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Abstract

Linear-Quadratic-Gaussian (LQG) control is a fundamental control paradigm that
has been studied and applied in various fields such as engineering, computer
science, economics, and neuroscience. It involves controlling a system with linear
dynamics and imperfect observations, subject to additive noise, with the goal of
minimizing a quadratic cost function depending on the state and control variables.
In this work, we consider a generalization of the discrete-time, finite-horizon LQG
problem, where the noise distributions are unknown and belong to Wasserstein
ambiguity sets centered at nominal (Gaussian) distributions. The objective is to
minimize a worst-case cost across all distributions in the ambiguity set, including
non-Gaussian distributions. Despite the added complexity, we prove that a control
policy that is linear in the observations is optimal, as in the classic LQG problem.
We propose a numerical solution method that efficiently characterizes this optimal
control policy. Our method uses the Frank-Wolfe algorithm to identify the least-
favorable distributions within the Wasserstein ambiguity sets and computes the
controller’s optimal policy using Kalman filter estimation under these distributions.

1. Introduction

The Linear Quadratic Regulator (LQR) is a classic control problem that has served as a building
block for numerous applications in engineering and computer science [3, 12], economics [29], or
neuroscience [47]. It involves controlling a system with linear dynamics and imperfect observations
affected by additive noise, with the goal of minimizing a quadratic state and control cost. Under
the assumption that noise terms are independent and normally distributed (a case referred to as
Linear-Quadratic-Gaussian, or LQG), it is well known that the optimal control policy depends linearly
on the observations and can be obtained efficiently by using the Kalman filtering procedure and
dynamic programming [8].

Motivated by practical settings where noise distributions may not be readily available or may not be
Gaussian, this paper considers a discrete-time, finite-horizon generalization of the LQG setting where
noise distributions are unknown and are chosen adversarially from ambiguity sets characterized by a
Wasserstein distance and centered around nominal (Gaussian) distributions.

We show that, even under distributional ambiguity, the optimal control policy remains linear in
the system’s observations. Our proof is novel and does not rely on traditional recursive dynamic
programming arguments. Instead, we re-parametrize the control policy in terms of the purified state
observations and we derive an upper bound for the resulting minimax formulation by relaxing the
ambiguity set (from a Wasserstein ball into a Gelbrich ball) while simultaneously restricting the
controller to linear dependencies. We then use convex duality to prove that this upper bound matches

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



a lower bound obtained by restricting the ambiguity set in the dual of the minimax formulation. This
implies the optimality of linear output feedback controllers, thus generalizing the classic results to a
distributionally robust setting.

We also find that the worst-case distribution is actually Gaussian, which leads to a very efficient
algorithm for finding optimal controllers. Specifically, we propose an algorithm based on the Frank-
Wolfe first-order method that at every step solves sub-problems corresponding to classic LQG control
problems, using Kalman filtering and dynamic programming. We show that this algorithm enjoys a
sublinear convergence rate and is susceptible to parallelization. Lastly, we implement the algorithm
leveraging PyTorch’s automatic differentiation module and we find that it yields uniformly lower
runtimes than a direct method (based on solving semidefinite programs) across all problem horizons.

1.1. Literature Review

This paper is related to the ample literature in control theory and engineering aimed at designing
controllers that are robust to noise. The classic LQR/LQG theory, developed in the 1960s, examined
linear dynamical systems in either time or frequency domain, seeking to minimize a combination of
quadratic state and control costs (in time-domain) or theH2 norm of the system’s transfer function (in
frequency domain). Motivated by findings that LQG controllers do not provide the guaranteed robust
stability properties of LQR controllers [15], much effort has been devoted subsequently to designing
controllers that are robust to worst-case perturbations, typically evaluated in terms of theH∞ norm
of the system’s transfer function (see, e.g., [16, 53] for a comprehensive review of H∞ and H2

controllers). BecauseH∞ controllers tend to be overly conservative [32], various approaches have
been proposed to balance the performance of nominal and robust controllers, e.g., by combiningH2

andH∞ approaches [7, 17]. A parallel stream of literature has considered risk-sensitive control [51],
which minimizes an entropic risk measure instead of the expected quadratic cost. Although risk-
sensitive control has a distributionally robust flavor (as the entropic risk measure is equivalent to a
distributionally robust quadratic objective penalized via Kullback-Leibler divergence), risk-sensitive
control models do not admit a distributionally robust formulation because the entropic risk measure
is convex, but not coherent [22]. In contrast, our distributionally robust model provides a direct
interpretation of the exact set of noise distributions against which the controller provides safeguards,
and leads to a computationally tractable framework for finding the optimal controller.

In this sense, our work is more directly related to the literature on distributionally robust control,
which seeks controllers that minimize expected costs under worst-case noise distributions [11, 33,
34, 41, 50, 52]. Closest to our work are [28, 33]. [33] proves the optimality of linear state-feedback
control policies for a related minimax LQR model with a Wasserstein distance but with perfect state
observations. With perfect observations, the optimal policies in the classic LQR formulation are
independent of the noise distribution and are thus inherently already robust, so considering imperfect
observations is what makes the problem significantly more challenging in our case. [28] studies
a minimax formulation based on the Wasserstein distance with both state and observation noise
but without any control policy, and focuses solely on the problem of estimating the states. Several
papers have considered robust formulations with imperfect observations but for constrained systems
[5, 6, 34], which are more challenging; the common approach is to restrict attention to linear feedback
policies for computational tractability, and without proving their optimality.

Also related is the recent literature stream on distributionally robust optimization using the Wasserstein
distance [36]. Within this stream, the closest work is [38, 44], which consider the problem of
minimax mean-squared-error estimation when ambiguity is modeled with a Wasserstein distance
from a nominal Gaussian distribution. Our proof builds on some ideas from these papers (e.g., relying
on the Gelbrich distance in the construction of the upper bound), which it combines with ideas from
control theory on purified output-feedback to obtain the overall construction. Also related is [2],
which studies multistage distributionally robust problems with ambiguity sets given by a nested
Wasserstein distance for stochastic processes and identifies computationally tractable cases. For a
broader overview of developments related to optimal transport and Wasserstein distance with an
emphasis on computational tractability and applications in machine learning, we refer to [42].

Finally, our paper is also related to literature that documents the optimality of linear/affine policies in
(distributionally) robust dynamic optimization models. [10, 30] prove optimality for one-dimensional
linear systems affected by additive noise and with perfect state observations, but with general (convex)
state and/or control costs, [27, 49] provide computationally tractable approaches to quantifying the
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suboptimality of affine controllers in finite or infinite-horizon settings, and [9, 21, 25] characterize
the performance of affine policies in two-stage (distributionally) robust dynamic models.

Notation. All random objects are defined on a probability space (Ω,F ,P). Thus, the distribution of
any random vector ξ : Ω → Rd is given by the pushforward distribution Pξ = P ◦ ξ−1 of P with
respect to ξ. The expectation under P is denoted by EP[·]. For any t ∈ Z+, we set [t] = {0, . . . , t}.

2. Problem Definition

We consider a discrete-time linear dynamical system

xt+1 = Atxt +Btut + wt ∀t ∈ [T − 1] (1)

with states xt ∈ Rn, control inputs ut ∈ Rm, process noisewt ∈ Rn and system matricesAt ∈ Rn×n

and Bt ∈ Rn×m. The controller only has access to imperfect state measurements

yt = Ctxt + vt ∀t ∈ [T − 1] (2)

corrupted by observation noise vt ∈ Rp, where Ct ∈ Rp×n and usually p ≤ n (so that observ-
ing yt would not allow reconstructing xt even if there were no observation noise). The control
inputs ut are causal, i.e., depend on the past observations y0, . . . , yt but not on the future observa-
tions yt+1, . . . , yT−1. More precisely, the set of feasible control inputs Uy is the set of random vectors
(u0, u1, . . . , uT−1) where for every t there exists a measurable control policy φt : Rp(t+1) → Rm

such that ut = φt(y0, . . . , yt). Controlling the system generates costs that depend quadratically on
the states and the controls:

J =

T−1∑
t=0

(x⊤t Qtxt + u⊤t Rtut) + x⊤TQTxT , (3)

where Qt ∈ Sn+ and Rt ∈ Sm++ represent the state and input cost matrices, respectively. The exoge-
nous random vectors x0, {wt}T−1

t=0 and {vt}T−1
t=0 are mutually independent and follow probability

distributions given by Px0
, {Pwt

}T−1
t=0 , and {Pvt

}T−1
t=0 , respectively. As the control inputs are causal,

the system equations (2) imply that xt, ut and yt can be expressed as measurable functions of the
exogenous uncertainties x0 as well as ws and vs, s ∈ [t], for every t. From now on we may thus
assume without loss of generality that Ω = Rn × Rn×T × Rp×T is the space of realizations of the
exogenous uncertainties, F is the Borel σ-algebra on Ω and P = Px0

⊗ (⊗T−1
t=0 Pwt

)⊗ (⊗T
t=0Pvt),

where P1 ⊗ P2 denotes the independent coupling of the distributions P1 and P2.

