
A Extension to k-Means and (k, p)-Clustering411

As stated in [20, 8], while [27] only discusses the k-median problem, their construction can easily412

be modified to work for k-means clustering and further generalized to work for (k, p)-clustering,413

where the (k, p)-clustering problem is defined in the same way as k-median problem except that we414

want to minimize
∑

x∈U d(x, S)
p for some S ⊆ U of size at most k. Note that (k, 1)-clustering and415

(k, 2)-clustering correspond to k-median and k-means respectively.416

We define a ρ-metric space (U, d) in the same way as a metric space except for relaxing the condition417

that d must satisfy the triangle inequality to the condition that d(x, y) ≤ ρ(d(x, z) + d(z, y)) for all418

x, y, x ∈ U . Given a metric space (U, d) and some p ≥ 1, the results in Section 6 of [9] can easily be419

used to show that (U, dp) is a 2p−1-metric space, where dp(x, y) is defined to be d(x, y)p.420

We now show that the assignment σ maintained by our algorithm is O(ρ3)-approximate when U is a421

ρ-metric space (i.e. that cost(σ) = O(ρ3) · opt(U)) and that the extraction technique of [18] can be422

generalized to ρ-metric spaces.423

Lemma A.1. When the underlying space U is a ρ-metric space, the assignment σ maintained by our424

algorithm is O(ρ3)-approximate.425

Proof. By making the appropriate changes to the proofs of Lemma B.3 and Lemma B.4, we get426

generalizations of these lemmas to ρ-metric spaces, where the lemma statements are the same except427

for an extra ρ factor in the inequalities.428

Lemma A.2. Given any positive ξ, there exists a sufficiently large choice of α such that νi ≤429

2ρ · µγ(U
OLD
i ) for each i ∈ [t− 1] with probability at least 1− e−ξk′

.430

Lemma A.3. Given metric subspaces U1 and U2 of U such that |U1 ⊕ U2| ≤ ϵγ|U1|, we have that431

µγ(U1) ≤ 2ρ · µγ∗(U2).432

These two lemmas immediately imply the following generalization of Lemma B.5.433

Lemma A.4. νi ≤ 4ρ2 · µγ∗(Ui) for each i ∈ [t− 1] with probability at least 1− e−ξk′
.434

The upper bound on cost(σ) given in Lemma B.6 can be generalized by noticing that cost(σ,Ci) ≤435

2ρνi|Ci| for all i ∈ [t− 1], which us that436

cost(σ) ≤
t∑

i=1

2ρνi|Ci|.

The lower bound on opt(U) given in Lemma B.10 holds for ρ-metric spaces with no modifications.437

Hence, we get that with probability at least 1− e−ξk′
we have that438

cost(σ) ≤
t∑

i=1

2ρνi|Ci| ≤
t∑

i=1

8ρ3µi|Ci| ≤
16ρ3r

1− γ∗
cost(S)

439

By making the appropriate modifications to the proof of Theorem C.1, we can extend this theorem to440

work for ρ-metric spaces. In particular, we can obtain a proof of Theorem A.5 by taking the proof of441

Theorem C.1 and adding extra ρ factors whenever the triangle inequality is applied.442

Theorem A.5. Given a ϕ-approximate m-assignment π : U → U , any ψ-approximate solution443

to the weighted k-median instance (π(U), d, w), where each point x ∈ π(U) receives weight444

w(x) := |π−1(x)|, is also a ρ
(
ϕ+ 2(1 + ϕ)ψρ2

)
-approximate solution to the k-median instance445

(U, d) where U is a ρ-metric space.446

Since the algorithm in [26] is O(1)-approximate on O(1)-metric spaces, it immediately follows by447

applying Theorem A.5 and Lemma A.1 that our algorithm maintains a O(1)-approximate solution to448

the k-median problem on (U, dp) for p = O(1). Since the k-median problem on (U, dp) is exactly449

the (k, p)-clustering problem on (U, d), it follows that our algorithm generalizes to solve instances of450

(k, p)-clustering in metric spaces.451
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B Proofs of Lemma 3.2 and Lemma 3.3452

