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The supplementary material is structured as follows. Appendix §A presents the well-known solution1

to the classic LQG problem using dynamic programming and Kalman Filter estimation. Appendix §B2

provides the definitions of the stacked system matrices utilized in the compact formulation (5) of the3

distributionally robust LQG problem. Appendix §C contains the proofs of the formal statements in4

the main text and provides additional technical results. Appendix §D derives the SDP reformulation5

of the dual problem (11). Appendix §E, finally, elaborates on the bisection algorithm used for solving6

the linearization oracle of the Frank-Wolfe algorithm.7

A. Solution of the LQG Problem8

The classic LQG problem can be solved efficiently via dynamic programming; see, e.g., [3]. That9

is, the unique optimal control inputs satisfy u⋆
t = Ktx̂t for every t ∈ [T − 1], where Kt ∈ Rn×n is10

the optimal feedback gain matrix, and x̂t = EP[xt|y0, . . . , yt] is the minimum mean-squared-error11

estimator of xt given the observation history up to time t. Thanks to the celebrated separation12

principle, Kt can be computed by pretending that the system is deterministic and allows for perfect13

state observations, and x̂t can be computed while ignoring the control problem.14

To compute Kt, one first solves the deterministic LQR problem corresponding to the LQG problem15

at hand. Its value function x⊤
t Ptxt at time t is quadratic in xt, and Pt obeys the backward recursion16

Pt = A⊤
t Pt+1At +Qt −A⊤

t Pt+1Bt(Rt +B⊤
t Pt+1Bt)

−1B⊤
t Pt+1At ∀t ∈ [T − 1] (A.1a)

initialized by PT = QT . The optimal feedback gain matrix Kt can then be computed from Pt+1 as17

Kt = −(Rt +B⊤
t Pt+1Bt)

−1B⊤
t Pt+1At ∀t ∈ [T − 1]. (A.1b)

Since xt and (y0, . . . , yt) are jointly normally distributed, the minimum mean-squared-error estima-18

tor x̂t can be calculated directly using the formula for the mean of a conditional normal distribution.19

Alternatively, however, one can use the Kalman filter to compute x̂t recursively, which is significantly20

more insightful and efficient. The Kalman filter also recursively computes the covariance matrix Σt21

of xt conditional on y0, . . . , yt and the covariance matrix Σt+1|t of xt+1 conditional on y0, . . . , yt22

evaluated under P. Specifically, these covariance matrices obey the forward recursion23

Σt = Σt|t−1 − Σt|t−1C
⊤
t (CtΣt|t−1C

⊤
t + Vt)

−1CtΣt|t−1

Σt+1|t = AtΣtA
⊤
t +Wt

}
∀t ∈ [T − 1] (A.2)

initialized by Σ0|−1 = X0. Using Σt|t−1, we then define the Kalman filter gain as24

Lt = ΣtC
⊤
t V −1

t ∀t ∈ [T − 1]

which allows us to compute the minimum mean-squared-error estimator via the forward recursion25

x̂t+1 = Atx̂t +Btut + Lt+1 (yt+1 − Ct+1(Atx̂t +Btut)) ∀t ∈ [T − 1]

initialized by x̂0 = L0y0. One can also show that the optimal value of the LQG problem amounts to26

T−1∑
t=0

Tr((Qt − Pt)Σt) +

T∑
t=1

Tr(Pt(At−1Σt−1A
⊤
t−1 +Wt−1)) + Tr(P0X0). (A.3)
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B. Definitions of Stacked System Matrices27

The stacked system matrices appearing in the distributionally robust LQG problem (5) are defined as28

follows. First, the stacked state and input cost matrices Q ∈ Sn(T+1) and R ∈ SmT are set to29

Q =


Q0

Q1

. . .
QT

 and R =


R0

R1

. . .
RT−1

 ,

respectively. Similarly, the stacked matrices appearing in the linear dynamics and the measurement30

equations C ∈ RpT×n(T+1), G ∈ Rn(T+1)×n(T+1) and H ∈ Rn(T+1)×mT are defined as31

C =


C0 0

C1 0
. . . . . .

CT−1 0

 , G =


A0

0

A1
0 A1

1
...

