411 A Extension to k-Means and (k, p)-Clustering

As stated in [20, 8], while [27] only discusses the k-median problem, their construction can easily be modified to work for k-means clustering and further generalized to work for (k, p)-clustering, where the (k, p)-clustering problem is defined in the same way as k-median problem except that we want to minimize $\sum_{x \in U} d(x, S)^p$ for some $S \subseteq U$ of size at most k. Note that (k, 1)-clustering and (k, 2)-clustering correspond to k-median and k-means respectively.

We define a ρ -metric space (U, d) in the same way as a metric space except for relaxing the condition that d must satisfy the triangle inequality to the condition that $d(x, y) \leq \rho(d(x, z) + d(z, y))$ for all $x, y, x \in U$. Given a metric space (U, d) and some $p \geq 1$, the results in Section 6 of [9] can easily be used to show that (U, d^p) is a 2^{p-1} -metric space, where $d^p(x, y)$ is defined to be $d(x, y)^p$.

We now show that the assignment σ maintained by our algorithm is $O(\rho^3)$ -approximate when U is a ρ -metric space (i.e. that $cost(\sigma) = O(\rho^3) \cdot opt(U)$) and that the extraction technique of [18] can be generalized to ρ -metric spaces.

Lemma A.1. When the underlying space U is a ρ -metric space, the assignment σ maintained by our algorithm is $O(\rho^3)$ -approximate.

Proof. By making the appropriate changes to the proofs of Lemma B.3 and Lemma B.4, we get generalizations of these lemmas to ρ -metric spaces, where the lemma statements are the same except for an extra ρ factor in the inequalities.

Lemma A.2. Given any positive ξ , there exists a sufficiently large choice of α such that $\nu_i \leq 2\rho \cdot \mu_{\gamma}(U_i^{\text{OLD}})$ for each $i \in [t-1]$ with probability at least $1 - e^{-\xi k'}$.

Lemma A.3. Given metric subspaces U_1 and U_2 of U such that $|U_1 \oplus U_2| \le \epsilon \gamma |U_1|$, we have that $\mu_{\gamma}(U_1) \le 2\rho \cdot \mu_{\gamma^*}(U_2)$.

⁴³³ These two lemmas immediately imply the following generalization of Lemma B.5.

434 **Lemma A.4.** $\nu_i \leq 4\rho^2 \cdot \mu_{\gamma^*}(U_i)$ for each $i \in [t-1]$ with probability at least $1 - e^{-\xi k'}$.

The upper bound on $cost(\sigma)$ given in Lemma B.6 can be generalized by noticing that $cost(\sigma, C_i) \leq 2\rho\nu_i |C_i|$ for all $i \in [t-1]$, which us that

$$cost(\sigma) \le \sum_{i=1}^{t} 2\rho \nu_i |C_i|.$$

⁴³⁷ The lower bound on opt(U) given in Lemma B.10 holds for ρ -metric spaces with no modifications. ⁴³⁸ Hence, we get that with probability at least $1 - e^{-\xi k'}$ we have that

$$\cos(\sigma) \le \sum_{i=1}^{t} 2\rho\nu_i |C_i| \le \sum_{i=1}^{t} 8\rho^3 \mu_i |C_i| \le \frac{16\rho^3 r}{1 - \gamma^*} \cos(S)$$

439

By making the appropriate modifications to the proof of Theorem C.1, we can extend this theorem to work for ρ -metric spaces. In particular, we can obtain a proof of Theorem A.5 by taking the proof of Theorem C.1 and adding extra ρ factors whenever the triangle inequality is applied.

Theorem A.5. Given a ϕ -approximate m-assignment $\pi : U \to U$, any ψ -approximate solution to the weighted k-median instance $(\pi(U), d, w)$, where each point $x \in \pi(U)$ receives weight $w(x) := |\pi^{-1}(x)|$, is also a $\rho (\phi + 2(1 + \phi)\psi\rho^2)$ -approximate solution to the k-median instance (U, d) where U is a ρ -metric space.

