
A Broader Impacts492

This study delves into the theoretical aspects of offline imitation learning with supplementary data,493

and we verify our findings through experiments on established benchmarks. While this paper does494

not present any immediate, direct social impacts, the potential practical applications of our research495

could bring about positive change. By expanding the reach of imitation learning algorithms, our work496

may facilitate the development of more efficient and effective solutions in fields such as robotics,497

autonomous vehicles, and healthcare. However, we must also acknowledge that the misuse of such498

technology could have negative consequences, such as the manipulation of information to influence499

people’s behavior. Therefore, it is crucial to remain vigilant in ensuring that the benefits of imitation500

learning are harnessed in a responsible and ethical manner.501

B Additional Related Work502

Our work builds upon previous research in IL with supplementary data, specifically the algorithms503

DemoDICE [22] and DWBC [47]. These studies highlight the importance of careful data selection504

when using a supplementary dataset. In this vein, our method ISW-BC re-weights samples based on505

importance sampling, which we show to be theoretically sound. Notably, a significant distinction506

arises between ISW-BC and these two methods in terms of the weighting rule design. While507

DemoDICE and DWBC employ regularized weighting rules, our method directly estimates the508

importance sampling ratio. This fundamental difference can be critical as regularized weighting rules509

may struggle to recover the expert policy exactly even with infinite samples. We provide further510

elaboration on this point below.511

First, DemoDICE also uses the weighted BC objective in Eq. (3). But, DemoDICE uses the weighting512

rule of w̃(s, a) ∝ d⋆(s, a)/dU(s, a) (refer to the formula between Equations (19)-(20) in [22]), where513

d⋆(s, a) is computed by the expert’s state-action distribution matching objective regularized by a514

divergence to the union data distribution (refer to [22, Equations (5)-(7)])2:515

d⋆ = argmin
d

DKL(d∥dE) + αDKL(d∥dU)

s.t. d(s, a) ≥ 0 ∀s, a.∑
a

d(s, a) = (1− γ)ρ(s) + γ
∑
s′,a′

P (s|s′, a′)d(s′, a′) ∀s.

where γ ∈ [0, 1) is the discount factor, α > 0 is a hyper-parameter. Due to the regularization term in516

the objective, it holds that d⋆(s, a) ̸= dπ
E

(s, a), resulting in a biased weighting rule w̃(s, a).517

Second, DWBC considers a different policy learning objective (refer to [47, Equation (17)]):518

min
π

α
∑

(s,a)∈DE

[− log π(a|s)]−
∑

(s,a)∈DE

[
− log π(a|s) · λ

c(1− c)

]

+
∑

(s,a)∈DS

[
− log π(a|s) · 1

1− c

]
,

(7)

where α > 0, λ > 0 are hyper-parameters, and c is the output of the discriminator that is jointly519

trained with π (refer to [47, Equation (8)]):520

min
c

λ
∑

(s,a)∈DE

[− log c(s, a, log π(a|s))] +
∑

(s,a)∈DS

[− log(1− c(s, a, log π(a|s)))]

− λ
∑

(s,a)∈DE

[− log(1− c(s, a, log π(a|s)))] .

Since its input additionally incorporates log π, the discriminator is not guaranteed to estimate the521

state-action distribution. Thus, the weighting in Eq. (7) loses a connection with the importance522

sampling ratio.523

2For a moment, we use the notations in [22] and present their results under the stationary and infinite-horizon
MDPs. Same as the discussion of DWBC [47].
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In addition to our work, [7] have also explored the use of supplementary data in the offline setting.524

However, their approach (called MILO) is based on adversarial imitation learning. Specifically,525

MILO learns a transition model from the supplementary dataset and performs adversarial imitation526

learning within the learned model. In contrast, our proposed method, ISW-BC, tackles the challenge527

of scarce expert data by identifying and utilizing expert-style samples that are hidden within the528

supplementary dataset. MILO has an imitation gap bound of O(H
√

|S|
NE

+H2|S|
√

|A|
NS/µ

) in theory.529

However, MILO makes different assumptions about the data collection procedure compared with530

ISW-BC. Consequently, the imitation gap bounds of MILO and ISW-BC are incomparable.531

The problem considered in this paper is related to IL with a single imperfect dataset [44, 6, 41,532

42, 36, 25]. In particular, the supplementary dataset in our set-up can also be viewed as imperfect533

demonstrations. However, our problem setting differs from IL with imperfect demonstrations in534

two key aspects. First, in IL with imperfect demonstrations, they either pose strong assumptions535

[41, 36, 25] or require auxiliary information (e.g., confidence scores on imperfect trajectories) on536

the imperfect dataset [44, 6]. In contrast, we assume access to a small number of expert trajectories537

to identify in-expert-distribution data. Second, most works [44, 6, 41, 42] in IL with imperfect538

demonstrations require online environment interactions while we focus on the offline setting.539

C Proof of Results in Section 4540

Recall the objective of BC in Eq. (1):541

πBC ∈ max
π

H∑
h=1

∑
(s,a)∈S×A

d̂Eh (s, a) log πh(a|s),

where d̂Eh (s, a) = nE
h (s, a)/Ntot is the empirical state-action distribution in the expert dataset, and542

nE
h (s, a) is the number of expert trajectories such that their state-action pairs are equal to (s, a) in543

time step h. With the tabular representations, we can obtain a closed-formed solution to the above544

optimization problem.545

πBC
h (a|s) =

{
nE
h(s,a)

nE
h(s)

if nE
h (s) > 0

1
|A| otherwise

(8)

where nE
h (s) ≜

∑
a′ nE

h (s, a
′). Analogously, we also have a closed-form solution for NBCU in the546

tabular setting:547

πNBCU
h (a|s) =

{
nU
h (s,a)

nU
h (s)

if nU
h (s) > 0

1
|A| otherwise

(9)

We will discuss the generalization performance of NBCU later.548

In the proof, we frequently use the notation ≲ and ≳. In particular, a(n) ≲ b(n) means that there549

exist C, n0 > 0 such that a(n) ≤ Cb(n) for all n ≥ n0. In our context, n usually refers to the550

number of trajectories. For any two distributions P and Q over a finite set X , we define the total551

variation distance as552

TV(P,Q) =
1

2

∑
x∈X
|P (x)−Q(x)| = ∥P −Q∥1 .

C.1 Proof of Theorem 1553

When |DE| ≥ 1, by [32, Theorem 4.2], we have the following imitation gap bound for BC:554

V (πE)− EDE

[
V (πBC)

]
≤ 4|S|H2

9|DE| .

When |DE| = 0, we simply have that555

V (πE)− EDE

[
V (πBC)

]
≤ H.

14



Therefore, we have the following unified bound.556

V (πE)− EDE

[
V (πBC)

]
≤ |S|H2

max{|DE|, 1} ≤
2|S|H2

|DE|+ 1
.

The last inequality follows that max{x, 1} ≥ (x + 1)/2 for any x ≥ 0. Finally, notice that |DE|557

follows a binomial distribution by Assumption 1, i.e., |DE| ∼ Bin(Ntot, η). By Lemma 3, we have558

that E[1/(|D|E + 1)] ≤ Ntotη, so559

V (πE)− E
[
V (πBC)

]
≤ E

[
2|S|H2

|DE|+ 1

]
≤ 2|S|H2

Ntotη
=

2|S|H2

NE
,

which completes the proof.560

C.2 Proof of Theorem 2561

For analysis, we first define the mixture state-action distribution as follows.562

dmix
h (s, a) ≜ ηdπ

E

h (s, a) + (1− η)dπ
β

h (s, a),

dmix
h (s) ≜

∑
a∈A

dmix
h (s, a), ∀(s, a) ∈ S ×A, ∀h ∈ [H].

By Assumption 1, in the population level, the marginal state-action distribution of union dataset DU563

in time step h is exactly dmix
h . That is, dUh (s, a) = dmix

h (s, a), ∀(s, a, h) ∈ S ×A× [H]. Then we564

define the mixture policy πmix induced by dmix as follows.565

πmix
h (a|s) =

{
dmix
h (s,a)

dmix
h (s)

if dmix
h (s) > 0,

1
|A| otherwise.

∀(s, a) ∈ S ×A ,∀h ∈ [H]. (10)

From the theory of Markov Decision Processes, we know that (see, e.g., [31])566

∀h ∈ [H],∀(s, a) ∈ S ×A, dπ
mix

h (s, a) = dmix
h (s, a).

Therefore, we can obtain that the marginal state-action distribution of union dataset DU in time step567

h is exactly dπ
mix

h . Then we have the following decomposition.568

E
[
V (πE)− V (πNBCU)

]
= E

[
V (πE)− V (πmix) + V (πmix)− V (πNBCU)

]
= E

[
V (πE)− V (πmix)

]
+ E

[
V (πmix)− V (πNBCU)

]
= V (πE)− V (πmix) + E

[
V (πmix)− V (πNBCU)

]
.

For V (πE)− V (πmix), we have that569

V (πE)− V (πmix) =
H∑

h=1

∑
(s,a)∈S×A

(
dπ

E

h (s, a)− dπ
mix

h (s, a)
)
rh(s, a)

=

H∑
h=1

∑
(s,a)∈S×A

(
dπ

E

h (s, a)− dmix
h (s, a)

)
rh(s, a)

= (1− η)

H∑
h=1

∑
(s,a)∈S×A

(
dπ

E

h (s, a)− dπ
β

h (s, a)
)
rh(s, a)

= (1− η)
(
V (πE)− V (πβ)

)
. (11)

The last equation follows the dual formulation of policy value (see, e.g., [31]), i.e., V (π) =570 ∑H
h=1

∑
(s,a) d

π
h(s, a)rh(s, a) for any policy π. Besides, notice that E

[
V (πmix)− V (πNBCU)

]
571

is exactly the imitation gap of BC when regarding πmix and DU as the expert policy and expert572

dataset, respectively. Note that πmix may be a stochastic policy. By [32, Theorem 4.4], we have the573

following imtiation gap bound574

E
[
V (πmix)− V (πNBCU)

]
≲
|S|H2 log(Ntot)

Ntot
. (12)
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Combining Eq. (11) and Eq. (12) yields that575

E
[
V (πE)− V (πNBCU)

]
≲ (1− η)

(
V (πE)− V (πβ)

)
+
|S|H2 log(Ntot)

Ntot
.