In this context, the classic LQG model assumes that P is known and Gaussian, and seeks u ∈ Uy that
minimizes EP[J ]. Appendix §A reviews the standard approach for computing optimal control inputs
by estimating states through Kalman filtering techniques and using dynamic programming.

In contrast, we assume that P is only known to belong to an ambiguity setW , and we formulate a
distributionally robust LQG problem that seeks u ∈ Uy to minimize the worst-case expected cost:

max
P∈W

EP

[
T−1∑
t=0

(x⊤t Qtxt + u⊤t Rtut) + x⊤TQTxT

]
. (4)

We construct the ambiguity set W as a ball based on the Wasserstein distance. Specifically, we
assume that a nominal Gaussian distribution P̂ = P̂x0 ⊗ (⊗T−1

t=0 P̂wt) ⊗ (⊗T
t=0P̂vt) is available so

that P̂x0 = N (0, X̂0), P̂wt = N (0, Ŵt), and P̂vt = N (0, V̂t) for all t ∈ [T − 1], andW is given by:

W =Wx0 ⊗ (⊗T−1
t=0 Wwt)⊗ (⊗T−1

t=0 Wvt),

where

Wx0 = {Px0 ∈ P(Rn) :W(P̂x0 ,Px0) ≤ ρx0 , EPx0
[x0] = 0}

Wwt
= {Pwt

∈ P(Rn) :W(P̂wt
,Pwt

) ≤ ρwt
, EPwt

[wt] = 0}

Wvt = {Pvt ∈ P(Rm) :W(P̂vt ,Pvt) ≤ ρvt , EPvt
[vt] = 0},

and W is the 2-Wasserstein distance. Thus, by construction, all exogenous random vari-
ables x0, w0, . . . , wT−1, v0, . . . , vT−1 are independent under every distribution inW .
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Definition 1 (2-Wasserstein distance). The 2-Wasserstein distance between two distributions P1 and
P2 on Rd with finite second moments is given by

W(P1,P2) =

(
inf

π∈Π(P1,P2)

∫
Rd×Rd

∥ξ1 − ξ2∥22 π(dξ1, dξ2)
) 1

2

,

where Π(P1,P2) denotes the set of all couplings, that is, all joint distributions of the random variables
ξ1 and ξ2 with marginal distributions P1 and P2, respectively.

Our model strictly generalizes the classic LQG setting,1 which can be recovered by choosing
ρx0

= ρwt
= ρvt = 0. The parameters ρ thus allow quantifying the uncertainty about the nominal

model and building robustness to mis-specification. We emphasize that the Wasserstein ambiguity
setW contains many non-Gaussian distributions and it is not readily obvious that the worst-case
distribution in (4) is in fact Gaussian. However, the set W is also non-convex, as it contains
only distributions under which the exogenous uncertainties are independent, which makes the
distributionally robust LQG problem potentially difficult to solve.

3. Nash Equilibrium and Optimality of Linear Output Feedback Controllers

We henceforth view the distributionally robust LQG problem as a zero-sum game between the
controller, who chooses causal control inputs, and nature, who chooses a distribution P ∈ W . In
this section we show that this game admits a Nash equilibrium, where nature’s Nash strategy is a
Gaussian distribution P⋆ ∈ W and the controller’s Nash strategy is a linear output feedback policy
based on the Kalman filter evaluated under P⋆.

Purified Observations. Before outlining our proof strategy, we first simplify the problem formula-
tion by re-parametrizing the control inputs in a more convenient form (following [5, 6, 27]). Note
that the control inputs in the LQG formulation are subject to cyclic dependencies, as ut depends
on yt, while yt depends on xt through (2), and xt depends again on ut through (1), etc. Because
these dependencies make the problem hard to analyze, it is preferable to instead consider the controls
as functions of a new set of so-called purified observations instead of the actual observations yt.

Specifically, we first introduce a fictitious noise-free system

x̂t+1 = Atx̂t +Btut ∀t ∈ [T − 1] and ŷt = Ctx̂t ∀t ∈ [T − 1]

with states x̂t ∈ Rn and outputs ŷt ∈ Rp, which is initialized by x̂0 = 0 and controlled by the same
inputs ut as the original system (2). We then define the purified observation at time t as ηt = yt − ŷt
and we use η = (η0, . . . , ηT−1) to denote the trajectory of all purified observations.

As the inputs ut are causal, the controller can compute the fictitious state x̂t and output ŷt from
the observations y0, . . . , yt. Thus, ηt is representable as a function of y0, . . . , yt. Conversely, one
can show by induction that yt can also be represented as a function of η0, . . . , ηt. Moreover, any
measurable function of y0, . . . , yt can be expressed as a measurable function of η0, . . . , ηt and vice-
versa [27, Proposition II.1]. So if we define Uη as the set of all control inputs (u0, u1, . . . , uT−1) so
that ut = ψt(η0, . . . , ηt) for some measurable function ψt : Rp(t+1) → Rm for every t ∈ [T − 1],
the above reasoning implies that Uη = Uy .

In view of this, we can rewrite the distributionally robust LQG problem equivalently as

p⋆ =

{
min
x,u,y

max
P∈W

EP
[
u⊤Ru+ x⊤Qx

]
s.t. u ∈ Uy, x = Hu+Gw, y = Cx+ v

=

{
min
x,u

max
P∈W

EP
[
u⊤Ru+ x⊤Qx

]
s.t. u ∈ Uη, x = Hu+Gw,

(5)

where x = (x0, . . . , xT ), u = (u0, . . . , uT−1), y = (y0, . . . , yT−1), w = (x0, w0, . . . , wT−1),
v = (v0, . . . , vT−1), η = (η0, . . . , ηT−1), and R, Q, H , G and C are suitable block matrices

1Our assumption that noise terms are zero-mean is consistent with the standard LQG model [8]. Requiring
EPx0

[x0] = 0 is assumed for clarity and without loss of generality.
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(see Appendix §B for their precise definitions). The latter reformulation involving the purified
observations η is useful because these are independent of the inputs. Indeed, by recursively combining
the equations of the original and the noise-free systems, one can show that η = Dw + v for some
block triangular matrix D (see Appendix §B for its construction). This shows that the purified
observations depend (linearly) on the exogenous uncertainties but not on the control inputs. Hence,
the cyclic dependencies complicating the original system are eliminated in (5).

Subsequently, we also study the dual of (5), defined as

d⋆ =

{
max
P∈W

min
x,u

EP
[
u⊤Ru+ x⊤Qx

]
s.t. u ∈ Uη, x = Hu+Gw.

(6)

The classic minimax inequality implies that p⋆ ≥ d⋆. If we can prove that p⋆ = d⋆, that (5) has a
solution u⋆ and that (6) has a solution P⋆, then (u⋆,P⋆) must be a Nash equilibrium of the zero-sum
game at hand [43, Theorem 2]. However, because Uη is an infinite-dimensional function space
andW is an infinite-dimensional, non-convex set of non-parametric distributions, the existence of
a Nash equilibrium (in pure strategies) is not at all evident. Instead, our proof strategy will rely on
constructing an upper bound for p⋆ and a lower bound for d⋆, and showing that these match.

Upper Bound for p⋆. We obtain an upper bound for p⋆ by suitably enlarging the ambiguity setW
and restricting the controllers ut to linear dependencies. We enlargeW by ignoring all information
about the distributions inW except for their covariance matrices, and by replacing the Wasserstein
distance with the Gelbrich distance. To that end, we first define the Gelbrich distance on the space of
covariance matrices.
Definition 2 (Gelbrich distance). The Gelbrich distance between the two covariance matrices
Σ1,Σ2 ∈ Sd+ is given by

G(Σ1,Σ2) =

√
Tr

(
Σ1 +Σ2 − 2

(
Σ

1
2
2 Σ1Σ

1
2
2

) 1
2

)
.