Since the algorithm in [26] is O(1)-approximate on O(1)-metric spaces, it immediately follows by applying Theorem A.5 and Lemma A.1 that our algorithm maintains a O(1)-approximate solution to the *k*-median problem on (U, d^p) for p = O(1). Since the *k*-median problem on (U, d^p) is exactly the (k, p)-clustering problem on (U, d), it follows that our algorithm generalizes to solve instances of (k, p)-clustering in metric spaces.

452 B Proofs of Lemma 3.2 and Lemma 3.3

Throughout this section, we fix γ to be any real such that $\beta < \gamma < 1$ and ϵ to be any real such that $0 < \epsilon < \min\{\frac{1-\gamma}{2\gamma}, 1\}$. Let β^* and γ^* denote $\beta(1-\epsilon)$ and $\gamma(1+2\epsilon)$ respectively.

455 B.1 Proof of Lemma 3.2

456 We first prove Lemma B.1, which shows that the sizes of the sets U_i decrease exponentially with *i*.

457 **Lemma B.1.** For all $i \in [t-1]$, $|U_{i+1}| \le (1-\beta^*)|U_i|$.

Proof. Consider the ratio $|U_{i+1}|/|U_i|$. Since $U_{i+1} \subseteq U_i$ and U_{i+1} is reconstructed every time U_i is reconstructed, it follows that $|U_{i+1}|/|U_i|$ is at most $(n_{i+1} + \ell)/(n_i + \ell - \ell')$, where n_j is the size of U_j at the time it was last reconstructed and ℓ and ℓ' are the number of insertions and deletions that have occurred since the last time U_{i+1} was reconstructed respectively. By Lemma B.2, we get that this expression is upper bounded by $(n_{i+1} + \tau n_{i+1})/n_i$. Now we can observe that

$$\frac{|U_{i+1}|}{|U_i|} \le \frac{n_{i+1} + \ell}{n_i + \ell - \ell'} \le \frac{n_{i+1} + \tau n_{i+1}}{n_i} \le \frac{n_{i+1}}{n_i} + \tau \le (1 - \beta) + \epsilon\beta = 1 - \beta^*,$$

where we use the facts that $n_{i+1} \leq (1-\beta)n_i$ and $\tau \leq \epsilon\beta$ in the final inequality.

Lemma B.2. Given some integer $i \in [t-1]$, let ℓ and ℓ' be the number of insertions and deletions that have occurred since the last time U_{i+1} was reconstructed respectively. Then we have that

$$\frac{n_{i+1} + \ell}{n_i + \ell - \ell'} \le \frac{n_{i+1} + \tau n_{i+1}}{n_i}.$$

 $\begin{array}{ll} \text{466} & \textit{Proof. First, note that } (n_{i+1}+\ell)/(n_i+\ell-\ell') \leq (n_{i+1}+\ell)/(n_i-\ell'). \text{ Now, given some reals } A \geq 0 \\ \text{467} & a \geq 0 \text{ and } 0 \leq N \leq A-a, \text{ we define a function } f:[0,1] \rightarrow \mathbb{R} \text{ by } f(x) = (a+xN)/(A-(1-x)N). \\ \text{468} & \text{The derivative of } f \text{ is } -N(a-A+N)/((x-1)N+A)^2 \text{ and is non-negative for all } x \in [0,1]. \\ \text{469} & \text{Hence, } f(x) \leq f(1) \text{ for all } x \in [0,1]. \end{array}$

By setting $A = n_i$, $a = n_{i+1}$, $N = \ell + \ell'$ and noting that $\ell + \ell' \leq \tau n_{i+1}$ by Invariant 3.1 and $n_{i+1} \leq (1 - \beta)n_i$, we get that

$$\ell + \ell' \le \tau n_{i+1} \le \beta n_{i+1} = (1+\beta)n_{i+1} - n_{i+1} \le (1+\beta)(1-\beta)n_i - n_{i+1} \le n_i - n_{i+1},$$

and hence it follows that

$$\frac{n_{i+1} + \ell}{n_i - \ell'} = f\left(\frac{\ell}{\ell + \ell'}\right) \le f(1) = \frac{n_{i+1} + \ell + \ell'}{n_i} \le \frac{n_{i+1} + \tau n_{i+1}}{n_i}.$$

473

474

475 Since $|U_1| = |U|$, $|U_{t-1}| > (1 - \tau)\alpha k' = \Omega(k)$, and β^* is a constant, we infer that t =476 $O\left(\log \frac{|U|}{k}\right) = \tilde{O}(1)$.