. . .
AT

0 AT
1 . . . AT

T


and32

H =



0
A1

1B0 0
A2

1B0 A2
2B1 0

...
. . .

... 0
AT

1 B0 AT
2 B1 . . . . . . AT

TBT−1


,

respectively, where At
s =

∏t−1
k=s Ak for every s < t and At

s = In for s = t.33

Using the stacked system matrices, we can now express the purified observation process η as a linear34

function of the exogenous uncertainties w and v that is not impacted by u; see also [2, 7]35

Lemma B.1. We have η = Dw + v, where D = CG.36

Proof of Lemma B.1. The purified observation process is defined as η = y − ŷ. Recall now that37

the observations of the original system satisfy y = Cx+ v. Similarly, one readily verifies that the38

observations of the fictitious noise-free system satisfy ŷ = Cx̂. Thus, we have η = C(x− x̂) + v.39

Next, recall that the state of the original system satisfies x = Hu+Gw, and note that the state of the40

fictitious noise-free system satisfies x̂ = Hu. Combining all of these linear equations finally shows41

that u cancels out and that η = CGw + v = Dw + v.42

C. Proofs43

C.1. Additional Technical Results44

It is well known that every causal controller that is linear in the original observations y can be45

reformulated as a causal controller that is linear in the purified observations η and vice versa [2, 7].46

Perhaps surprisingly, however, the one-to-one transformation between the respective coefficients of y47

and η is not linear. To keep this paper self-contained, we review these insights in the next lemma.48

Lemma C.1. If u = Uη + q for some U ∈ U and q ∈ RpT , then u = U ′y + q′ for U ′ =49

(I + UCH)−1U and q′ = (I + UCH)−1q. Conversely, if u = U ′y + q′ for some U ′ ∈ U and50

q′ ∈ RpT , then u = Uη + q for U = (I − U ′CH)−1 and q = (I − U ′CH)−1q′.51

Proof of Lemma C.1. If u = Uη + q for some U ∈ U and q ∈ RpT , then we have52

u = Uη + q = U(y − ŷ) + q = Uy − UCx̂+ q = Uy − UCHu+ q,

where the second equality follows from the definition of η, the third equality holds because y = Cx+v,53

and the last equality exploits our earlier insight that ŷ = Cx̂. The last expression depends only on y54

and u. Solving for u yields u = U ′y + q′, where U ′ = (I + UCH)−1U and q′ = (I + UCH)−1q.55

2



Note that (I + UCH) is indeed invertible because I + UCH is a lower triangular matrix with all56

diagonal entries equal to one, ensuring a determinant of one.57

Similarly, if u = U ′y + q′ for some U ′ ∈ U and q′ ∈ RpT , then we have58

u = U ′y + q′ = U ′(η + ŷ) + q′ = U ′η + U ′Cx̂+ q′ = U ′η + U ′CHu+ q′.

Solving for u yields u = Uη + q, where U = (I − U ′CH)−1U ′ and q = (I − U ′CH)−1q′. Note59

again that (I − U ′CH) is indeed invertible because (I − U ′CH) is a lower triangular matrix with60

all diagonal entries equal to one.61

C.2. Proofs of Section 362

Proof of Proposition 3.2. In problem (8), both u and x are linear in w and v, i.e., u = q+UDw+Uv63

and x = Hu+Gw = Hq +HUDw +HUv +Gw. By substituting the linear representations of u64

and x into the objective function of problem (8), we obtain the following equivalent reformulation.65

min
q∈RpT

U∈U

max
P∈G

EP
[
w⊤ (

D⊤U⊤(R+H⊤QH)UD + 2D⊤U⊤H⊤QG+G⊤QG
)
w
]

+ EP
[
v⊤

(
U⊤(R+H⊤QH)U

)
v
]
+ q⊤(R+H⊤QH)q

For any fixed P ∈ G, we can express the expectation in the objective function of the above problem66

in terms of the covariance matrices W = EP[ww
⊤] and V = EP[vv

⊤]. Thus, the problem becomes67

min
q∈RpT

U∈U

max
W,V,P

Tr
((
D⊤U⊤(R+H⊤QH)UD+ 2G⊤QHUD +G⊤QG

)
W

)
+Tr

((
U⊤(R+H⊤QH)U

)
V
)
+q⊤(R+H⊤QH)q

s.t. P ∈ G, W = EP[ww
⊤], V = EP[vv

⊤].

