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Abstract

We present a O(1)-approximate fully dynamic algorithm for the k-median and k-
means problems on metric spaces with amortized update time Õ(k) and worst-case
query time Õ(k2). We complement our theoretical analysis with the first in-depth
experimental study for the dynamic k-median problem on general metrics, focusing
on comparing our dynamic algorithm to the current state-of-the-art by Henzinger
and Kale [20]. Finally, we also provide a lower bound for dynamic k-median which
shows that any O(1)-approximate algorithm with Õ(poly(k)) query time must
have Ω̃(k) amortized update time, even in the incremental setting.

1 Introduction

Clustering is a fundamental problem in unsupervised learning with several practical applications.
In clustering, one is interested in partitioning elements into different groups (i.e. clusters), so that
elements in the same group are more similar to each other than to elements in other groups. One
of the most studied formulations of clustering is the metric clustering formulation. In this setting,
elements are represented by points in a metric space, and the distances between points represent how
similar the corresponding elements are (the closer elements are, the more similar they are). More
formally, the input to our problem consists of a set of points U in a metric space with distance function
d : U×U → R≥0, a real number p ≥ 1, and an integer k ≥ 1. The goal is to compute a subset S ⊆ U
of size |S| ≤ k, so as to minimize cost(S) :=

∑
x∈U d(x, S)

p, where d(x, S) := miny∈S d(x, y).
We refer to the points in S as centers. We note that this captures well-known problems such as
k-median clustering (when p = 1) or k-means clustering (when p = 2).

Due to this simple and elegant formulation, metric clustering has been extensively studied throughout
the years, across a range of computational models [14, 22, 1, 12, 15, 2, 31, 11, 7]. In this paper, we
focus on the dynamic setting, where the goal is to efficiently maintain a good clustering when the
input data keeps changing over time. Because of its immediate real-world applications, the dynamic
clustering problem has received a lot of attention from the machine learning community in recent
years [16, 6, 10, 24, 18]. Below, we formally describe the model [13, 20, 3] considered in this paper.

At preprocessing, the algorithm receives the initial inputU . Subsequently, the input keeps changing by
means of a sequence of update operations, where each update inserts/deletes a point in U . Throughout
this sequence of updates, the algorithm needs to implicitly maintain a solution S∗ ⊆ U to the current
input (U, d). The algorithm has an approximation ratio of ρ ≥ 1 if and only if we always have
cost(S∗) ≤ ρ · opt(U), where opt(U) := minS⊆U,|S|≤k cost(S) denotes the optimal objective.
Finally, whenever one queries the algorithm, it has to return the list of centers in S∗. The performance
of a dynamic algorithm is captured by its approximation ratio, its update time, and its query time. Let
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UINIT be the state of the input U at preprocessing. A dynamic algorithm has (amortized) update time
O(λ) if for any sequence of t ≥ 0 updates, the total time it spends on preprocessing and handling the
updates is O((t+ |UINIT|) · λ). The time it takes to answer a query is called its query time.

Our Contributions. Our primary contribution is to design an algorithm for this problem with a
near-optimal update time of Õ(k), without significantly compromising on the approximation ratio
and query time.1 Interestingly, our algorithm can be easily extended to dynamic k-clustering for
any constant p (see Appendix A). In the theorem below, we summarize our main result for dynamic
k-median and k-means.

Theorem 1.1. There exists a dynamic algorithm that, with high probability, maintains a O(1)-
approximate solution to the k-median and k-means problems for general metric spaces under point
insertions and deletions with Õ(k) amortized update time and Õ(k2) worst-case query time.

It is important to note that in practice an algorithm often receives the updates in batches of variable
sizes [25, 29], so it is common for there to be a significant number of updates between cluster requests.
As a consequence, optimizing the update time is of primary importance in practical applications.
For example, if the size of each batch of updates is Ω(k), then our amortized query time becomes
Õ(k2/k) = Õ(k), because the algorithm has to answer a query after processing at least one batch.
Thus, our dynamic algorithm has near-optimal update and query times when the updates arrive in
moderately large batches.

In addition, it is possible to observe that any dynamic k-clustering algorithm must have Ω(k) query
time, since the solution it needs to return while answering a query can consist of k centers. We also
show a similar lower bound on the update time of any constant approximate dynamic algorithm
for this problem. This lower bound holds even in an incremental setting, where we only allow for
point-insertions in U . We defer the proof of Theorem 1.2 to Appendix D.

Theorem 1.2. Any O(1)-approximate incremental algorithm for the k-median problem with
Õ(poly(k)) query time must have Ω̃(k) amortized update time.

Theorem 1.2 implies that the ultimate goal in this line of research is to get a O(1)-approximate
dynamic k-clustering algorithm with Õ(k) update time and Õ(k) query time. Prior to this work,
however, the state-of-the-art result for dynamic k-median (and k-means) was due to Henzinger and
Kale [20], who obtained O(1)-approximation ratio, Õ(k2) update time and Õ(k2) query time. In this
context, our result is a meaningful step toward obtaining an asymptotically optimal algorithm for the
problem.

We supplement the above theorem with experiments that compare our algorithm with that of [20]. To
the best of our knowledge, this is the first work in the dynamic clustering literature with a detailed
experimental evaluation of dynamic k-median algorithms for general metrics. Interestingly, we
observe that experimentally our algorithm is significantly more efficient than previous work without
impacting the quality of the solution.

Our Techniques. We first summarize the approach used in the previous state-of-the-art result.
In [20], the authors used a static algorithm for computing a coreset of size Õ(k) as a black box to
get a fully dynamic algorithm for maintaining a coreset of size Õ(k) for general metric spaces in
worst-case update time Õ(k2). Their algorithm works by maintaining a balanced binary tree of depth
O(log n), where each leaf in the tree corresponds to a point in the metric space [4]. Each internal
node of the tree then takes the union of the (weighted) sets of points maintained by its two children
and computes its coreset, which is then fed to its parent. They maintain this tree dynamically by
taking all the leaves affected by an update and recomputing all the coresets at nodes contained in
their leaf-to-root paths. Using state-of-the-art static coreset constructions, this update procedure takes
time Õ(k2). Unfortunately, if one wants to ensure that the final output is a valid corset of the metric
space after each update, then there is no natural way to bypass having to recompute the leaf-to-root
path after the deletion of a point that is contained in the final coreset. Hence, it is not at all clear how
to modify this algorithm in order to reduce the update time to Õ(k).