477 B.2 Proof of Lemma 3.3

Bounding the Radii ν_i (Lemma B.5): Let U_i^{OLD} denote the state of the *i*th layer the last time it was reconstructed for $i \in [t]$. We now use the following crucial lemma which is analogous to Lemma 480 4.3.3 in [25].

Lemma B.3. Given any positive ξ , there exists a sufficiently large choice of α such that $\nu_i \leq 2\mu_{\gamma}(U_i^{\text{OLD}})$ for each $i \in [t-1]$ with probability at least $1 - e^{-\xi k'}$.

Henceforth, we fix some positive ξ and sufficiently large α such that Lemma B.3 holds.

Lemma B.4. Given metric subspaces U_1 and U_2 of U such that $|U_1 \oplus U_2| \le \epsilon \gamma |U_1|$, we have that 484 $\mu_{\gamma}(U_1) \leq 2\mu_{\gamma^*}(U_2).^4$ 485

Proof. Let X be a subset of U_2 of size k such that $\nu_{\gamma(1+2\epsilon)}(X, U_2) = \mu_{\gamma(1+2\epsilon)}(U_2)$, $\rho = \mu_{\gamma(1+2\epsilon)}(U_2)$ 486 $\mu_{\gamma(1+2\epsilon)}(U_2)$, and $A = B_{U_1}(X, \rho)$. Now note that 487

$$\begin{split} |A| &= |B_{U_1 \cup U_2}(X,\rho) \setminus B_{U_2 \setminus U_1}(X,\rho)| \\ &\geq |B_{U_2}(X,\rho)| - |B_{U_2 \setminus U_1}(X,\rho)| \\ &\geq \gamma(1+2\epsilon)|U_2| - |U_2 \setminus U_1| \\ &\geq \gamma(1+2\epsilon)|U_2| - \epsilon\gamma|U_1| \\ &\geq \gamma(1+2\epsilon)\left(|U_1| - \epsilon\gamma|U_1|\right) - \epsilon\gamma|U_1| \\ &= \gamma|U_1| + \epsilon\gamma(1-\gamma(1+2\epsilon))|U_1| \\ &\geq \gamma|U_1|. \end{split}$$

Since there also exists a subset $Y \subseteq A$ of size k such that $A \subseteq B_{U_1}(Y, 2\rho)$, it follows that 488 $\nu_{\gamma}(Y, U_1) \leq 2\rho$. Hence, $\mu_{\gamma}(U_1) \leq \nu_{\gamma}(Y, U_1) \leq 2\mu_{\gamma(1+2\epsilon)}(U_2)$. 489

Lemma B.5. $\nu_i \leq 4\mu_{\gamma^*}(U_i)$ for each $i \in [t-1]$ with probability at least $1 - e^{-\xi k'}$. 490

Proof. For each $i \in [t-1]$, $|U_i \oplus U_i^{\text{OLD}}| \le \tau |U_i^{\text{OLD}}|$ since, by Invariant 3.1, at most $\tau |U_i^{\text{OLD}}|$ points have been inserted or deleted from U_i since it was last reconstructed. Noticing that $\tau \le \epsilon \gamma$, we can 491 492 see that 493

$$|U_i \oplus U_i^{\text{old}}| \le \epsilon \gamma |U_i^{\text{old}}|$$

By now applying Lemma B.4 it follows that $\mu_{\gamma}(U_i^{\text{OLD}}) \leq 2\mu_{\gamma^*}(U_i)$. The lemma follows by combin-494 495 ing this result with Lemma B.3. \square