C.3 Proof of Proposition 1576

The hard instance in Proposition 1 builds on the Standard Imitation MDP proposed in [46]; see577

Figure 4 for illustration. For this MDP, each state is an absorbing state, i.e., Ph(s|s, a) = 1 for any578

s and a. This property is mainly used to facilitate probability calculation and does not change the579

nature of our analysis. Furthermore, by only taking the action a1 (shown in green), the agent can580

obtain a reward of +1. Otherwise, the agent obtains a reward of 0 for the other action a ̸= a1. The581

initial state distribution is a uniform distribution, i.e., ρ(s) = 1/|S| for any s ∈ S.582

2 Bandit

1 · · · |S|�1 |S|

01 01 01

2

QRQ�H[SHUW�DFWLRQ%OXH�DUURZ�

*UHHQ�DUURZ�����H[SHUW�DFWLRQ

Figure 4: The Standard Imitation MDP in [46] corresponding to prove Proposition 1.

We consider that the expert policy πE always takes the action a1 (shown in green) while the behavioral583

policy πβ always takes another action a2 (shown in blue). Formally, πE
h (a

1|s) = 1 and πβ
h(a

2|s) = 1584

for any s ∈ S and h ∈ [H]. It is direct to calculate that V (πE) = H and V (πβ) = 0. The585

supplementary dataset DS and the expert dataset DE are collected according to Assumption 1. The586

mixture state-action distribution (introduced in Appendix C.2) can be calculated as for any s ∈ S and587

h ∈ [H]:588

dmix
h (s, a1) = ηdπ

E

h (s, a1) + (1− η)dπ
β

h (s, a1) = ηdπ
E

h (s, a1) = ηρ(s),

dmix
h (s, a2) = ηdπ

E

h (s, a2) + (1− η)dπ
β

h (s, a2) = (1− η)dπ
β

h (s, a2) = (1− η)ρ(s).

Note that in the population level, the marginal distribution of the union dataset DU in time step h is589

exactly dmix
h . The mixture policy induced by dmix (introduced in Appendix C.2) can be formulated as590

πmix
h (a1|s) = η, πmix

h (a2|s) = 1− η,∀s ∈ S, h ∈ [H].

Just like before, we have dπ
mix

h (s, a) = dmix
h (s, a). The policy value of πmix can be calculated as591

V (πmix) =
H∑

h=1

∑
(s,a)∈S×A

dmix
h (s, a)rh(s, a) =

H∑
h=1

∑
s∈S

dmix
h (s, a1) = ηH.

Recall from Eq. (9) that πNBCU can be formulated as592

∀h ∈ [H], πNBCU
h (a|s) =

{
nU
h (s,a)∑

a′ nU
h (s,a′) if

∑
a′ nU

h (s, a
′) > 0

1
|A| otherwise

(13)

We can view that the BC’s policy learned on the union dataset mimics the mixture policy πmix. In the593

following part, we analyze the lower bound on the imitation gap of πNBCU.594

E
[
V (πE)− V (πNBCU)

]
= V (πE)− V (πmix) + E

[
V (πmix)− V (πNBCU)

]
= H − ηH + E

[
V (πmix)− V (πNBCU)

]
= (1− η)(V (πE)− V (πβ)) + E

[
V (πmix)− V (πNBCU)

]
.

Then we consider the term E
[
V (πmix)− V (πNBCU)

]
.595

V (πmix)− V (πNBCU)

=

H∑
h=1

∑
(s,a)∈S×A

(
dπ

mix

h (s, a)− dπ
NBCU

h (s, a)
)
rh(s, a)
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=

H∑
h=1

∑
(s,a)∈S×A

ρ(s)
(
πmix
h (a|s)− πNBCU

h (a|s)
)
rh(s, a)

=

H∑
h=1

∑
(s,a)∈S×A

ρ(s)
(
πmix
h (a|s)− πNBCU

h (a|s)
)
rh(s, a)I{nU

h (s) > 0}

+

H∑
h=1

∑
(s,a)∈S×A

ρ(s)
(
πmix
h (a|s)− πNBCU

h (a|s)
)
rh(s, a)I{nU

h (s) = 0}.

We take expectation over the randomness in DU on both sides and obtain that596

E
[
V (πmix)− V (πNBCU)

]
(14)

= E

 H∑
h=1

∑
(s,a)∈S×A

ρ(s)
(
πmix
h (a|s)− πNBCU

h (a|s)
)
rh(s, a)I{nU

h (s) > 0}


+ E

 H∑
h=1

∑
(s,a)∈S×A

ρ(s)
(
πmix
h (a|s)− πNBCU

h (a|s)
)
rh(s, a)I{nU

h (s) = 0}

 . (15)

For the first term in RHS, we have that597

E

 H∑
h=1

∑
(s,a)∈S×A

ρ(s)
(
πmix
h (a|s)− πNBCU

h (a|s)
)
rh(s, a)I{nU

h (s) > 0}


=

H∑
h=1

∑
(s,a)∈S×A

ρ(s)rh(s, a)E
[(
πmix
h (a|s)− πNBCU

h (a|s)
)
I{nU

h (s) > 0}
]

=

H∑
h=1

∑
(s,a)∈S×A

ρ(s)rh(s, a)P
(
nU
h (s) > 0

)
E
[
πmix
h (a|s)− πNBCU

h (a|s) | nU
h (s) > 0

]
= 0.

The last equation follows the fact that πNBCU
h (a|s) is an unbiased estimation of πmix

h (a|s), so598

E[πmix
h (a|s)− πNBCU

h (a|s) | nU
h (s) > 0]. For the second term in Eq. (15), we have that599

E

 H∑
h=1

∑
(s,a)∈S×A

ρ(s)
(
πmix
h (a|s)− πNBCU

h (a|s)
)
rh(s, a)I{nU

h (s) = 0}


=

H∑
h=1

∑
(s,a)∈S×A

ρ(s)rh(s, a)E
[(
πmix
h (a|s)− πNBCU

h (a|s)
)
I{nU

h (s) = 0}
]

=

H∑
h=1

∑
(s,a)∈S×A

ρ(s)rh(s, a)P
(
nU
h (s) = 0

)
E
[
πmix
h (a|s)− πNBCU

h (a|s) | nU
h (s) = 0

]
=

H∑
h=1

∑
(s,a)∈S×A

ρ(s)rh(s, a)P
(
nU
h (s) = 0

)(
πmix
h (a|s)− 1

|A|

)
(a)
=

H∑
h=1

∑
s∈S

ρ(s)P
(
nU
h (s) = 0

)(
η − 1

|A|

)
(b)
= H

(
η − 1

|A|

)∑
s∈S

ρ(s)P
(
nU
1 (s) = 0

)
.

In the equation (a), we use the fact that rh(s, a1) = 1 but rh(s, a) = 0 for any a ̸= a1. In the600

equation (b), since each state is an absorbing state, we have that P(nU
h (s) = 0) = P(nU

1 (s) = 0) for601

any h ∈ [H]. We consider two cases to address RHS of equation (b). In the first case of η ≥ 1/|A|,602

17



we directly have that603

E

 H∑
h=1

∑
(s,a)∈S×A

ρ(s)
(
πmix
h (a|s)− πNBCU

h (a|s)
)
rh(s, a)I{nU

h (s) = 0}

 ≥ 0.

By Eq. (15), we have that604

E
[
V (πmix)− V (πNBCU)

]
≥ 0,

which implies that605

E
[
V (πE)− V (πNBCU)

]
≥ (1− η)(V (πE)− V (πβ)).

In the second case of η < 1/|A|, we have that606

H

(
η − 1

|A|

)∑
s∈S

ρ(s)P
(
nU
1 (s) = 0

) (a)

≥ −
(

1

|A| − η

)
H exp

(
−Ntot

|S|

)
≥ −(1− η)H exp

(
−Ntot

|S|

)
(b)

≥ − (1− η)H

2
.

In the inequality (a), we use that607 ∑
s∈S

ρ(s)P
(
nU
1 (s) = 0

)
=
∑
s∈S

ρ(s)(1− ρ(s))Ntot =

(
1− 1

|S|

)Ntot

≤ exp

(
−Ntot

|S|

)
.

The inequality (b) holds since we consider the range where Ntot ≥ |S| log(2). By Eq. (15), we have608

that609

E
[
V (πmix)− V (πNBCU)

]
≥ − (1− η)H

2
.

This implies that610

E
[
V (πE)− V (πNBCU)

]
≥ (1− η)(V (πE)− V (πβ))− (1− η)H

2

=
(1− η)

2
(V (πE)− V (πβ)).

In both cases, we prove that E
[
V (πE)− V (πNBCU)

]
≳ (1−η)(V (πE)−V (πβ)) and thus complete611

the proof.612

D Proof of Results in Section 5613

D.1 Proof of Proposition 2614

In the tabular case, with the first-order optimality condition, we have c⋆h(s, a) = d̂Eh (s, a)/(d̂
E
h (s, a)+615

d̂Uh (s, a)). By Eq. (5), we have616

d̂Uh (s, a)wh(s, a) = d̂Uh (s, a)×
d̂Eh (s, a)

d̂Uh (s, a)
= d̂Eh (s, a).

Hence, the learning objective (3) reduces to (1).617

D.2 Proof of Lemma 1618

Recall that619

∆h(θ) = min
(s,a)∈DE

h∪DS,1
h

⟨θ, ϕh(s, a)⟩ − max
(s′,a′)∈DS,2

h

⟨θ, ϕh(s
′, a′)⟩.