1Throughout this paper, we use Õ(.) and Ω̃(.) notations to suppress polylog(n) factors, where n = |U |.
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We circumvent this bottleneck by taking a completely different approach compared to [20]. Our
algorithm instead follows from the dynamization of a Õ(nk) time static algorithm for k-median
by Mettu and Plaxton [28], where n = |U |. We refer to this static algorithm as the MP algorithm.
Informally, the MP algorithm works by constructing a set of O(log(n/k)) layers by iteratively
sampling random points at each layer, defining a clustering of the points in the layer that are ‘close’
to these samples, and removing these clusters from the layer. The algorithm then obtains a solution to
the k-clustering problem by running a static algorithm for weighted k-median (defined in Section 2),
on an instance of size O(k log(n/k)) defined by the clusterings at each layer. In order to dynamize
this algorithm, we design a data structure that maintains O(log(n/k)) layers that are analogous to the
layers in the MP algorithm. By allowing for some ‘slack’ in the way that these layers are defined, we
ensure that they can be periodically reconstructed in a way that leads to good amortized update time,
while only incurring a small loss in the approximation ratio. The clustering at each layer is obtained
by random sampling every time it is reconstructed and is maintained by arbitrarily reassigning a
point in a cluster as the new center when the current center is deleted. We obtain a solution to the
k-clustering problem from this data structure in the same way as the (static) MP algorithm—by
running a static algorithm for weighted k-median on an instance defined by the clusterings maintained
at each layer.

2 Preliminaries

In our computational model, the algorithm has access to the distance d(x, y) for any x, y ∈ U
in O(1) time2. Given any two sets X,S ⊆ U , define the cost of X w.r.t. S as cost(S,X) :=∑

x∈X mins∈S d(x, s). In addition, let cost(S) = cost(S,U). Next, define an assignment to
be a function π : U → U , and say that π assigns x ∈ U to π(x). We refer to an assignment π
with |π(U)| ≤ m as an m-assignment. The cost of X ⊆ U w.r.t. assignment π is cost(π,X) :=∑

x∈X d(x, π(x)). We denote cost(π, U) by cost(π). For any ρ ≥ 1, say that π is ρ-approximate
if cost(π) ≤ ρ · opt(U), where opt(U) is the cost of the optimal solution.

Given any subset U ′ ⊆ U and x ∈ U ′, we denote by BU ′(x, r) the set {y ∈ U ′ | d(x, y) ≤ r}, i.e.
the closed ball in U ′ of radius r ≥ 0 centered at x. When it is clear from the context that U ′ = U , we
omit the subscript U ′ and simply write B(x, r). For X ⊆ U ′ ⊆ U , we define BU ′(X, r) to be the
union of the balls BU ′(x, r) for x ∈ X .

Definition 2.1. Given 0 < ρ < 1 and subsets X ⊆ U ′ ⊆ U , we define the following real numbers:

νρ(X,U
′) := min{r ≥ 0 | |BU ′(X, r)| ≥ ρ · |U ′|}, µρ(U

′) := min{νρ(Y, U ′) |Y ⊆ U ′, |Y | = k}.

In words, the real number νρ(X,U ′) is the smallest radius r such that the closed ball of radius r
around X captures at least a ρ-proportion of the points in U ′. The real number µρ(U

′) is then defined
to be the smallest such radius νρ(X,U ′) over all subsets X ⊆ U ′ of size k. Note that νρ(X,U ′) and
µρ(U

′) are both increasing as functions of ρ.

Finally, we will sometimes refer to the weighted k-median problem. An instance of this problem
is given by a triple (U, d, w), where w : U → R≥0 assigns a nonnegative weight to every point
x ∈ U , in a metric space with distance function d. Here, the goal is to compute a subset of at
most k centers S ⊆ U , so as to minimize costw(S) :=

∑
x∈U w(u) · d(x, S). We let optw(U) :=

minS⊆U :|S|≤k costw(S) denote the optimal objective value of this weighted k-median instance. We
will analogously use the symbol costw(S,X) :=

∑
x∈X w(x) · d(x, S) to denote the cost of a set

of points X w.r.t. S and the weight function w.

3 Our Algorithm

Throughout this section, we fix the following parameters: α, β, ϵ, τ and k′; where α ≥ 1 is a
sufficiently large constant, β is any constant in the interval (0, 1), ϵ > 0 is a sufficiently small
constant, τ := ϵβ, and k′ := max{k, log(|U |)}.

2This is a standard and common assumption in clustering settings.
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3.1 The Static Algorithm of [28]

Our starting point is the static algorithm of [28] for computing a Õ(k)-assignment σ : U → U , with
S = σ(U), such that cost(σ) ≤ O(1) · opt(U). The relevant pseudocode appears in Algorithm 1
and Algorithm 2.

Algorithm 1 StaticAlgo(U)

1: i← 1 and U1 ← U
2: while |Ui| > αk′ do
3: (Si, Ci, σi, νi)← AlmostCover(Ui)
4: Ui+1 ← Ui \ Ci

5: i← i+ 1
6: end while
7: t← i
8: St ← Ut, Ct ← St and νt ← 0
9: Assign each x ∈ Ct to itself (i.e., σt(x) := x ∈ St)

10: S ← ∪j∈[t]Sj

11: Let σ : U → S be the assignment such that for all j ∈ [t] and x ∈ Cj , we have σ(x) = σj(x)
12: return (S, σ, t)

Algorithm 2 AlmostCover(U ′)

1: Construct a set S′, by sampling αk′ points from U ′ independently and u.a.r. with replacement
2: ν′ ← νβ(S

′, U ′) and C ′ ← B(S′, ν′)
3: Assign each x ∈ C ′ to some σ′(x) ∈ S′ such that d(x, σ′(x)) ≤ ν′
4: return (S′, C ′, σ′, ν′)

The algorithm runs for t iterations. Let Ui ⊆ U denote the set of unassigned points at the start of
iteration i ∈ [t − 1] (initially, we have U1 = U ). During iteration i, the algorithm samples a set
of αk′ points Si as centers, uniformly at random from Ui. It then identifies the smallest radius νi
such that the balls of radius νi around Si cover at least β-fraction of the points in Ui. Let Ci ⊆ Ui

denote the set of points captured by these balls (note that Ci ⊇ Si and |Ci| ≥ β · |Ui|). The algorithm
assigns each x ∈ Ci to some center σi(x) ∈ Si within a distance of νi. It then sets Ui+1 ← Ui \ Ci,
and proceeds to the next iteration. In the very last iteration t, we have |Ut| ≤ αk′, and the algorithm
sets St := Ut, Ct := Ut, and σt(x) := x for each x ∈ Ut.

The algorithm returns the assignment σ with set of centers σ(U) = S, where σ is simply the union of
σi for all i ∈ [t].

Fix any i ∈ [t − 1]. Since |Ci| ≥ β · |Ui|, we have |Ui+1| ≤ (1 − β) · |Ui|. As β is a constant,
it follows that the algorithm runs for t = Õ(1) iterations. Since each iteration picks O(k) new
centers, we get: |S| = Õ(k), and hence σ is a Õ(k)-assignment. Furthermore, [28] showed that
cost(σ) = O(1) · opt(U).

3.2 Our Dynamic Algorithm

The main idea behind our dynamic algorithm is that it maintains the output S of the static algorithm
from Section 3.1 in a lazy manner, by allowing for some small slack at appropriate places. Thus, it
maintains t layers, where each layer i ∈ [t] corresponds to iteration i of the static algorithm. In the
dynamic setting, the value of t changes over time. Specifically, layer i ∈ [t] consists of the tuple
(Ui, Si, Ci, σi, νi), as in Algorithm 1. Whenever a large fraction of points gets inserted or deleted
from some layer j ∈ [t], the dynamic algorithm rebuilds all the layers i ∈ [j, t] from scratch.