We are interested in the Gelbrich distance because of its close connection to the 2-Wasserstein
distance. Indeed, it is known that the 2-Wasserstein distance between two distributions with zero
means is bounded below by the Gelbrich distance between the respective covariance matrices.
Proposition 3.1 (Gelbrich bound [24, Theorem 2.1]). For any two distributions P1 and P2 on Rd with
zero means and covariance matrices Σ1,Σ2 ∈ Sd+, respectively, we haveW(P1,P2) ≥ G(Σ1,Σ2).

Recalling that X̂0, Ŵ t and V̂ t respectively denote the covariance matrices for x0, wt and vt under
the nominal distribution P̂, we can then define the following Gelbrich ambiguity set for the exogenous
uncertainties:

G = Gx0 ⊗ (⊗T−1
t=0 Gwt)⊗ (⊗T−1

t=0 Gvt),

where

Gx0
= {Px0

∈ P(Rn) : EPx0
[x0] = 0, EP[x0x

⊤
0 ] = X0, G(X0, X̂0) ≤ ρx0

}

Gwt
= {Pwt

∈ P(Rn) : EPwt
[wt] = 0, EP[wtw

⊤
t ] =Wt, G(Wt, Ŵt) ≤ ρwt

}

Gvt = {Pvt ∈ P(Rm) : EPvt
[vt] = 0, EP[vtv

⊤
t ] = Vt, G(Vt, V̂t) ≤ ρvt}.

By construction, the random vectors x0, {wt}T−1
t=0 and {vt}T−1

t=0 are thus mutually independent under
any P ∈ G. In addition and as a direct consequence of Proposition 3.1, G constitutes an outer
approximation for the Wasserstein ambiguity setW , as summarized in the next result.
Corollary 1 (Gelbrich hull). We haveW ⊆ G.

Because G coversW , we henceforth refer to it as the Gelbrich hull of the Wasserstein ambiguity
setW . To finalize our construction of the upper bound on p⋆, we focus on linear policies2 of the form

2Technically, the policies are affine because they include a constant term, but we retain the more common
terminology that focuses on the dependencies.
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u = q+Uη = q+U(Dw+ v), where q = (q0, . . . , qT−1), and U is a block lower triangular matrix

U =


U0,0

U1,0 U1,1

...
. . .

UT−1,0 . . . . . . UT−1,T−1

 . (7)

The block lower triangularity of U ensures that the corresponding controller is causal, which in turn
ensures that u ∈ Uη. In the following, we denote by U the set of all block lower triangular matrices
of the form (7). An upper bound on problem (5) can now be obtained by restricting the controller’s
feasible set to causal controllers that are linear in the purified observations η and by relaxing nature’s
feasible set to the Gelbrich hull G ofW . The resulting bounding problem is given by

p⋆ =

{
min

U,q,x,u
max
P∈G

EP
[
u⊤Ru+ x⊤Qx

]
s.t. U ∈ U , u = q + U(Dw + v), x = Hu+Gw.

(8)

As we obtained (8) by restricting the feasible set of the outer minimization problem and relaxing
the feasible set of the inner maximization problem in (5), it is clear that p⋆ ≥ p⋆. Recall also that
problem (5) constitutes an infinite-dimensional zero-sum game, where the agents optimize over
measurable policies and non-parametric distributions, respectively. In contrast, the next proposition
shows that problem (8) is equivalent to a finite-dimensional zero-sum game.
Proposition 3.2. Problem (8) is equivalent to the optimization problem

p⋆ =

{
min
q∈RpT

U∈U

max
W∈GW
V ∈GV

Tr
((
D⊤U⊤(R+H⊤QH)UD+ 2G⊤QHUD +G⊤QG

)
W

)
+Tr

((
U⊤(R+H⊤QH)U

)
V
)
+q⊤(R+H⊤QH)q,

(9)

where

GW =

{
W ∈ Sn(T+1)

+ :
W = diag(X0,W0, . . . ,WT−1), X0 ∈ Sn+, Wt ∈ Sn+ ∀t ∈ [T − 1]

G(X0, X̂0)
2 ≤ ρ2x0

, G(Wt, Ŵt)
2 ≤ ρ2wt

∀t ∈ [T − 1]

}
GV =

{
V ∈ SpT+ : V = diag(V0, . . . , VT−1), Vt ∈ Sp+, G(Vt, V̂t)2 ≤ ρ2vt ∀t ∈ [T − 1]

}
.

We emphasize that Proposition 3.2 remains valid even if the nominal distribution P̂ fails to be normal.
Note also that, while nature’s feasible set in (8) is non-convex due to the independence conditions,
the sets GW and GV are convex and even semidefinite representable thanks to the properties of
the squared Gelbrich distance.3 By dualizing the inner maximization problem, one can therefore
reformulate the minimax problem (9) as a convex semidefinite program (SDP). Even though this
SDP is computationally tractable in theory, it involves O(T (mp+ n2 + p2)) decision variables. For
practically interesting problem dimensions, it thus quickly exceeds the capabilities of existing solvers.

Lower Bound for d⋆. To derive a tractable lower bound on d⋆, we restrict nature’s feasible set
to the family WN of all normal distributions in the Wasserstein ambiguity set W . The resulting
bounding problem is thus given by

d⋆ =

{
max
P∈WN

min
x,u

EP
[
u⊤Ru+ x⊤Qx

]
s.t. u ∈ Uη, x = Hu+Gw.

(10)

As we obtained (10) by restricting the feasible set of the outer maximization problem in (6), it is clear
that d⋆ ≤ d⋆. Next, we show that (10) can be recast as a finite-dimensional zero-sum game. This
result critically relies on the following known fact regarding the 2-Wasserstein distance between two
normal distributions, which coincides with the Gelbrich distance between their covariance matrices.
Proposition 3.3 (Tightness for normal distributions [26, Proposition 7]). For any two normal distri-
butions P1 = N (0,Σ1) and P2 = N (0,Σ2) with zero means we haveW(P1,P2) = G(Σ1,Σ2).

With this, we can provide a finite-dimensional reformulation, as summarized in the next result.

3Note that the ambiguity sets GW and GV appearing in (9) involve the squared Gelbrich distance,G(Σ1,Σ2)
2.

The reason is that G(Σ1,Σ2)
2 is known to be jointly convex in Σ1,Σ2 and semidefinite representable [38,

Proposition 2.3], unlike the Gelbrich distanceG(Σ1,Σ2) itself, which is generally non-convex.
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Proposition 3.4. Problem (10) is equivalent to the optimization problem

d⋆ =

{
max

W∈GW
V ∈GV

min
q∈RpT

U∈U

Tr
((
D⊤U⊤(R+H⊤QH)UD+ 2G⊤QHUD +G⊤QG

)
W

)
+Tr

((
U⊤(R+H⊤QH)U

)
V
)
+q⊤(R+H⊤QH)q,

(11)

where GW and GV are defined exactly as in Proposition 3.2.

Proposition 3.4 relies on Proposition 3.3 and thus fails to hold unless P̂ is normal. Also, one can
again reformulate (11) as a tractable SDP by dualizing the inner minimization problem.

Conclusions. Propositions 3.2 and 3.4 reveal that problems (9) and (11) are dual to each other, that
is, they can be transformed into one another by interchanging minimization and maximization. The
following main theorem shows that strong duality holds irrespective of the problem data.

Theorem 3.5 (Strong duality of (9) and (11)). We have p⋆ = d⋆.

Theorem 3.5 follows immediately from Sion’s classic minimax theorem [45], which applies be-
cause GW and GV are convex as well as compact thanks to [38, Lemma A.6].

By weak duality and the construction of the bounding problems (9) and (11), we trivially have d⋆ ≤
d⋆ ≤ p⋆ ≤ p⋆. Theorem 3.5 reveals that all of these inequalities are in fact equalities, each of which
gives rise to a non-trivial insight. The first key insight is that (5) and (6) are strong duals.

Corollary 2 (Strong duality of (5) and (6)). We have p⋆ = d⋆.