Then we have that620

∆h(θ̄h)−∆h(θ) = min
(s,a)∈DE

h∪DS,1
h

⟨θ̄h, ϕh(s, a)⟩ − max
(s′,a′)∈DS,2

h

⟨θ̄h, ϕh(s
′, a′)⟩
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− min
(s,a)∈DE

h∪DS,1
h

⟨θ, ϕh(s, a)⟩+ max
(s′,a′)∈DS,2

h

⟨θ, ϕh(s
′, a′)⟩

(a)

≤ ⟨θ̄h, ϕh(s
1, a1)⟩ − ⟨θ̄h, ϕh(s

2, a2)⟩ − ⟨θ, ϕh(s
1, a1)⟩+ ⟨θ, ϕh(s

2, a2)⟩
= ⟨θ̄h − θ, ϕh(s

1, a1)− ϕh(s
2, a2)⟩

(b)

≤
∥∥θ̄h − θ

∥∥ ∥∥ϕh(s
1, a1)− ϕh(s

2, a2)
∥∥ .

In inequality (a), we utilize the facts that (s1, a1) ∈ argmin(s,a)∈DE
h∪DS,1

h
⟨θh, ϕh(s, a)⟩ and621

(s2, a2) ∈ argmax(s,a)∈DS,2
h
⟨θh, ϕh(s, a)⟩. Inequality (b) follows the Cauchy–Schwarz inequality.622

Let Lh =
∥∥ϕh(s

1, a1)− ϕh(s
2, a2)

∥∥ and we finish the proof.623

D.3 Proof of Lemma 2624

First, by Taylor’s Theorem, there exists θ′h ∈ {θ ∈ Rd : θt = θ⋆h + t(θh− θ⋆h), ∀t ∈ [0, 1]} such that625

Lh(θh) = Lh(θ
⋆
h) + ⟨∇Lh(θ

⋆
h), θh − θ⋆h⟩+

1

2

(
θh − θ⋆h

)⊤∇2Lh(θ
′
h)
(
θh − θ⋆h

)
= Lh(θ

⋆
h) +

1

2

(
θh − θ⋆h

)⊤∇2Lh(θ
′
h)
(
θh − θ⋆h

)
. (16)

The last equality follows the optimality condition that ∇Lh(θ
⋆
h) = 0. Then, our strategy is to prove626

that the smallest eigenvalue of the Hessian matrix∇2Lh(θ
′
h) is positive, i.e., λmin(∇2Lh(θ

′
h)) > 0.627

We first calculate the Hessian matrix ∇2Lh(θ
′
h). Given DE and DU, we define the function G :628

R(|DE|+|DU|) → R as629

G(v) ≜
1

|DE|

|DE|∑
i=1

g(vi) +
1

|DU|

|DU|∑
j=1

g(vj),

where vi is the i-th element in the vector v ∈ R(|DE|+|DU|) and g(x) = log (1 + exp(x)) is a630

real-valued function. Besides, we use Bh ∈ R(|DE|+|DU|)×d to denote the matrix whose i-th row631

Bh,i = −yiϕh(s
i, ai)⊤, and yi = 1 if (si, ai) ∈ DE

h , yi = −1 if (si, ai) /∈ DE
h . Then the objective632

function can be reformulated as633

Lh(θh)

=
∑
(s,a)

d̂Eh (s, a) [log (1 + exp (−⟨ϕh(s, a), θh⟩))] +
∑
(s,a)

d̂Uh (s, a) [log (1 + exp (⟨ϕh(s, a), θh⟩))]

=
1

|DE|
∑

(s,a)∈DE

log (1 + exp (−⟨ϕh(s, a), θh⟩)) +
1

|DU|
∑

(s,a)∈DU

log (1 + exp (⟨ϕh(s, a), θh⟩))

= G(Bhθh).

Then we have that ∇2Lh(θh) = B⊤
h ∇2G(Bhθh)Bh, where634

∇2G(Bhθh)

= diag

(
g′′((Bhθh)1)

|DE| , . . . ,
g′′((Bhθh)|DE|)

|DE| ,
g′′((Bhθh)|DE|+1)

|DE|+ |DU| , . . . ,
g′′((Bhθh)|DE|+|DU|)

|DE|+ |DU|

)
.

Here g′′(x) = σ(x)(1 − σ(x)), where σ(x) = 1/(1 + exp(−x)) is the sigmoid function. The635

eigenvalues of ∇2G(Bhθh) are636 {
g′′((Bhθh)1)

|DE| , . . . ,
g′′((Bhθh)|DE|)

|DE| ,
g′′((Bhθh)|DE|+1)

|DE|+ |DU| , . . . ,
g′′((Bhθh)|DE|+|DU|)

|DE|+ |DU|

}
.

Notice that θ′h ∈ {θ ∈ Rd : θt = θ⋆h + t(θh − θ⋆h), ∀t ∈ [0, 1]}. For a matrix A, we use λmin(A) to637

denote the minimal eigenvalue of A. Here we claim that the minimum of the minimal eigenvalues of638

∇2G(Bhθ
t) over t ∈ [0, 1] is achieved at t = 0 or t = 1. That is,639

min{λmin(∇2G(Bhθ
t)) : ∀t ∈ [0, 1]} = min{λmin(∇2G(Bhθ

0)), λmin(∇2G(Bhθ
1))}.
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We prove this claim as follows. For any t ∈ [0, 1], we use {λ1(t), . . . , λ|DE|+|DU|(t)} to denote640

the eigenvalues of ∇2G(Bhθ
t). For each i ∈ [|DE| + |DU|], we consider λi(t) : [0, 1] → R as a641

function of t. Specifically,642

λi(t) =


g′′((Bhθ

⋆
h)i+t(Bh(θh−θ⋆

h))i)
|DE| , if i ∈ [|DE|]

g′′((Bhθ
⋆
h)i+t(Bh(θh−θ⋆

h))i)
|DE|+|DU| , otherwise.

We observe that g′′′(x) = σ(x)(1− σ(x))(1− 2σ(x)) which satisfies that ∀x ≤ 0, g′′′(x) ≥ 0, and643

∀x ≥ 0, g′′′(x) ≤ 0. Therefore, we have that the minimum of λi(t) over t ∈ [0, 1] must be achieved644

at t = 0 or t = 1. That is,645

min
t∈[0,1]

λi(t) = min{λi(0), λi(1)}. (17)

For any t ∈ [0, 1], we define it ∈ [|DE|+|DU|] as the index of the minimal eigenvalue of∇2G(Bhθ
t),646

i.e., λit(t) = λmin(∇2G(Bhθ
t)). Then we have that647

min{λmin(∇2G(Bhθ
t)) : ∀t ∈ [0, 1]} = min{λit(t) : ∀t ∈ [0, 1]}

(a)
= min{min{λit(0), λit(1)} : ∀t ∈ [0, 1]}
= min{λi0(0), λi1(1)}
(b)
= min{λmin(∇2G(Bhθ

0)), λmin(∇2G(Bhθ
1))}

Equality (a) follows (17) and equality (b) follows that λi0(0) and λi1(1) are the minimal eigenvalues648

of∇2G(Bhθ
0) and∇2G(Bhθ

1), respectively.649

In summary, we derive that650

min{λmin(∇2G(Bhθ
t)) : ∀t ∈ [0, 1]} = min{λmin(∇2G(Bhθ

0)), λmin(∇2G(Bhθ
1))}, (18)

which proves the previous claim.651

Further, we consider λmin

(
∇2Lh(θh)

)
.652

λmin

(
∇2Lh(θh)

)
= inf

x∈Rd:∥x∥=1
x⊤∇2Lh(θh)x

= inf
x∈Rd:∥x∥=1

(Bhx)
⊤∇2G(Bhθh) (Bhx)

= inf
z∈Im(Bh)

z⊤∇2G(Bhθh)z

=

(
inf

z∈Im(Bh)
∥z∥
)2

λmin(∇2G(Bhθh))

≥
(

inf
z∈Im(Bh)

∥z∥
)2

min{λmin(∇2G(Bhθ
0)), λmin(∇2G(Bhθ

1))}.

Here Im(Bh) = {z ∈ Rd : z = Bhx, ∥x∥ = 1}. The last inequality follows Eq. (18).653

Recall we assume that rank(Ah) = d, so we have that rank(Bh) = d. Thus, Im(Bh) is a set of654

vectors with positive norms, i.e., infz∈Im(Bh) ∥z∥ > 0. Besides, since g′′(x) = σ(x)(1− σ(x)) > 0,655

we also have that656

min{λmin(∇2G(Bhθ
0)), λmin(∇2G(Bhθ

1))} > 0.

In summary, we obtain that657

λmin

(
∇2Lh(θh)

)
≥
(

inf
z∈Im(Bh)

∥z∥
)2

min{λmin(∇2G(Bhθ
0)), λmin(∇2G(Bhθ

1))} > 0.

Then, with Eq. (16), there exists658

τh =

(
inf

z∈Im(Bh)
∥z∥
)2

min{λmin(∇2G(Bhθ
0)), λmin(∇2G(Bhθ

1))} > 0

such that659

Lh(θh) ≥ Lh(θ
⋆
h) +

τh
2

∥∥θh − θ⋆h
∥∥2 ,
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which completes the proof.660

D.4 Proof of Theorem 3661

First, invoking Lemma 1 with θ = θ⋆h yields that662

∆h(θ
⋆
h) ≥ ∆h(θ̄h)− Lh

∥∥θ̄h − θ⋆h
∥∥ .

Here Lh = ∥ϕh(s, a)− ϕh(s
′, a′)∥ with (s, a) ∈ argmin(s,a)∈DE

h∪DS,1
h
⟨θ⋆h, ϕh(s, a)⟩ and663

(s′, a′) ∈ argmax(s,a)∈DS,2
h
⟨θ⋆h, ϕh(s, a)⟩. Then, by Lemma 2, there exists τh > 0 such that664

Lh(θh) ≥ Lh(θ
⋆
h) +

τh
2

∥∥θh − θ⋆h
∥∥2 .

