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Abstract

Natural target functions and tasks typically exhibit hierarchical modularity – they
can be broken down into simpler sub-functions that are organized in a hierarchy.
Such sub-functions have two important features: they have a distinct set of inputs
(input-separability) and they are reused as inputs higher in the hierarchy (reusabil-
ity). Previous studies have established that hierarchically modular neural networks,
which are inherently sparse, offer benefits such as learning efficiency, general-
ization, multi-task learning, and transfer. However, identifying the underlying
sub-functions and their hierarchical structure for a given task can be challenging.
The high-level question in this work is: if we learn a task using a sufficiently deep
neural network, how can we uncover the underlying hierarchy of sub-functions in
that task? As a starting point, we examine the domain of Boolean functions, where
it is easier to determine whether a task is hierarchically modular. We propose an
approach based on iterative unit and edge pruning (during training), combined
with network analysis for module detection and hierarchy inference. Finally, we
demonstrate that this method can uncover the hierarchical modularity of a wide
range of Boolean functions and two vision tasks based on the MNIST digits dataset.

1 Introduction

Modular tasks typically consist of smaller sub-functions that operate on distinct input modalities, such
as visual, auditory, or haptic inputs. Additionally, modular tasks are often hierarchical, with simpler
sub-functions embedded in, or reused by, more complex functions [1]. Consequently, hierarchical
modularity is a key organizing principle studied in both engineering and biological systems. In
neuroscience, the hierarchical modularity of the brain’s neural circuits is believed to play a crucial role
in its ability to process information efficiently and adaptively [2, 3, 4, 5]. Translating this hierarchical
modularity to artificial neural networks (NNs) can potentially lead to more efficient, adaptable and
interpretable learning systems. Prior works have already shown that modular NNs efficiently adapt
to new tasks [6, 7, 8] and display superior generalization over standard NNs [9, 10, 11]. However,
those studies assume knowledge of the task’s hierarchy, or hand-design, modular NNs at initialization.
Given an arbitrary task, however, we normally do not know its underlying sub-functions or their
hierarchical organization. The high-level question in this work is: If we learn a task using a sufficiently
deep NN, how can we uncover the underlying hierarchical organization of sub-functions in that task?

Recent studies through NN unit clustering have demonstrated that certain modular structures can
emerge during the training of NNs [12, 13, 14, 15, 16]. However, it is unclear whether the structures
extracted reflect the underlying hierarchy of sub-functions in a task. Csordas et al. [17] proposed a
method that identifies sub-networks in NNs that learn specific sub-functions. This method however,
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requires knowledge of the exact sub-functions within a task’s hierarchy. Ideally, modules correspond-
ing to specific sub-functions should emerge through a training strategy, and a method should be
available to detect these modules without explicit knowledge of the corresponding sub-functions.

Biological networks exhibit hierarchical modularity where clusters of nodes with relatively dense
internal connectivity and sparse external connectivity learn specific sub-functions [4, 5, 18, 19].
Drawing inspiration from this, we propose Neural Sculpting, a novel approach to train and structurally
organize NN units to reveal the underlying hierarchy of sub-functions in a task. Within a hierarchically
modular task, we consider sub-functions that are input-separable and reused. We first show that
conventionally trained NNs do not acquire structural properties that reflect the previous sub-function
properties. To address this, we introduce a sequential unit and edge pruning method to train NNs.
Unit pruning first conditions the NN to learn reused sub-functions, while edge pruning subsequently
reveals the sparse connectivity between the learned sub-functions. Finally, we propose a network
analysis tool to uncover modules and their hierarchical organization within the sparse NNs.

We demonstrate the capability of Neural Sculpting to reveal the structure of diverse hierarchically
modular Boolean tasks and two MNIST digits based tasks. To the best of our knowledge, this paper is
the first to analyze specific sub-function properties within a hierarchically modular task and propose
an end-to-end methodology to uncover its structure. This work also sheds light on the potential of
pruning methods to uncover and harness structural properties in NNs.

1.1 Preliminary

To represent the decomposition of a task, we visualize it as a graph. Initially, we consider Boolean
functions and their corresponding function graphs. A Boolean function f : {0, 1}n → {0, 1}m, maps
n input bits to m output bits. We define the set of gates G as {∧,∨, I}, where ∧ represents logical
conjunction (AND), ∨ represents logical disjunction (OR), and I represents the identity function (ID).
Additionally, we define the set of edge-types E as {→,¬}, where→ represents a transfer edge and
¬ represents a negation edge.

Function Graph: A (G,E)-graph representing a Boolean function f : {0, 1}n → {0, 1}m is a
directed acyclic graph comprising: n sequentially ordered vertices with zero in-degree, designated
as the input nodes; k vertices with non-zero in-degree, designated as the gate nodes, with each
vertex associated with a gate in G and each of its in-edges associated with an edge-type in E; and m
sequentially-ordered vertices with zero out-degree, designated as the output nodes.

We use the G and E defined above, as NN units have been demonstrated to learn these universal gates
[20]. Function graphs, which break down complex computations into simpler ones, are typically
sparse. Modularity in sparse graphs refers to the structural organization of subsets of nodes that
exhibit strong internal and weak external connectivity, which are grouped into modules.

Sub-function: A sub-function is a subset of nodes within the function graph that collectively perform
a specific task. The sub-function is characterized by having strong internal connectivity within its
nodes, meaning that they are highly interdependent and work together to achieve the desired output.
At the same time, nodes in the sub-function have weak external connectivity, indicating that they are
relatively independent from the rest of the graph.

Input Separable: Two sub-functions are considered input separable if their in-edges originate from
distinct and non-overlapping subsets of nodes in the function graph.

Reused: A sub-function is reused if it has two or more outgoing edges in the function graph. 1

Training NNs on target Boolean functions: We start by obtaining the truth table of each function
graph, which serves as our data source. The training set (X t,Yt) includes the complete truth table
with added random noise (N (0, 0.1)) during each iteration to increase the number of training samples.
The validation set (X v,Yv) consists of the noise-free rows of the truth table. We use multi-layered
perceptrons (MLPs) with ReLU activation for the hidden units and Kaiming weight initialization to
learn the Boolean functions. The loss function is bitwise cross-entropy with Sigmoid activation. The
NNs are trained using Adam optimizer with L2 regularization of 1e− 4.

1Distinction between function reuse and operation reuse. Consider the AND gate which is an operation that
is independent of its input variables. On the other hand, a sub-function is a combination of such operations along
with specific inputs. Specific operations have to be relearned if applied to different inputs due to the fixed data
flow in NNs [17].
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2 Standard training of NNs is not enough

We show that NNs through standard training, do not acquire structural properties that reflect the
properties of sub-functions. Specifically, we consider the two properties in isolation by constructing
two graphs: one with input separable sub-functions, and the other with a reused sub-function.

2.1 Input Separable

Figure 1: a. Function graph with input separa-
ble sub-function, b. Edge-weight product of paths
from input units to output units in a trained NN.

The first function graph we consider has 4 input
nodes and 4 output nodes. The output nodes
{y1, y2} depend only on {x1, x2}, while the
output nodes {y3, y4} depend only on {x3, x4}
(Figure 1a). We train various NN architectures
to learn the target function with perfect accu-
racy on the validation set. The property of
the function graph that reflects input-separable
sub-functions is that there are no paths from
input nodes {x1, x2} to output nodes {y3, y4}
and from input nodes {x3, x4} to output nodes
{y1, y2}. However, in a neural network, all
input units are connected to all output units
through the same number of paths. Therefore, we analyze the strength of their learned relationship by
considering the product of weight magnitudes along those paths.

Width 24 36 48

Hidden Layers

1

2 7 7 7

3 7 7 7

Table 1: NN architectures with vary-
ing widths and depths for which
both null hypotheses are rejected.