(A.4)

Recall now the definition of G, and note that the requirements G(X0, X̂0) ≤ ρx0
, G(Wt, Ŵt) ≤ ρwt

68

andG(Vt, V̂t) ≤ ρvt are equivalent to the convex constraintsG(X0, X̂0)
2 ≤ ρ2x0

,G(Wt, Ŵt)
2 ≤ ρ2wt

69

and G(Vt, V̂t)
2 ≤ ρ2vt , respectively, for all t ∈ [T − 1]. The definition of G also implies that70

W = EP[ww
⊤] = diag(X0,W0, . . . ,WT−1) and V = EP[vv

⊤] = diag(V0, . . . , VT−1).

Problem (A.4) thus constitutes a relaxation of problem (9). Indeed, the feasible set of the inner71

maximization problem in (A.4) is a subset of the feasible set of the inner maximization problem72

in (9). Moreover, for any W and V feasible in the inner maximization problem in (9), the distribution73

P = Px0
× (×T−1

t=0 Pwt
) × (×T

t=0Pvt) defined through Px0
= N (0, X0), Pwt

= N (0,Wt) and74

Pvt = N (0, Vt), t ∈ [T − 1], is feasible in the inner maximization problem in (A.4) with the same75

objective value. The relaxation is thus exact, and the optimal values of (8), (9) and (A.4) coincide.76

Proof of Proposition 3.4. Recall that the space Uy of all causal output-feedback controllers coincides77

with the space Uη of all causal purified output-feedback controllers. We can thus replace the feasible78

set Uη of the inner minimization problem in (10) with Uy. Hence, for any fixed P ∈ WN , the inner79

minimization problem in (10) constitutes a classic LQG problem. By standard LQG theory [3], it is80

solved by a linear output-feedback controller of the form u = U ′y+q′ for some U ′ ∈ U and q′ ∈ RpT ;81

see also Appendix §A. Lemma C.1 shows, however, that any linear output-feedback controller can82

be equivalently expressed as a linear purified-output feedback controller of the form u = Uη + q83

for some U ∈ U and q ∈ RpT . In summary, the above reasoning shows that the feasible set of the84

inner minimization problem in (10) can be reduced to the family of all linear purified-output feedback85

controllers without sacrificing optimality. Thus, problem (10) is equivalent to86

max
P∈WN

min
q,U,x,u

EP
[
u⊤Ru+ x⊤Qx

]
s.t. U ∈ U , u = q + Uη, x = Hu+Gw.

Using a similar reasoning as in the proof of Proposition 3.2, we can now substitute the linear87

representations of u and x into the objective function and reformulate the above problem as88

max
W,V,P

min
q∈RpT

U∈U

Tr
((
D⊤U⊤(R+H⊤QH)UD+ 2G⊤QHUD +G⊤QG

)
W

)
+Tr

((
U⊤(R+H⊤QH)U

)
V
)
+q⊤(R+H⊤QH)q

s.t. P ∈ WN , W = EP[ww
⊤], V = EP[vv

⊤].
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AsWN contains only normal distributions, Proposition 3.3 implies thatW(Px0 , P̂x0) = G(X0, X̂0),89

W(Pwt , P̂wt) = G(Wt, Ŵt) and W(Pvt , P̂vt) = G(Vt, V̂t) for all t ∈ [T − 1]. We may thus90

replace the requirementW(Px0
, P̂x0

) ≤ ρx0
in the definition ofWN by G(X0, X̂0) ≤ ρx0

, which is91

equivalent to the convex constraint G(X0, X̂0)
2 ≤ ρ2x0

. The conditions on the marginal distributions92

of wt and vt, t ∈ [T − 1], admit similar reformulations. The definition ofWN also implies that93

W = EP[ww
⊤] = diag(X0,W0, . . . ,WT−1) and V = EP[vv

⊤] = diag(V0, . . . , VT−1).