The dynamic algorithm maintains the sets Ui, Si and Ci explicitly, and the assignment σi implicitly,
in a manner which ensures that for all x ∈ Ci it can return σi(x) ∈ Si in O(1) time. Furthermore,
for each layer i ∈ [t], it explicitly maintains the value ni (resp. n∗i ), which denotes the size of the set
Ui at (resp. the number of updates to Ui since) the time it was last rebuilt. We explain this in more
detail below. The value νi is needed only for the sake of analysis.
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Algorithm 3 Preprocess(U)

1: U1 ← U
2: ConstructFromLayer(1)

Algorithm 4 ConstructFromLayer(i)
1: j ← i
2: while |Uj | > αk′ do
3: nj ← |Uj | and n∗j ← 0
4: (Sj , Cj , σj , νj)← AlmostCover(Uj)
5: Uj+1 ← Uj \ Cj

6: j ← j + 1
7: end while
8: t← j
9: St ← Ut, Ct ← St and νt ← 0

10: Assign each x ∈ Ct to itself (i.e., σt(x) := x ∈ St)
11: S ← ∪j∈[t]Si

12: Let σ : U → S be the assignment such that for all j ∈ [t] and x ∈ Cj , we have σ(x) = σj(x)

Preprocessing: At preprocessing, we essentially run the static algorithm from Section 3.1 to set the
value of t and construct the layers i ∈ [t]. See Algorithm 3 and Algorithm 4. Note that at this stage
n∗j = 0 for all layers j ∈ [t].

Algorithm 5 Insert(x)
1: for i = 1, ..., t do
2: Add x to Ui

3: n∗i ← n∗i + 1
4: end for
5: Add x to Ct and St, and set σt(x)← x
6: Rebuild

Handling the insertion of a point x in U : We simply add the point x to Ui, for each layer i ∈ [t].
Next, in the last layer t, we create a new center at point x and assign the point x to itself. Finally, we
call the Rebuild subroutine (to be described below). See Algorithm 5.

Handling the deletion of a point x from U : Let j ∈ [t] be the last layer (with the largest index)
containing the point x. We remove x from each layer i ∈ [j]. Next, if x was a center at layer j, then
we pick any arbitrary point x′ ∈ σ−1

j (x) \ {x} (if such a point exists), make x′ a center, and assign
every point y ∈ σ−1

j (x) \ {x} to the newly created center x′. Finally, we call the Rebuild subroutine
(to be described below). See Algorithm 6.

The rebuild subroutine: We say that a layer i ∈ [t] is rebuilt whenever our dynamic algorithm
calls ConstructFromLayer(j) for some j ≤ i, and that there is an update in layer i whenever we
add/remove a point in Ui. It is easy to see that n∗i denotes the number of updates in layer i ∈ [t]
since the last time it was rebuilt (see Line 3 in Algorithm 4, Algorithm 5 and Algorithm 6). Next,
we observe that Line 6 in Algorithm 5 and Line 16 in Algorithm 6, along with the pseudocode of
Algorithm 7, imply the following invariant.

Invariant 3.1. n∗i ≤ τni for all i ∈ [t]. Here, ni is the size of Ui just after the last rebuild of layer i,
and n∗i is the number of updates in layer i since that last rebuild.

Intuitively, the above invariant ensures that the layers maintained by our dynamic algorithm remain
close to the layers of the static algorithm in Section 3.1. This is crucially exploited in the proofs of
Lemma 3.2 (which helps us bound the update and query times) and Lemma 3.3 (which leads to the
desired bound on the approximation ratio). We defer the proofs of these two lemmas to Appendix B.

Lemma 3.2. We always have t = Õ(1), where t denotes the number of layers maintained by our
dynamic algorithm.
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Algorithm 6 Delete(x)
1: for i = 1, ..., t do
2: if x ∈ Ui then
3: Remove x from Ui, and set n∗i ← n∗i + 1
4: if x ∈ Ci then
5: Remove x from Ci

6: if x ∈ Si then
7: Remove x from Si

8: if ∃ y ∈ σ−1
i (x) \ {x} then

9: Pick any such y and place it into Si

10: Set σi(z) to y for each z ∈ σ−1
i (x)

11: end if
12: end if
13: end if
14: end if
15: end for
16: Rebuild

Algorithm 7 Rebuild
1: i← 1
2: while i ≤ t and n∗i < τni do
3: i← i+ 1
4: end while
5: if i ≤ t then
6: ConstructFromLayer(i)
7: end if

Lemma 3.3. The assignment σ maintained by our dynamic algorithm always satisfies cost(σ) =
O(1) · opt(U).

Answering a query: Upon receiving a query, we consider a weighted k-median instance (S, d, w),
where each point x ∈ S receives a weight w(x) := |σ−1(x)|. Next, we compute a O(1)-approximate
solution S∗ ⊆ S, with |S∗| ≤ k, to this weighted instance, so that costw(S∗, S) ≤ O(1) · optw(S).
We then return the centers in S∗.

Corollary 3.4. cost(S∗) = O(1) · opt(U).

Corollary 3.4 implies that our dynamic algorithm has O(1) approximation ratio. It holds because of
Lemma 3.3, and its proof immediately follows from [19]. We delegate this proof to Appendix C.

Corollary 3.5. Our algorithm has Õ(k2) query time.

Proof (Sketch). By Lemma 3.2, we have t = Õ(1). Since the dynamic algorithm maintains at most
Õ(k) centers Si in each layer i (follows from Invariant 3.1), we have |S| =

∑
i∈[t] |Si| = Õ(k).

Using appropriate data structures (see the proof of Claim 3.7), in O(1) time we can find the number
of points assigned to any center x ∈ S under σ (given by |σ−1(x)| = w(x)). Thus, the weighted
k-median instance (S, d, w) is of size Õ(k), and upon receiving a query we can construct the instance
in Õ(k) time. We now run a static O(1)-approximation algorithm [27] on (S, d, w), which returns
the set S∗ in Õ(k2) time.

Lemma 3.6. Our algorithm has Õ(k) update time.

Corollaries 3.4, 3.5 and Lemma 3.6 imply Theorem 1.1. It now remains to prove Lemma 3.6.

3.3 Proof of Lemma 3.6

We first bound the time taken to handle an update, excluding the time spent on rebuilding the layers.
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Claim 3.7. Excluding the calls to Rebuild, Algorithm 5 and Algorithm 6 both run in Õ(1) time.