We stress that, unlike Theorem 3.5, Corollary 2 establishes strong duality between two infinite-
dimensional zero-sum games. The second key implication of Theorem 3.5 is that the distributionally
robust LQG problem (5) is solved by a linear output-feedback controller.

Corollary 3 (The controller’s Nash strategy is linear in the observations). There exist U⋆ ∈ U
and q⋆ ∈ Rm such that the distributionally robust LQG problem (5) is solved by u⋆ = q⋆ + U⋆y.

The identity p⋆ = p⋆ readily implies that (5) is solved by a causal controller that is linear in the
purified observations. However, any causal controller that is linear in the purified observations η
can be reformulated exactly as a causal controller that is linear in the original observations y and
vice-versa [6, Proposition 3]. Thus, Corollary 3 follows. The third key implication of Theorem 3.5 is
that the dual distributionally robust LQG problem is solved by a normal distribution.

Corollary 4 (Nature’s Nash strategy is a normal distribution). The dual distributionally robust LQG
problem (6) is solved by a distribution P⋆ ∈ WN .

Corollary 4 is a direct consequence of the identity d⋆ = d⋆. Note that the optimal normal distribu-
tion P⋆ is uniquely determined by the covariance matrices W ⋆ and V ⋆ of the exogenous uncertain
parameters, which can be computed by solving problem (11). That the worst-case distribution is
actually Gaussian is not a-priori expected and is surprising given that the Wasserstein ball contains
many non-Gaussian distributions.

4. Efficient Numerical Solution of Distributionally Robust LQG Problems

Having proven these structural results, we next turn attention to the problem of finding the optimal
strategies. Our next result shows that, under a mild regularity condition, the optimal controller u⋆ of
the distributionally robust LQG problem (5) can be computed efficiently from P⋆.

Proposition 4.1 (Optimality of Kalman filter-based feedback controllers). If V̂t ≻ 0 for all t ∈ [T−1],
then problem (6) is solved by a Gaussian distribution P⋆ under which vt has a covariance matrix
V ⋆
t ≻ 0 for every t ∈ [T − 1], and (5) is solved by the optimal LQG controller corresponding

to P⋆. Additionally, the optimal value of problem (9) and its strong dual (11) does not change if we
restrict GW and GV to G+W and G+V , respectively, where

G+W =
{
W ∈ GW : X0 ⪰ λmin(X̂0)I, Wt ⪰ λmin(Ŵt)I ∀t ∈ [T − 1]

}
,

G+V =
{
V ∈ GV : Vt ⪰ λmin(V̂t)I ∀t ∈ [T − 1]

}
.
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This implies that the optimal controller can be computed by solving a classic LQG problem corre-
sponding to nature’s optimal strategy P⋆, which can be done very efficiently through Kalman filtering
and dynamic programming (see Appendix §A for details). It thus suffices to design an efficient
algorithm for computing P⋆, which is uniquely determined by the covariance matrices (W ⋆, V ⋆) that
solve problem (11). To this end, we first reformulate (11) as

max
W∈G+

W ,V ∈G+
V

f(W,V ), (12)

where we restrict GW and GV to G+W and G+V , respectively, due to Proposition 4.1, and where f(W,V )
denotes the optimal value function of the inner minimization problem in (11). As (11) is a reformula-
tion of (10) and as the family of all causal purified output-feedback controllers matches the family of
causal output-feedback controllers, f(W,V ) can also be viewed as the optimal value of the classic
LQG problem corresponding to the normal distribution P determined by the covariance matrices W
and V . These insights lead to the following structural result.
Proposition 4.2. f(W,V ) is concave and β-smooth in (W,V ) ∈ G+W × G

+
V for some β > 0.

By Proposition 4.2, it is possible to address problem (12) with a Frank-Wolfe algorithm [13, 18, 19,
20, 23, 35]. Each iteration of this algorithm solves a direction-finding subproblem, that is, a variant of
problem (12) that maximizes the first-order Taylor expansion of f(W,V ) around the current iterates.

max
LW∈G+

W ,LV ∈G+
V

⟨∇W f(W,V ), LW −W ⟩+ ⟨∇V f(W,V ), LV − V ⟩ (13)

The next iterates are then obtained by moving towards a maximizer (L⋆
W , L⋆

V ) of (13), i.e., we update

(W,V )← (W,V ) + α · (L⋆
W −W,L⋆

v − V ),

where α is an appropriate step size. The proposed Frank-Wolfe algorithm enjoys a very low per-
iteration complexity because problem (13) is separable. To see this, we reformulate (13) as

max
LW ,LV

⟨∇X0
f(W,V ), LX0

−X0⟩+
T−1∑
t=0

⟨∇Wt
f(W,V ), LWt

−Wt⟩+ ⟨∇Vt
f(W,V ), LVt

− Vt⟩

s.t. G(LX0 , X̂0)
2 ≤ ρ2x0

, G(LWt , Ŵt)
2 ≤ ρ2wt

, G(LVt , V̂t)
2 ≤ ρ2vt ∀t ∈ [T − 1]

LX0 ⪰ λmin(X̂0)I, LWt ⪰ λmin(Ŵt)I, LVt ⪰ λmin(V̂t)I ∀t ∈ [T − 1].

Hence, (13) decomposes into 2T + 1 separate subproblems that can be solved in parallel. That is, for
any matrix Z ∈ {X0,W0, . . . ,WT−1, V0, . . . , VT−1} we solve a separate subproblem of the form

max
LZ⪰λmin(Ẑ)

{
⟨∇Zf(W,V ), LZ − Z⟩ : G(LZ , Ẑ)

2 ≤ ρ2z
}
. (14)

These subproblems can be reformulated as tractable SDPs and are thus amenable to efficient off-
the-shelf solvers. By [38, Theorem 6.2], however, one can exploit the structure of the Gelbrich
distance in order to reduce (14) to a univariate algebraic equation that can be solved to any desired
accuracy δ > 0 by a highly efficient bisection algorithm. We say that Lδ

Z is a δ-approximate solution
of problem (14) for some δ ∈ (0, 1) if Lδ

Z is feasible in (14) and if

⟨∇Zf(W,V ), Lδ
Z − Z⟩ ≥ δ⟨∇Zf(W,V ), L⋆

Z − Z⟩,
where L⋆

Z is an exact maximizer of (14). Note that, by the concavity of f(W,V ), the inner product
on the right-hand side is nonnegative and vanishes if and only if Z maximizes f(W,V ) over the
feasible set of (14). For further details we refer to Appendix §E in the supplementary material.
Remark 1 (Automatic differentiation). Recall that f(W,V ) coincides with the optimal value of the
LQG problem corresponding to the normal distribution P determined by the covariance matrices W
and V . By using the underlying dynamic programming equations, f(W,V ) can thus be expressed in
closed form as a serial composition of O(T ) rational functions (see Appendix §A for details). Hence,
∇Zf(W,V ) can be calculated symbolically for any Z ∈ {X0,W0, . . . ,WT−1, V0, . . . , VT−1} by
repeatedly applying the chain and product rules. However, the resulting formulas are lengthy and
cumbersome. We thus compute the gradients numerically using backpropagation. The cost of
evaluating∇Zf(W,V ) is then of the same order of magnitude as the cost of evaluating f(W,V ).

A detailed description of the proposed Frank-Wolfe method is given in Algorithm 1 below.

By [31, Theorem 1 and Lemma 7], which applies thanks to the structural properties of f(W,V )
established in Proposition 4.2, Algorithm 1 attains a suboptimality gap of ϵ within O(1/ϵ) iterations.
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Algorithm 1 Frank-Wolfe algorithm for solving (12)

Input: initial iterates W , V , nominal covariance matrices Ŵ , V̂ , oracle precision δ ∈ (0, 1)

1: set initial iteration counter k = 0
2: while stopping criterion is not met do
3: for Z ∈ {X0,W0, . . . ,WT−1, V0, . . . , VT−1} do in parallel
4: compute∇Zf(W,V )
5: find a δ-approximate solution Lδ

Z of (14)
6: end
7: g ← ⟨∇W f(W,V ), Lδ

W −W ⟩+ ⟨∇V f(W,V ), Lδ
V − V ⟩

8: (W,V )← (W,V ) + 2/(2 + k) · (Lδ
W −W,Lδ

V − V )
9: end while

10: Output: W and V

100 101 102

Time horizon

10 2

10 1

100

101

102

Ex
ec

ut
io

n 
tim

e 
(s

)

MOSEK
Frank-Wolfe

(a)

100 101 102

# of iterations

10 5

10 4

10 3

10 2

10 1

100

101

102

Op
tim

al
ity

 g
ap

(b)

Figure 1: (a) Execution time for MOSEK and Frank-Wolfe algorithm over 10 simulation runs as a
function of the horizon T (solid lines show the mean and the shaded areas correspond to 1 standard
deviation). (b) Convergence of optimality gap for Frank-Wolfe algorithm with horizon T = 10.