This directly implies an upper bound of the distance between θh and θ⋆h.665

∥∥θh − θ⋆h
∥∥ ≤

√
2
(
Lh(θ̄h)− Lh(θ⋆h)

)
τh

.

If the feature is designed such that

√
2(Lh(θ̄h)−Lh(θ⋆

h))
τh

< ∆h(θ̄h)
Lh

holds, we further have that666 ∥∥θh − θ⋆h
∥∥ < ∆h(θ̄h)/Lh. Then we get that667

∆h(θ
⋆
h) ≥ ∆h(θ̄h)− Lh

∥∥θ̄h − θ⋆h
∥∥ > 0,

which completes the proof of the first statement.668

Then we proceed to prove the imitation gap bound. We first identify the property of πISW-BC. Recall669

the objective of WBCU.670

πISW-BC ∈ argmax
π

H∑
h=1

∑
(s,a)∈S×A

{
d̂Uh (s, a)× [wh(s, a) log πh(a|s)]× I [wh(s, a) ≥ δ]

}
.

For any state s with
∑

a∈A d̂Uh (s, a)wh(s, a)I [wh(s, a) ≥ δ] > 0, with the first-order optimality671

condition, we have672

πISW-BC
h (a|s) = d̂Uh (s, a)wh(s, a)I [wh(s, a) ≥ δ]∑

a∈A d̂Uh (s, a)wh(s, a)I [wh(s, a) ≥ δ]
.

For an expert state s with dπ
E

h (s) > 0, if (s, πE
h (s)) ∈ DE

h ∪ DS,1
h , we have that673

⟨θ⋆h, ϕh(s, π
E
h (s))⟩ > ⟨θ⋆h, ϕh(s, a)⟩, ∀(s, a) ∈ DS,2

h .

This is due to the first statement that ∆h(θ
⋆
h) > 0 in this theorem. Recall that674

ch(s, a; θ
⋆
h) =

1

1 + exp(−⟨ϕh(s, a), θ⋆h⟩)
and wh(s, a) =

ch(s, a; θ
⋆
h)

1− ch(s, a; θ⋆h)
.

We can further obtain that wh(s, π
E
h (s)) > wh(s, a) for any (s, a) ∈ DS,2

h . This implies that675

we can find a δ such that I
[
wh(s, π

E
h (s)) ≥ δ

]
= 1 for any (s, πE

h (s)) ∈ DE
h ∪ DS,1

h and676

I [wh(s, a) ≥ δ] = 0 for any (s, a) ∈ DS,2
h . Based on the above analytical form of πISW-BC,677

we have that πISW-BC(πE
h (s)|s) = 1 for any (s, πE

h (s)) ∈ DE
h ∪ DS,1

h . In summary, for any state s678

with (s, πE
h (s)) ∈ DE

h ∪ DS,1
h , we have that πISW-BC

h (πE
h (s)|s) = 1.679

With the above property of πISW-BC, we proceed to analyze the policy value gap. According to [32,680

Lemma 4.3], we have681

V (πE)− V (πISW-BC) ≤ H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πE
h (·|s), πISW-BC

h (·|s)
)]

.

Since πE is assumed to be deterministic, we have682

V (πE)− V (πISW-BC) ≤ H

H∑
h=1

E
s∼dπE

h (·)

[
Ea∼πISW-BC

h (·|s)
[
I
{
a ̸= πE

h (s)
}]]
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(a)

≤ H

H∑
h=1

E
s∼dπE

h (·)

[
I
{
(s, πE

h (s)) /∈ DE
h ∪ DS,1

h

}]
(b)
= H

H∑
h=1

E
s∼dπE

h (·)

[
I
{
(s, πE

h (s)) /∈ DU
h

} ]
.

Inequality (a) follows the property of πISW-BC derived above. In particular, for any state s with683

(s, πE
h (s)) ∈ DE

h ∪ DS,1
h , we have that πISW-BC

h (πE
h (s)|s) = 1. Equation (b) holds due to the684

Assumption 2. In particular, for an expert state s that dπ
E

h (s) > 0, the events of (s, πE
h (s)) /∈685

DE
h ∪ DS,1

h and (s, πE
h (s)) /∈ DU

h are equivalent.686

Moreover, we take the expectation over DU on both sides and obtain that687

E
[
V (πE)− V (πISW-BC)

]
≤ H

H∑
h=1

E
s∼dπE

h (·)

[
P
(
(s, πE

h (s)) /∈ DU
h

) ]

= H

H∑
h=1

∑
s∈S

dπ
E

h (s)P
(
(s, πE

h (s)) /∈ DU
h

)
.

According to Assumption 1, we have that688

dUh (s, π
E
h (s)) = ηdπ

E

h (s, πE
h (s)) + (1− η)dπ

β

h (s, πE
h (s))

(a)

≥ ηdπ
E

h (s, πE
h (s)) +

(1− η)

µ
dπ

E

h (s, πE
h (s))

=

(
η +

(1− η)

µ

)
dπ

E

h (s, πE
h (s)).

Inequality (a) follows the definition of µ in Theorem 3: for any (s, h) ∈ S × [H], we have689

dπ
E

h (s, πE
h (s))/d

πβ

h (s, πE
h (s)) ≤ µ. Then we obtain that690

E
[
V (πE)− V (πISW-BC)

]
≤ H

H∑
h=1

∑
s∈S

dπ
E

h (s)(1− dUh (s, π
E
h (s)))

Ntot

≤
(

1

η + (1− η)/µ

)
H

H∑
h=1

∑
s∈S

dUh (s, π
E
h (s))P

(
(s, πE

h (s)) /∈ DU
h

)
.

For each (s, h) ∈ S × [H], we observe that691

dUh (s, π
E
h (s))P

(
(s, πE

h (s)) /∈ DU
h

)
= dUh (s, π

E
h (s))

(
1− dUh (s, π

E
h (s))

)Ntot ≤ 4

9Ntot
.

Here the last inequality follows Lemma 5. Consequently, we can derive that692

H∑
h=1

∑
s∈S

dUh (s, π
E
h (s))P

(
(s, πE

h (s)) /∈ DU
h

)
≤ 4H|S|

9Ntot
,

which further implies that693

E
[
V (πE)− V (πISW-BC)

]
≤
(

1

η + (1− η)/µ

)
4H2|S|
9Ntot

=
4H2|S|

9 (NE +NS/µ)
.

We complete the proof.694

D.5 An Example Corresponding to Theorem 3695

In this section, we provide an example that illustrates the required feature design in Theorem 3 can696

hold.697

Example 1. To illustrate Theorem 3, we consider an example in the feature space R2. In particular,698

for time step h ∈ [H], we have the expert dataset and supplementary dataset as follows.699

DE
h =

{(
s(1), a(1)

)
,
(
s(4), a(4)

)}
, DS

h =
{(

s(2), a(2)
)
,
(
s(3), a(3)

)}
,
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DS,1
h =

{(
s(2), a(2)

)}
, DS,2

h =
{(

s(3), a(3)
)}

.

The corresponding features are700

ϕh

(
s(1), a(1)

)
= (0, 1)⊤, ϕh

(
s(2), a(2)

)
=

(
−1

2
, 0

)⊤

,

ϕh

(
s(3), a(3)

)
=

(
0,−1

2

)⊤

, ϕh

(
s(4), a(4)

)
= (−1, 0)⊤.

Notice that the set of expert-style samples is DE
h ∪DS,1

h = {(s(1), a(1)), (s(2), a(2)), (s(4), a(4))} and701

the set of non-expert-style samples is DS,2
h = {(s(3), a(3))}. It is direct to calculate that the ground-702

truth parameter that achieves the maximum margin among unit vectors is θh = (−
√
2/2,
√
2/2)⊤703

and the maximum margin is ∆h(θh) =
√
2/2. According to Eq. (6), for θh = (θh,1, θh,2)

⊤, the704

optimization objective is705

Lh(θh)

=
∑
(s,a)

d̂Eh (s, a) [log (1 + exp (−⟨ϕh(s, a), θh⟩))] +
∑
(s,a)

d̂Uh (s, a) [log (1 + exp (⟨ϕh(s, a), θh⟩))]

=
1

2
(log (1 + exp (−θh,2)) + log (1 + exp (θh,1)))

+
1

4

(
log (1 + exp (θh,2)) + log

(
1 + exp

(
−1

2
θh,1

)))
+

1

4

(
log

(
1 + exp

(
−1

2
θh,2

))
+ log (1 + exp (−θh,1))

)
.

We apply CVXPY [10] to calculate the optimal solution θ⋆h ≈ (−0.310, 0.993)⊤ and the objective706

values Lh(θ
⋆
h) ≈ 1.287, Lh(θh) ≈ 1.309. Furthermore, we calculate the Lipschitz coefficient Lh707

appears in Lemma 1.708

(s(2), a(2)) = argmin
(s,a)∈DE

h∪DS,1
h

⟨θ⋆h, ϕh(s, a)⟩, (s(3), a(3)) ∈ argmax
(s,a)∈DS,2

h

⟨θ⋆h, ϕh(s, a)⟩,

Lh =
∥∥∥ϕh(s

(2), a(2))− ϕh(s
(3), a(3))

∥∥∥ =

√
2

2
.