Proof. We first describe how our dynamic algorithm maintains the assignment σ implicitly. In each
layer i ∈ [t], the assignment σi partitions the set Ci into |Si| clusters {σ−1

i (x)}x∈Si . For each
such cluster Z = σ−1

i (x), we maintain: (1) a unique id, given by id(Z), (2) its center, given by
center(id(Z)) := x, and (3) its size, given by size(id(Z)) := |Z|. For each point y ∈ Z, we
also maintain the id of the cluster it belongs to, given by cluster(y) := id(Z). Using these data
structures, for any y ∈ Ci we can report in O(1) time the center σi(y), and we can also report the
size of a cluster in O(1) time.

Recall that t = Õ(1) as per Lemma 3.2. Thus, Algorithm 5 takes Õ(1) time, excluding the call to
Rebuild in Line 6. For Algorithm 6, the key thing to note is that using the data structures described
above, Lines 8 - 10 can be implemented in O(1) time, by setting y as the new center of the cluster
σ−1
i (x) and by decreasing the size of the cluster by one. It follows that excluding the call to Rebuild

in Line 16, Algorithm 6 also runs in Õ(1) time.

Claim 3.8. A call to ConstructFromLayer(i), as described in Algorithm 4, takes Õ(k · |Ui|) time.

Proof (Sketch). By Lemma 3.2, the while loop in Algorithm 4 runs for Õ(1) iterations. Hence,
within a Õ(1) factor, the runtime of Algorithm 4 is dominated by the call to AlmostCover(Uj) in
Line 4. Accordingly, we now consider Algorithm 2. As the ball BU ′(X, r) can be computed in
O(|X| · |U ′|) time, using a binary search the value ν′ (see Line 2) can be found in Õ(k · |U ′|) time.
The rest of the steps in Algorithm 2 also take Õ(k · |U ′|) time. Thus, it takes Õ(k · |Uj |) time to
implement Line 4 of Algorithm 4. Hence, the total runtime of Algorithm 4 is

∑
j∈[i,t] Õ(k · |Uj |) =∑

j∈[i,t] Õ(k · |Ui|) = Õ(k · |Ui|).

Define the potential Φ :=
∑

i∈[t] n
∗
i . For each update in U , the potential Φ increases by at most t,

excluding the calls to Rebuild (see Algorithm 5 and Algorithm 6). Thus, by Lemma 3.2, each update
increases the value of Φ by at most Õ(1). Now, consider any call to ReconstructFromLayer(i).
Algorithm 7 and Invariant 3.1 ensure that just before this call, we had n∗i ≥ τni = Ω(|Ui|), since τ
is a constant. Hence, because of Line 3 in Algorithm 4, during this call the value of Φ decreases by at
least Ω(|Ui|). Claim 3.8, in contrast, implies that the time taken to implement this call is Õ(k · |Ui|).

To summarize, each update in U creates Õ(1) units of potential, and the total time spent on the calls
to Rebuild is at most Õ(k) times the decrease in the potential. Since the potential Φ is always
nonegative, it follows that the amortized time spent on the calls to Rebuild is Õ(k). This observation,
along with Claim 3.7, implies Lemma 3.6.

4 Experimental Evaluation

Datasets. We conduct the empirical evaluation of our algorithm on five datasets from the UCI
repository [17]: (1) Census [23] with 2, 458, 285 points of dimension 68, (2) KDD-Cup [32]
containing 311, 029 points of dimension 74, (3) Song [5] with 515, 345 points of dimension 90, (4)
Drift [33, 30] with 13, 910 points of dimension 129, and (5) SIFT10M [17] with 11, 164, 866 points
of dimension 128.3

We generate the dynamic instances that we use in our study as follows. We keep the first 10, 000
points of each dataset, in the order that they appear in their file. This choice allows us to test against
competing algorithms that are not as efficient, and at the same time captures the different practical
aspects of the algorithms that we consider; as a sanity check, we perform an experiment on an instance
that is an order of magnitude larger to confirm the scalability of our algorithm, and that the relative
behavior in terms of the cost of the solutions remains the same among the tested algorithms.

3We are not aware of any dynamic dataset containing the sequence of arrivals and that is publicly available.
We generated sequences of updates following a typical setting used in studies of dynamic algorithms (e.g., [16]).
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We use the L2 distance of the embeddings of two points to compute their distance. To avoid zero
distance without altering the structural properties of the instances, we add 1/|U | to all distances,
where U is the set of points of the instance.

Order of Updates. We obtain a dynamic sequence of updates following the sliding window
approach. In this typical approach, one defines a parameter κ indicating the size of the window, and
then “slides” the window over the static sequence of points in steps creating at each step i a point
insertion of the i-th point (if there are more than i points) and a point deletion of the (i− κ)-th point
(if κ > i), until each point of the static instance is inserted once and deleted once. We set κ = 2, 000,
which results in our dynamic instances having at most 2, 000 points at any point in time.

Algorithms. We compare our algorithm from Section 3 against the state-of-the-art algorithm for
maintaining a solution to the k-median problem, which is obtained by dynamically maintaining a
coreset for the same problem [20]. In particular, [20] presented an algorithm that can dynamically
maintain an ϵ-coreset of size O(ϵ−2k poly(log n, log(1/ϵ))) for the k-median and the k-means
problems. Their algorithm has a worst-case update time of O(ϵ−2k2 poly(log n, log(1/ϵ))). To the
best of our knowledge, this is the first implementation of the algorithm in [20]. For brevity, we refer
to our algorithm as OURALG, and the algorithm from [20] as HK.

Since the exact constants and thresholds required to adhere to the theoretical guarantees of [20]
are impractically large, there is no obvious way to use the thresholds provided by the algorithm in
practice without making significant modifications. In order to give a fair comparison of the two
algorithms, we implemented each of them to have a single parameter controlling a trade-off between
update time, query time, and the cost of the solution. OURALG has a parameter ϕ which we set to
be the number of points sampled during the construction of a layer in Algorithm 2. In other words,
we sample ϕ points in Line 1 of Algorithm 2 instead of αk′. We fix the constants ϵ and β used by
our algorithm (see Section 3) to 0.2 and 0.5 respectively. HK has a parameter ψ which we set to
be the number of points sampled during the static coreset construction from [9] which is used as a
black box, replacing the large threshold required to adhere to the theoretical guarantees. Since this
threshold is replaced by a single parameter, it also replaces the other parameters used by HK, which
are only used in this thresholding process. For the bicriteria algorithm required by this static coreset
construction, we give the same implementation as the empirical evaluations in [9] and use kmeans++
with 2 iterations of Lloyd’s.

For each of ϕ and ψ, we experimented with the values 250, 500, 1000. As the values of ϕ and ψ are
increased, the asymptotic update times and query times of the corresponding algorithms increase,
while the cost of the solution decreases.

Setup. All of our code is written in Java and is available online.4 We did not use parallelization.
We used a machine with 8 cores, a 2.9Ghz processor, and 16 GiB of main memory.