Throughout this section, we fix γ to be any real such that β < γ < 1 and ϵ to be any real such that453

0 < ϵ < min{ 1−γ
2γ , 1}. Let β∗ and γ∗ denote β(1− ϵ) and γ(1 + 2ϵ) respectively.454

B.1 Proof of Lemma 3.2455

We first prove Lemma B.1, which shows that the sizes of the sets Ui decrease exponentially with i.456

Lemma B.1. For all i ∈ [t− 1], |Ui+1| ≤ (1− β∗)|Ui|.457

Proof. Consider the ratio |Ui+1|/|Ui|. Since Ui+1 ⊆ Ui and Ui+1 is reconstructed every time Ui is458

reconstructed, it follows that |Ui+1|/|Ui| is at most (ni+1 + ℓ)/(ni + ℓ− ℓ′), where nj is the size of459

Uj at the time it was last reconstructed and ℓ and ℓ′ are the number of insertions and deletions that460

have occurred since the last time Ui+1 was reconstructed respectively. By Lemma B.2, we get that461

this expression is upper bounded by (ni+1 + τni+1)/ni. Now we can observe that462

|Ui+1|
|Ui|

≤ ni+1 + ℓ

ni + ℓ− ℓ′
≤ ni+1 + τni+1

ni
≤ ni+1

ni
+ τ ≤ (1− β) + ϵβ = 1− β∗,

where we use the facts that ni+1 ≤ (1− β)ni and τ ≤ ϵβ in the final inequality.463

Lemma B.2. Given some integer i ∈ [t− 1], let ℓ and ℓ′ be the number of insertions and deletions464

that have occurred since the last time Ui+1 was reconstructed respectively. Then we have that465

ni+1 + ℓ

ni + ℓ− ℓ′
≤ ni+1 + τni+1

ni
.

Proof. First, note that (ni+1 + ℓ)/(ni + ℓ− ℓ′) ≤ (ni+1 + ℓ)/(ni− ℓ′). Now, given some reals A ≥466

a ≥ 0 and 0 ≤ N ≤ A−a, we define a function f : [0, 1]→ R by f(x) = (a+xN)/(A−(1−x)N).467

The derivative of f is −N(a − A + N)/((x − 1)N + A)2 and is non-negative for all x ∈ [0, 1].468

Hence, f(x) ≤ f(1) for all x ∈ [0, 1].469

By setting A = ni, a = ni+1, N = ℓ + ℓ′ and noting that ℓ + ℓ′ ≤ τni+1 by Invariant 3.1 and470

ni+1 ≤ (1− β)ni, we get that471

ℓ+ ℓ′ ≤ τni+1 ≤ βni+1 = (1 + β)ni+1 − ni+1 ≤ (1 + β)(1− β)ni − ni+1 ≤ ni − ni+1,

and hence it follows that472

ni+1 + ℓ

ni − ℓ′
= f

(
ℓ

ℓ+ ℓ′

)
≤ f(1) = ni+1 + ℓ+ ℓ′

ni
≤ ni+1 + τni+1

ni
.

473

474

Since |U1| = |U |, |Ut−1| > (1 − τ)αk′ = Ω(k), and β∗ is a constant, we infer that t =475

O
(
log |U |

k

)
= Õ(1).476

B.2 Proof of Lemma 3.3477

Bounding the Radii νi (Lemma B.5): Let U OLD
i denote the state of the ith layer the last time it478

was reconstructed for i ∈ [t]. We now use the following crucial lemma which is analogous to Lemma479

4.3.3 in [25].480

Lemma B.3. Given any positive ξ, there exists a sufficiently large choice of α such that νi ≤481

2µγ(U
OLD
i ) for each i ∈ [t− 1] with probability at least 1− e−ξk′

.482

Henceforth, we fix some positive ξ and sufficiently large α such that Lemma B.3 holds.483
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Lemma B.4. Given metric subspaces U1 and U2 of U such that |U1 ⊕ U2| ≤ ϵγ|U1| , we have that484

µγ(U1) ≤ 2µγ∗(U2).4485

Proof. Let X be a subset of U2 of size k such that νγ(1+2ϵ)(X,U2) = µγ(1+2ϵ)(U2), ρ =486