Consider a trained NN parametrized by θ ∈ Ra and the set of
all paths, P . Each edge weight θi is assigned a binary variable
pi to indicate whether it belongs to a given path p ∈ P . We
define the edge-weight product of a path as πp =

∏a
i=1 |θ

pi

i |,
and π(i, j) =

∑
p∈Pi→j

πp represents the sum of πp for all
paths from input unit i to output unit j. We evaluate π(i, j)
for i = 1, 2 and j = 3, 4, and π(i, j) for i = 1, 2 and j = 1, 2.
If the former is significantly smaller than the latter, then the
input units 1 and 2 are not used by output units 3 and 4.

We perform a two-sample mean test with unknown standard
deviations, with (µ1, s1) representing the mean and sample
standard deviation of π(i, j) for i = 1, 2 and j = 3, 4, and
(µ2, s2) representing the mean and sample standard deviation
of π(i, j) for i = 1, 2 and j = 1, 2. The null hypothesisH0 is µ1 = µ2, and the alternative hypothesis
is µ1 < µ2. A similar test is performed for input units 3 and 4. Figure 1b shows an example heat map
for π(i, j), where i, j ∈ {1, 2, 3, 4}. For the example shown we cannot reject the null hypotheses.
Similarly, we conducted statistical tests on nine different NNs with varying architectures and seed
values, and the results are summarized in Table 1. For NNs with a single hidden layer, we can reject
the null hypotheses, but for deeper NNs, both the null hypotheses cannot be rejected.

2.2 Reused

Figure 2: a. Function graph with reused sub-
function, b. the number of units covering 90%
of the total edge-weight product of paths.

Consider the function graph shown in Figure 2a,
consisting of 4 input nodes and 16 output nodes.
First, we construct an intermediate sub-function
g(X) such that the three gate nodes depend on
all the inputs. This sub-function is utilized by
two separate gates, f1(g) and f2(g), which are
then used 8 times by different output nodes. All
paths to the output nodes pass through three
gate nodes in the first hierarchical level and two
gate nodes in the second. We analyze the edge-
weight product of the paths from hidden units
to output units. Let πl

p denote the sum of πp

for all paths originating from hidden layer l,
which contains Nl hidden units. We compute
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the minimum number of units, N l
P , that are necessary to achieve P% of the total πp. By comparing

N l
P to that of the function graph, we can conclude whether the NN has learned the reused states.

We independently trained NNs with two hidden layers and different widths on the target Boolean
function. The resulting N l

90 values for different layers are shown in Figure 2b. Our analysis indicates
that, as the width of the NN increases, so does N l

90 in both the hidden layers, and these values are
consistently close to the actual width of the NN. We trained an NN with hidden layers of width 3 and
2, respectively, to confirm that NNs with those widths can learn the function well.

3 Iterative pruning of NNs

In the previous section, we demonstrated that standard NN training is inadequate for learning
structural properties that reveal input separable or reused sub-functions. Nevertheless, we observed
that NNs with a relatively low number of parameters could still acquire these properties. Since
hierarchical modularity is a property of sparse networks, we explored NN pruning algorithms as a
means of achieving this sparsity. Prior research has shown that pruning NNs can reduce their number
of parameters without compromising their performance [21, 22, 23]. Edge pruning methods typically
require specifying a target NN density or pruning ratio [21, 24], but determining a density value that
preserves the NN’s performance remains an open question. Recently, iterative magnitude pruning
[25, 26] has emerged as a natural solution to this problem. The algorithm prunes edges iteratively,
removing some edges in each iteration and then retraining the NN. This process can be repeated until
the NN achieves the same validation performance as the dense NN while being as sparse as possible.

3.1 Iterative edge pruning

Consider the initial edge pruning step pe. We train the dense NN and prune pe% of the edges
with the lowest weight magnitude. The sparse NN resulting from this pruning is then trained
with the same number of epochs and learning rate schedule as the original NN. We repeat this
process until the sparse NN can no longer achieve the same validation accuracy as the dense NN.

Figure 3: a. Edge-weight product of paths from input
units to output units in edge-pruned NN; b. the number
of units covering 90% of the total edge-weight product of
paths in edge-pruned NNs.

At this point, we rewind the NN to the
previous sparse NN that achieved the
same validation accuracy as the dense
NN and update the value of pe as pe =
pe/2. We repeat this process until pe
becomes lower than the required step
to prune a single edge, thereby ensur-
ing that the lowest possible density is
achieved.

We next apply the tests developed in
the previous section to analyze whether
edge-pruned NNs acquire structural
properties resembling those of the sub-
functions. Specifically, we train and
prune different NN architectures to learn the function graph with input-separable sub-functions.
For the example shown in Figure 3a, as well as for NNs with different architectures, we can reject
the null hypotheses in favor of the alternate hypotheses. This implies that edge-pruned NNs acquire
structural properties that enable them to recognize input-separable sub-functions.

Consider the previous function graph that has reused sub-functions and NNs with increasing widths.
We independently train and prune each NN architecture and determine the number of units N l

90
(Figure 3b). We find that in a majority of the trials, N2

90 = 2, which are reused by the output units.
Although there is a significant reduction in N1

90, the edge-pruned NNs fail to identify 3 units that are
being reused. We observe that edge-pruned NNs identify sparse connectivity between units and reuse
those units. However, they do not identify units corresponding to sub-functions that are not sparsely
connected yet reused. We hypothesize that this may be due to the initial pruning iterations where
some edges from all units are removed, leaving no hidden units with dense connectivity to learn
densely connected and reused sub-functions. Additionally, this could also be due to very large NN
widths and the absence of an objective conditioning NNs to utilize as few hidden units as possible.
Therefore, next we introduce an iterative unit pruning method to limit the number of units used.
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3.2 Iterative hidden unit pruning

To prune hidden units, we first train the neural network and then assign each hidden unit a score.
We eliminate pu% of the hidden units with the lowest scores and train the resulting pruned network
for the same number of epochs and learning rate schedule as the original network. We repeat this
two-step pruning process iteratively.

Sl
i =

∣∣∣∣∂L(Dv,θ)

∂ali
× ali

∣∣∣∣ (1)

We use loss sensitivity as the scoring metric for the units [27,
28, 29, 30], which approximates the change in the network’s
loss when the activation of a particular hidden unit is set to
zero. Specifically, for a unit i in hidden layer l, with activation
ali, the score is computed as :

The iterative unit pruning process continues until the NN can no longer achieve the same validation
accuracy as the original NN. To ensure that we have pruned as many units as possible, we revert to
the latest NN that achieved the same validation accuracy as the original NN and halve the value of pu.

Figure 4: a. Edge-weight product of paths from input units
to output units in unit-edge pruned NN; b. the number of
units covering 90% of the total edge-weight product of
paths in unit-edge pruned NNs.

This process is repeated until the unit
pruning step becomes lower than the step
size needed to prune a single unit. We
perform unit pruning before the edge
pruning process to identify the mini-
mum widths required in each hidden
layer. Once the minimum widths are de-
termined, edges are pruned to reveal the
sparse connectivity between those units.
For additional details please refer to ap-
pendix section H.

We conducted the previous tests to ana-
lyze whether the unit-edge pruned NNs
acquire structural properties resembling
those of the sub-functions, as presented in the previous section. The results of these tests are shown
in Figure 4, and show that the unit-edge pruned NNs do acquire structural properties resembling both
input separable sub-functions and reused sub-functions.

Figure 5: Proposed module detection pipeline.

4 Detecting modules within sparse NNs

In this section, we propose a method to uncover sub-networks or modules that approximate the
sub-functions within the target function. We approach this by projecting the problem as a two-step
partitioning problem due to the layered structure of NNs. First, we cluster the units belonging to
the same layer. We assume that given a layer, there exist various subsets of units that participate in
learning the same sub-function. Next, we merge the previous unit clusters across layers such that
they exhibit strong connectivity. The overview of our proposed method is illustrated in Figure 5.