Thus, the feasible set of the outer maximization problem in (11) constitutes a relaxation of that94

in (10). One readily verifies that the relaxation is exact by using similar arguments as in the proof of95

Proposition 3.2. Thus, the claim follows.96

Proof of Theorem 3.5. By Proposition 3.2, p̄⋆ coincides with the minimum of (9). Similarly, by97

Proposition 3.4 d⋆ coincides with the maximum of (11). Note that problems (9) and (11) only differ98

by the order of minimization and maximization. Note also that U is convex and closed, GW and GV99

are convex and compact by virtue of [5, Lemma A.6], and the (identical) trace terms in (9) and (11)100

are bilinear in (W,V ) and (U, q). The claim thus follows from Sion’s minimax theorem [6].101

C.3. Proofs of Section 4102

Note that Proposition 4.1 is consistent with Corollary 3 because the optimal LQG controller corre-103

sponding to P⋆ is linear in the past observations.104

Proof of Proposition 4.1. By [5, Lemma A.3], the inner problem in (9) admits a maximizer (W ⋆, V ⋆)105

with X⋆
0 ⪰ λmin(X̂0) as well as W ⋆

t ⪰ λmin(Ŵt) and V ⋆
t ⪰ λmin(V̂t) for all t ∈ [T − 1]. Thus,106

the optimal value of problem (9) and its strong dual (11) does not change if we restrict GW and GV107

to G+W and G+V , respectively. We may thus conclude that problem (11) has a maximizer (W ⋆, V ⋆)108

with V ⋆
t ⪰ λmin(V̂t) ≻ 0 for all t ∈ [T − 1]. This in turn implies that problem (6) is solved by a109

normal distribution P⋆ under which the covariance matrix of the observation noise vt satisfies V ⋆
t ≻ 0110

for every t ∈ [T − 1]. As (5) and (6) are strong duals, the optimal solution u⋆ of problem (5)111

forms a Nash equilibrium with P⋆, i.e., u⋆ is a best response to P⋆ and thus solves the classic LQG112

problem corresponding to P⋆. As Rt ≻ 0 for every t ∈ [T − 1], this best response u⋆ is unique, and113

as V ⋆
T ≻ 0 for every t ∈ [T−1], u⋆ is in fact the Kalman filter-based optimal output-feedback strategy114

corresponding to P⋆ (which can be obtained using the techniques highlighted in Appendix §A).115

Before proving Proposition 4.2, recall that f(W,V ) is called β-smooth for some β > 0 if116

|∇f(W,V )−∇f(W ′, V ′)| ≤ β
(
∥W −W ′∥2F + ∥V − V ′∥2F

) 1
2 ∀W,W ′ ∈ G+W , V, V ′ ∈ G+V ,

where ∥ · ∥F denotes the Frobenius norm.117

Proof of Proposition 4.2. The function f(W,V ) is concave because the objective function of the118

inner minimization problem in (11) is linear (and hence concave) in W and V and because concavity is119

preserved under minimization. To prove that f(W,V ) is β-smooth, we first recall from Proposition 3.3120

that it coincides with the optimal value of the inner minimization problem in (10). As Uη = Uy,121

f(W,V ) can thus be viewed as the optimal value of the classic LQG problem corresponding to the122

normal distribution P determined by the covariance matrices W and V . Hence, f(W,V ) coincides123

with (A.3), where Σt, for t ∈ [T −1], is a function of (W,V ) defined recursively through the Kalman124

filter equations (A.2). Note that all inverse matrices in (A.2) are well-defined because any V ∈ G+V is125

strictly positive definite. Therefore, Σt constitutes a proper rational function (that is, a ratio of two126

polyonmials with the polynomial in the denominator being strictly positive) for every t ∈ [T − 1].127

Thus, f(W,V ) is infinitely often continuously differentiable on a neighborhood of G+W × G
+
V .128

As f(W,V ) is concave and (at least) twice continuously differentiable, it is β-smooth on G+W × G
+
V129

if and only if the largest eigenvalue of the Hessian matrix of −f(W,V ) is bounded above by β130

throughout G+W × G
+
V . Also, the largest eigenvalue of the positive semidefinite Hessian matrix131