Then we calculate the parameter of strong convexity τh appears in Lemma 2. Based on the proof of709

Lemma 2, our strategy is to calculate the minimal eigenvalue of the Hessian matrix.710

First, for θh = (θh,1, θh,2)
⊤, the gradient of Lh(θh) is711

∇Lh(θh)

= −
∑

(s,a)∈S×A

d̂Eh (s, a)σ(−⟨ϕh(s, a), θh⟩) +
∑

(s,a)∈S×A

d̂Uh (s, a)σ (⟨ϕh(s, a), θh⟩)

=

(
1

2
σ(θh,1)−

1

4
σ(−θh,1)−

1

8
σ(−1

2
θh,1),

1

4
σ (θh,2)−

1

2
σ (−θh,2)−

1

8
σ(−1

2
θh,2)

)⊤

.

Here σ(x) = 1/(1 + exp(−x)) for x ∈ R is the sigmoid function. Then the Hessian matrix at θh is712

∇2Lh(θh) =

(
3
4f(θh,1) +

1
16f

(
1
2θh,1

)
0

0 3
4f(θh,2) +

1
16f

(
1
2θh,2

)) ,

where f(x) = σ(x)(1−σ(x)) and f(x) = f(−x). For any t ∈ [0, 1], the eigenvalues of the Hessian713

matrix at θth = θh + t(θ⋆h − θh) are714

3

4
f(θth,1) +

1

16
f

(
1

2
θth,1

)
,
3

4
f(θth,2) +

1

16
f

(
1

2
θth,2

)
.

Now, we calculate the minimal eigenvalues of∇2Lh(θ
t
h). We consider the function715

g(x) =
3

4
f(x) +

1

16
f

(
1

2
x

)
, ∀x ∈ [a, b].
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The gradient is716

g′(x) =
3

4
σ(x)(1− σ(x))(1− 2σ(x)) +

1

32
σ

(
1

2
x

)(
1− σ

(
1

2
x

))(
1− 2σ

(
1

2
x

))
.

We observe that ∀x ≤ 0, g′(x) ≥ 0, and ∀x ≥ 0, g′(x) ≤ 0. Thus, we have that the minimum of717

g(x) must be achieved at x = a or x = b. Besides, we have that g(x) = g(−x). With the above718

arguments, we know that the minimal eigenvalue is g(0.993) ≈ 0.163 and τh ≈ 0.163. Then we can719

calculate that720 √
2
(
Lh(θ̄h)− Lh(θ⋆h)

)
τh

≈ 0.520,
∆h(θ̄h)

Lh
= 1.

The inequality in Theorem 3 holds.721

E Discussion722

In the main text, we focus on the tabular representations for policies. Furthermore, we consider a723

trajectory sampling procedure for behavior policy in collecting the supplementary dataset. We present724

two possible extensions in this section.725

E.1 Function Approximation of Policies726

Assume that the learner is access to a finite function class Π = {π = (π1, π2, . . . , πh)}, where727

πh : S → ∆(A) could be any function (e.g., neural networks). For simplicity of analysis, we assume728

that Π is a finite class. Notice that the algorithms considered in this paper are BC and its variants,729

which all take the principle of maximum likelihood estimation (MLE). The theoretical analysis of730

these algorithms is based on the following inequality:731

V (πE)− V (π) ≤ H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πE
h (·|s), πh(·|s)

)]
.

Therefore, the key is to upper bound the TV distance. Take BC as an example (i.e., π = πBC).732

By using the concentration inequality in [1, Theorem 21], we obtain that for any δ ∈ (0, 1), when733

|DE| ≥ 1, with probability at least 1− δ over the randomness within DE,734

E
s∼dπE

h (·)
[
TV2

(
πE
h (·|s), πBC

h (·|s)
)]
≤ 2

log(|Π|/δ)
|DE| . (19)

With additional efforts (by using union bound and Jensen’s inequality), we have the following result.735

Theorem 4 (BC with Function Approximation). Under Assumption 1. In the general function736

approximation setting, additionally assume that πE ∈ Π. If we apply BC on the expert data, we have737

E
[
V (πE)− V (πBC)

]
= O

H2

√
log(|Π|HNE)

NE

 ,

where the expectation is taken over the randomness in the dataset collection.738

The detailed proof is deferred to Appendix F. Compared with Theorem 1, we notice that the change739

in theoretical bound is that O(|S|/NE) is replaced by O(
√
log(|Π|HNE)/NE).740

NBCU can be analyzed in a similar way in the function approximation setting.741

Theorem 5 (NBCU with Function Approximation). Under Assumption 1. In the general function742

approximation setting, additionally assume that the realizable policy class Π is realizable, i.e.,743

πmix ∈ Π, where πmix is defined in Eq. (10). If we apply BC on the union dataset, we have744

E
[
V (πE)− V (πNBCU)

]
= O

(1− η)(V (πE)− V (πβ)) +H2

√
log(|Π|HNtot)

Ntot

 .

The proof of Theorem 5 is deferred to Appendix F. We use Theorem 4 to help prove Theorem 5.745
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Unfornatunetly, the analysis of ISW-BC with function approximation is much more complicated746

since the maximum likelihood estimation is performed in a weighted manner.In the following part, we747

make a conjecture on the theoretical guarantee of the weighted maximum likelihood estimation. With748

such a conjecture, we can derive the imitation gap of ISW-BC with general function approximation.749

We leave the proof of the conjecture and other proof possibilities for future works.750

Recall the objective of ISW-BC.751

πISW-BC ∈ argmax
π∈Π

H∑
h=1

∑
(s,a)∈S×A

{
d̂Uh (s, a)× [wh(s, a) log πh(a|s)]× I [wh(s, a) ≥ δ]

}
,

Notice that the analysis of the discriminators is independent of the function approximation of policies.752

Therefore, we can follow the analysis of the discriminators in the proof of Theorem 3. Importantly,753

we can derive that there exists δ such that I
[
wh(s, π

E
h (s)) ≥ δ

]
= 1 for any (s, πE

h (s)) ∈ DE
h ∪DS,1

h754

and I [wh(s, a) ≥ δ] = 0 for any ∀(s, a) ∈ DS,2
h . Then we can obtain that755

H∑
h=1

∑
(s,a)∈S×A

{
d̂Uh (s, a)× [wh(s, a) log πh(a|s)]× I [wh(s, a) ≥ δ]

}

=

H∑
h=1

∑
s∈SE

h ,a=πE
h (s)

d̂Uh (s, a)× [wh(s, a) log πh(a|s)] .

Here SEh = {s ∈ S : dπ
E

h (s) > 0}. Then we have that756

πISW-BC ∈ argmax
π∈Π

H∑
h=1

∑
s∈SE

h ,a=πE
h (s)

d̂Uh (s, a)× [wh(s, a) log πh(a|s)] .

We conjecture that πISW-BC learned by the above weighted maximum likelihood holds the following757

theoretical guarantee. For any δ ∈ (0, 1), with probability at least 1− δ, we have that758 ∑
s∈SE

h

dUh (s, π
E
h (s))TV

2
(
πE
h (·|s), πISW-BC

h (·|s)
)
= O

(
log (|Π|Ntot)

Ntot

)
. (20)

This conjecture corresponds to (19) in the unweighted maximum likelihood estimation. With this759

conjecture, we can derive the imitation gap of ISW-BC with function approximation.760

Conjecture 1 (Imitation Gap of ISW-BC with Function Approximation). Under Assumptions 1761

and 2, let µ = max(s,h)∈S×[H] d
πE

h (s, πE
h (s))/d

πβ

h (s, πE
h (s)). In the general function approximation762

setting with the realizable policy class Π, i.e., πE ∈ Π. Furthermore, assume that the feature is763

designed such that

√
2(Lh(θ̄h)−Lh(θ⋆

h))
τh

< ∆h(θ̄h)
Lh

holds and the conjecture in (20) holds. Then, we764

have the imitation gap bound765

E[V (πE)− V (πISW-BC)] = O
(
H2

√
log(|Π|HNtot)

NE +NS/µ

)
.

E.2 Supplementary Data with Corruption766

In the main text, we consider the trajectory sampling procedure in Assumption 1. However, in some767

cases, the supplementary data can be poisoned and corrupted by an adversary. For example, although768

the human expert demonstrates an optimal trajectory, the recorder or the recording system possibly769

corrupts the data by accident or on purpose. Data corruption is one of the main security threats to770

imitation learning methods [25]. Therefore, it is valuable to investigate the robustness of the presented771

algorithms in this poison setting. Supplementary data with corruption is partially investigated in our772

experiments under the noisy expert setting, which we argue have a large state-action distribution shift.773

Assumption 3 (Poison Setting). The supplementary dataset DS and expert dataset DE are collected774

in the following way: each time, with probability η, we rollout the expert policy to collect a trajectory.775

With probability 1− η, we still rollout the expert policy to collect a trajectory but with probability776

25



1− η′, the actions along the sampled trajectory are replaced with actions uniformly sampled from777

the action space. Such an experiment is independent and identically conducted by Ntot times.778

Theorem 6 (NBCU in the Poison Setting). Under Assumption 3. In the tabular case, for any779

η ∈ (0, 1], we have780

E
[
V (πE)− V (πNBCU)

]
= O

(1− η)(1− η′)H2

(
1− 1

|A|

)
+H2

√
|S||A|
Ntot

 ,

where the expectation is taken over the randomness in the dataset collection.781

Theorem 7 (ISW-BC in the Poison Setting). Under Assumptions 2 and 3, if the feature is designed782

such that

√
2(Lh(θ̄h)−Lh(θ⋆

h))
τh

< ∆h(θ̄h)
Lh

holds, we have the imitation gap bound783

E[V (πE)− V (πISW-BC)] = O
(

H2|S|
NE +NSη′

)
.

Proofs of Theorem 6 and Theorem 7 can be found in Appendix F. Compared with the imitation gap784

of NBCU, there is no non-vanishing gap due to the corrupted actions in the imitation gap of ISW-BC.785

This means that ISW-BC is still robust in this setting.786

F Proof of Results in Section E787

F.1 Proof of Theorem 4788

According to [32, Lemma 4.3], we have789

V (πE)− V (πBC) ≤ H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πE
h (·|s), πBC

h (·|s)
)]

.