Upper Bounding $cost(\sigma)$ (Lemma B.6): 496 Lemma B.6.

$$cost(\sigma) \le \sum_{i=1}^{t} 2\nu_i |C_i|.$$

Proof. We first note that for all $i \in [t-1]$, $cost(\sigma, C_i) \leq 2\nu_i |C_i|$. This follows directly from the 497

fact that each point x in C_i is assigned to some point $y \in C_i$ such that $d(x, y) \leq 2\nu_i$. Since the C_i 498 partition U and $cost(\sigma, C_t) = 0$, we get: 499

$$\operatorname{cost}(\sigma) = \sum_{i=1}^{t} \operatorname{cost}(\sigma, C_i) \le \sum_{i=1}^{t} 2\nu_i |C_i|.$$

500

Lower Bounding opt(U) (Lemma B.10): Let r denote $\lceil \log_{1-\beta^*} \frac{1-\gamma^*}{3} \rceil$ and for each $i \in [t]$ let 501 μ_i denote $\mu_{\gamma^*}(U_i)$. 502

For the rest of this subsection we fix an arbitrary $S \subseteq U$ of size k. For each $i \in [t]$, let F_i denote 503 the set $\{x \in U_i \mid d(x, S) \ge \mu_i\}$, and for any integer $\overline{m} > 0$, let F_i^m denote $F_i \setminus (\bigcup_{j>0} F_{i+jm})$ and $G_{i,m}$ denote the set of all integers $j \in [t]$ and $j \equiv i \pmod{m}$. 504

505

Lemma B.7. Given some $i \in [t]$ and a subset $X \subseteq F_i$, we have that $|F_i| \ge (1 - \gamma^*)|U_i|$ and 506 $cost(S, X) \ge \mu_i |X|.$ 507

Proof. It follows directly from the definition of μ_i that we have that $|F_i| \ge (1 - \gamma^*)|U_i|$. By the definition of F_i , we have that $cost(S, X) = \sum_{x \in X} d(x, S) \ge \mu_i |X|$. 508 509

The following lemma is proven in [25]. 510

⁴ \oplus denotes symmetric difference, i.e. $U_1 \oplus U_2 = (U_1 \setminus U_2) \cup (U_2 \setminus U_1)$.

Lemma B.8 ([25], Lemma 4.3.8). Given integers $\ell \in [t]$ and m > 0, we have that 511

$$\operatorname{cost}(S, \bigcup_{i \in G_{\ell,m}} F_i^m) \ge \sum_{i \in G_{\ell,m}} \mu_i |F_i^m|.$$

Lemma B.9. For all $i \in [t-1]$, we have that $|F_i^r| \ge \frac{1}{2}|F_i|$. 512

Proof. We first note that for all $i \in [t - r]$, we have that $|F_{i+r}| \leq \frac{1}{3}|F_i|$. This follows from the fact 513 514 that

$$|F_{i+r}| \le |U_{i+r}| \le (1-\beta^*)^r |U_i| \le \frac{(1-\beta^*)^r}{1-\gamma^*} |F_i| \le \frac{1}{3} |F_i|,$$

515

where the first inequality follows from the fact that $F_{i+r} \subseteq U_{i+r}$, the second inequality follows from Lemma B.1, the third inequality follows from Lemma B.7, and the fourth inequality follows from the 516 517 definition of r. We now get that

$$|F_i^r| = |F_i \setminus \bigcup_{j>0} F_{i+jr}| \ge |F_i| - \sum_{j>0} \frac{1}{3^j} |F_i| \ge \frac{1}{2} |F_i|.$$

518

Lemma B.10.

$$\operatorname{cost}(S) \geq \frac{1 - \gamma^*}{2r} \sum_{i=1}^t \mu_i |C_i|.$$