µγ(1+2ϵ)(U2), and A = BU1(X, ρ). Now note that487

|A| = |BU1∪U2
(X, ρ) \BU2\U1

(X, ρ)|
≥ |BU2(X, ρ)| − |BU2\U1

(X, ρ)|
≥ γ(1 + 2ϵ)|U2| − |U2 \ U1|
≥ γ(1 + 2ϵ)|U2| − ϵγ|U1|
≥ γ(1 + 2ϵ) (|U1| − ϵγ|U1|)− ϵγ|U1|
= γ|U1|+ ϵγ(1− γ(1 + 2ϵ))|U1|
≥ γ|U1|.

Since there also exists a subset Y ⊆ A of size k such that A ⊆ BU1(Y, 2ρ), it follows that488

νγ(Y, U1) ≤ 2ρ. Hence, µγ(U1) ≤ νγ(Y,U1) ≤ 2µγ(1+2ϵ)(U2).489

Lemma B.5. νi ≤ 4µγ∗(Ui) for each i ∈ [t− 1] with probability at least 1− e−ξk′
.490

Proof. For each i ∈ [t− 1], |Ui ⊕ U OLD
i | ≤ τ |U OLD

i | since, by Invariant 3.1, at most τ |U OLD
i | points491

have been inserted or deleted from Ui since it was last reconstructed. Noticing that τ ≤ ϵγ, we can492

see that493

|Ui ⊕ U OLD
i | ≤ ϵγ|U OLD

i |.
By now applying Lemma B.4 it follows that µγ(U

OLD
i ) ≤ 2µγ∗(Ui). The lemma follows by combin-494

ing this result with Lemma B.3.495

Upper Bounding cost(σ) (Lemma B.6):496

Lemma B.6.

cost(σ) ≤
t∑

i=1

2νi|Ci|.

Proof. We first note that for all i ∈ [t− 1], cost(σ,Ci) ≤ 2νi|Ci|. This follows directly from the497

fact that each point x in Ci is assigned to some point y ∈ Ci such that d(x, y) ≤ 2νi. Since the Ci498

partition U and cost(σ,Ct) = 0, we get:499

cost(σ) =
t∑

i=1

cost(σ,Ci) ≤
t∑

i=1

2νi|Ci|.

500

Lower Bounding opt(U) (Lemma B.10): Let r denote ⌈log1−β∗
1−γ∗

3 ⌉ and for each i ∈ [t] let501

µi denote µγ∗(Ui).502

For the rest of this subsection we fix an arbitrary S ⊆ U of size k. For each i ∈ [t], let Fi denote503

the set {x ∈ Ui | d(x, S) ≥ µi}, and for any integer m > 0, let Fm
i denote Fi \ (∪j>0Fi+jm) and504

Gi,m denote the set of all integers j ∈ [t] and j ≡ i (mod m).505

Lemma B.7. Given some i ∈ [t] and a subset X ⊆ Fi, we have that |Fi| ≥ (1 − γ∗)|Ui| and506

cost(S,X) ≥ µi|X|.507

Proof. It follows directly from the definition of µi that we have that |Fi| ≥ (1 − γ∗)|Ui|. By the508

definition of Fi, we have that cost(S,X) =
∑

x∈X d(x, S) ≥ µi|X|.509

The following lemma is proven in [25].510

4⊕ denotes symmetric difference, i.e. U1 ⊕ U2 = (U1 \ U2) ∪ (U2 \ U1).
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Lemma B.8 ([25], Lemma 4.3.8). Given integers ℓ ∈ [t] and m > 0, we have that511

cost(S,∪i∈Gℓ,m
Fm
i ) ≥

∑
i∈Gℓ,m

µi|Fm
i |.