With [1, Theorem 21], when |DE| ≥ 1, for any δ ∈ (0, 1), with probability at least 1 − δ over the790

randomness within DE, we have that791

E
s∼dπE

h (·)
[
TV2

(
πE
h (·|s), πBC

h (·|s)
)]
≤ 2

log(|Π|/δ)
|DE| .

With union bound, with probability at least 1− δ, for all h ∈ [H], it holds that792

E
s∼dπE

h (·)
[
TV2

(
πE
h (·|s), πBC

h (·|s)
)]
≤ 2

log(|Π|H/δ)

|DE| ,

which implies that793

V (πE)− V (πBC) ≤ H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πE
h (·|s), πBC

h (·|s)
)]

(a)

≤ H

H∑
h=1

√
E
s∼dπE

h (·)
[
TV2

(
πE
h (·|s), πBC

h (·|s)
)]

≤
√
2H2

√
log(|Π|H/δ)

|DE| .

Inequality (a) follows Jensen’s inequality. Taking expectation over the randomness within DE yields794

that795

EDE

[
V (πE)− V (πBC)

]
≤ δH + (1− δ)

√
2H2

√
log(|Π|H/δ)

|DE|

(a)
=

H

2|DE| +
(
1− 1

2|DE|

)√
2H2

√
log(2|Π|H|DE|)

|DE|
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≤
(√

2 + 1
)
H2

√
log(2|Π|H|DE|)

|DE|

≤ 4H2

√
log(4|Π|H|DE|)

|DE| .

Equation (a) holds due to the choice that δ = 1/(2|DE|). For |DE| = 0, we directly have that796

EDE

[
V (πE)− V (πBC)

]
≤ H.

Therefore, for any |DE| ≥ 0, we have that797

EDE

[
V (πE)− V (πBC)

]
≤ 4H2

√
log(4|Π|Hmax{|DE|, 1})

max{|DE|, 1} .

We consider a real-valued function f(x) = log(cx)/x for x ≥ 1, where c = 4|Π|H > 4. Its gradient798

function is f ′(x) = (1− log(cx))/x2 ≤ 0 when x ≥ 1. Then we know that f(x) is decreasing as799

x increases. Furthermore, we have that max{|DE|, 1} ≥ (|DE| + 1)/2 when |DE| ≥ 0. Then we800

obtain801

EDE

[
V (πE)− V (πBC)

]
≤ 4H2

√
log(4|Π|Hmax{|DE|, 1})

max{|DE|, 1}

≤ 4H2

√
2 log(4|Π|H(|DE|+ 1))

|DE|+ 1
.

Taking expectation over the random variable |DE| ∼ Bin(Ntot, η) yields that802

E
[
V (πE)− V (πBC)

]
≤ 4H2E

[√
2 log(4|Π|H(|DE|+ 1))

|DE|+ 1

]
(a)

≤ 4H2

√
E
[
2 log(4|Π|H(|DE|+ 1))

|DE|+ 1

]
.

Inequality (a) follows Jensen’s inequality. We consider the function g(x) = −x log(x/c) for803

x ∈ (0, 1], where c = 4|Π|H .804

g′(x) = −(log(x/c) + 1) ≥ 0, g′′(x) = − 1

x
≤ 0, ∀x ∈ (0, 1].

Thus, g(x) is a concave function. By Jensen’s inequality, we have that E[g(x)] ≤ g(E[x]). Then we805

can derive that806

E
[
V (πE)− V (πBC)

]
≤ 4H2

√
E
[
2 log(4|Π|H(|DE|+ 1))

|DE|+ 1

]

= 4
√
2H2

√
E
[
g

(
1

|DE|+ 1

)]

≤ 4
√
2H2

√
g

(
E
[

1

|DE|+ 1

])
(a)

≤ 4
√
2H2

√
g

(
1

NE

)

≤ 4
√
2H2

√
log(4|Π|HNE)

NE
.

In inequality (a), we use the facts that g′(x) ≥ 0 and E
[
1/(|DE|+ 1)

]
≤ 1/NE from Lemma 3. We807

complete the proof.808

27



F.2 Proof of Theorem 5809

Despite the function approximation scheme, we can perform the same decomposition analysis as in810

the proof of Theorem 2. Therefore, we can obtain that811

E
[
V (πE)− V (πNBCU)

]
= (1− η)

(
V (πE)− V (πβ)

)
+ E

[
V (πmix)− V (πNBCU)

]
.

Recall that812

πNBCU ∈ max
π∈Π

H∑
h=1

∑
(s,a)∈S×A

d̂Uh (s, a) log πh(a|s).

In the proof of Theorem 2, we have shown that dUh (s, a) = dπ
mix

h (s, a), meaning that the state-action813

distribution of the union dataset equals the state-action distribution of the policy πmix. Therefore, we814

can regard that πNBCU is obtained by performing BC on the dataset generated by πmix. Consequently,815

we can apply Theorem 4 to obtain that3816

E
[
V (πmix)− V (πNBCU)

]
≤ 4
√
2H2

√
log(4|Π|HNtot)

Ntot
.

Finally, we arrive at817

E
[
V (πE)− V (πNBCU)

]
= (1− η)

(
V (πE)− V (πβ)

)
+ 4
√
2H2

√
log(4|Π|HNtot)

Ntot
,

which completes the proof.818

F.3 Proof of Theorem 6819

We first analyze the data distribution in DU. According to Assumption 3, we summarize the sampling820

procedure of trajectories in DU as follows. Each time, we rollout the expert policy to collect a821

trajectory. Furthermore, with the probability of (1− η)(1− η′), the actions along the sampled expert822

trajectory are replaced with actions uniformly sampled from the action space. Then we put this823

poisoned expert trajectory intoDU. Otherwise, with the probability of 1−(1−η)(1−η′), we directly824

put the original expert trajectory into DU. Therefore, we can formulate the marginal distribution of825

the state-action pairs in time step h in DU. For each (s, a, h) ∈ S ×A× [H],826

dUh (s, a) = (1− (1− η)(1− η′)) dπ
E

h (s, a) + (1− η)(1− η′)dπ
E

h (s)
1

|A| ,

dUh (s) =
∑
a∈A

dUh (s, a) = dπ
E

h (s).

Then we proceed to analyze the imitation gap. Similar to the proof of Theorem 2, according to [32,827

Lemma 4.3], we have828

V (πE)− V (πNBCU) ≤ H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πE
h (·|s), πNBCU

h (·|s)
)]

.

Again, we introduce the definition of the policy πmix.829

∀(s, a) ∈ S ×A ,∀h ∈ [H], πmix
h (a|s) =

{
dU
h (s,a)

dU
h (s)

if dUh (s) = dπ
E

h (s) > 0,
1

|A| otherwise.

In particular, if dUh (s) > 0, we have that830

πmix
h (a|s) = dUh (s, a)

dUh (s)
= (1− (1− η)(1− η′))πE

h (a|s) + (1− η)(1− η′)
1

|A| .

Then we decompose the imitation gap into two parts.831

V (πE)− V (πNBCU)

3Note that Theorem 4 holds for the case where the expert policy is stochastic.
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≤ H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πE
h (·|s), πNBCU

h (·|s)
)]

≤ H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πE
h (·|s), πmix

h (·|s)
)]

+H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πmix
h (·|s), πNBCU

h (·|s)
)]

.

We first analyze the first term in RHS. For certain (s, h) such dUh (s) = dπ
E

h (s) > 0, we have that832

TV
(
πE
h (·|s), πmix

h (·|s)
)
=

∑
a̸=πE

h (s)

πmix
h (a|s)

=
∑

a̸=πE
h (s)

(1− (1− η)(1− η′))πE
h (a|s) + (1− η)(1− η′)

1

|A|

= (1− η)(1− η′)

(
1− 1

|A|

)
.

Therefore, we can derive that833

H
H∑

h=1

E
s∼dπE

h (·)
[
TV

(
πE
h (·|s), πmix

h (·|s)
)]
≤ (1− η)(1− η′)H2

(
1− 1

|A|

)
.

Now we analyze the second term of834

H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πmix
h (·|s), πNBCU

h (·|s)
)]

.

Recall the formula of πNBCU.835

πNBCU
h (a|s) =

{
nU
h (s,a)

nU
h (s)

if nU
h (s) > 0

1
|A| otherwise

Notice that πNBCU is the maximum likelihood estimation of πmix. According to the concentration836

inequality of total variation [43], for each (s, h) ∈ S× [H], for any fixed δ ∈ (0, 1), when nU
h (s) > 0,837

with probability at least 1− δ, we have838

TV
(
πmix
h (·|s), πNBCU

h (·|s)
)
≤
√
|A| log(3/δ)

nU
h (s)

.

When nU
h (s) = 0, we have that839

TV
(
πmix
h (·|s), πNBCU

h (·|s)
)
≤ 1 ≤

√
|A| log(3/δ).

By combining the above two inequalities, for each (s, h) ∈ S × [H], with probability at least 1− δ,840

we have841

TV
(
πmix
h (·|s), πNBCU

h (·|s)
)
≤
√
|A| log(3/δ)

max{nU
h (s), 1}

.

Applying union bound yields that with probability at least 1− δ/2, for all (s, h) ∈ S × [H],842

TV
(
πmix
h (·|s), πNBCU

h (·|s)
)
≤
√
|A| log(6|S|H/δ)

max{nU
h (s), 1}

.

Then we have that843

H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πmix
h (·|s), πNBCU

h (·|s)
)]

≤ H

H∑
h=1

E
s∼dπE

h (·)

[√
|A| log(6|S|H/δ)

max{nU
h (s), 1}

]

= H
√
|A| log(6|S|H/δ)

H∑
h=1

E
s∼dπE

h (·)

[√
1

max{nU
h (s), 1}

]
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= H
√
|A| log(6|S|H/δ)

H∑
h=1

∑
s∈S

√
dπ

E

h (s)

√
dπ

E

h (s)

max{nU
h (s), 1}

≤ H
√
|A| log(6|S|H/δ)

H∑
h=1

√√√√∑
s∈S

dπ
E

h (s)

max{nU
h (s), 1}

.