Proof. Let $\ell = \arg \max_{0 \le \ell < r} \{ \sum_{i \in G_{\ell,r}} \mu_i | F_i^r | \}$. Then we have that 519

$$\begin{aligned} \mathsf{cost}(S) &\geq \mathsf{cost}(S, \cup_{i \in G_{\ell,r}} F_i^r) \geq \sum_{i \in G_{\ell,r}} \mu_i |F_i^r| \geq \frac{1}{r} \sum_{i=1}^t \mu_i |F_i^r| \geq \frac{1}{2r} \sum_{i=1}^t \mu_i |F_i| \\ &\geq \frac{1 - \gamma^*}{2r} \sum_{i=1}^t \mu_i |U_i| \geq \frac{1 - \gamma^*}{2r} \sum_{i=1}^t \mu_i |C_i|. \end{aligned}$$

The second inequality follows from Lemma B.8, the third inequality from averaging and the choice 520 of ℓ , the fourth inequality from Lemma B.9, and the fifth inequality from Lemma B.7. 521

Proof of Lemma 3.3: It follows that with probability at least $1 - e^{-\xi k'}$ we have that 522

$$\operatorname{cost}(\sigma) \leq \sum_{i=1}^{t} 2\nu_i |C_i| \leq \sum_{i=1}^{t} 8\mu_i |C_i| \leq \frac{16r}{1-\gamma^*} \operatorname{cost}(S)$$

for any set $S \subseteq U$ of size k. Hence, we have that 523

$$\operatorname{cost}(\sigma) \leq \frac{16r}{1 - \gamma^*} \operatorname{opt}(U).$$

Proof of Corollary 3.4 С 524

In order to prove this corollary, we apply the extraction technique presented in [27] (with full details 525 appearing in [25]) which is a slight generalization of the techniques from [18]. In particular, we 526 use the following theorem which follows as an immediate corollary of Theorem 6 in [25]. For 527 completeness, we provide a proof of this theorem. 528

Theorem C.1. Given a ϕ -approximate m-assignment $\pi : U \to U$, any ψ -approximate solution 529 to the weighted k-median instance $(\pi(U), d, w)$, where each point $x \in \pi(U)$ receives weight 530 $w(x) := |\pi^{-1}(x)|$, is also a $(\phi + 2(1 + \phi)\psi)$ -approximate solution to the k-median instance (U, d). 531

Proof. Let S^* be a solution to the weighted k-median instance $(\pi(U), d, w)$ and let S be an optimal solution to the k-median instance (U, d). Let ϕ and ψ be constants such that $cost(\pi, U) \leq \phi \cdot opt(U)$ and $cost_w(S^*, \pi(U)) \leq \psi \cdot opt_w(\pi(U))$. We now show that $cost(S^*, U) = O(1) \cdot opt(U)$. We first note that

$$\begin{aligned} \operatorname{cost}(S^*, U) &= \sum_{x \in U} d(x, S^*) \\ &\leq \sum_{x \in U} d(x, \pi(x)) + \sum_{y \in \pi(U)} w(y) \cdot d(y, S^*) \\ &= \operatorname{cost}(\pi, U) + \operatorname{cost}_w(S^*, \pi(U)) \\ &\leq \phi \cdot \operatorname{opt}(U) + \operatorname{cost}_w(S^*, \pi(U)). \end{aligned}$$

Now note that, for any $X \subseteq U$ of size at most k, there exists some $Y \subseteq \pi(U)$ of size at most k such that $cost_w(Y, \pi(U)) \leq 2 \cdot cost_w(X, \pi(U))$. Since $cost_w(S^*, \pi(U)) \leq \psi \cdot cost_w(Y, \pi(U))$ for all $Y \subseteq \pi(Y)$ of size at most k, we get the following.