∇2(−f(W,V )) coincides with the spectral norm of∇2f(W,V ). We may thus set132

β = sup
W∈G+

W ,V ∈G+
V

∥∇2f(W,V )∥2, (A.5)
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where ∥ · ∥2 denotes the spectral norm. The supremum in the above maximization problem is finite133

and attained thanks to Weierstrass’ theorem, which applies because f(W,V ) is twice continuously134

differentiable and the spectral norm is continuous, while the sets G+W and G+V are compact by virtue135

of [5, Lemma A.6]. This observation completes the proof.136

D. SDP Reformulation of the Dual Problem (11)137

Instead of solving the dual problem (11) with the customized Frank-Wolfe algorithm of Section 4, it138

can be reformulated as an SDP amenable to off-the-shelf solvers. This reformulation is obtained by139

dualizing the inner minimization problem and by exploiting the following preliminary lemma.140

Lemma D.1. For any Ẑ ∈ Sd+ and ρz ≥ 0, the set GZ = {Z ∈ Sd+ : G(Z, Ẑ) ≤ ρz} coincides with141 {
Z ∈ Sd+ : ∃Ez ∈ Sd+ with Tr(Z + Ẑ − 2Ez) ≤ ρ2z,

[
Ẑ

1
2ZẐ

1
2 Ez

Ez I

]
⪰ 0

}
.

Proof of Lemma D.1. By Definition 2, we have142

GZ = {Z ∈ Sd+ : Tr(Z + Ẑ − 2(Ẑ
1
2ZẐ

1
2 )

1
2 ) ≤ ρ2z}.

Next, introduce an auxiliary variable Ez ∈ Sd+ subject to the matrix inequality E2
z ⪯ (Ẑ

1
2ZẐ

1
2 ).143

By [1, Theorem 1], this inequality can be recast as Ez ⪯ (Ẑ
1
2ZẐ

1
2 )

1
2 . Hence, we can reformulate the144

nonlinear matrix inequality in the above representation of GZ as Tr(Z + Ẑ − 2Ez) ≤ ρ2z . A standard145

Schur complement argument reveals that the inequality E2
z ⪯ (Ẑ

1
2ZẐ

1
2 ) is also equivalent to146 [

Ẑ
1
2ZẐ

1
2 Ez

Ez I

]
⪰ 0.

The claim then follows by combining all of these insights.147

We are now ready to derive the desired SDP reformulation of problem (11).148

Proposition D.2. If V̂ ≻ 0, then problem (11) is equivalent to the SDP149

max Tr(G⊤QGW )− Tr(F (R+H⊤QH)−1)

s.t. W ∈ Sn(T+1)
+ , V ∈ SpT+ , M ∈M, F ∈ STm

+

Ex0
∈ Sn+, Ewt

∈ Sn+, Evt ∈ Sp+ ∀t ∈ [T − 1]

Tr(W0 + X̂0 − 2Ex0
) ≤ ρ2x0

,

Tr(Wt+1 + Ŵt − 2Ewt
) ≤ ρ2wt

, Tr(Vt + V̂t − 2Evt) ≤ ρ2vt ∀t ∈ [T − 1][
X̂

1
2
0 X0X̂

1
2
0 Ex0

Ex0 In

]
⪰0,[

Ŵ
1
2
t Wt+1Ŵ

1
2
t Ewt

Ewt In

]
⪰0,

[
V̂

1
2
t VtV̂

1
2
t Evt

Evt Ip

]
⪰0 ∀t ∈ [T−1][

F H⊤QGWD⊤ +M/2
(H⊤QGWD⊤ +M/2)⊤ DWD⊤ + V

]
⪰ 0

W0 ⪰ λmin(X̂0)I, Wt+1 ⪰ λmin(Ŵt)I, Vt ⪰ λmin(V̂t)I ∀t ∈ [T − 1].

(A.6)

Here,M denotes the set of all strictly upper block triangular matrices of the form150 
0 M1,2 M1,3 . . . M1,T

0 M2,3 M2,T

. . .
...

0 MT−1,T

0

 ∈ RTm×Tp,

where Mt,s ∈ Rm×p for every t, s ∈ Z with 1 ≤ t < s ≤ T .151
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Proof of Proposition D.2. The proof relies on dualizing the inner minimization problem in (11).152

Note that strong duality holds because the primal problem is trivially feasible and involves only153

equality constraints, which implies that any feasible point is in fact a Slater point. In the following we154

use M ∈M to denote the Lagrange multiplier of the constraint U ∈ U , which requires all blocks of155

the matrix U above the main diagonal to vanish. The Lagrangian function of the inner minimization156

problem in (11) can therefore be represented as157

L(q, U,M) = Tr
((
D⊤U⊤(R+H⊤QH)UD +G⊤QG

)
W

)
+ 2Tr(G⊤QHUDW )

+Tr
((
U⊤(R+H⊤QH)U

)
V
)
+ q⊤(R+H⊤QH)q +Tr(UM⊤).