Layer-wise unit clustering: Let us consider a single layer l with Nl units. For each unit, we
construct a feature vector based on its outgoing connectivity. The feature vector for a unit i is a binary
vector f li ∈ {0, 1}g , where g is the total number of units in all the later layers. If unit j is connected
to unit i through at least one directed path, then f li (j) = 1, otherwise f li (j) = 0. Our hypothesis is
that the units that participate in learning the same sub-function are reused by similar units in the later
layers. To partition the units into clusters such that their feature vectors have low intra-cluster and
high inter-cluster distances, we use the Agglomerative clustering method with cosine distance and
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average linkage. To identify the optimal number of clusters Kl, we use the modularity metric, which
we have modified for our problem [31, 32, 33].

M =

k∑
i=1

Aii −

 k∑
j=1

Aij

2
 (2)

Let D̃ be the normalized distance matrix of the unit fea-
ture vectors, where the sum of all elements is equal to 1.
Consider the units partitioned into k clusters and a matrix
A ∈ Rk×k, where Aij =

∑
a∈Ci,b∈Cj

D̃ab represents the
sum of the distances between all pairs of units in clustersCi

and Cj . The modularity metric, denoted by M , measures
the quality of the partitioning and is defined as:

The first term in this equation measures the total intra-cluster distance between the unit features while
the second term is the expected intra-cluster distance under the null hypothesis that unit distances
were randomly assigned based on joint probabilities in D̃. A negative value of M indicates that
pair-wise distance within a cluster is lower than the random baseline. We iterate through values of k
ranging from 2 to Nl − 1, which are obtained through Agglomerative clustering, and select the value
of k that minimizes the modularity metric.

The modularity metric can accurately detect the presence of multiple unit clusters (Kl = 2, ..., Nl−1).
However, it fails for the edge cases where all units may belong to a single cluster (Kl = 1) or to
separate individual clusters (Kl = Nl). To address those, we conduct a separability test if the
modularity metric is lowest for k = 2 or k = Nl − 1, or if the modularity metric values are close
to zero. Modularity metric close to zero is an indicator that the intra-cluster distances are not
significantly different from the random baseline. To determine this, we set a threshold on the lowest
modularity value obtained.

Separability test: The unit separability test is designed to evaluate whether two units in a cluster can
be separated into sub-clusters. Consider two units i and j, with oi =

∑
f li , oj =

∑
f lj neighbors

respectively, and oij = f li � f lj common neighbors. We consider a random baseline that preserves oi
and oj . The number of common neighbors is modeled as a binomial random variable with g trials
and probability of success p = oi×oj

g2 . The units are separable if the observed value of oij is less than
the expected value E(oij) under the random model.

Consider the partition where Nl − 1 clusters are obtained. If the two units that are found in the same
cluster are separable, it implies that all units belong to separate clusters. Now let us consider the
partition of units into two clusters. We merge the feature vectors of the two unit groups. If the two
groups of units are not separable, it implies that all units must belong to the same cluster. In some
cases, both tests yield positive results. We determine the optimal number of clusters by selecting the
result that is more statistically significant.

Merging clusters across layers: Strongly connected clusters from adjacent layers are next merged
to uncover multi-layered modules. Consider, Ci

l , i = 1, 2, ...,Kl to be the clusters identified at layer
l. Let eli,j be the number of edges from cluster Ci

l to cluster Cj
l+1. The two clusters are merged if :

eli,j∑Kl+1

j=1 eli,j
≥ δm and

eli,j∑Kl

i=1 e
l
i,j

≥ δm, where δm is the merging threshold.

The output units are merged with the previous layer’s modules, ensuring that δm fraction of incoming
edges to the unit are from that module. This allows multiple output units to be matched to the same
structural module.

Figure 6: Function graphs used to validate the proposed pipeline
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5 Experiments and Results

5.1 Modular and hierarchical Boolean function graphs

Figure 7: Success rates for the val-
idation function graphs

In this section, we conduct experiments on Boolean function
graphs with different sub-function properties to validate our
pipeline. We begin by testing the pipeline on four function
graphs shown in Figure 6. These graphs include: 1) input sep-
arable sub-functions, 2) a reused sub-function, 3) sub-functions
that are both input separable and reused, and 4) a function graph
without any such sub-function where all nodes are strongly
connected to every other node.

We perform 36 trials for each function graph by training neural
networks with combinations of 3 width values, 3 depth val-
ues, and 4 seed values. A trial is considered successful if the
proposed pipeline detects a module corresponding to an input
separable or reused sub-function (Figure 5). For Boolean func-
tions, we set the modularity metric threshold to -0.2 and the
cluster merging threshold to 0.9. Figure 7 shows the success rates for each function graph and NNs
with different depths. We observed that the proposed pruning and module detection pipeline has a
high success rate when the depth of the NN exceeds that of the function graph. (see to appendix
section B for NN visualizations)

5.2 Sub-functions that are reused many times are uncovered more accurately

Figure 8: Success rate when the
number of times a sub-function is
used increases

We consider the function graph shown in Figure 6b, which
contains a single reused sub-function. We vary the number of
times the two intermediate gate nodes in the second hierarchical
level are used by decreasing the number of output nodes and
measure the success rate. The results are shown in Figure 8,
where we observe an increasing trend in the success rate as the
number of output nodes using the two gate nodes increases. As
the number of output units using the two gate nodes decreases,
learning the two gate nodes using the previous "dense" sub-
function may not be efficient. We provide visualizations of
the corresponding NNs in the appendix section C. Note that
NNs with only one hidden layer recover a single module, as the
function graphs require four hierarchical levels. If only three
hierarchical levels are available, the function graph collapses to
a dense graph.

Figure 9: Increasing the input overlap (reuse) between two input separable sub-functions

5.3 Sub-functions with higher input separability are detected more accurately

In this experiment, we consider a function graph with two input separable sub-functions shown in
Figure 9a. We increase the overlap between the two separable input sets by decreasing the total
number of input nodes and reusing them. We also vary the number of times each sub-function
is replicated or used in the output nodes. Our goal is to uncover three properties of the structure:
accurately separated input units into sub-function specific and reused, two output sub-functions
accurately detected in later layers, and all hidden units belong to either of the two output modules.
The success rate for each of these properties as a function of input overlap and sub-function use is
shown in Figure 10.
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Figure 10: Success rates for various properties uncovered by the pipeline when the input overlap
between two sub-functions is increased

We observe that our method has a high success rate for detecting these properties for sub-functions
with high input separability. However, as the overlap between input node sets increases, the success
rate for detecting input modules decreases. Furthermore, the success rate decreases as the number
of times a sub-function is used decreases. We also observe that for sub-functions with low input
separability (and high input overlap), intermediate units are often clustered into a single module
due to the hidden units pruning step. Finally, we find that the same trend is observed for detecting
output sub-functions, where increasing input overlap and decreasing sub-function use results in a low
success rate for our method. (See appendix section D for visualization of these results).

Figure 11: The same Boolean function represented by different function graphs depending on the
number of hierarchical levels

5.4 Hierarchical structures uncovered vary depending on NN depth

The function graph in Figure 11a consists of two input separable sub-functions, the output of those
sub-functions is then used by a single intermediate sub-function. This intermediate sub-function is
then reused by two additional sub-functions to produce the final output. Interestingly, we observe that
the proposed pipeline uncovers different hierarchical structures depending on the depth of the NN.

Figure 12: Success rates: a. uncovering specific sub-functions,
b. uncovering the overall hierarchical structure, for NNs with
varying depths trained on function graph in Figure 11

Figure 12a shows the success rate
of uncovering the specific sub-
functions segregated by the NN
depth. We find that NNs with
depth greater than or equal to
the number of hierarchical levels
(5) can uncover all three types
of sub-functions in the function
graph. However, for NNs with
lower depth, only the input sepa-
rable sub-functions are uncovered,
while the intermediate and output
sub-functions are merged into a sin-
gle module.

