32-channel LiDAR is used to acquire dense point cloud data. It contains 32
vertical beams, which provides ±0.7-5cm vertical angular resolution. Its vertical field of view is 45
degrees and its range is 120m. It can capture dense point clouds with a maximum of 1,310,720 points
per second. In MM-Fi, we collected the raw data under 10 Hz frequency.

mmWave radar The Texas Instruments (TI) IWR6843AOP mmWave radar is used to collect
mmWave point clouds with up to 30FPS. It is an integrated single-chip mmWave sensor that has 3
antennas to transmit FMCW and use 4 antennas to receive reflected FMCW by utilizing 60-64 GHz
radio band. Under the condition of 1.0-V internal LDO bypass model and 48% duty cycle, its typical
power consumption is 1.75 W.

RGB-D The Intel RealSense camera D435, consisting of a depth module, an RGB module and a
Realsense vision processor D4, is a stereo solution, offering quality depth for a variety of applications.
The RGB module applies the rolling shutter technology, enabling the maximal 1920x1080 high-
resolution RGB frame acquisition at a sensing rate of 30 fps. Its horizontal and vertical fields of view
are 69 degrees and 42 degrees, respectively. The depth module, formed with one IR projector and two
imagers, could obtain a larger sensing field of view with 87 (horizontal) and 58 (vertical) degrees, and
provide a 1280x720 resolution depth frame at up to 90 fps. What’s more, due to the global shutter
technology, the depth module could even work in low-light situations, making the Realsense D435 a
good solution for all-day depth sensing applications.
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