Results. We compare OURALG(ϕ = 500) against HK(ψ = 1000). We selected these parameters
such that they obtain a good solution quality, without these parameters being unreasonably high w.r.t.
the size of our datasets. Our experiments suggest that the solution quality produced by OURALG
is robust against different values of ϕ (typically these versions of the algorithm differ by less than
1%), while that of HK is more sensitive (in several instances the differences are in the range of
3 − 9%, while for KDD-Cup HK(ψ = 250) produces much worse solutions). The update time
among the different versions of each algorithm do not differ significantly. Lastly, the query time of
OURALG is less sensitive compared to the query time of HK. Specifically, the average query time of
OURALG(ϕ = 1000) is roughly 3 times slower than OURALG(ϕ = 250), while the average query
time of HK(ψ = 1000) is 11 times slower compared to HK(ψ = 250). For OURALG we selected the
middle value ϕ = 500. Since the solution quality of HK drops significantly when using smaller values
of ψ, we selected ψ = 1000 to prioritize for the quality of the solution produced by the algorithm.
Since we did not observe significant difference in the behavior across the datasets, we tuned these
parameters considering three or our datasets. We provide the relevant plots in Appendix E.4.

Update Time Evaluation. In Figure 1 (left) we plot the total update time over the sequence of
updates for the dataset Song, and only for k = 50. OURALG runs up to more than 2 orders of

4https://github.com/martin-costa/NeurIPS23-dynamic-k-clustering
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magnitude faster compared to HK, independently of their parameter setup (see Appendix E for more
details). The relative performance of the algorithms is similar for all datasets and choices of k; we
summarize the results in Table 1, while the corresponding plots can be found in Appendix E.
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Figure 1: The total update time in seconds (left) and the solution cost (right) for OURALG(ϕ = 500)
and HK(ψ = 1000) on Song, for k = 50.

Table 1: The ratio of the total update time incurred by HK(ψ = 1000) divided by the time for
OURALG(ϕ = 500), for the five datasets that we considered and for k ∈ {10, 50, 100}.

Song Census KDD-Cup Drift SIFT10M

k = 10 31.774 32.172 62.776 32.408 32.857
k = 50 134.850 131.333 201.147 140.826 142.989
k = 100 262.427 255.927 377.350 276.848 280.925

Solution Cost Evaluation. Figure 1 (right) shows the cost of the solution obtained by
OURALG(ϕ = 500) and HK(ψ = 1000), on dataset Song for k = 50. In general, the two al-
gorithms have similar performance with OURALG(ϕ = 500) producing slightly better (1.3%−6.5%)
solutions on most instances; the exceptions being on the KDD-Cup dataset, where for k = 10
HK(ψ = 1000) performs 1.2% better, and for k = 100 where OURALG(ϕ = 500) performs 35%
better. We summarize their relevant performance on the different datasets in Table 2, and provide the
complete set of plots in the Appendix.

Table 2: The mean ratio of the solution cost for HK(ψ = 1000) divided by that of OURALG(ϕ = 500)
averaged over the updates, for the five datasets that we considered and for k ∈ {10, 50, 100}.

Song Census KDD-Cup Drift SIFT10M

k = 10 1.013 1.018 0.988 1.020 1.014
k = 50 1.036 1.056 1.019 1.037 1.032
k = 100 1.049 1.065 1.538 1.059 1.038

Query Time Evaluation. Finally, we compare OURALG(ϕ = 500) to HK(ψ = 1000) in terms
of their query time. To measure query time, we evenly distribute 100 queries across the update
sequence and measure the average query time. In Table 3 we report the average ratio of the query
times obtained by OURALG(ϕ = 500) divided by that of HK(ψ = 1000) over the queries executed
on each of the datasets and parameters of k that we considered. The query time obtained by the
two algorithms is typically within a factor 2 of each other. OURALG(ϕ = 500) performs better on
KDD-Cup, while HK(ψ = 1000) performs better on rest of the datasets. This inconsistency is due
to differences in the structure of the datasets (we also tried randomizing the order of the updates, and
it didn’t change the relative picture w.r.t. query time).

Longer Sequence of Updates. While the above experiments capture well the different aspects of
the two algorithms, we further conducted an experiment on the KDD-Cup dataset where we consider
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Table 3: The mean ratio of query times for HK(ψ = 1000) divided by that of OURALG(ϕ = 500),
for the five datasets that we considered and for k ∈ {10, 50, 100}.

Song Census KDD-Cup Drift SIFT10M

k = 10 0.575 0.586 2.629 0.577 0.572
k = 50 0.568 0.577 1.888 0.570 0.564
k = 100 0.560 0.573 1.543 0.564 0.558

a window size of κ = 5, 000 and applied it to the first 100, 000 points. As expected the relative
performance in terms of solution cost and query time remains the same, while the gap in terms of
update time grows significantly (HK(ψ = 1000) performs more than 3 orders of magnitude worse
than OURALG(ϕ = 500)). The corresponding plots and numbers are provided in the Appendix.

Conclusion of the Experiments. Our experimental evaluation shows the practicality of our al-
gorithms on a set of five standard datasets used for the evaluation of dynamic algorithms in metric
spaces. In particular, our experiments verify the theoretically superior update time of our algorithm
w.r.t. to the state-of-the-art algorithm for the fully-dynamic k-median problem [20], where our
algorithm performs orders of magnitude faster than HK. On top of that, the solution quality produced
by our algorithm is better than HK in most settings, and the query times of the two algorithms are
comparable. We believe that our algorithm is the best choice when it comes to efficiently maintaining
a dynamic solution for the k-median problem in practice.
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A Extension to k-Means and (k, p)-Clustering

As stated in [21, 8], while [28] only discusses the k-median problem, their construction can easily
be modified to work for k-means clustering and further generalized to work for (k, p)-clustering,
where the (k, p)-clustering problem is defined in the same way as k-median problem except that we
want to minimize

∑
x∈U d(x, S)

p for some S ⊆ U of size at most k. Note that (k, 1)-clustering and
(k, 2)-clustering correspond to k-median and k-means respectively.

We define a ρ-metric space (U, d) in the same way as a metric space except for relaxing the condition
that d must satisfy the triangle inequality to the condition that d(x, y) ≤ ρ(d(x, z) + d(z, y)) for all
x, y, z ∈ U . Given a metric space (U, d) and some p ≥ 1, the results in Section 6 of [9] can easily be
used to show that (U, dp) is a 2p−1-metric space, where dp(x, y) is defined to be d(x, y)p.

We now show that the assignment σ maintained by our algorithm is O(ρ3)-approximate when U is a
ρ-metric space (i.e. that cost(σ) = O(ρ3) · opt(U)) and that the extraction technique of [19] can be
generalized to ρ-metric spaces.
Lemma A.1. When the underlying space U is a ρ-metric space, the assignment σ maintained by our
algorithm is O(ρ3)-approximate.

Proof. By making the appropriate changes to the proofs of Lemma B.3 and Lemma B.4, we get
generalizations of these lemmas to ρ-metric spaces, where the lemma statements are the same except
for an extra ρ factor in the inequalities.

Lemma A.2. Given any positive ξ, there exists a sufficiently large choice of α such that νi ≤
2ρ · µγ(U

OLD
i ) for each i ∈ [t− 1] with probability at least 1− e−ξk′

.