This result highlights the importance of selecting an appropriate depth for the NN architecture to
effectively uncover hierarchical structures in Boolean function graphs. (see appendix section E for NN
visualizations) In addition, we report the success rates of uncovering the exact hierarchical structure
that corresponds to the depth of the NN as we vary the number of times the output sub-functions
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were used (Figure 12b). The findings demonstrate an increasing trend in the success rate, which is
consistent with our previous results.

5.5 Modular and hierarchical functions with MNIST digits

In this section, we present an experimental evaluation of hierarchically modular tasks constructed
using the MNIST handwritten digits dataset. We set the modularity metric threshold to -0.3 and the
cluster merging threshold to 0.6 for tasks with MNIST digits.

Classifying two MNIST digits: We begin by considering a simple function constructed to classify
two MNIST digits. The NN is presented with two images concatenated together, and the output is a
vector of length 20. The first 10 indices of the output predict the class for the first image, and the
remaining 10 predict the class for the second image. We construct the dataset such that each unique
combination of labels has 1000 input data points generated by randomly selecting images. We split
the data into training and validation sets with an 8:2 ratio, and then train nine neural networks with
varying widths (392, 784, 1568) and number of hidden layers (2, 3, 4) to learn the function for four
different seed values. We use the Adam optimizer with bit-wise cross-entropy as the loss function,
and select 99% as the accuracy threshold for the pruning algorithm, as all dense NNs achieve at
least 99% validation accuracy. Out of the 36 trials conducted, we obtain two completely separable
modules for 33 out of 36 trials, indicating the high effectiveness of our approach. (see appendix F for
NN visualizations)

Hierarchical and Modular MNIST Task: We consider next a hierarchical and modular task
that uses the MNIST digits dataset (Figure 13a). The task takes two MNIST images as input,
each belonging to the first 8 classes (digits 0-7). The digit values are represented as 3-bit binary
vectors and used to construct three output Boolean sub-functions. To generate the dataset, we
randomly select 1000 input data points for each unique combination of digits. The data is then
split into training and validation sets with an 8:2 ratio. All the NNs that we experiment with reach
a validation accuracy of 98%, which we use as the accuracy threshold for the pruning algorithm.

Figure 13: a. Hierarchically modular task constructed with
MNIST digits; b. Success rates for various modules recovered
by NNs with varying depths.

To analyze the modular structure
uncovered by our methodology, we
divide the success rates into three
categories: (1) detecting two input
separable modules, (2) detecting
three output modules, and (3) mid-
dle layer unit-separability into ei-
ther the input separable modules or
the output separable modules. We
observe that the NNs uncover the
three output modules with high suc-
cess rates. However, for NNs with
lower depths, the NNs fail to re-
cover the two input separable mod-
ules, and all the units in the early
layers are clustered into a single
module. As the depth of the NN increases, we find that the input separable modules are recov-
ered with high accuracy as well. We observe that the success rates for middle layer unit-separability
are very low, even when the depth of the NN increases. The units belonging to those hidden layers
are often clustered into a single module. These units may be learning representations required to
approximate the two digits well. This finding indicates that the NN depths we experiment with may
not be sufficient to capture the underlying function, despite the NNs learning the task with high
validation accuracy. Please refer to appendix F for NN visualizations.

6 Related work

Emerging modular structures in trained NNs has been a subject of prior investigation, primarily
through unit clustering algorithms. Previous methods for extracting such structures can be categorized
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as either structural or functional. Structural methods organize units based on their structural charac-
teristics, including connectivity and edge-weights [12, 13, 14], while functional methods consider
attributes based on unit activation patterns [15, 16]. However, it remains unclear whether these
extracted structures represent the underlying hierarchy of sub-functions in a given task.

To the best of our knowledge, this work is the first attempt to introduce an approach that combines
training (pruning) and network analysis to unveil the hierarchical modularity of tasks. Our proposed
method for clustering units and discovering modules aligns with the structural methods. A series of
prior studies leveraged normalized spectral clustering to globally extract unit clusters and analyze their
characteristics [14, 15]. Spectral clustering optimizes for N-cuts, quantifying the internal connectivity
relative to the external connectivity of unit clusters. Our method is most similar to previously
introduced layer-wise unit clustering techniques [12, 13]. These methods consider incoming and
outgoing edge-weights to group units within a layer and consolidate edges into single incoming and
outgoing connections. Importantly, all previous methods were tailored for conventionally trained
NNs. In contrast, our approach is simpler and customized for the pruned NNs we obtain.

Pruning of NN units and edges has gained significant traction as a method to enhance NN
computational efficiency and reduce memory demands while maintaining performance integrity
[21, 24, 23, 34, 35, 30, 36, 37, 38]. Recent research has also focused on investigating how pruning
impacts NN generalization [39, 40, 41]. However, prior studies have primarily concentrated on either
unit pruning or edge pruning in isolation, without employing both in a sequential manner as proposed
in our work. In our approach, we employ unit pruning as a means to condition or compel NNs to
learn reused sub-functions effectively. Furthermore, edge pruning is employed to uncover the sparse
connectivity between various units or modules.

Mechanistic interpretability seeks to reverse-engineer trained NNs to understand their internal
mechanisms. One avenue of research within mechanistic interpretability involves identifying the
circuits formed within NNs. Recent discoveries include curve-detecting circuits in vision models
[42, 43], transformer circuits [44], induction heads [45], and indirect object identification [46], among
others. Our proposed approach for uncovering the hierarchical modular task structure dissects the
NN into modules responsible for learning specific sub-functions. Hence, simplifying the complexity
of reverse engineering entire NNs, by focusing instead on smaller sub-networks.

Continual learning aims at learning multiple tasks presented sequentially while preserving perfor-
mance on previously learned tasks [47, 48, 49, 50]. Modular NNs have been demonstrated to mitigate
catastrophic forgetting by freezing and reusing certain modules while introducing and updating others
to learn new tasks [6, 7, 8]. However, those methods entail manually designing modular NNs with
fixed module sizes at initialization. NNs that naturally acquire a hierarchically modular structure
mirroring that of the task may offer additional advantages compared to generic modular NNs. These
potential benefits encompass enhanced generalization, efficient transfer learning through the reuse
of modules corresponding to frequently utilized sub-functions, and informed module additions to
prevent sub-linear increases in NN capacity.

7 Conclusion

We have introduced Neural Sculpting, a methodology to uncover the hierarchical and modular
structure of target tasks in NNs. Our findings first demonstrated that NNs trained conventionally
do not naturally acquire the desired structural properties related to input separable and reused sub-
functions. To address this limitation, we proposed a training strategy based on iterative pruning of
units and edges, resulting in sparse NNs with those previous structural properties. Building upon this,
we introduced an unsupervised method to detect modules corresponding to various sub-functions
while also uncovering their hierarchical organization. Finally, we validated our proposed methodology
by using it to uncover the underlying structure of a diverse set of modular and hierarchical tasks.

As a future research direction, we could investigate the efficiency and theoretical underpinnings of
modularity in function graphs, which could further motivate pruning NNs. One potential approach to
overcome the computational costs and dependence on initial architecture depth could be to use neural
architecture search algorithms to construct modular NNs during training. Additionally, exploring
the use of attention mechanisms and transformers to uncover hierarchical modularity in tasks could
be an interesting direction for future work. These approaches could provide a more efficient way of
obtaining modular NNs that can also better capture the underlying structure of the target task.
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A Appendix structure and details

In this section, we discuss the structure of the appendix. The code and datasets used can be found
here: https://github.com/ShreyasMalakarjunPatil/Neural-Sculpting.

Appendix sections (B - F) accompany section 5 in the main paper and provide visualizations of neural
networks (NNs) and the hierarchical modularity uncovered by our proposed pipeline. Each section
includes NN visualizations corresponding to the five experiments summarized in the main paper. The
main figures in these sections are organized such that the first row represents different function graphs
that the NNs are trained to learn, with each column representing a distinct function graph relevant
to the experiment. The subsequent rows show visualizations of the uncovered hierarchical modular
structures for NNs with increasing depths.