Here the last inequality follows Cauchy-Swartz inequality. Notice that nU
h (s) is the number of844

times that the state s appears in DU in time step h and thus follows the Binomial distribution of845

Bin(Ntot, d
πE

h (s)). By applying Lemma 4, for each (s, h), with probability at least 1− δ, we have846

dπ
E

h (s)

max{nU
h (s), 1}

≤ 8 log(1/δ)

Ntot
.

By union bound, with probability at least 1− δ/2, for all (s, h) ∈ S × [H],847

dπ
E

h (s)

max{nU
h (s), 1}

≤ 8 log(2|S|H/δ)

Ntot
.

Then, with probability at least 1− δ, we have848

H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πmix
h (·|s), πNBCU

h (·|s)
)]
≤ H2

√
8|S||A| log2(6|S|H/δ)

Ntot
.

Finally, we upper bound the imitation gap. With probability at least 1− δ, we have849

V (πE)− V (πNBCU) ≤ (1− η)(1− η′)

(
1− 1

|A|

)
+H2

√
8|S||A| log2(6|S|H/δ)

Ntot
.

We set δ = H/Ntot and obtain that850

E
[
V (πE)− V (πNBCU)

]
≤ δH + (1− δ)

(1− η)(1− η′)

(
1− 1

|A|

)
+H2

√
8|S||A| log2(6|S|H/δ)

Ntot


≤ H2

Ntot
+ (1− η)(1− η′)

(
1− 1

|A|

)
+H2

√
8|S||A| log2(6|A|Ntot)

Ntot

≤ (1− η)(1− η′)

(
1− 1

|A|

)
+ 4H2

√
2|S||A| log2(6|A|Ntot)

Ntot
.

On the other hand, we directly have E[V (πE)− V (πNBCU)] ≤ H . We complete the proof.851

F.4 Proof of Theorem 7852

In the poison setting, we can conduct the same analysis as in the proof of Theorem 3 and demonstrate853

that πISW-BC(πE
h (s)|s) = 1, ∀(s, πE

h (s)) ∈ DE
h ∪ DS,1

h , where DE
h is the set of state-action pairs in854

DE in time step h and DS,1
h = {(s, a) ∈ DS

h : dπ
E

h (s) > 0, a = πE
h (s)}. According to [32, Lemma855

4.3], we have856

V (πE)− V (πISW-BC) ≤ H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πE
h (·|s), πISW-BC

h (·|s)
)]

.

Since the expert policy is assumed to be deterministic, we can obtain857

V (πE)− V (πISW-BC) ≤ H

H∑
h=1

E
s∼dπE

h (·)

[
Ea∼πISW-BC

h (·|s)
[
I
{
a ̸= πE

h (s)
}]]

≤ H

H∑
h=1

E
s∼dπE

h (·)

[
I
{
(s, πE

h (s)) /∈ DE
h ∪ DS,1

h

}]
.
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Let DS,clean denote the non-corrupted dataset in DS. Then we can obtain that858

V (πE)− V (πISW-BC)
(a)

≤ H

H∑
h=1

E
s∼dπE

h (·)

[
I
{
(s, πE

h (s)) /∈ DE
h ∪ DS,clean

h

}]

= H

H∑
h=1

∑
s∈S

dπ
E

h (s)I
{
(s, πE

h (s)) /∈ DE
h ∪ DS,clean

h

}
,

where DS,clean
h denotes the set of state-action pairs in DS,clean in time step h. Inequality (a) follows859

that DS,clean
h ⊆ DS,1

h since DS,clean is collected by the expert policy. Taking expectation over the860

randomness in DE and DS,clean on both sides yields that861

EDE,DS,clean

[
V (πE)− V (πISW-BC)

]
≤ H

H∑
h=1

∑
s∈S

dπ
E

h (s)P
(
(s, πE

h (s)) /∈ DE
h ∪ DS,clean

h

)
.

Notice that both DE and DS,clean are collected by the expert policy. Then if |DE|+ |DS,clean| ≥ 1,862

we can calculate that for each (s, h) ∈ S × [H],863

dπ
E

h (s)P
(
(s, πE

h (s)) /∈ DE
h ∪ DS,clean

h

)
= dπ

E

h (s)
(
1− dπ

E

h (s)
)|DE|+|DS,clean|

≤ 4

9(|DE|+ |DS,clean|) ,

where the last inequality follows Lemma 5. If |DE|+ |DS,clean| = 0, we directly have that864

dπ
E

h (s)P
(
(s, πE

h (s)) /∈ DE
h ∪ DS,clean

h

)
≤ 1 =

1

max{|DE|+ |DS,clean|, 1} .

We unify the above two inequalities and get that865

dπ
E

h (s)P
(
(s, πE

h (s)) /∈ DE
h ∪ DS,clean

h

)
≤ 1

max{|DE|+ |DS,clean|, 1} .

Now we proceed to upper bound the imitation gap.866

EDE,DS,clean

[
V (πE)− V (πISW-BC)

]
≤ H

H∑
h=1

∑
s∈S

dπ
E

h (s)P
(
(s, πE

h (s)) /∈ DE
h ∪ DS,clean

h

)
≤ |S|H2

max{|DE|+ |DS,clean|, 1} .

Note that |DE| + |DS,clean| ∼ Bin(Ntot, η + (1 − η)η′). Taking expectation with respect to867

|DE|+ |DS,clean| yields that868

E
[
V (πE)− V (πISW-BC)

]
≤ E

[ |S|H2

max{|DE|+ |DS,clean|, 1}

]
≤ E

[
2|S|H2

|DE|+ |DS,clean|+ 1

]
(a)

≤ 2|S|H2

Ntot(η + (1− η)η′)

=
2|S|H2

NE + η′NS
.

Inequality (a) follows Lemma 3. We finish the proof.869

G Technical Lemmas870

Lemma 3. For any N ∈ N+ and p ∈ (0, 1), if the random variable X follows the binomial871

distribution, i.e., X ∼ Bin(N, p), then we have that872

E
[

1

X + 1

]
≤ 1

Np
.
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Proof.

E
[

1

X + 1

]
=

N∑
x=0

(
1

x+ 1

)
N !

x!(N − x)!
px(1− p)N−x

=
1

(N + 1)p

N+1∑
x=1

(
(N + 1)!

x!(N + 1− x)!

)
px(1− p)N+1−x

=
1

(N + 1)p

(
1− (1− p)N+1

)
≤ 1

Np
.

873

Lemma 4 (Binomial concentration (Lemma A.1 in [45])). For any N ∈ N+ and p ∈ (0, 1), suppose874

X ∼ Bin(N, p). Then with probability at least 1− δ, we have875

p

max{X, 1} ≤
8 log(1/δ)

N
.

Lemma 5. For any N ∈ N+ and x ∈ [0, 1], consider the function f(x) := x(1− x)N , then we have876

∀x ∈ [0, 1], f(x) ≤ 4

9N
.

Proof. We calculate that f ′(x) = (1− x)N−1(1− (N + 1)x). It is direct to have that f(x) achieves877

its maximum at x⋆ = 1/(N + 1). Furthermore, we have878

f(
1

N + 1
) =

1

N

(
1− 1

N + 1

)N+1 (a)

≤ 1

eN
≤ 4

9N
.

Inequality (a) follows that (1 + x/N)N ≤ exp(x), ∀N ≥ 1, |x| ≤ N . We complete the proof.879

H Experiments Details and Additional Results880

H.1 Experiment Details881

In this section, we present the experiment details to facilitate the replication of our results. Our882

codebase will be made available for public access at a later stage. The experiments are conducted on883

a machine comprising 48 CPU cores and 4 V100 GPU cores. We repeat each experiment 5 times884

using different random seeds (2021, 2022, 2023, 2024, and 2025).885

H.1.1 Locomotion Control886

In this study, we evaluate the performance of various imitation learning algorithms on four locomotion887

control tasks from the MuJoCo suite: Ant-v2, HalfCheetah-v2, Hopper-v2, and Walker2d-v2.888

These tasks are widely used in the literature and are considered challenging benchmarks.889

To train the expert policy, we use the online Soft Actor-Critic (SAC) algorithm [16] with 1 million890

training steps. We implement the algorithm using the rlkit codebase, which is available at https:891

//github.com/rail-berkeley/rlkit. The training curves of the online SAC agent are shown892

in Figure 5. We treat the resulting policy as the expert policy and use it to generate expert trajectories.893
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Figure 5: Training curves of online SAC on 4 locomotion control environments.