5. Numerical Experiments

All experiments are run on an Intel i7-8700 CPU (3.2 GHz) machine with 16GB RAM. All linear
SDP problems are modeled in Python 3.8.6 using CVXPY [1, 14] and solved with MOSEK [37].
The gradients of f(W,V ) are computed via Pymanopt [48] with PyTorch’s automated differentiation
module [39, 40].

Consider a class of distributionally robust LQG problems with n = m = p = 10. We set At =
0.1×A to have ones on the main diagonal and the superdiagonal and zeroes everywhere else (Ai,j = 1
if i = j or i = j − 1 and Ai,j = 0 otherwise), and the other matrices to Bt = Ct = Qt = Rt = Id.
The Wasserstein radii are set to ρx0

= ρwt
= ρvt = 10−1. The nominal covariance matrices of the

exogenous uncertainties are constructed randomly and with eigenvalues in the interval [1, 2] (so as
to ensure they are positive definite). The code is publicly available in the Github repository https:
//github.com/RAO-EPFL/DR-Control.

The optimal value of the distributionally robust LQG problem (5) can be computed by directly solving
the SDP reformulation of (11) with MOSEK or by solving the nonlinear SDP (12) with our Frank-
Wolfe method detailed in Algorithm 1. We next compare these two approaches in 10 independent
simulation runs, where we set a stopping criterion corresponding to an optimality gap below 10−3

and we run the Frank-Wolfe method with δ = 0.95. Figure 1a illustrates the execution time for
both approaches as a function of the planning horizon T ; runs where MOSEK exceeds 100s are not
reported. Figure 1b visualizes the empirical convergence behavior of the Frank-Wolfe algorithm. The
results highlight that the Frank-Wolfe algorithm achieves running times that are uniformly lower
than MOSEK across all problem horizons and is able to find highly accurate solutions already after a
small number of iterations (50 iterations for problem instances of time horizon T = 10).
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6. Concluding Remarks and Limitations

In view of the popularity of LQG models, the results in this work carry important theoretical and
practical implications. Despite considering a generalization of the classic LQG setting where the
noise affecting the system dynamics and the observations follows unknown (and potentially non-
Gaussian) distributions, our findings suggest that certain classic structural results continue to hold
and that highly efficient methods can be adapted to tackle this more realistic (and more challenging)
problem. Specifically, that control policies depending linearly on observations continue to be optimal
and that the worst-case distribution turns out to be Gaussian is surprising from a theoretical angle
and also has direct practical implications, because it allows leveraging the highly efficient Kalman
filter in conjunction with dynamic programming and a Frank-Wolfe method to design an efficient
computational procedure for solving the problem.

The results also raise several important questions that warrant future exploration. First, it would be
highly relevant to consider extensions where the system matrices are also affected by uncertainty,
as this captures many applications of practical interest in, e.g., reinforcement learning or revenue
management. Second, it would be worth exploring an infinite horizon setting or relaxing the
assumption that the nominal distribution is Gaussian, as both assumptions may be limiting the
practical appeal of the framework. Third, one could also attempt to prove structural optimality results
or design novel algorithms for generating high-quality suboptimal solutions for the more general
setting involving constraints on states and/or control inputs. Lastly, one could improve the present
algorithmic proposal by exploiting topological properties of the objective so as to guarantee linear
convergence rates in the Frank-Wolfe procedure.
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Appendix

The supplementary material is structured as follows. Appendix §A presents the well-known solution
to the classic LQG problem using dynamic programming and Kalman Filter estimation. Appendix §B
provides the definitions of the stacked system matrices utilized in the compact formulation (5) of the
distributionally robust LQG problem. Appendix §C contains the proofs of the formal statements in
the main text and provides additional technical results. Appendix §D derives the SDP reformulation
of the dual problem (11). Appendix §E, finally, elaborates on the bisection algorithm used for solving
the linearization oracle of the Frank-Wolfe algorithm.

A. Solution of the LQG Problem

The classic LQG problem can be solved efficiently via dynamic programming; see, e.g., [8]. That
is, the unique optimal control inputs satisfy u⋆t = Ktx̂t for every t ∈ [T − 1], where Kt ∈ Rn×n is
the optimal feedback gain matrix, and x̂t = EP[xt|y0, . . . , yt] is the minimum mean-squared-error
estimator of xt given the observation history up to time t. Thanks to the celebrated separation
principle, Kt can be computed by pretending that the system is deterministic and allows for perfect
state observations, and x̂t can be computed while ignoring the control problem.

To compute Kt, one first solves the deterministic LQR problem corresponding to the LQG problem
at hand. Its value function x⊤t Ptxt at time t is quadratic in xt, and Pt obeys the backward recursion

Pt = A⊤
t Pt+1At +Qt −A⊤

t Pt+1Bt(Rt +B⊤
t Pt+1Bt)

−1B⊤
t Pt+1At ∀t ∈ [T − 1] (A.15a)

initialized by PT = QT . The optimal feedback gain matrix Kt can then be computed from Pt+1 as

Kt = −(Rt +B⊤
t Pt+1Bt)

−1B⊤
t Pt+1At ∀t ∈ [T − 1]. (A.15b)

Since xt and (y0, . . . , yt) are jointly normally distributed, the minimum mean-squared-error estima-
tor x̂t can be calculated directly using the formula for the mean of a conditional normal distribution.
Alternatively, however, one can use the Kalman filter to compute x̂t recursively, which is significantly
more insightful and efficient. The Kalman filter also recursively computes the covariance matrix Σt

of xt conditional on y0, . . . , yt and the covariance matrix Σt+1|t of xt+1 conditional on y0, . . . , yt
evaluated under P. Specifically, these covariance matrices obey the forward recursion

Σt = Σt|t−1 − Σt|t−1C
⊤
t (CtΣt|t−1C

⊤
t + Vt)

−1CtΣt|t−1

Σt+1|t = AtΣtA
⊤
t +Wt

}
∀t ∈ [T − 1] (A.16)

initialized by Σ0|−1 = X0. Using Σt|t−1, we then define the Kalman filter gain as

Lt = ΣtC
⊤
t V

−1
t ∀t ∈ [T − 1]

which allows us to compute the minimum mean-squared-error estimator via the forward recursion

x̂t+1 = Atx̂t +Btut + Lt+1 (yt+1 − Ct+1(Atx̂t +Btut)) ∀t ∈ [T − 1]

initialized by x̂0 = L0y0. One can also show that the optimal value of the LQG problem amounts to

T−1∑
t=0

Tr((Qt − Pt)Σt) +

T∑
t=1

Tr(Pt(At−1Σt−1A
⊤
t−1 +Wt−1)) + Tr(P0X0). (A.17)

B. Definitions of Stacked System Matrices

The stacked system matrices appearing in the distributionally robust LQG problem (5) are defined as
follows. First, the stacked state and input cost matrices Q ∈ Sn(T+1) and R ∈ SmT are set to

Q =


Q0

Q1

. . .
QT

 and R =


R0

R1

. . .
RT−1

 ,
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respectively. Similarly, the stacked matrices appearing in the linear dynamics and the measurement
equations C ∈ RpT×n(T+1), G ∈ Rn(T+1)×n(T+1) and H ∈ Rn(T+1)×mT are defined as

C =


C0 0

C1 0
. . . . . .

CT−1 0

 , G =


A0

0

A1
0 A1

1
...

. . .
AT

0 AT
1 . . . AT

T


and

H =



0
A1

1B0 0
A2

1B0 A2
2B1 0

...
. . .

... 0
AT

1 B0 AT
2 B1 . . . . . . AT

TBT−1


,

respectively, where At
s =

∏t−1
k=sAk for every s < t and At

s = In for s = t.