Lemma B.9. For all i ∈ [t− 1], we have that |F r
i | ≥ 1

2 |Fi|.512

Proof. We first note that for all i ∈ [t− r], we have that |Fi+r| ≤ 1
3 |Fi|. This follows from the fact513

that514

|Fi+r| ≤ |Ui+r| ≤ (1− β∗)r|Ui| ≤
(1− β∗)r

1− γ∗
|Fi| ≤

1

3
|Fi|,

where the first inequality follows from the fact that Fi+r ⊆ Ui+r, the second inequality follows from515

Lemma B.1, the third inequality follows from Lemma B.7, and the fourth inequality follows from the516

definition of r. We now get that517

|F r
i | = |Fi \ ∪j>0Fi+jr| ≥ |Fi| −

∑
j>0

1

3j
|Fi| ≥

1

2
|Fi|.

518

Lemma B.10.

cost(S) ≥ 1− γ∗

2r

t∑
i=1

µi|Ci|.

Proof. Let ℓ = argmax0≤ℓ<r{
∑

i∈Gℓ,r
µi|F r

i |}. Then we have that519

cost(S) ≥ cost(S,∪i∈Gℓ,r
F r
i ) ≥

∑
i∈Gℓ,r

µi|F r
i | ≥

1

r

t∑
i=1

µi|F r
i | ≥

1

2r

t∑
i=1

µi|Fi|

≥ 1− γ∗

2r

t∑
i=1

µi|Ui| ≥
1− γ∗

2r

t∑
i=1

µi|Ci|.

The second inequality follows from Lemma B.8, the third inequality from averaging and the choice520

of ℓ, the fourth inequality from Lemma B.9, and the fifth inequality from Lemma B.7.521

Proof of Lemma 3.3: It follows that with probability at least 1− e−ξk′
we have that522

cost(σ) ≤
t∑

i=1

2νi|Ci| ≤
t∑

i=1

8µi|Ci| ≤
16r

1− γ∗
cost(S)

for any set S ⊆ U of size k. Hence, we have that523

cost(σ) ≤ 16r

1− γ∗
opt(U).

C Proof of Corollary 3.4524

In order to prove this corollary, we apply the extraction technique presented in [27] (with full details525

appearing in [25]) which is a slight generalization of the techniques from [18]. In particular, we526

use the following theorem which follows as an immediate corollary of Theorem 6 in [25]. For527

completeness, we provide a proof of this theorem.528

Theorem C.1. Given a ϕ-approximate m-assignment π : U → U , any ψ-approximate solution529

to the weighted k-median instance (π(U), d, w), where each point x ∈ π(U) receives weight530

w(x) := |π−1(x)|, is also a (ϕ+ 2(1 + ϕ)ψ)-approximate solution to the k-median instance (U, d).531

15



Proof. Let S∗ be a solution to the weighted k-median instance (π(U), d, w) and let S be an optimal532

solution to the k-median instance (U, d). Let ϕ and ψ be constants such that cost(π, U) ≤ ϕ·opt(U)533

and costw(S∗, π(U)) ≤ ψ · optw(π(U)). We now show that cost(S∗, U) = O(1) · opt(U). We534

first note that535

cost(S∗, U) =
∑
x∈U

d(x, S∗)

≤
∑
x∈U

d(x, π(x)) +
∑

y∈π(U)

w(y) · d(y, S∗)

= cost(π, U) + costw(S∗, π(U))

≤ ϕ · opt(U) + costw(S∗, π(U)).

Now note that, for any X ⊆ U of size at most k, there exists some Y ⊆ π(U) of size at most k such536

that costw(Y, π(U)) ≤ 2 · costw(X,π(U)). Since costw(S∗, π(U)) ≤ ψ · costw(Y, π(U)) for537

all Y ⊆ π(Y ) of size at most k, we get the following.538

costw(S∗, π(U)) ≤ 2ψ · costw(S, π(U))

= 2ψ ·
∑

y∈π(U)

w(y) · d(y, S)

= 2ψ ·
∑
x∈U

d(π(x), S)

≤ 2ψ ·
∑
x∈U

d(x, π(x)) + 2ψ ·
∑
x∈U

d(x, S)

= 2ψ · cost(π, U) + 2ψ · opt(U)

≤ 2(1 + ϕ)ψ · opt(U).

By combining these two chains of inequalities, we get that539

cost(S∗, U) ≤ ϕ · opt(U) + costw(S∗, π(U)) ≤ (ϕ+ 2(1 + ϕ)ψ) · opt(U).