In our experimental setup, we utilize an expert dataset comprising of 1 expert trajectory collected by894

the trained SAC agent. Additionally, all algorithms are provided with a supplementary dataset. There895

are two setting of the supplementary data.896
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• Full Replay. The supplementary dataset is obtained from the replay buffer of the online897

SAC agent, which has over one million samples, equivalent to 1000+ trajectories. The rapid898

convergence of online SAC, as illustrated in Figure 5, implies that the replay buffer is enriched899

with a substantial number of expert-level trajectories. As a result, we expect that utilizing the900

supplementary data without any modification may lead to desirable results.901

• Noisy Expert. The supplementary dataset comprises of 10 clean expert trajectories and 5 noisy902

expert trajectories. In this case, we replace the action labels in the noisy trajectories with random903

actions drawn from [−1, 1]. This replacement creates noisy action labels for the expert states,904

leading to a significant distribution shift at the state-action level, as noted in Remark 1. The high905

degree of distribution shift makes it challenging for using the supplementary data.906

We use a 2-hidden-layer multi-layer perceptron (MLP) with hidden size 256 and ReLU activation907

for all algorithms, as the state information in locomotion control tasks is informative by design.908

The codebase of DemoDICE is based on the original authors’ work, which can be accessed at909

https://github.com/KAIST-AILab/imitation-dice. For DWBC, we also use the authors’910

codebase, which is available at https://github.com/ryanxhr/DWBC. We experimented with911

different hyper-parameters for both algorithms but found that the default parameters provided by912

the authors work well. We normalize state observations in the dataset before training all algorithms,913

following [22]. This is crucial for achieving satisfactory performance.914

In training the discriminator of ISW-BC, we use the gradient penalty (GP) regularization, as recom-915

mended by [22]. We add the following loss to the original loss (4) to enforce 1-Lipschitz continuity:916

min
θ

∑
(s,a)∈B

(∥g(s, a; θ)∥ − 1)
2
,

where g is the gradient of the discriminator c(s, a; θ), and B is a mini-batch. This promotes the917

learning of smooth features and can improve generalization performance.918

In our implementation of ISW-BC, we employ 2-hidden-layer MLPs with 256 hidden units and919

ReLU activation for both the discriminator and policy networks. We use a batch size of 256 and920

Adam optimizer with a learning rate of 0.0003 for training both networks. The training objective is921

to maximize the log-likelihood. We set δ to 0 and use a gradient penalty coefficient of 8 by default,922

unless otherwise stated. The training process is carried out for 1 million iterations. We evaluate923

the performance every 10k iterations with 10 episodes. The normalized score in the last column of924

Table 2 is computed in the following way:925

Normalized score =
Expert performance− Agent performance

Expert performance− Random policy performance
. (21)

H.1.2 Atari Games926

We evaluate algorithms on a set of 5 Atari games from the standard benchmark: Alien, MsPacman,927

Phoenix, Qbert, and SpaceInvaders. We preprocess the game environments using a standard set928

of procedures, including sticky actions with a probability of 0.25, grayscaling, downsampling to an929

image size of [84, 84], and stacking frames of 4. These procedures follow the instructions provided by930

the dopamine codebase, which is available at https://github.com/google/dopamine/blob/931

master/dopamine/discrete_domains/atari_lib.py. The final image inputs are of shape (84,932

84, 4).933

We use the replay buffer data from an online DQN agent, which is publicly available at https:934

//console.cloud.google.com/storage/browser/atari-replay-datasets, thanks to the935

work of [2]. The dataset consists of 200 million frames, divided into 50 indexed buckets (ranging936

from 0 to 49). However, using the entire dataset is computationally infeasible4 and unnecessary for937

our task. Therefore, we select specific buffer buckets for imitation learning.938

We choose the expert data from bucket index 49, using only the first 400K frames for training. This939

makes the task challenging (we find that BC performs well with 1M frames of expert data). For the940

full replay setting, we select supplementary data from buffer indices 45 to 48, using the first 400K941

frames from each bucket. This yields a supplementary dataset that is 4 times larger than the expert942

4Loading 200M frames requires over 500GB memory.
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data. In the noisy task setting, we follow the same procedure for selecting supplementary data, but943

replace the action labels with random labels on buffer index 45.944

All agents employ the same convolutional neural network (CNN) architecture as the DQN agent,945

consisting of three convolutional blocks. The first block applies a filter size of 8, a stride of 4, and has946

a channel size of 32. The second block uses a filter size of 4, a stride of 4, and a channel size of 64,947

while the third block applies a filter size of 3, a stride of 4, and has a channel size of 64. All blocks948

use the ReLU activation function. The feature representations are flattened to a vector, on which a949

1-hidden-layer MLP with a hidden size of 512 and ReLU activation function is applied. Finally, the950

outputs are passed through a softmax function to obtain a probability distribution.951

Atari games are not considered in [22, 47] and public implementations of DemoDICE and DWBC952

for Atari games are not available. To use these methods in the Atari environment, we extend their953

original implementation by replacing the MLP used in locomotion control with the CNN described954

earlier. Implementing ISW-BC is a little more complicated. We use the same CNN policy network as955

in the other methods, but find that directly training the discriminator from scratch is less effective.956

This is because the discriminator tends to focus on irrelevant background information instead of the957

decision-centric part. To overcome this issue, we build the discriminator upon the feature extractor of958

the policy network, leveraging its ability to extract useful information. The discriminator is an MLP959

with ReLU activation and a hidden size of 1024: the image feature representation has a dimension 512960

and the action feature representation also has a dimension 512 (we randomly project one-hot discrete961

actions to a 512-dimension space). We find that the depth of the MLP is crucial for performance,962

using a depth of 1 for the full replay setting and 3 for the noisy expert setting. We clip the importance963

sampling ratio for numerical stability, using a minimum value of 0 and a maximum value of 5 for964

the full replay setting, and a minimum value of 0.2 and a maximum value of 5 for the noisy expert965

setting. We provide ablation studies of these hyperparameters in Appendix H.2.2.966

All methods were optimized using the Adam optimizer with a learning rate of 0.00025 and a batch967

size of 256. The training objective is to maximize the log-likelihood. The training process consisted968

of 200K gradient steps. Every 2K gradient steps, the algorithms were evaluated by running 10969

episodes and computing the raw game scores. The normalized score in the last column of Table 3 is970

computed by Eq. (21).971

H.1.3 Object Recognition972

We utilize the publicly available DomainNet dataset [29] for our experiments, which can be accessed at973

http://csr.bu.edu/ftp/visda/2019/multi-source. This dataset comprises six sub-datasets:974

clipart, infograph, painting, quickdraw, real, and sketch, with 2103, 2626, 2472, 4000,975

4864, and 2213 images, respectively. Our task involves recognizing objects from 10 different classes:976

bird, feather, headphones, ice_cream, teapot, tiger, whale, windmill, wine_glass, and977

zebra. We divided the images into training and test sets, with 80% for training and 20% for testing.978

We employ a 2-hidden-layer neural network with a hidden size of 512 and ReLU activation979

as the classifier. To extract features from images, we utilize the pretrained ResNet-18 model980

(trained on ImageNet), which has a feature dimension of 512. The ResNet-18 model can be ac-981

cessed at https://pytorch.org/vision/main/models/generated/torchvision.models.982

resnet18.html. We opted for this approach as training such a large convolutional neural net-983

work directly on the DomainNet dataset proved to be ineffective. The training objective is to984

minimize the cross-entropy loss. To optimize the network parameters, we use the stochastic gradient985

descent (SGD) optimizer with a learning rate of 0.01 and momentum of 0.9. Additionally, we apply986

weight decay with a coefficient of 0.0005. The models are trained for 100 epochs with a batch size of987

100, following the standard practice.988

The discriminators used in ISW-BC and DWBC are implemented as 2-hidden-layer neural networks989

with ReLU activation. It’s important to note that these discriminators take both the image and label990

as inputs. The image input is processed by the pre-trained and fixed ResNet-18, while the label input991

is projected to the same dimension (512) by a random projection matrix. The hidden size for the992

discriminator is set to 1024 for ISW-BC and 1025 for DWBC, as the discriminator in DWBC also993

takes the log-likelihood as an input. For ISW-BC, the discriminator is trained independently for 100994

epochs with the same optimization configuration as the classifier. Afterward, the discriminator is995

fixed, and its output is used to compute the importance sampling ratio, which is then used to train the996

classifier.997
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H.2 Additional Results998

H.2.1 Training Curves999

Training curves. The training curves on the MuJoco locomotion control tasks are displayed in1000

Figure 6 and Figure 7. The training curves on Atari games are displayed in Figure 8 and Figure 9.1001

The training curves on the object recognition task are displayed in Figure 10.1002
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Figure 6: Training curves of algorithms on the locomotion control task in the full replay setting. Solid
lines correspond to the mean performance and shaded regions correspond to the 95% confidence
interval. Same as other figures.
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Figure 7: Training curves of algorithms on the locomotion control task in the noisy expert setting.

H.2.2 Ablation Study1003

In this section, we present ablation studies conducted on Atari games, aiming to provide insights into1004

the underlying working scheme of our method. We specifically emphasize Atari games due to their1005

high-dimensional image inputs, making these tasks particularly challenging. In contrast, the other1006
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Figure 8: Training curves of algorithms on the Atari games in the full replay setting.
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Figure 9: Training curves of algorithms on the Atari games in the noisy expert setting.
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Figure 10: Training curves of algorithms on the object recognition task using the DomainNet dataset.
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two tasks, locomotion control and object recognition, involve informative vector inputs, setting them1007

apart from the unique characteristics of Atari games.1008

Ablation Study on Feature Representations of Discriminator Network. Our study reveals that1009

employing a separate CNN for the discriminator yields inferior results compared to utilizing the1010

feature extractor of the policy network. Please refer to Figure 11. Our conjecture is that training the1011

discriminator independently may cause it to fit noise information (e.g., background). In contrast,1012

the policy CNN network is capable of learning decision-centric information, enabling an effective1013

approach to building the discriminator network through the feature extractor of the policy network.1014
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Figure 11: Training curves of ISW-BC on the Atari games in the full replay setting. We test the
performance with different feature extractors of the discriminator.

Ablation Study on Depth of Discriminator Network. We have discovered that the number of1015

discriminator layers plays a crucial role in the performance of Atari games. The training curves,1016

depicted in both Figure 12 and Figure 13, illustrate the performance variation based on the number of1017

layers in the discriminator network. Notably, a 1-hidden-layer neural network yields the best results1018

for the full replay setting, while a 3-hidden-layer neural network performs optimally in the noisy1019

expert setting. It is important to note that this phenomenon is specific to Atari games. We do not have1020

a good explanation yet. We believe this deserves further investigation in the future work.1021
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Figure 12: Training curves of ISW-BC on the Atari games in the full replay setting. We test the
performance with different number of layers for the discriminator network.
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Figure 13: Training curves of ISW-BC on the Atari games with the noisy expert setting. We test the
performance with different number of layers for the discriminator network.
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