Lemma A.3. Given metric subspaces U1 and U2 of U such that |U1 ⊕ U2| ≤ ϵγ|U1|, we have that
µγ(U1) ≤ 2ρ · µγ∗(U2).

These two lemmas immediately imply the following generalization of Lemma B.5.

Lemma A.4. νi ≤ 4ρ2 · µγ∗(Ui) for each i ∈ [t− 1] with probability at least 1− e−ξk′
.

The upper bound on cost(σ) given in Lemma B.6 can be generalized by noticing that cost(σ,Ci) ≤
2ρνi|Ci| for all i ∈ [t− 1], which us that

cost(σ) ≤
t∑

i=1

2ρνi|Ci|.

The lower bound on opt(U) given in Lemma B.10 holds for ρ-metric spaces with no modifications.
Hence, we get that with probability at least 1− e−ξk′

we have that

cost(σ) ≤
t∑

i=1

2ρνi|Ci| ≤
t∑

i=1

8ρ3µi|Ci| ≤
16ρ3r

1− γ∗
cost(S).

By making the appropriate modifications to the proof of Theorem C.1, we can extend this theorem to
work for ρ-metric spaces. In particular, we can obtain a proof of Theorem A.5 by taking the proof of
Theorem C.1 and adding extra ρ factors whenever the triangle inequality is applied.
Theorem A.5. Given a ϕ-approximate m-assignment π : U → U , any ψ-approximate solution
to the weighted k-median instance (π(U), d, w), where each point x ∈ π(U) receives weight
w(x) := |π−1(x)|, is also a

(
ϕρ+ 2(1 + ϕ)ψρ3

)
-approximate solution to the k-median instance

(U, d) where U is a ρ-metric space.

Since the algorithm in [27] is O(1)-approximate on O(1)-metric spaces, it immediately follows by
applying Theorem A.5 and Lemma A.1 that our algorithm maintains a O(1)-approximate solution to
the k-median problem on (U, dp) for p = O(1). Since the k-median problem on (U, dp) is exactly
the (k, p)-clustering problem on (U, d), it follows that our algorithm generalizes to solve instances of
(k, p)-clustering in metric spaces.
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B Proofs of Lemma 3.2 and Lemma 3.3

Throughout this section, we fix γ to be any real such that β < γ < 1 and ϵ to be any real such that
0 < ϵ < min{ 1−γ

2γ , 1}. Let β∗ and γ∗ denote β(1− ϵ) and γ(1 + 2ϵ) respectively.

B.1 Proof of Lemma 3.2

We first prove Lemma B.1, which shows that the sizes of the sets Ui decrease exponentially with i.
Lemma B.1. For all i ∈ [t− 1], |Ui+1| ≤ (1− β∗)|Ui|.

Proof. Consider the ratio |Ui+1|/|Ui|. Since Ui+1 ⊆ Ui and Ui+1 is reconstructed every time Ui is
reconstructed, it follows that |Ui+1|/|Ui| is at most (ni+1 + ℓ)/(ni + ℓ− ℓ′), where nj is the size of
Uj at the time it was last reconstructed and ℓ and ℓ′ are the number of insertions and deletions that
have occurred since the last time Ui+1 was reconstructed respectively. By Lemma B.2, we get that
this expression is upper bounded by (ni+1 + τni+1)/ni. Now we can observe that

|Ui+1|
|Ui|

≤ ni+1 + ℓ

ni + ℓ− ℓ′
≤ ni+1 + τni+1

ni
≤ ni+1

ni
+ τ ≤ (1− β) + ϵβ = 1− β∗,

where we use the facts that ni+1 ≤ (1− β)ni and τ ≤ ϵβ in the final inequality.

Lemma B.2. Given some integer i ∈ [t− 1], let ℓ and ℓ′ be the number of insertions and deletions
that have occurred since the last time Ui+1 was reconstructed respectively. Then we have that

ni+1 + ℓ

ni + ℓ− ℓ′
≤ ni+1 + τni+1

ni
.

Proof. First, note that (ni+1 + ℓ)/(ni + ℓ− ℓ′) ≤ (ni+1 + ℓ)/(ni− ℓ′). Now, given some reals A ≥
a ≥ 0 and 0 ≤ N ≤ A−a, we define a function f : [0, 1]→ R by f(x) = (a+xN)/(A−(1−x)N).
The derivative of f is −N(a − A + N)/((x − 1)N + A)2 and is non-negative for all x ∈ [0, 1].
Hence, f(x) ≤ f(1) for all x ∈ [0, 1].

By setting A = ni, a = ni+1, N = ℓ + ℓ′ and noting that ℓ + ℓ′ ≤ τni+1 by Invariant 3.1 and
ni+1 ≤ (1− β)ni, we get that

ℓ+ ℓ′ ≤ τni+1 ≤ βni+1 = (1 + β)ni+1 − ni+1 ≤ (1 + β)(1− β)ni − ni+1 ≤ ni − ni+1,

and hence it follows that
ni+1 + ℓ

ni − ℓ′
= f

(
ℓ

ℓ+ ℓ′

)
≤ f(1) = ni+1 + ℓ+ ℓ′

ni
≤ ni+1 + τni+1

ni
.

Since |U1| = |U |, |Ut−1| > (1− τ)αk′ = Ω(k), and β∗ is a constant, it follows from Lemma B.1
that t = O (log(|U |/k)) = Õ(1).

B.2 Proof of Lemma 3.3

Bounding the Radii νi (Lemma B.5). Let U OLD
i denote the state of the ith layer the last time it

was reconstructed for i ∈ [t]. We now use the following crucial lemma which is analogous to Lemma
4.3.3 in [26].
Lemma B.3. Given any positive ξ, there exists a sufficiently large choice of α such that νi ≤
2µγ(U

OLD
i ) for each i ∈ [t− 1] with probability at least 1− e−ξk′

.

Henceforth, we fix some positive ξ and sufficiently large α such that Lemma B.3 holds.
Lemma B.4. Given metric subspaces U1 and U2 of U such that |U1 ⊕ U2| ≤ ϵγ|U1| , we have that
µγ(U1) ≤ 2µγ∗(U2).5

5⊕ denotes symmetric difference, i.e. U1 ⊕ U2 = (U1 \ U2) ∪ (U2 \ U1).
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Proof. Let X be a subset of U2 of size k such that νγ(1+2ϵ)(X,U2) = µγ(1+2ϵ)(U2), ρ =
µγ(1+2ϵ)(U2), and A = BU1

(X, ρ). Now note that

|A| = |BU1∪U2
(X, ρ) \BU2\U1

(X, ρ)|
≥ |BU2(X, ρ)| − |BU2\U1

(X, ρ)|
≥ γ(1 + 2ϵ)|U2| − |U2 \ U1|
≥ γ(1 + 2ϵ)|U2| − ϵγ|U1|
≥ γ(1 + 2ϵ) (|U1| − ϵγ|U1|)− ϵγ|U1|
= γ|U1|+ ϵγ(1− γ(1 + 2ϵ))|U1|
≥ γ|U1|.