540

It immediately follows that we can get a O(1)-approximate solution to the instance (U, d) by running541

a static weighted k-median algorithm on the instance (σ(U), d, w).542

D Lower Bounds on Update and Query Time543

In the static (i.e. non-dynamic) setting, the k-median problem is defined as follows: given a metric544

space U , return a set S of at most k points from U which minimizes the value of
∑

x∈S d(x, S). The545

following lower bound for the static k-median problem is proven by Mettu in [25].546

Theorem D.1. Any O(1)-approximate randomized (static) algorithm for the k-median problem,547

which succeeds with even negligible probability, runs in time Ω(nk).548

Informally, the proof of this lower bound is obtained by constructing, for each δ > 0, an input549

distribution of metric spaces (with polynomially bounded aspect ratio) on which no deterministic550

algorithm for the k-median problem succeeds with probability more than δ. Theorem D.1 then551

follows by an application of Yao’s minmax principle.552

We can use this lower bound from the static setting in order to get a lower bound for the dynamic553

setting. First note that any incremental algorithm for k-median with amortized update time u(n, k)554

and query time q(n, k) can be used to construct a static algorithm for the k-median problem with555

running time n · u(n, k) + q(n, k) by inserting each point in the input metric space U followed by556

a solution query. Hence, by Theorem D.1, we must have that n · u(n, k) + q(n, k) = Ω(nk). Now557

assume that some incremental algorithm for k-median has query time Õ(poly(k)). If this algorithm558

also has an amortized update time of õ(k), then for the range of values of k where q(n, k) = õ(nk),559

it follows that õ(nk) is Ω(nk), giving a contradiction. Hence, the amortized update time must be560

Ω̃(k) and Theorem D.2 follows.561
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Theorem D.2. Any O(1)-approximate incremental algorithm for the k-median problem with562

Õ(poly(k)) query time must have Ω̃(k) amortized update time.563

It follows that the update time of our algorithm is optimal up to polylogarithmic factors.564

E Omitted experimental results.565

E.1 Update time evaluation.566
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Figure 2: The cumulative update time for the different algorithms, on the Song dataset for k = 10
(top left), k = 50 (top right), k = 100 (bottom).
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Figure 3: The cumulative update time for the different algorithms, on the Census dataset for k = 10
(top left), k = 50 (top right), k = 100 (bottom).

17



0 2500 5000 7500 10000 12500 15000 17500 20000
Updates

10 5

10 3

10 1

101

103

OurAlgo( = 500)
HK( = 1000)

Total Update Time (sec) (kddcup, k = 10)

0 2500 5000 7500 10000 12500 15000 17500 20000
Updates

10 5

10 3

10 1

101

103

OurAlgo( = 500)
HK( = 1000)

Total Update Time (sec) (kddcup, k = 50)

0 2500 5000 7500 10000 12500 15000 17500 20000
Updates

10 5

10 3

10 1

101

103

OurAlgo( = 500)
HK( = 1000)

Total Update Time (sec) (kddcup, k = 100)

Figure 4: The cumulative update time for the different algorithms, on the KDD-Cup dataset for
k = 10 (top left), k = 50 (top right), k = 100 (bottom).
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Figure 5: The cumulative update time for the different algorithms, on the Drift dataset for k = 10
(top left), k = 50 (top right), k = 100 (bottom).
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Figure 6: The cumulative update time for the different algorithms, on the SIFT10M dataset for
k = 10 (top left), k = 50 (top right), k = 100 (bottom).

E.2 Solution cost evaluation.567
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Figure 7: The solution cost by the different algorithms, on Song for k = 10 (top left), k = 50 (top
right), k = 100 (bottom).