$$\begin{split} \operatorname{cost}_w(S^*, \pi(U)) &\leq 2\psi \cdot \operatorname{cost}_w(S, \pi(U)) \\ &= 2\psi \cdot \sum_{y \in \pi(U)} w(y) \cdot d(y, S) \\ &= 2\psi \cdot \sum_{x \in U} d(\pi(x), S) \\ &\leq 2\psi \cdot \sum_{x \in U} d(x, \pi(x)) + 2\psi \cdot \sum_{x \in U} d(x, S) \\ &= 2\psi \cdot \operatorname{cost}(\pi, U) + 2\psi \cdot \operatorname{opt}(U) \\ &\leq 2(1 + \phi)\psi \cdot \operatorname{opt}(U). \end{split}$$

539 By combining these two chains of inequalities, we get that

$$\operatorname{cost}(S^*, U) \le \phi \cdot \operatorname{opt}(U) + \operatorname{cost}_w(S^*, \pi(U)) \le (\phi + 2(1+\phi)\psi) \cdot \operatorname{opt}(U).$$

540

It immediately follows that we can get a O(1)-approximate solution to the instance (U, d) by running a static weighted k-median algorithm on the instance $(\sigma(U), d, w)$.

543 **D** Lower Bounds on Update and Query Time

In the static (i.e. non-dynamic) setting, the k-median problem is defined as follows: given a metric space U, return a set S of at most k points from U which minimizes the value of $\sum_{x \in S} d(x, S)$. The following lower bound for the static k-median problem is proven by Mettu in [25].

Theorem D.1. Any O(1)-approximate randomized (static) algorithm for the k-median problem, which succeeds with even negligible probability, runs in time $\Omega(nk)$.

Informally, the proof of this lower bound is obtained by constructing, for each $\delta > 0$, an input distribution of metric spaces (with polynomially bounded aspect ratio) on which no deterministic algorithm for the *k*-median problem succeeds with probability more than δ . Theorem D.1 then follows by an application of Yao's minmax principle.

We can use this lower bound from the static setting in order to get a lower bound for the dynamic 553 setting. First note that any incremental algorithm for k-median with amortized update time u(n, k)554 and query time q(n, k) can be used to construct a static algorithm for the k-median problem with 555 running time $n \cdot u(n, k) + q(n, k)$ by inserting each point in the input metric space U followed by 556 a solution query. Hence, by Theorem D.1, we must have that $n \cdot u(n, k) + q(n, k) = \Omega(nk)$. Now 557 assume that some incremental algorithm for k-median has query time $\tilde{O}(\text{poly}(k))$. If this algorithm 558 also has an amortized update time of $\tilde{o}(k)$, then for the range of values of k where $q(n,k) = \tilde{o}(nk)$, 559 it follows that $\tilde{o}(nk)$ is $\Omega(nk)$, giving a contradiction. Hence, the amortized update time must be 560 $\Omega(k)$ and Theorem D.2 follows. 561

- Theorem D.2. Any O(1)-approximate incremental algorithm for the k-median problem with $\tilde{O}(\text{poly}(k))$ query time must have $\tilde{\Omega}(k)$ amortized update time.
- ⁵⁶⁴ It follows that the update time of our algorithm is optimal up to polylogarithmic factors.

565 E Omitted experimental results.

Figure 2: The cumulative update time for the different algorithms, on the Song dataset for k = 10 (top left), k = 50 (top right), k = 100 (bottom).

Figure 3: The cumulative update time for the different algorithms, on the Census dataset for k = 10 (top left), k = 50 (top right), k = 100 (bottom).

Figure 4: The cumulative update time for the different algorithms, on the KDD-Cup dataset for k = 10 (top left), k = 50 (top right), k = 100 (bottom).

Figure 5: The cumulative update time for the different algorithms, on the Drift dataset for k = 10 (top left), k = 50 (top right), k = 100 (bottom).

Figure 6: The cumulative update time for the different algorithms, on the SIFT10M dataset for k = 10 (top left), k = 50 (top right), k = 100 (bottom).

567 E.2 Solution cost evaluation.

Figure 7: The solution cost by the different algorithms, on Song for k = 10 (top left), k = 50 (top right), k = 100 (bottom).