Using the stacked system matrices, we can now express the purified observation process η as a linear
function of the exogenous uncertainties w and v that is not impacted by u; see also [5, 46]

Lemma B.1. We have η = Dw + v, where D = CG.

Proof of Lemma B.1. The purified observation process is defined as η = y − ŷ. Recall now that
the observations of the original system satisfy y = Cx+ v. Similarly, one readily verifies that the
observations of the fictitious noise-free system satisfy ŷ = Cx̂. Thus, we have η = C(x− x̂) + v.
Next, recall that the state of the original system satisfies x = Hu+Gw, and note that the state of the
fictitious noise-free system satisfies x̂ = Hu. Combining all of these linear equations finally shows
that u cancels out and that η = CGw + v = Dw + v.

C. Proofs

C.1. Additional Technical Results

It is well known that every causal controller that is linear in the original observations y can be
reformulated as a causal controller that is linear in the purified observations η and vice versa [5, 46].
Perhaps surprisingly, however, the one-to-one transformation between the respective coefficients of y
and η is not linear. To keep this paper self-contained, we review these insights in the next lemma.

Lemma C.1. If u = Uη + q for some U ∈ U and q ∈ RpT , then u = U ′y + q′ for U ′ =
(I + UCH)−1U and q′ = (I + UCH)−1q. Conversely, if u = U ′y + q′ for some U ′ ∈ U and
q′ ∈ RpT , then u = Uη + q for U = (I − U ′CH)−1U ′ and q = (I − U ′CH)−1q′.

Proof of Lemma C.1. If u = Uη + q for some U ∈ U and q ∈ RpT , then we have

u = Uη + q = U(y − ŷ) + q = Uy − UCx̂+ q = Uy − UCHu+ q,

where the second equality follows from the definition of η, the third equality holds because y = Cx+v,
and the last equality exploits our earlier insight that ŷ = Cx̂. The last expression depends only on y
and u. Solving for u yields u = U ′y + q′, where U ′ = (I + UCH)−1U and q′ = (I + UCH)−1q.
Note that (I + UCH) is indeed invertible because I + UCH is a lower triangular matrix with all
diagonal entries equal to one, ensuring a determinant of one.

Similarly, if u = U ′y + q′ for some U ′ ∈ U and q′ ∈ RpT , then we have

u = U ′y + q′ = U ′(η + ŷ) + q′ = U ′η + U ′Cx̂+ q′ = U ′η + U ′CHu+ q′.

Solving for u yields u = Uη + q, where U = (I − U ′CH)−1U ′ and q = (I − U ′CH)−1q′. Note
again that (I − U ′CH) is indeed invertible because (I − U ′CH) is a lower triangular matrix with
all diagonal entries equal to one.
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C.2. Proofs of Section 3

Proof of Proposition 3.2. In problem (8), both u and x are linear inw and v, i.e., u = q+UDw+Uv
and x = Hu+Gw = Hq +HUDw +HUv +Gw. By substituting the linear representations of u
and x into the objective function of problem (8), we obtain the following equivalent reformulation.

min
q∈RpT

U∈U

max
P∈G

EP
[
w⊤ (

D⊤U⊤(R+H⊤QH)UD + 2D⊤U⊤H⊤QG+G⊤QG
)
w
]

+ EP
[
v⊤

(
U⊤(R+H⊤QH)U

)
v
]
+ q⊤(R+H⊤QH)q

For any fixed P ∈ G, we can express the expectation in the objective function of the above problem
in terms of the covariance matrices W = EP[ww

⊤] and V = EP[vv
⊤]. Thus, the problem becomes

min
q∈RpT

U∈U

max
W,V,P

Tr
((
D⊤U⊤(R+H⊤QH)UD+ 2G⊤QHUD +G⊤QG

)
W

)
+Tr

((
U⊤(R+H⊤QH)U

)
V
)
+q⊤(R+H⊤QH)q

s.t. P ∈ G, W = EP[ww
⊤], V = EP[vv

⊤].

(A.18)

Recall now the definition of G, and note that the requirements G(X0, X̂0) ≤ ρx0 , G(Wt, Ŵt) ≤ ρwt

andG(Vt, V̂t) ≤ ρvt are equivalent to the convex constraintsG(X0, X̂0)
2 ≤ ρ2x0

,G(Wt, Ŵt)
2 ≤ ρ2wt

and G(Vt, V̂t)2 ≤ ρ2vt , respectively, for all t ∈ [T − 1]. The definition of G also implies that

W = EP[ww
⊤] = diag(X0,W0, . . . ,WT−1) and V = EP[vv

⊤] = diag(V0, . . . , VT−1).

Problem (A.18) thus constitutes a relaxation of problem (9). Indeed, the feasible set of the inner
maximization problem in (A.18) is a subset of the feasible set of the inner maximization problem
in (9). Moreover, for any W and V feasible in the inner maximization problem in (9), the distribution
P = Px0

⊗ (⊗T−1
t=0 Pwt

) ⊗ (⊗T
t=0Pvt) defined through Px0

= N (0, X0), Pwt
= N (0,Wt) and

Pvt = N (0, Vt), t ∈ [T − 1], is feasible in the inner maximization problem in (A.18) with the
same objective value. The relaxation is thus exact, and the optimal values of (8), (9) and (A.18)
coincide.

Proof of Proposition 3.4. Recall that the space Uy of all causal output-feedback controllers coincides
with the space Uη of all causal purified output-feedback controllers. We can thus replace the feasible
set Uη of the inner minimization problem in (10) with Uy. Hence, for any fixed P ∈ WN , the inner
minimization problem in (10) constitutes a classic LQG problem. By standard LQG theory [8], it is
solved by a linear output-feedback controller of the form u = U ′y+q′ for someU ′ ∈ U and q′ ∈ RpT ;
see also Appendix §A. Lemma C.1 shows, however, that any linear output-feedback controller can
be equivalently expressed as a linear purified-output feedback controller of the form u = Uη + q
for some U ∈ U and q ∈ RpT . In summary, the above reasoning shows that the feasible set of the
inner minimization problem in (10) can be reduced to the family of all linear purified-output feedback
controllers without sacrificing optimality. Thus, problem (10) is equivalent to

max
P∈WN

min
q,U,x,u

EP
[
u⊤Ru+ x⊤Qx

]
s.t. U ∈ U , u = q + Uη, x = Hu+Gw.

Using a similar reasoning as in the proof of Proposition 3.2, we can now substitute the linear
representations of u and x into the objective function and reformulate the above problem as

max
W,V,P

min
q∈RpT

U∈U

Tr
((
D⊤U⊤(R+H⊤QH)UD+ 2G⊤QHUD +G⊤QG

)
W

)
+Tr

((
U⊤(R+H⊤QH)U

)
V
)
+q⊤(R+H⊤QH)q

s.t. P ∈ WN , W = EP[ww
⊤], V = EP[vv

⊤].

AsWN contains only normal distributions, Proposition 3.3 implies thatW(Px0
, P̂x0

) = G(X0, X̂0),
W(Pwt

, P̂wt
) = G(Wt, Ŵt) and W(Pvt , P̂vt) = G(Vt, V̂t) for all t ∈ [T − 1]. We may thus

replace the requirementW(Px0
, P̂x0

) ≤ ρx0
in the definition ofWN by G(X0, X̂0) ≤ ρx0

, which is
equivalent to the convex constraint G(X0, X̂0)

2 ≤ ρ2x0
. The conditions on the marginal distributions

of wt and vt, t ∈ [T − 1], admit similar reformulations. The definition ofWN also implies that

W = EP[ww
⊤] = diag(X0,W0, . . . ,WT−1) and V = EP[vv

⊤] = diag(V0, . . . , VT−1).
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Thus, the feasible set of the outer maximization problem in (11) constitutes a relaxation of that
in (10). One readily verifies that the relaxation is exact by using similar arguments as in the proof of
Proposition 3.2. Thus, the claim follows.

Proof of Theorem 3.5. By Proposition 3.2, p̄⋆ coincides with the minimum of (9). Similarly, by
Proposition 3.4 d⋆ coincides with the maximum of (11). Note that problems (9) and (11) only differ
by the order of minimization and maximization. Note also that U is convex and closed, GW and GV
are convex and compact by virtue of [38, Lemma A.6], and the (identical) trace terms in (9) and (11)
are bilinear in (W,V ) and (U, q). The claim thus follows from Sion’s minimax theorem [45].