19



0 2500 5000 7500 10000 12500 15000 17500 20000
Updates

0

5000

10000

15000

20000

OurAlgo( = 500)
HK( = 1000)

Cost of Solution (census, k = 10)

0 2500 5000 7500 10000 12500 15000 17500 20000
Updates

0

2500

5000

7500

10000

12500

15000

OurAlgo( = 500)
HK( = 1000)

Cost of Solution (census, k = 50)

0 2500 5000 7500 10000 12500 15000 17500 20000
Updates

0

2000

4000

6000

8000

10000

12000

14000

OurAlgo( = 500)
HK( = 1000)

Cost of Solution (census, k = 100)

Figure 8: The solution cost by the different algorithms, on Census for k = 10 (top left), k = 50 (top
right), k = 100 (bottom).
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Figure 9: The solution cost by the different algorithms, on KDD-Cup for k = 10 (top left), k = 50
(top right), k = 100 (bottom).
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Figure 10: The solution cost by the different algorithms, on Drift for k = 10 (top left), k = 50 (top
right), k = 100 (bottom).
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Figure 11: The solution cost by the different algorithms, on SIFT10M for k = 10 (top left), k = 50
(top right), k = 100 (bottom).
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E.3 Query time evaluation568

Table 4: The average query times for the algorithm OURALG(ϕ = 500) and HK(ψ = 1000) (we omit the
parameter value from the table to simplify the presentation), on the different datasets that we consider and for
k ∈ {10, 50, 100}.

Song Census KDD-Cup Drift SIFT10M

OURALG HK OURALG HK OURALG HK OURALG HK OURALG HK

k = 10 0.569 0.327 0.478 0.280 0.069 0.176 0.729 0.421 0.732 0.419
k = 50 0.610 0.347 0.511 0.295 0.075 0.141 0.784 0.447 0.795 0.448
k = 100 0.665 0.373 0.552 0.317 0.085 0.131 0.857 0.483 0.866 0.483

E.4 Parameter tuning.569

E.4.1 Update time.570
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Figure 12: The cumulative update time for different parameters of OURALG and HK, for k = 50, on
datasets Song (top left), Census (top right), and KDD-Cup (bottom).
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E.4.2 Solution cost.571
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Figure 13: The solution cost for different parameters of OURALG and HK, for k = 50, on datasets
Song (top left), Census (top right), and KDD-Cup (bottom).

E.4.3 Query time.572

Table 5: The average query times for the algorithm OURALG and HK with different parameters, on
the different datasets for k = 50.

Song Census KDD-Cup

HK(ψ = 250) 0.026 0.021 0.012
HK(ψ = 500) 0.087 0.073 0.043
HK(ψ = 1000) 0.293 0.249 0.156
OURALG(ϕ = 250) 0.223 0.187 0.054
OURALG(ϕ = 500) 0.439 0.364 0.086
OURALG(ϕ = 1000) 0.719 0.605 0.146

23



E.5 Randomized order of updates.573
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Figure 14: The cumulative update time for different parameters of OURALG and HK, for k = 50,
over a sequence of updates given by a randomized order of the points in the dataset, on the datasets
Song (top left), Census (top right), and KDD-Cup (bottom).
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Figure 15: The solution cost for different parameters of OURALG and HK, for k = 50, over a
sequence of updates given by a randomized order of the points in the dataset, on the datasets Song
(top left), Census (top right), and KDD-Cup (bottom).
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E.5.3 Query time.577

Table 6: The average query times for the algorithm OURALG and HK with different parameters, for
k = 50, over a sequence of updates given by a randomized order of the points in each of the datasets
that we consider.

Song Census KDD-Cup

HK(ψ = 250) 0.025 0.021 0.014
HK(ψ = 500) 0.086 0.073 0.050
HK(ψ = 1000) 0.292 0.247 0.173
OURALG(ϕ = 250) 0.225 0.185 0.062
OURALG(ϕ = 500) 0.440 0.364 0.100
OURALG(ϕ = 1000) 0.723 0.605 0.165

E.6 Larger experiment.578
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Figure 16: The total update time for OURALG(ϕ = 500) and HK(ψ = 1000), on the larger instance
derived from KDD-Cup, for k = 50.
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Figure 17: The solution cost produced by OURALG(ϕ = 500) and HK(ψ = 1000) two algorithms,
on the larger instance derived from KDD-Cup, for k = 50.

The average query times for OURALG(ϕ = 500) and HK(ψ = 1000) while handling this longer579

sequence of updates were 0.416 and 0.225 respectively.580
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