Visualization figure details: In the appendix sections, each function graph is associated with
visualizations from a specific NN trial at a particular depth value (with one width value and one seed
value). This visualization represents the structure that is commonly recovered for the given function
graph and NN depth. While the NN width value and seed value remain consistent in the visualizations,
they may vary if the recovered structure does not represent the majority. We also present and discuss
other structures that are frequently recovered, using other function graphs representing the same
Boolean function. For success rate computations, such trials are typically considered failures in
recovering overall structures. However, for individual sub-function detection success rates, they may
be considered successful if they uncover a module corresponding to that sub-function. Additional
visualizations and the hyperparameters used for training and pruning the NNs are detailed in the code
base.

Function graph nomenclature: In the visualizations, the term "modularity" indicates the function
graph being used. The modularity is represented as a list that indicates the number of sub-functions
in the hierarchy. For example, if the modularity is [1, 2], it means there are two sub-functions in the
upper hierarchical level that take as input the output of a single sub-function lower in the hierarchy.
In the code base, we prepend the number of input nodes and append the number of output nodes to
this list.

Appendix section G accompanies section 2 in the main paper. Section 2 presents two tests developed
to demonstrate that NNs, through standard training, do not acquire structural properties reflecting
input separable and reused sub-functions. In appendix section G, we provide detailed results for these
tests conducted on nine different NN architectures to further support our claims. We also report the
results of the same tests conducted on edge-pruned and unit-edge-pruned NNs.

Appendix section H accompanies section 3 in the main paper, which presents the method for pruning
NNs. This appendix section provides a detailed explanation of the unit and edge pruning algorithms,
along with the exploration strategy and results for hyperparameter tuning.

Appendix section I accompanies section 4 in the main paper, which introduces the proposed method
for detecting modules corresponding to various sub-functions. In this appendix section, we present a
detailed algorithm description and the methodology used for hyperparameter exploration.

Note that the pruning and module detection hyperparameters were explored concurrently. However,
in the appendix section, we first present experiments with the pruning hyperparameters while keeping
the module detection method fixed, and vice versa.

Resources: The unit and edge pruning processes for the Boolean functions were executed on a CPU,
while the pruning for the MNIST experiment was performed using RTX6000 GPUs.
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B NN visualizations: Function graphs used for validation

Figure 14: The visualizations provide examples of NNs successfully uncovering the exact hierarchical
structure as the validation function graphs. Each column represents a distinct function graph,
characterized by: 1. input separable sub-functions, 2. reused sub-function, 3. input separable and
reused sub-functions, or 4. a single sub-function. Each row showcases NNs with different depths: 1.
one hidden layer, 2. two hidden layers, and 3. three hidden layers.
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C NN visualizations: Function graphs with a single sub-function and
increasing reuse

Figure 15: The function graphs consist of a single non-input separable sub-function that is reused to
construct two output sub-functions. We vary the number of times the two sub-functions are used or
replicated, ranging from 1 to 8.

Figure 16: Function graphs in Figure 15 represented using only 3 hierarchical levels.

Figure 17: Example visualizations of uncovered modular and hierarchical structure for NNs trained
on function graphs in Figure 15. Each row indicates a different NN depth, 1. 1 hidden layer, 2.
2 hidden layers, and 3. 3 hidden layers. Each column indicates a different function graph with
sub-function use increasing from 1 to 8. We can observe that when the NN depth is lower than that of
the number of hierarchical levels, a single module is recovered. This is consistent with the function
graphs that use only 3 hierarchical levels as shown in Figure 16.
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D NN visualizations : Increasing input overlap and reuse of two input
separable sub-functions

D.1 Completely separable sub-functions

Figure 18: The visualizations presented illustrate the uncovered modular and hierarchical structure
of NNs trained on the function graphs depicted in the first row. Within these function graphs, there
are two sub-functions that are entirely input separable. Each row in the visualizations corresponds
to a different NN depth, namely 1 hidden layer, 2 hidden layers, and 3 hidden layers. Additionally,
each column represents a different function graph, where the usage of sub-functions increases
incrementally from 1 to 8.
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D.2 Single overlapping input node

Figure 19: The visualizations provided showcase the uncovered modular and hierarchical structure
of NNs trained on function graphs found in the first row. These function graphs comprise two
sub-functions that are built using three sets of input nodes. Specifically, there are two sets, each
containing three nodes, which are specific to individual sub-functions. The third set consists of one
input node that is shared between both sub-functions. In the visualizations, each row corresponds
to a different NN depth, ranging from 1 hidden layer to 3 hidden layers. Additionally, each column
represents a distinct function graph, with an increasing usage of sub-functions from 1 to 8.
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D.3 Two overlapping input nodes

Figure 20: The provided visualizations depict the uncovered modular and hierarchical structure
of NNs trained on function graphs found in the first row. These function graphs comprise two
sub-functions that are constructed using three sets of input nodes. Within these sets, there are two
sub-function-specific sets, each consisting of two nodes, and the third set comprises two input nodes
shared between both sub-functions. In the visualizations, each row represents a different NN depth,
ranging from 1 hidden layer to 3 hidden layers. Furthermore, each column represents a distinct
function graph, with increasing usage of sub-functions from 1 to 8.
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D.4 Three overlapping input nodes

Figure 21: The provided visualizations showcase the most commonly uncovered modular and
hierarchical structure for NNs trained on function graphs found in the first row. These function
graphs consist of two sub-functions that are constructed using three sets of input nodes. Among these
sets, two are sub-function-specific, with each set comprising one node, while the third set consists
of three input nodes that are shared between both sub-functions. Each row in the visualizations
represents a different NN depth, ranging from 1 hidden layer to 3 hidden layers. Additionally, each
column corresponds to a distinct function graph, with an increasing usage of sub-functions from
1 to 8. Observing the visualizations, we can note that the input units are accurately clustered into
two modules specific to each sub-function and one reused module. However, the hidden units in
the early layers tend to be clustered into a single module more often. This suggests that NNs may
learn intermediate states that are reused for both sub-functions when there is a large input reuse
set. This phenomenon may be influenced by excessive hidden unit pruning and the existence of
learnable hidden states that can be reused independently of input reuse. On the other hand, the output
sub-functions are detected accurately for deeper NNs, indicating that the hierarchical organization is
better captured as the network depth increases.

Figure 22: The provided visualizations depict accurately uncovered modular and hierarchical struc-
tures for NNs trained on function graphs shown in Figure 21.
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Figure 23: The visualizations highlight the tendency of NNs trained on function graphs from Figure
21 to cluster the input and early hidden layers together while accurately detecting the output sub-
functions. This clustering of the input layer and early hidden layers into a single module suggests
that the NNs learn representations that are shared among the sub-functions, despite their distinct
inputs. This phenomenon becomes more pronounced when the sub-functions are repeatedly utilized
within the function graph. It is possible that the network captures common features or patterns that
are relevant to all the sub-functions, leading to this shared module in the early layers.

D.5 All overlapping input nodes

Figure 24: In the set of visualizations for the uncovered modular and hierarchical structure of NNs
trained on function graphs in the first row, we can observe a single module being recovered. This
finding is consistent with the previous result, where a high degree of input overlap within the function
graph, coupled with hidden unit pruning, influences the NN to learn hidden states that are reused for
both output sub-functions. Despite the presence of distinct output sub-functions, the network learns
to capture common underlying features in all the hidden layers.
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Figure 25: In set 2 of visualizations for the uncovered modular and hierarchical structure of NNs
trained on function graphs in the first row, a distinct pattern emerges. In the early layers, the pipeline
consistently recovers a single module, primarily because there is no input separability present in the
function graphs. However, as we progress to the later layers, we observe a successful separation of
units into two distinct modules.