C.3. Proofs of Section 4

Note that Proposition 4.1 is consistent with Corollary 3 because the optimal LQG controller corre-
sponding to P⋆ is linear in the past observations.

Proof of Proposition 4.1. By [38, Lemma A.3], the inner problem in (9) admits a maximizer
(W ⋆, V ⋆) with X⋆

0 ⪰ λmin(X̂0) as well as W ⋆
t ⪰ λmin(Ŵt) and V ⋆

t ⪰ λmin(V̂t) for all t ∈ [T − 1].
Thus, the optimal value of problem (9) and its strong dual (11) does not change if we restrict GW
and GV to G+W and G+V , respectively. We may thus conclude that problem (11) has a maxi-
mizer (W ⋆, V ⋆) with V ⋆

t ⪰ λmin(V̂t) ≻ 0 for all t ∈ [T − 1]. This in turn implies that problem (6)
is solved by a normal distribution P⋆ under which the covariance matrix of the observation noise vt
satisfies V ⋆

t ≻ 0 for every t ∈ [T − 1]. As (5) and (6) are strong duals, the optimal solution u⋆ of
problem (5) forms a Nash equilibrium with P⋆, i.e., u⋆ is a best response to P⋆ and thus solves the
classic LQG problem corresponding to P⋆. As Rt ≻ 0 for every t ∈ [T − 1], this best response u⋆ is
unique, and as V ⋆

T ≻ 0 for every t ∈ [T − 1], u⋆ is in fact the Kalman filter-based optimal output-
feedback strategy corresponding to P⋆ (which can be obtained using the techniques highlighted in
Appendix §A).

Before proving Proposition 4.2, recall that f(W,V ) is called β-smooth for some β > 0 if

|∇f(W,V )−∇f(W ′, V ′)| ≤ β
(
∥W −W ′∥2F + ∥V − V ′∥2F

) 1
2 ∀W,W ′ ∈ G+W , V, V ′ ∈ G+V ,

where ∥ · ∥F denotes the Frobenius norm.

Proof of Proposition 4.2. The function f(W,V ) is concave because the objective function of the
inner minimization problem in (11) is linear (and hence concave) inW and V and because concavity is
preserved under minimization. To prove that f(W,V ) is β-smooth, we first recall from Proposition 3.3
that it coincides with the optimal value of the inner minimization problem in (10). As Uη = Uy,
f(W,V ) can thus be viewed as the optimal value of the classic LQG problem corresponding to the
normal distribution P determined by the covariance matrices W and V . Hence, f(W,V ) coincides
with (A.17), where Σt, for t ∈ [T − 1], is a function of (W,V ) defined recursively through the
Kalman filter equations (A.16). Note that all inverse matrices in (A.16) are well-defined because
any V ∈ G+V is strictly positive definite. Therefore, Σt constitutes a proper rational function (that
is, a ratio of two polyonmials with the polynomial in the denominator being strictly positive) for
every t ∈ [T − 1]. Thus, f(W,V ) is infinitely often continuously differentiable on a neighborhood
of G+W × G

+
V .

As f(W,V ) is concave and (at least) twice continuously differentiable, it is β-smooth on G+W × G
+
V

if and only if the largest eigenvalue of the Hessian matrix of −f(W,V ) is bounded above by β
throughout G+W × G

+
V . Also, the largest eigenvalue of the positive semidefinite Hessian matrix

∇2(−f(W,V )) coincides with the spectral norm of∇2f(W,V ). We may thus set

β = sup
W∈G+

W ,V ∈G+
V

∥∇2f(W,V )∥2, (A.19)

where ∥ · ∥2 denotes the spectral norm. The supremum in the above maximization problem is finite
and attained thanks to Weierstrass’ theorem, which applies because f(W,V ) is twice continuously
differentiable and the spectral norm is continuous, while the sets G+W and G+V are compact by virtue
of [38, Lemma A.6]. This observation completes the proof.
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D. SDP Reformulation of the Lower Problem (11)

Instead of solving the dual problem (11) with the customized Frank-Wolfe algorithm of Section 4, it
can be reformulated as an SDP amenable to off-the-shelf solvers. This reformulation is obtained by
dualizing the inner minimization problem and by exploiting the following preliminary lemma.

Lemma D.1. For any Ẑ ∈ Sd+ and ρz ≥ 0, the set GZ = {Z ∈ Sd+ : G(Z, Ẑ) ≤ ρz} coincides with{
Z ∈ Sd+ : ∃Ez ∈ Sd+ with Tr(Z + Ẑ − 2Ez) ≤ ρ2z,

[
Ẑ

1
2ZẐ

1
2 Ez

Ez I

]
⪰ 0

}
.

Proof of Lemma D.1. By Definition 2, we have

GZ = {Z ∈ Sd+ : Tr(Z + Ẑ − 2(Ẑ
1
2ZẐ

1
2 )

1
2 ) ≤ ρ2z}.

Next, introduce an auxiliary variable Ez ∈ Sd+ subject to the matrix inequality E2
z ⪯ (Ẑ

1
2ZẐ

1
2 ).

By [4, Theorem 1], this inequality can be recast as Ez ⪯ (Ẑ
1
2ZẐ

1
2 )

1
2 . Hence, we can reformulate the

nonlinear matrix inequality in the above representation of GZ as Tr(Z + Ẑ − 2Ez) ≤ ρ2z . A standard
Schur complement argument reveals that the inequality E2

z ⪯ (Ẑ
1
2ZẐ

1
2 ) is also equivalent to[

Ẑ
1
2ZẐ

1
2 Ez

Ez I

]
⪰ 0.

The claim then follows by combining all of these insights.

We are now ready to derive the desired SDP reformulation of problem (11).

Proposition D.2. If V̂ ≻ 0, then problem (11) is equivalent to the SDP

max Tr(G⊤QGW )− Tr(F (R+H⊤QH)−1)

s.t. W ∈ Sn(T+1)
+ , V ∈ SpT+ , M ∈M, F ∈ STm

+

Ex0
∈ Sn+, Ewt

∈ Sn+, Evt ∈ Sp+ ∀t ∈ [T − 1]

Tr(W0 + X̂0 − 2Ex0
) ≤ ρ2x0

,

Tr(Wt+1 + Ŵt − 2Ewt
) ≤ ρ2wt

, Tr(Vt + V̂t − 2Evt) ≤ ρ2vt ∀t ∈ [T − 1][
X̂

1
2
0 X0X̂

1
2
0 Ex0

Ex0
In

]
⪰0,[

Ŵ
1
2
t Wt+1Ŵ

1
2
t Ewt

Ewt
In

]
⪰0,

[
V̂

1
2
t VtV̂

1
2
t Evt

Evt Ip

]
⪰0 ∀t ∈ [T−1][

F H⊤QGWD⊤ +M/2
(H⊤QGWD⊤ +M/2)⊤ DWD⊤ + V

]
⪰ 0

W0 ⪰ λmin(X̂0)I, Wt+1 ⪰ λmin(Ŵt)I, Vt ⪰ λmin(V̂t)I ∀t ∈ [T − 1].

(A.20)

Here,M denotes the set of all strictly upper block triangular matrices of the form
0 M1,2 M1,3 . . . M1,T

0 M2,3 M2,T

. . .
...

0 MT−1,T

0

 ∈ RTm×Tp,

where Mt,s ∈ Rm×p for every t, s ∈ Z with 1 ≤ t < s ≤ T .

Proof of Proposition D.2. The proof relies on dualizing the inner minimization problem in (11).
Note that strong duality holds because the primal problem is trivially feasible and involves only
equality constraints, which implies that any feasible point is in fact a Slater point. In the following we
use M ∈M to denote the Lagrange multiplier of the constraint U ∈ U , which requires all blocks of
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the matrix U above the main diagonal to vanish. The Lagrangian function of the inner minimization
problem in (11) can therefore be represented as

L(q, U,M) = Tr
((
D⊤U⊤(R+H⊤QH)UD +G⊤QG

)
W

)
+ 2Tr(G⊤QHUDW )

+Tr
((
U⊤(R+H⊤QH)U

)
V
)
+ q⊤(R+H⊤QH)q +Tr(UM⊤).