Since there also exists a subset Y ⊆ A of size k such that A ⊆ BU1
(Y, 2ρ), it follows that

νγ(Y, U1) ≤ 2ρ. Hence, µγ(U1) ≤ νγ(Y,U1) ≤ 2µγ(1+2ϵ)(U2).

Lemma B.5. νi ≤ 4µγ∗(Ui) for each i ∈ [t− 1] with probability at least 1− e−ξk′
.

Proof. For each i ∈ [t− 1], |Ui ⊕ U OLD
i | ≤ τ |U OLD

i | since, by Invariant 3.1, at most τ |U OLD
i | points

have been inserted or deleted from Ui since it was last reconstructed. Noticing that τ ≤ ϵγ, we can
see that

|Ui ⊕ U OLD
i | ≤ ϵγ|U OLD

i |.
By now applying Lemma B.4 it follows that µγ(U

OLD
i ) ≤ 2µγ∗(Ui). The lemma follows by combin-

ing this result with Lemma B.3.

Upper Bounding cost(σ) (Lemma B.6).
Lemma B.6.

cost(σ) ≤
t∑

i=1

2νi|Ci|.

Proof. We first note that for all i ∈ [t− 1], cost(σ,Ci) ≤ 2νi|Ci|. This follows directly from the
fact that each point x in Ci is assigned to some point y ∈ Ci such that d(x, y) ≤ 2νi. Since the Ci

partition U and cost(σ,Ct) = 0, we get:

cost(σ) =
t∑

i=1

cost(σ,Ci) ≤
t∑

i=1

2νi|Ci|.

Lower Bounding opt(U) (Lemma B.10). Let r denote ⌈log1−β∗
1−γ∗

3 ⌉ and for each i ∈ [t] let µi

denote µγ∗(Ui).

For the rest of this subsection we fix an arbitrary S ⊆ U of size k. For each i ∈ [t], let Fi denote
the set {x ∈ Ui | d(x, S) ≥ µi}, and for any integer m > 0, let Fm

i denote Fi \ (∪j>0Fi+jm) and
Gi,m denote the set of all integers j ∈ [t] and j ≡ i (mod m).
Lemma B.7. Given some i ∈ [t] and a subset X ⊆ Fi, we have that |Fi| ≥ (1 − γ∗)|Ui| and
cost(S,X) ≥ µi|X|.

Proof. It follows directly from the definition of µi that we have that |Fi| ≥ (1 − γ∗)|Ui|. By the
definition of Fi, we have that cost(S,X) =

∑
x∈X d(x, S) ≥ µi|X|.

The following lemma is proven in [26].
Lemma B.8 ([26], Lemma 4.3.8). Given integers ℓ ∈ [t] and m > 0, we have that

cost(S,∪i∈Gℓ,m
Fm
i ) ≥

∑
i∈Gℓ,m

µi|Fm
i |.

Lemma B.9. For all i ∈ [t− 1], we have that |F r
i | ≥ 1

2 |Fi|.
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Proof. We first note that for all i ∈ [t− r], we have that |Fi+r| ≤ 1
3 |Fi|. This follows from the fact

that

|Fi+r| ≤ |Ui+r| ≤ (1− β∗)r|Ui| ≤
(1− β∗)r

1− γ∗
|Fi| ≤

1

3
|Fi|,

where the first inequality follows from the fact that Fi+r ⊆ Ui+r, the second inequality follows from
Lemma B.1, the third inequality follows from Lemma B.7, and the fourth inequality follows from the
definition of r. We now get that

|F r
i | = |Fi \ ∪j>0Fi+jr| ≥ |Fi| −

∑
j>0

1

3j
|Fi| ≥

1

2
|Fi|.

Lemma B.10.

cost(S) ≥ 1− γ∗

2r

t∑
i=1

µi|Ci|.

Proof. Let ℓ = argmax0≤ℓ<r{
∑

i∈Gℓ,r
µi|F r

i |}. Then we have that

cost(S) ≥ cost(S,∪i∈Gℓ,r
F r
i ) ≥

∑
i∈Gℓ,r

µi|F r
i | ≥

1

r

t∑
i=1

µi|F r
i | ≥

1

2r

t∑
i=1

µi|Fi|

≥ 1− γ∗

2r

t∑
i=1

µi|Ui| ≥
1− γ∗

2r

t∑
i=1

µi|Ci|.

The second inequality follows from Lemma B.8, the third inequality from averaging and the choice
of ℓ, the fourth inequality from Lemma B.9, and the fifth inequality from Lemma B.7.

Proof of Lemma 3.3. It follows that with probability at least 1− e−ξk′
we have that

cost(σ) ≤
t∑

i=1

2νi|Ci| ≤
t∑

i=1

8µi|Ci| ≤
16r

1− γ∗
cost(S)

for any set S ⊆ U of size k. Hence, we have that

cost(σ) ≤ 16r

1− γ∗
opt(U).

C Proof of Corollary 3.4

In order to prove this corollary, we apply the extraction technique presented in [28] (with full details
appearing in [26]) which is a slight generalization of the techniques from [19]. In particular, we
use the following theorem which follows as an immediate corollary of Theorem 6 in [26]. For
completeness, we provide a proof of this theorem.
Theorem C.1. Given a ϕ-approximate m-assignment π : U → U , any ψ-approximate solution
to the weighted k-median instance (π(U), d, w), where each point x ∈ π(U) receives weight
w(x) := |π−1(x)|, is also a (ϕ+ 2(1 + ϕ)ψ)-approximate solution to the k-median instance (U, d).

Proof. Let S∗ be a solution to the weighted k-median instance (π(U), d, w) and let S be an optimal
solution to the k-median instance (U, d). Let ϕ and ψ be constants such that cost(π, U) ≤ ϕ·opt(U)
and costw(S∗, π(U)) ≤ ψ · optw(π(U)). We now show that cost(S∗, U) = O(1) · opt(U). We
first note that

cost(S∗, U) =
∑
x∈U

d(x, S∗)

≤
∑
x∈U

d(x, π(x)) +
∑

y∈π(U)

w(y) · d(y, S∗)

= cost(π, U) + costw(S∗, π(U))

≤ ϕ · opt(U) + costw(S∗, π(U)).
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Now note that, for any X ⊆ U of size at most k, there exists some Y ⊆ π(U) of size at most k such
that costw(Y, π(U)) ≤ 2 · costw(X,π(U)). Since costw(S∗, π(U)) ≤ ψ · costw(Y, π(U)) for
all Y ⊆ π(Y ) of size at most k, we get the following.

costw(S∗, π(U)) ≤ 2ψ · costw(S, π(U))

= 2ψ ·
∑

y∈π(U)

w(y) · d(y, S)

= 2ψ ·
∑
x∈U

d(π(x), S)

≤ 2ψ ·
∑
x∈U

d(x, π(x)) + 2ψ ·
∑
x∈U

d(x, S)

= 2ψ · cost(π, U) + 2ψ · opt(U)

≤ 2(1 + ϕ)ψ · opt(U).