Figure 26: In set 3 of visualizations for the uncovered modular and hierarchical structure of NNs
trained on function graphs in the first row, intriguing patterns emerge. The pipeline successfully
reveals a single module in the input layer. In later layers, the units are accurately separated into two
distinct modules. In NNs with 2 hidden layers, we observe that the first hidden layer has two distinct
clusters. One cluster is connected to one of the output modules, while the other cluster is reused by
both modules. In NNs with 3 hidden layers, The first hidden layer approximates two sub-functions,
which are subsequently reused by both output modules through an intermediate module. We could
not interpret those structures using any of the valid function graphs.
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E NN visualizations : Increasing the number of hierarchical levels

Figure 27: The visualizations of the uncovered modular and hierarchical structure for NNs trained
on function graphs in the first row provide valuable insights. Within these function graphs, there
are two sub-functions that are completely input separable. The outputs of these sub-functions are
then combined into a single sub-function, which is subsequently reused by two output sub-functions.
Each row in the visualizations corresponds to a different NN depth, ranging from 1 hidden layer to 4
hidden layers. Additionally, each column represents a different function graph, with an increasing
number of sub-function uses ranging from 1 to 8. An interesting observation is that as the depth of
the NN varies, the uncovered hierarchical structures also vary. These visualizations shed light on the
interplay between network depth and the discovered hierarchical structures, offering insights into
how the NNs adapt and represent the relationships among the input separable sub-functions and the
output sub-functions.
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E.1 Other structures frequently recovered

Figure 28: The visualizations showcase other structures that are frequently uncovered by NNs trained
on the function graph in the first row. It is evident that the function can also be represented by other
function graphs shown in the same row. However, these alternate function graphs are less efficient in
terms of the number of edges and gate nodes required. In the first alternate graph, we observe the use
of 6 additional edges, while the second alternate graph utilizes 4 additional edges. Moreover, both of
these function graphs involve a larger number of gate nodes compared to the original function graph.
Many unsuccessful NN trials result in the recovery of these alternate structures, as illustrated in the
second row of the visualizations.

Figure 29: The visualizations showcase other structures that are frequently uncovered by NNs trained
on the function graph in the first row. It is evident that the function can also be represented by other
function graphs shown in the same row. However, this alternate function graph is less efficient,
requiring 2 additional edges compared to the original function graph. Many unsuccessful NN trials
result in the recovery of these alternate structures, as illustrated in the second row of the visualizations.
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E.2 Output sub-functions used once

Figure 30: Function graphs representing the Boolean function in 27 when each of the output sub-
functions is used only once. In each row of the figure, we can observe function graphs with different
numbers of hierarchical levels. Each graph within a row presents an alternate representation of the
function, employing the same number of nodes and edges.

Figure 31: a) Example visualization of the hierarchical structure obtained through an NN with 2
hidden layers, trained on the function illustrated in Figure 30(same structure as shown in Figure 30,
row 3a); b) Example visualization of the hierarchical structure obtained through an NN with 3 hidden
layers, trained on the function illustrated in Figure 30 (same structure as shown in Figure 30, row
2a); c) Example visualization of the hierarchical structure obtained through an NN with 3 hidden
layers, trained on the function illustrated in Figure 30 (same structure as shown in Figure 30, row
2b); d) Example visualization of the hierarchical structure obtained through an NN with 4 hidden
layers, trained on the function illustrated in Figure 30 (same structure as shown in Figure 30, row 1a);
e) Example visualization of the hierarchical structure obtained through an NN with 4 hidden layers,
trained on the function illustrated in Figure 30 (same structure as shown in Figure 30, row 1c).
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F NN visualizations for tasks with MNIST

F.1 MNIST task classifying two digits

Figure 32: Visualizations of NNs uncovering two modules corresponding to the two MNIST digits
classification task with varying depth. Out of the 36 trials conducted, we obtain two completely
separable modules for 33 out of 36 trials, indicating the high effectiveness of our approach.
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F.2 Hierarchical task with MNIST digits

Figure 33: The uncovered NN structures for the hierarchical and modular task with 2 MNIST digit
images as input. The NNs uncover the three output modules accurately. The pipeline fails to recover
the two input separable modules when the NN depth is low. Deeper NNs do recover two input
separable modules. However, the middle layers are clustered into a single module indicating that the
depth may be insufficient to detect the two classification modules accurately.
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G Structural properties of dense and sparse NNs

Figure 34: T-statistic and P-values for the two statistical tests conducted to detect input separability
in dense NNs. The first row shows the heat maps of t-statistic values (on the two tests) for NNs with
varying widths and depths. The second row shows the p-values for the same.

Figure 35: T-statistic and P-values for the two statistical tests conducted to detect input separability
in edge-pruned NNs. The first row shows the heat maps of t-statistic values (on the two tests) for
NNs with varying widths and depths. The second row shows the p-values for the same.
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Figure 36: T-statistic and P-values for the two statistical tests conducted to detect input separability
in unit and edge pruned NNs. The first row shows the heat maps of t-statistic values (on the two tests)
for NNs with varying widths and depths. The second row shows the p-values for the same.

H Pruning Algorithms

This appendix section is a companion to section 3 of the main paper. Here, we provide a detailed
explanation of the pruning algorithm and outline the experiments conducted to explore hyper-
parameters for training and pruning NNs.

H.1 Details

The pseudo code for the unit pruning algorithm can be found in Algorithm 1, while the pseudo code
for the edge pruning algorithm is provided in Algorithm 2. In each iteration, pruning is performed
(either units or edges), followed by training the NN for the same number of epochs and using the
same learning rate schedule.

The pruning procedure consists of two steps. First, a score is assigned to each unit/edge, and then a
fraction of the units/edges is pruned based on these scores. It is important to note that the pruning
fractions (pu, pe, and p) are always computed relative to the original number of hidden units or edges
in the NN.

Both unit pruning and edge pruning are implemented using binary masks. Each edge weight is
assigned a binary mask value, where a value of 1 indicates that the edge weight is not pruned, and a
value of 0 indicates that it is pruned. When a unit is pruned, all incoming and outgoing edge weights
associated with that unit are masked out by setting their binary mask values to 0.

Unit and edge pruning gradients: In our experiments, we conducted a grid search over the pu
and pe values for each NN architecture, function graph, and seed value. We explored a range of
14 different pu values, ranging from 5% to 70% in increments of 5%, and 5 different pe values:
0.5, 1.0, 1.5, 2.0, 2.5. It is important to note that the pu values used throughout the process are relative
to the original number of units in the NN, while the pe values are relative to the number of edges in
the original NN. After the grid search, we select the NN with the lowest density among all the sparse
NNs obtained. Typically, we find that higher unit pruning gradients (pu > 40) work best, as they
allow for the removal of a lower number of units in each iteration by halving the gradient value.
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Algorithm 1: Unit pruning algorithm
Data: θ ∈ Ra, (X t,Yt), (X v,Yv), pu, scoring metric, fs(θ, (X v,Yv)) (loss sensitivity)
Result: mask,M
θ ← train(θ, (X t,Yt)) ; /* Train the dense NN */
Av ← Acc(θ, (X v,Yv));
p← 0 ; /* Assign initial pruning percentage as 0 */
pmin ← 100/(

∑
Nl) ; /* minimum pruning percentage difference */

prune← True;
while prune == True do

p = p+ pu;
S ← fs(θ, (X v,Yv)) ; /* Pruning scores equal to the loss sensitivity */
T ← percentile(S, p);
Mp ← I(S > T ) ; /* Threshold the scores to obtain mask */
θp ← θ �Mp;
θp ← train(θp, (X t,Yt)) ; /* Train the NN */
A← acc(θp, (X v,Yv));
if A >= Av then

θ ← θp;
else

p← p− pu;
pu ← pu/2;
if pu < pmin then

prune← False;
end

end
end

Algorithm 2: Edge pruning algorithm
Data: θ ∈ Ra, (X t,Yt), (X v,Yv), pe
Result: mask,M
θ ← train(θ, (X t,Yt)) ; /* Train the dense NN */
Av ← Acc(θ, (X v,Yv));
p← 0 ; /* Assign initial pruning percentage as 0 */
pmin ← 100/a ; /* minimum pruning percentage difference */
prune← True;
while prune == True do

p = p+ pe;
S ← |θ| ; /* Pruning scores equal to the weight magnitude */
T ← Percentile(S, p);
Mp ← I(S > T ) ; /* Threshold the scores to obtain mask */
θp ← θ �Mp;
θp ← train(θp, (X t,Yt)) ; /* Train the NN */
A← Acc(θp, (X v,Yv));
if A >= Av then

θ ← θp
else

p← p− pe;
pe ← pe/2;
if pe < pmin then

prune← False;
end

end
end
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Figure 37: Function graphs used to validate the proposed pipeline

Table 2: Success rates for NNs with varying learning rate and batch size, used for training on function
graph with a. input separable sub-functions, and b. a reused sub-function.