Recall now that R ≻ 0 and Q ⪰ 0, and thus R +H⊤QH ≻ 0. Consequently, L is minimized by158

q⋆ = 0 for any fixed U and M . In addition, the partial gradient of L with respect U is given by159

∂L
∂U

= 2(R+H⊤QH)UDWD⊤ + 2(R+H⊤QH)UV + 2H⊤QGWD⊤ +M.

Recall also that V ∈ G+V is strictly positive, which implies that DWD⊤ + V ≻ 0 is invertible. As160

we already know that R+H⊤QH ≻ 0 is invertible, as well, L is minimized by161

U⋆ = −(R+H⊤QH)−1
(
H⊤QGWD⊤ +M/2

)
(DWD⊤ + V )−1

for any fixed M . Substituting both q⋆ and U⋆ into L yields the dual objective function162

g(M) = L(q⋆, U⋆,M) = Tr(G⊤QGW )

− Tr
(
(R+H⊤QH)−1(H⊤QGWD⊤ +M/2)(DWD⊤ + V )−1(H⊤QGWD⊤+M/2)⊤

)
.

The dual of the inner minimization problem in (11) is thus given by maxM∈M g(M). To linearize163

the dual objective function, we next introduce an auxiliary variable F ∈ SmT
+ subject to the matrix164

inequality F ⪰ (H⊤QGWD⊤ + M/2)(DWD⊤ + V )−1(H⊤QGWD⊤ + M/2)⊤. By using a165

standard Schur complement reformulation, we can then rewrite the dual problem as166

max Tr(G⊤QGW )− Tr((R+H⊤QH)−1F )

s.t. M ∈M, F ∈ SmT
+[

F H⊤QGWD⊤ +M/2
(H⊤QGWD⊤ +M/2)⊤ DWD⊤ + V

]
⪰ 0.

(A.7)

Next, by replacing the inner problem in (11) with its strong dual (A.7), we can reformulate (11) as167

max Tr(G⊤QGW )− Tr((R+H⊤QH)−1F )

s.t. M ∈M, F ∈ SmT
+ , W ∈ Sn(T+1)

+ , V ∈ SpT+[
F H⊤QGWD⊤ +M/2

(H⊤QGWD⊤ +M/2)⊤ DWD⊤ + V

]
⪰ 0

G(X0, X̂0)
2 ≤ ρ2x0

, G(Wt, Ŵt) ≤ ρ2wt
, G(Vt, V̂t) ≤ ρ2vt ∀t ∈ [T − 1].

(A.8)

By Proposition 4.1, the inclusion of the constraints X0 ⪰ λmin(X̂0)I , Wt ⪰ λmin(Ŵt)I and168

Vt ⪰ λmin(V̂t)I for all t ∈ [T − 1] has no effect on the solution to problem (A.8). In addition, by169

Lemma D.1, each (non-linear) Gelbrich constraint in (A.8) can be reformulated as an equivalent170

(linear) SDP constraint. Thus, problem (A.8) reduces to (A.6), and the claim follows.171

E. Bisection Algorithm for the Linearization Oracle172

We now show that the direction-finding subproblem (14) can be solved efficiently via bisection. To173

this end, we first establish that (14) can be reduced to the solution of a univariate algebraic equation.174

Proposition E.1 ([5, Proposition A.4 (iii)]). If Ẑ ∈ Sd++, ΓZ ∈ Sd+, ΓZ ̸= 0 and ρz ∈ R++, then175

max ⟨ΓZ , L− Z⟩
s.t. G(L, Ẑ) ≤ ρz

L ⪰ λmin(Ẑ)I
(A.9)

is uniquely solved by L⋆ = (γ⋆)2(γ⋆I − ΓZ)
−1Ẑ(γ⋆I − ΓZ)