Recall now that R ≻ 0 and Q ⪰ 0, and thus R +H⊤QH ≻ 0. Consequently, L is minimized by
q⋆ = 0 for any fixed U and M . In addition, the partial gradient of L with respect U is given by

∂L
∂U

= 2(R+H⊤QH)UDWD⊤ + 2(R+H⊤QH)UV + 2H⊤QGWD⊤ +M.

Recall also that V ∈ G+V is strictly positive, which implies that DWD⊤ + V ≻ 0 is invertible. As
we already know that R+H⊤QH ≻ 0 is invertible, as well, L is minimized by

U⋆ = −(R+H⊤QH)−1
(
H⊤QGWD⊤ +M/2

)
(DWD⊤ + V )−1

for any fixed M . Substituting both q⋆ and U⋆ into L yields the dual objective function

g(M) = L(q⋆, U⋆,M) = Tr(G⊤QGW )

− Tr
(
(R+H⊤QH)−1(H⊤QGWD⊤ +M/2)(DWD⊤ + V )−1(H⊤QGWD⊤+M/2)⊤

)
.

The dual of the inner minimization problem in (11) is thus given by maxM∈M g(M). To linearize
the dual objective function, we next introduce an auxiliary variable F ∈ SmT

+ subject to the matrix
inequality F ⪰ (H⊤QGWD⊤ +M/2)(DWD⊤ + V )−1(H⊤QGWD⊤ +M/2)⊤. By using a
standard Schur complement reformulation, we can then rewrite the dual problem as

max Tr(G⊤QGW )− Tr((R+H⊤QH)−1F )

s.t. M ∈M, F ∈ SmT
+[

F H⊤QGWD⊤ +M/2
(H⊤QGWD⊤ +M/2)⊤ DWD⊤ + V

]
⪰ 0.

(A.21)

Next, by replacing the inner problem in (11) with its strong dual (A.21), we can reformulate (11) as

max Tr(G⊤QGW )− Tr((R+H⊤QH)−1F )

s.t. M ∈M, F ∈ SmT
+ , W ∈ Sn(T+1)

+ , V ∈ SpT+[
F H⊤QGWD⊤ +M/2

(H⊤QGWD⊤ +M/2)⊤ DWD⊤ + V

]
⪰ 0

G(X0, X̂0)
2 ≤ ρ2x0

, G(Wt, Ŵt) ≤ ρ2wt
, G(Vt, V̂t) ≤ ρ2vt ∀t ∈ [T − 1].

(A.22)

By Proposition 4.1, the inclusion of the constraints X0 ⪰ λmin(X̂0)I , Wt ⪰ λmin(Ŵt)I and
Vt ⪰ λmin(V̂t)I for all t ∈ [T − 1] has no effect on the solution to problem (A.22). In addition, by
Lemma D.1, each (non-linear) Gelbrich constraint in (A.22) can be reformulated as an equivalent
(linear) SDP constraint. Thus, problem (A.22) reduces to (A.20), and the claim follows.

E. Bisection Algorithm for the Linearization Oracle

We now show that the direction-finding subproblem (14) can be solved efficiently via bisection. To
this end, we first establish that (14) can be reduced to the solution of a univariate algebraic equation.

Proposition E.1 ([38, Proposition A.4 (iii)]). If Ẑ ∈ Sd++, ΓZ ∈ Sd+, ΓZ ̸= 0 and ρz ∈ R++, then

max ⟨ΓZ , L− Z⟩
s.t. G(L, Ẑ) ≤ ρz

L ⪰ λmin(Ẑ)I
(A.23)

is uniquely solved by L⋆ = (γ⋆)2(γ⋆I − ΓZ)
−1Ẑ(γ⋆I − ΓZ)

−1, where γ⋆ is the unique solution of

ρ2z − ⟨Ẑ, (I − γ⋆(γ⋆I − ΓZ)
−1)2⟩ = 0 (A.24)

in the interval (λmax(ΓZ),∞).
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In practice, we need to solve the algebraic equation (A.24) numerically. The numerical error in
approximating γ⋆ should be contained to ensure that L⋆ approximates the exact maximizer of
problem (A.23). The next proposition shows that, for any tolerance δ ∈ (0, 1), a δ-approximate
solution of (A.23) can be computed with an efficient bisection algorithm.

Proposition E.2 ([38, Theorem 6.4]). For any fixed ρz ∈ R++, Ẑ ∈ Sd++ and ΓZ ∈ Sd+,ΓZ ̸= 0,
define G+Z = {Z ∈ Sd+ : G(Z, Ẑ) ≤ ρz, Z ⪰ λmin(Ẑ)} as the feasible set of problem (A.23), and
let Z ∈ G+Z be any reference covariance matrix. Additionally, let δ ∈ (0, 1) be the desired oracle
precision, and defineφ(γ) = γ(ρ2+⟨γ(γI − ΓZ)

−1−I, Ẑ⟩)−⟨Z,ΓZ⟩ for any γ > λmax(ΓZ). Then,
Algorithm A.2 returns in finite time a matrix Lδ

Z ∈ Sd+ with the following properties. (i) Feasibility:
Lδ
Z ∈ G

+
Z (ii) δ-Suboptimality: ⟨Lδ

Z − Z,ΓZ⟩ ≥ δmaxL∈G+
Z
⟨ΓZ , L− Z⟩.

Algorithm A.2 Bisection algorithm to compute Lδ
Z

Input: nominal covariance matrix Ẑ ∈ Sd++, radius ρ ∈ R++,
reference covariance matrix Z ∈ G+Z ,
gradient matrix ΓZ ∈ Sd+, ΓZ ̸= 0, precision δ ∈ (0, 1),
dual objective function ϕ(γ) defined in Proposition E.2

1: set λ1 ← λmax(ΓZ), and let p1 be an eigenvector for λ1
2: set γ ← λ1(1 + (p⊤1 Ẑp1)

1
2 /ρ) and γ ← λ1(1 + Tr(Ẑ)

1
2 /ρ)

3: repeat
4: set γ̃ ← (γ + γ)/2 and L← (γ̃)2(γ̃I − ΓZ)

−1Ẑ(γ̃I − ΓZ)
−1

5: if dϕ
dγ (γ̃) < 0 then set γ ← γ̃ else γ ← γ̃ endif

6: until dϕ
dγ (γ̃) > 0 and ⟨L− Z,ΓZ⟩ ≥ δϕ(γ̃)

Output: L

In summary, for any Z ∈ {X0,W0, . . . ,WT−1, V0, . . . , VT−1}, Algorithm A.2 computes a δ-
approximate solutions to the direction-finding subproblem (14) with ΓZ = ∇Zf(W,V ).

F. Additional Information on Experiments

Generation of Nominal Covariance Matrices. The nominal covariance matrices of the exoge-
nous uncertainties are constructed randomly using the following procedure. For each exogenous
uncertainty z ∈ {x0, w0, . . . , wT−1, v0, . . . , vT−1}, we denote the dimension of z by d and sample
a matrix MZ ∈ Rd×d from the uniform distribution on the hypercube [0, 1]d×d. Next, we define
ΞZ ∈ Rd×d as the orthogonal matrix whose columns represent the orthonormal eigenvectors of
the symmetric matrix MZ +M⊤

Z . Finally, we set Ẑ = ΞZΛZΞ
⊤
Z , where ΛZ is a diagonal matrix

whose main diagonal is sampled uniformly from the interval [1, 2]d. The rationale for adopting this
cumbersome procedure is to ensure that the covariance matrix Ẑ is positive definite.

Optimality Gap. The optimality gap of the Frank-Wolfe algorithm visualized in Figure 1b is
calculated as the sum of the surrogate optimality gaps ⟨Lδ

Z − Z,∇Zf(W,V )⟩ across all Z ∈
{X0,W0 . . . ,WT−1, V0, . . . , VT−1}. For more information on the surrogate optimality gaps see [31].

20


	Introduction
	Literature Review

	Problem Definition
	Nash Equilibrium and Optimality of Linear Output Feedback Controllers
	Efficient Numerical Solution of Distributionally Robust LQG Problems
	Numerical Experiments
	Concluding Remarks and Limitations
	Solution of the LQG Problem
	Definitions of Stacked System Matrices
	Proofs
	Additional Technical Results
	Proofs of Section 3
	Proofs of Section 4

	SDP Reformulation of the Lower Problem (11)
	Bisection Algorithm for the Linearization Oracle
	Additional Information on Experiments