By combining these two chains of inequalities, we get that

cost(S∗, U) ≤ ϕ · opt(U) + costw(S∗, π(U)) ≤ (ϕ+ 2(1 + ϕ)ψ) · opt(U).

It immediately follows that we can get a O(1)-approximate solution to the instance (U, d) by running
a static weighted k-median algorithm on the instance (σ(U), d, w).

D Lower Bounds on Update and Query Time

In the static (i.e. non-dynamic) setting, the k-median problem is defined as follows: given a metric
space U , return a set S of at most k points from U which minimizes the value of

∑
x∈S d(x, S). The

following lower bound for the static k-median problem is proven by Mettu in [26].

Theorem D.1. Any O(1)-approximate randomized (static) algorithm for the k-median problem,
which succeeds with even negligible probability, runs in time Ω(nk).

Informally, the proof of this lower bound is obtained by constructing, for each δ > 0, an input
distribution of metric spaces (with polynomially bounded aspect ratio) on which no deterministic
algorithm for the k-median problem succeeds with probability more than δ. Theorem D.1 then
follows by an application of Yao’s minmax principle.

We can use this lower bound from the static setting in order to get a lower bound for the dynamic
setting. First note that any incremental algorithm for k-median with amortized update time u(n, k)
and query time q(n, k) can be used to construct a static algorithm for the k-median problem with
running time n · u(n, k) + q(n, k) by inserting each point in the input metric space U followed by
a solution query. Hence, by Theorem D.1, we must have that n · u(n, k) + q(n, k) = Ω(nk). Now
assume that some incremental algorithm for k-median has query time Õ(poly(k)). If this algorithm
also has an amortized update time of õ(k), then for the range of values of k where q(n, k) = õ(nk),
it follows that õ(nk) is Ω(nk), giving a contradiction. Hence, the amortized update time must be
Ω̃(k) and Theorem D.2 follows.

Theorem D.2. Any O(1)-approximate incremental algorithm for the k-median problem with
Õ(poly(k)) query time must have Ω̃(k) amortized update time.

It follows that the update time of our algorithm is optimal up to polylogarithmic factors.
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E Omitted Experimental Results

E.1 Update Time Evaluation
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Figure 2: The cumulative update time for the different algorithms, on the Song dataset for k = 10
(top left), k = 50 (top right), k = 100 (bottom).
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Figure 3: The cumulative update time for the different algorithms, on the Census dataset for k = 10
(top left), k = 50 (top right), k = 100 (bottom).
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Figure 4: The cumulative update time for the different algorithms, on the KDD-Cup dataset for
k = 10 (top left), k = 50 (top right), k = 100 (bottom).
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Figure 5: The cumulative update time for the different algorithms, on the Drift dataset for k = 10
(top left), k = 50 (top right), k = 100 (bottom).
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Figure 6: The cumulative update time for the different algorithms, on the SIFT10M dataset for
k = 10 (top left), k = 50 (top right), k = 100 (bottom).

E.2 Solution Cost Evaluation
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Figure 7: The solution cost by the different algorithms, on Song for k = 10 (top left), k = 50 (top
right), k = 100 (bottom).
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Figure 8: The solution cost by the different algorithms, on Census for k = 10 (top left), k = 50 (top
right), k = 100 (bottom).
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Figure 9: The solution cost by the different algorithms, on KDD-Cup for k = 10 (top left), k = 50
(top right), k = 100 (bottom).
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Figure 10: The solution cost by the different algorithms, on Drift for k = 10 (top left), k = 50 (top
right), k = 100 (bottom).
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Figure 11: The solution cost by the different algorithms, on SIFT10M for k = 10 (top left), k = 50
(top right), k = 100 (bottom).
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E.3 Query Time Evaluation

Table 4: The average query times for the algorithm OURALG(ϕ = 500) and HK(ψ = 1000) (we omit the
parameter value from the table to simplify the presentation), on the different datasets that we consider and for
k ∈ {10, 50, 100}.

Song Census KDD-Cup Drift SIFT10M

OURALG HK OURALG HK OURALG HK OURALG HK OURALG HK

k = 10 0.569 0.327 0.478 0.280 0.069 0.176 0.729 0.421 0.732 0.419
k = 50 0.610 0.347 0.511 0.295 0.075 0.141 0.784 0.447 0.795 0.448
k = 100 0.665 0.373 0.552 0.317 0.085 0.131 0.857 0.483 0.866 0.483

E.4 Parameter Tuning
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Figure 12: The cumulative update time for different parameters of OURALG and HK, for k = 50, on
datasets Song (top left), Census (top right), and KDD-Cup (bottom).
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E.4.2 Solution Cost
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Figure 13: The solution cost for different parameters of OURALG and HK, for k = 50, on datasets
Song (top left), Census (top right), and KDD-Cup (bottom).

E.4.3 Query Time

Table 5: The average query times for the algorithm OURALG and HK with different parameters, on
the different datasets for k = 50.

Song Census KDD-Cup

HK(ψ = 250) 0.026 0.021 0.012
HK(ψ = 500) 0.087 0.073 0.043
HK(ψ = 1000) 0.293 0.249 0.156
OURALG(ϕ = 250) 0.223 0.187 0.054
OURALG(ϕ = 500) 0.439 0.364 0.086
OURALG(ϕ = 1000) 0.719 0.605 0.146
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E.5 Randomized Order of Updates
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Figure 14: The cumulative update time for different parameters of OURALG and HK, for k = 50,
over a sequence of updates given by a randomized order of the points in the dataset, on the datasets
Song (top left), Census (top right), and KDD-Cup (bottom).
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Figure 15: The solution cost for different parameters of OURALG and HK, for k = 50, over a
sequence of updates given by a randomized order of the points in the dataset, on the datasets Song
(top left), Census (top right), and KDD-Cup (bottom).

25



E.5.3 Query Time

Table 6: The average query times for the algorithm OURALG and HK with different parameters, for
k = 50, over a sequence of updates given by a randomized order of the points in each of the datasets
that we consider.

Song Census KDD-Cup

HK(ψ = 250) 0.025 0.021 0.014
HK(ψ = 500) 0.086 0.073 0.050
HK(ψ = 1000) 0.292 0.247 0.173
OURALG(ϕ = 250) 0.225 0.185 0.062
OURALG(ϕ = 500) 0.440 0.364 0.100
OURALG(ϕ = 1000) 0.723 0.605 0.165

E.6 Larger Experiment
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Figure 16: The total update time for OURALG(ϕ = 500) and HK(ψ = 1000), on the larger instance
derived from KDD-Cup, for k = 50.
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Figure 17: The solution cost produced by OURALG(ϕ = 500) and HK(ψ = 1000) two algorithms,
on the larger instance derived from KDD-Cup, for k = 50.

The average query times for OURALG(ϕ = 500) and HK(ψ = 1000) while handling this longer
sequence of updates were 0.416 and 0.225 respectively.
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