Input separable sub-functions
lr 0.005 0.01 0.05 0.1

batch size
NNs with 1 Hidden Layer

1 1.0 7 1.0 7
2 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
8 1.0 1.0 1.0 1.0
16 7 1.0 1.0 1.0

NNs with 2 Hidden Layers
1 1.0 1.0 1.0 7
2 1.0 1.0 1.0 7
4 1.0 1.0 1.0 1.0
8 1.0 1.0 1.0 1.0
16 1.0 1.0 1.0 1.0

NNs with 3 Hidden Layers
1 1.0 1.0 7 7
2 1.0 1.0 7 7
4 1.0 1.0 1.0 7
8 1.0 1.0 1.0 7
16 1.0 1.0 1.0 1.0

Reused sub-function
lr 0.005 0.01 0.05 0.1

batch size Reused

NNs with 1 Hidden Layer
1 0.5 0.5 1.0 1.0
2 0.5 0.5 1.0 1.0
4 0.5 1.0 1.0 1.0
8 7 0.5 0.75 1.0
16 7 7 1.0 1.0

NNs with 2 Hidden Layers
1 0.25 0.25 0.5 7
2 0.5 0.0 0.75 1.0
4 0.0 0.25 1.0 1.0
8 0.25 0.0 0.5 1.0
16 7 0.25 0.75 0.5

NNs with 3 Hidden Layers
1 0.25 0.5 7 7
2 0.25 0.5 7 7
4 0.5 0.5 0.75 7
8 0.25 0.25 0.75 1.0
16 7 7 0.75 1.0

H.2 Learning rate and batch size experiments

In this section, we conduct experiments to investigate the impact of learning rates and batch sizes
on the structures obtained through pruning. Previous studies have examined the roles of these
hyper-parameters in terms of convergence, generalization, and the ability of NNs to find global
optima [51, 52]. However, most of these studies train NNs for a fixed number of epochs or iterations,
which may not be suitable for our experiment as we require the original dense NNs to learn the task
effectively.

To determine the appropriate number of epochs, we aim for the NNs with the four considered seed
values to achieve 100% validation accuracy. We set a maximum of 120 epochs to avoid excessively
long training or pruning times. Consequently, some combinations of learning rates and batch sizes
do not achieve 100% validation accuracy. These combinations typically fall into two categories: 1)
high learning rates and low batch sizes leading to unstable training, and 2) low learning rates and
high batch sizes resulting in an insufficient number of training iterations to achieve 100% validation
accuracy. Such cases are marked with an 7in the result tables.

We validate and tune hyperparameters for our pipeline using four function graphs shown in Figure 37.
These graphs include input separable sub-functions, reused sub-functions, a combination of input
separable and reused sub-functions, and a non-modular function graph. We then train and prune NNs
with a width of 24 and varying depths, reporting the success rates for detecting the same hierarchical
structure as the function graph.
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Table 3: Success rates for NNs with varying learning rate and batch size, used for training on function
graph with a. input separable and reused sub-functions, and b. a single sub-function (non-modular
graph).

lr 0.005 0.01 0.05 0.1
batch size

NNs with 1 Hidden Layer
1 0.75 1.0 1.0 7
2 0.75 0.75 1.0 1.0
4 0.75 0.5 1.0 1.0
8 0.5 0.75 1.0 1.0

16 0.75 1.0 1.0 1.0
32 0.75 1.0 1.0 1.0
64 7 0.75 1.0 1.0

NNs with 2 Hidden Layers
1 0.75 1.0 0.25 7
2 1.0 1.0 0.25 7
4 0.75 1.0 0.0 7
8 1.0 1.0 1.0 7

16 1.0 1.0 1.0 0.25
32 1.0 1.0 1.0 0.5
64 1.0 0.75 1.0 1.0

NNs with 3 Hidden Layers
1 1.0 1.0 7 7
2 0.75 1.0 7 7
4 1.0 0.75 0.5 7
8 0.75 1.0 0.75 0.25

16 0.5 0.75 0.5 0.5
32 0.5 0.75 1.0 0.5
64 0.5 0.75 1.0 0.5

lr 0.005 0.01 0.05 0.1
batch size Single

1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
8 7 1.0 1.0 1.0

16 7 7 1.0 1.0
NNs with 2 Hidden Layers

1 1.0 1.0 1.0 7
2 0.75 0.75 1.0 1.0
4 1.0 0.75 1.0 1.0
8 0.75 1.0 1.0 1.0

16 1.0 1.0 1.0 1.0
NNs with 3 Hidden Layers

1 0.25 1.0 1.0 7
2 0.5 0.75 0.5 7
4 0.75 1.0 1.0 7
8 1.0 1.0 1.0 1.0

16 1.0 0.75 0.75 1.0

Tables 2 and 3 present the success rates for the four different function graphs considered. We observe
that higher learning rates generally lead to more successful trials across all function graphs and NN
depths. This aligns with previous findings indicating that higher learning rates result in more globally
optimal solutions [53, 54]. On the other hand, lower learning rates tend to under-prune the NNs,
resulting in inefficient hierarchical structures in terms of NN density.

When using high learning rates and low batch sizes, we find that training becomes highly unstable,
often leading to NNs failing to achieve 100% validation accuracy for all seed values. Therefore,
when training and pruning the NNs for other function graphs, we explore the training regime of high
learning rates combined with high batch sizes.

I Unit clustering algorithm

I.1 Clustering algorithm hyper-parameter experiments

In this section, we discuss the hyperparameters used in the proposed unit clustering algorithm.
These hyperparameters include the distance measure for clustering units, the linkage method in
Agglomerative clustering, and the criteria for selecting the optimal number of clusters. The primary
criterion for the algorithm’s usefulness is its ability to uncover modules and a hierarchical structure
that resembles the hierarchical modularity of the function when using a fixed set of hyperparameters.

We consider the four function graphs mentioned in the main part of the paper, which include
graphs with input separable sub-functions, a reused sub-function, both input separable and reused sub-
functions, and a non-modular function graph. We train and prune a wide range of NN architectures for
each function graph and pass the resulting sparse NNs through all combinations of the aforementioned
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Algorithm 3: Unit clustering algorithm for a given layer l

Data: f li , i = 1, ..., Nl, tm (modularity metric threshold) ; /* Given the feature vectors
*/

Result: Optimal number of clusters, Kl

k ← 2 ; /* Enumerate through different cluster assignments */
while k < Nl do

Ck ← Agglo(fl, k) ; /* Agglomerative clustering dendogram cut giving k
clusters */
sk ←Metric(Ck) ; /* Compute the metric to asses clustering quality */
if sk ≤ s then

Kl ← k ; /* Find the number of clusters with lowest score */
s← sk;

end
k ← k + 1;

end
Zsin ← 0;
Zsep ← 0;
if Kl == 2 or Kl == Nl − 1 or s > tm then

Zsin ← test 2 ; /* Run test for single cluster detection */
Zsep ← test 1 ; /* Run test for separate clusters detection */

end
if Zsin > 0 or Zsep > 0 then

if Zsin ≥ Zsep then
Kl ← 1 ; /* If either one of the test result is positive */

else
Kl ← Nl;

end
end

hyperparameters. We then select the set of hyperparameters that successfully uncover the modular
structure for the maximum number of NNs and function graphs.