Figure 8: The solution cost by the different algorithms, on Census for k = 10 (top left), k = 50 (top right), k = 100 (bottom).

Figure 9: The solution cost by the different algorithms, on KDD-Cup for k = 10 (top left), k = 50 (top right), k = 100 (bottom).

Figure 10: The solution cost by the different algorithms, on Drift for k = 10 (top left), k = 50 (top right), k = 100 (bottom).

Figure 11: The solution cost by the different algorithms, on SIFT10M for k = 10 (top left), k = 50 (top right), k = 100 (bottom).

568 E.3 Query time evaluation

Table 4: The average query times for the algorithm $OURALG(\phi = 500)$ and $HK(\psi = 1000)$ (we omit the parameter value from the table to simplify the presentation), on the different datasets that we consider and for $k \in \{10, 50, 100\}$.

	Song		Census		KDD-Cup		Drift		SIFT10M	
	OURALG	HK	OURALG	HK	OURALG	HK	OURALG	HK	OURALG	HK
k = 10	0.569	0.327	0.478	0.280	0.069	0.176	0.729	0.421	0.732	0.419
k = 50	0.610	0.347	0.511	0.295	0.075	0.141	0.784	0.447	0.795	0.448
k = 100	0.665	0.373	0.552	0.317	0.085	0.131	0.857	0.483	0.866	0.483

569 E.4 Parameter tuning.

570 E.4.1 Update time.

Figure 12: The cumulative update time for different parameters of OURALG and HK, for k = 50, on datasets Song (top left), Census (top right), and KDD-Cup (bottom).

Figure 13: The solution cost for different parameters of OURALG and HK, for k = 50, on datasets Song (top left), Census (top right), and KDD-Cup (bottom).

572 E.4.3 Query time.

Table 5: The average query times for the algorithm OURALG and HK with different parameters, on the different datasets for k = 50.

	Song	Census	KDD-Cup
$HK(\psi = 250)$	0.026	0.021	0.012
$HK(\psi = 500)$	0.087	0.073	0.043
$HK(\psi = 1000)$	0.293	0.249	0.156
$OURALG(\phi = 250)$	0.223	0.187	0.054
$OURALG(\phi = 500)$	0.439	0.364	0.086
$\operatorname{OurAlg}(\phi = 1000)$	0.719	0.605	0.146

573 E.5 Randomized order of updates.

574 E.5.1 Update time.

Figure 14: The cumulative update time for different parameters of OURALG and HK, for k = 50, over a sequence of updates given by a randomized order of the points in the dataset, on the datasets Song (top left), Census (top right), and KDD-Cup (bottom).

575

576 E.5.2 Solution cost.

Figure 15: The solution cost for different parameters of OURALG and HK, for k = 50, over a sequence of updates given by a randomized order of the points in the dataset, on the datasets Song (top left), Census (top right), and KDD-Cup (bottom).

577 E.5.3 Query time.

Table 6: The average query times for the algorithm OURALG and HK with different parameters, for k = 50, over a sequence of updates given by a randomized order of the points in each of the datasets that we consider.

	Song	Census	KDD-Cup
$HK(\psi = 250)$	0.025	0.021	0.014
$HK(\psi = 500)$	0.086	0.073	0.050
$HK(\psi = 1000)$	0.292	0.247	0.173
$OURALG(\phi = 250)$	0.225	0.185	0.062
$OurAlg(\phi = 500)$	0.440	0.364	0.100
$\operatorname{OurAlg}(\phi = 1000)$	0.723	0.605	0.165

578 E.6 Larger experiment.

Figure 16: The total update time for $OURALG(\phi = 500)$ and $HK(\psi = 1000)$, on the larger instance derived from KDD-Cup, for k = 50.

Figure 17: The solution cost produced by OURALG($\phi = 500$) and HK($\psi = 1000$) two algorithms, on the larger instance derived from KDD-Cup, for k = 50.

The average query times for OURALG($\phi = 500$) and HK($\psi = 1000$) while handling this longer sequence of updates were 0.416 and 0.225 respectively.