−1, where γ⋆ is the unique solution of176

ρ2z − ⟨Ẑ, (I − γ⋆(γ⋆I − ΓZ)
−1)2⟩ = 0 (A.10)

in the interval (λmax(ΓZ),∞).177
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In practice, we need to solve the algebraic equation (A.10) numerically. The numerical error in178

approximating γ⋆ should be contained to ensure that L⋆ approximates the exact maximizer of179

problem (A.9). The next proposition shows that, for any tolerance δ ∈ (0, 1), a δ-approximate180

solution of (A.9) can be computed with an efficient bisection algorithm.181

Proposition E.2 ([5, Theorem 6.4]). For any fixed ρz ∈ R++, Ẑ ∈ Sd++ and ΓZ ∈ Sd+,ΓZ ̸= 0,182

define G+Z = {Z ∈ Sd+ : G(Z, Ẑ) ≤ ρz, Z ⪰ λmin(Ẑ)} as the feasible set of problem (A.9), and183

let Z ∈ G+Z be any reference covariance matrix. Additionally, let δ ∈ (0, 1) be the desired oracle184

precision, and define φ(γ) = γ(ρ2+⟨γ(γI − ΓZ)
−1−I, Ẑ⟩)−⟨Z,ΓZ⟩ for any γ > λmax(ΓZ). Then,185

Algorithm A.1 returns in finite time a matrix Lδ
Z ∈ Sd+ with the following properties. (i) Feasibility:186

Lδ
Z ∈ G

+
Z (ii) δ-Suboptimality: ⟨Lδ

Z − Z,ΓZ⟩ ≥ δmaxL∈G+
Z
⟨ΓZ , L− Z⟩.187

Algorithm A.1 Bisection algorithm to compute Lδ
Z

Input: nominal covariance matrix Ẑ ∈ Sd++, radius ρ ∈ R++,
reference covariance matrix Z ∈ G+Z ,
gradient matrix ΓZ ∈ Sd+, ΓZ ̸= 0, precision δ ∈ (0, 1),
dual objective function ϕ(γ) defined in Proposition E.2

1: set λ1 ← λmax(ΓZ), and let p1 be an eigenvector for λ1

2: set γ ← λ1(1 + (p⊤1 Ẑp1)
1
2 /ρ) and γ ← λ1(1 + Tr(Ẑ)

1
2 /ρ)

3: repeat
4: set γ̃ ← (γ + γ)/2 and L← (γ̃)2(γ̃I − ΓZ)

−1Ẑ(γ̃I − ΓZ)
−1

5: if dϕ
dγ (γ̃) < 0 then set γ ← γ̃ else γ ← γ̃ endif

6: until dϕ
dγ (γ̃) > 0 and ⟨L− Z,ΓZ⟩ ≥ δϕ(γ̃)

Output: L

In summary, for any Z ∈ {X0,W0, . . . ,WT−1, V0, . . . , VT−1}, Algorithm A.1 computes a δ-188

approximate solutions to the direction-finding subproblem (14) with ΓZ = ∇Zf(W,V ).189

F. Additional Information on Experiments190

Generation of Nominal Covariance Matrices. The nominal covariance matrices of the exoge-191

nous uncertainties are constructed randomly using the following procedure. For each exogenous192

uncertainty z ∈ {x0, w0, . . . , wT−1, v0, . . . , vT−1}, we denote the dimension of z by d and sample193

a matrix MZ ∈ Rd×d from the uniform distribution on the hypercube [0, 1]d×d. Next, we define194

ΞZ ∈ Rd×d as the orthogonal matrix whose columns represent the orthonormal eigenvectors of195

the symmetric matrix MZ +M⊤
Z . Finally, we set Ẑ = ΞZΛZΞ

⊤
Z , where ΛZ is a diagonal matrix196

whose main diagonal is sampled uniformly from the interval [1, 2]d. The rationale for adopting this197

cumbersome procedure is to ensure that the covariance matrix Ẑ is positive definite.198

Optimality Gap. The optimality gap of the Frank-Wolfe algorithm visualized in Figure 1b is199

calculated as the sum of the surrogate optimality gaps ⟨Lδ
Z − Z,∇Zf(W,V )⟩ across all Z ∈200

{X0,W0 . . . ,WT−1, V0, . . . , VT−1}. For more information on the surrogate optimality gaps see [4].201
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