We employ the Agglomerative clustering method on the feature vectors, initially assigning each unit
to its own cluster. In each iteration, two clusters are merged into one, and this process continues until
all clusters are merged into a single cluster. The specific method used to select the two clusters to
merge in each iteration is known as the linkage method. We experiment with four types of linkage
methods: average, single, complete, and ward. Average linkage selects the two clusters to merge
based on the minimum average pairwise distance between unit features in the two clusters, while
single uses the minimum pairwise distance and complete uses the maximum pairwise distance. Ward
linkage selects the two clusters to merge based on the cluster variance of the newly formed cluster.

Agglomerative clustering produces multiple cluster assignments depending on the number of clusters.
Each iteration of the clustering method yields a cluster assignment with a different number of clusters,
ranging from k = 1 to N , where N is the number of units. To determine the optimal number of
clusters, we experiment with scoring metrics and select the k value with the best cluster quality at
each iteration. Specifically, we explore four different metrics: 1. Silhouette Index [55], 2. CH-index
[56], 3. DB-index [57], and 4. Modularity metric (modified).

From Table 4, we observe that all clustering linkage methods combined with either the modularity
metric or Silhouette index perform well. Therefore, we choose the combination of average linkage,
cosine distances, and the modularity metric. We discard Euclidean distance as the feature vectors are
binary, and we select cosine distance over Jaccard distance to ensure appropriate clustering even in
the presence of noise in the feature vectors. Additionally, we prefer average linkage over complete
and single linkage methods to enhance the clustering method’s robustness to noise.
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Table 4: Success rates for different clustering algorithm hyper-parameters on 4 function graphs and
NNs with varying widths and depths (Figure 37)

Clustering
Linkage

Distance
Measure

Modularity
metric

Silhouette in-
dex

CH-Index DB-Index

Feature vector step size s = L
Complete Jaccard 0.99 0.99 0.49 0.49
Single Jaccard 0.99 0.99 0.49 0.49
Average Jaccard 0.99 0.99 0.49 0.49
Complete Cosine 0.99 0.99 0.49 0.49
Single Cosine 0.99 0.99 0.49 0.49
Average Cosine 0.99 0.99 0.49 0.49
Complete Euclidean 0.99 0.99 0.49 0.49
Single Euclidean 0.99 0.99 0.49 0.49
Average Euclidean 0.99 0.99 0.49 0.49
Ward Euclidean 0.99 0.99 0.49 0.49

I.2 Edge cases

In the previous sub-section, we explored different metrics for determining the optimal number of
clusters in the Agglomerative clustering algorithm. However, three out of the four metrics are not
applicable when the number of clusters is equal to the number of units or when there is only one
cluster. Unfortunately, even the modified modularity metric fails to detect these cases accurately.

M =

k∑
i=1

Aii −

 k∑
j=1

Aij

2
 (3)

Let D̃ be the normalized distance matrix of the unit fea-
ture vectors, where the sum of all elements is equal to 1.
Consider the units partitioned into k clusters and a matrix
A ∈ Rk×k, where Aij =

∑
a∈Ci,b∈Cj

D̃ab represents the
sum of the distances between all pairs of units in clustersCi

and Cj . The modularity metric, denoted by M , measures
the quality of the partitioning and is defined as:

The first term in this equation measures the total intra-cluster distance between the unit features while
the second term is the expected intra-cluster distance under the null hypothesis that unit distances
were randomly assigned based on joint probabilities in D̃. A negative value of M indicates that
pair-wise distance within a cluster is lower than the random baseline.

Graph structures for edge cases: The units within a given layer must be in the same cluster if the
majority of their outgoing connections lead to the same units in the subsequent layers. That is, if the
feature vectors are dense or if they are sparse but have low pairwise distances. On the other hand,
the units must belong separate clusters if their outgoing connections predominantly target different
units in the later layers. That is, if the unit feature vectors are sparse and have high pairwise cosine
distances. Surprisingly, despite being at opposite ends of the clustering spectrum, these two cases
can exhibit highly similar graph structures. In fact, both structures may closely resemble randomly
shuffled graphs with the same number of edges as the original graph.

Behavior of the modularity metric: The modularity metric often fails to distinguish between the
previously discussed graph structures and struggles to detect them accurately. Specifically, when
there is only a single cluster (k = 1), the modularity metric always yields a value of 0, irrespective of
the pairwise cosine distances. Similarly, when k = N , the modularity metric values (M ) are always
less than or equal to 0, regardless of the pairwise cosine distances. Consequently, even a slightly
sparse random graph can result in negative modularity metric values for k = N (as well as other k
values).

For instance, consider the function graph, neural network, and modularity metric values depicted in
Figure 38. In the input layer, the connectivity or unit feature vectors exhibit slight sparsity. Despite
the clear expectation that all input units should belong to a single cluster, the modularity metric value
is the lowest for k = 4 = N .
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Figure 38: Row 1: a. Function graph with a reused sub-function, b. hierarchically modular structure
detected through a NN with 3 hidden layers and width of 24. ;Row 2: Modularity metric values for
various layers and varying number of clusters k

k 1 2 3 4
Layer

1 0.0 -0.16 -0.24 -0.26
2 0.0 -0.5 -0.375 7
3 0.0 -0.5 -0.375 7
4 0.0 0.5 7 7

Figure 39: Row 1: a. Function graph with 3 input separable and reused sub-functions, b. hierarchically
modular structure detected through a NN with 3 hidden layers and width of 24. ;Row 2: Modularity
metric values for various layers and varying number of clusters k

k 1 2 3 4 5 6
Layer

1 0.0 -0.22 -0.33 -0.28 -0.22 -0.17
2 0.0 -0.22 -0.33 7 7 7
3 0.0 -0.22 -0.33 7 7 7
4 0.0 -0.22 -0.33 7 7 7
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Figure 40: Row 1: a. Function graph with a single densely connected sub-function, b. hierarchically
modular structure detected through a NN with 3 hidden layers and width of 24. ;Row 2: Modularity
metric values for various layers and varying number of clusters k

k 1 2 3 4
Layer

1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 7
3 0.0 7 7 7
4 0.0 7 7 7

In Figure 39, we can observe that in layers 2, 3, and 4, the modularity metric value is lowest for
k = 3 = N , which aligns with the ground truth. However, due to our previous observation regarding
k = N consistently yielding the lowest modularity metric value, regardless of the ground truth
being k = 1, this becomes an unreliable outcome. The fact that k = N always generates negative
modularity metric values undermines its effectiveness in detecting the case where k = N .

Lastly, Figure 40 illustrates that if the neural network is densely connected, the modularity metric
values for all k are 0, further complicating the search for an exact solution. As a result of these
observations, we have developed an additional tool to identify the edge cases of k = 1 and k = N .

Unit separability test: The unit separability test is designed to evaluate whether two units in a cluster
can be separated into sub-clusters. Consider two units i and j, with oi =

∑
fi, oj =

∑
fj neighbors

respectively, and oij = fi � fj common neighbors. We consider a random baseline that preserves oi
and oj . The number of common neighbors is modeled as a binomial random variable with g trials and
probability of success p = oi×oj

g2 , where g is the total number of units in the later layer. The units are
separable if the observed value of oij is less than the expected value E(oij) under the random model.

We can observe in the previous examples that if those edge cases exist in the ground truth, usually
k = 2 or k = N has the lowest modularity metric among k = 2, ..., N .

Test 1: Consider the partition where N − 1 clusters are obtained. If the two units that are found in
the same cluster are separable, it implies that all units belong to separate clusters.

Test 2: Let us consider the partition of units into two clusters. We merge the feature vectors of the
two unit groups. If the two groups of units are not separable, it implies that all units must belong to
the same cluster.

In some cases, both tests yield positive results as the graph structures are similar (discussed above).
We determine the optimal number of clusters by selecting the result that is more statistically significant.
The detailed pseudo code for unit clustering is shown in algorithm 3.
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