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Abstract

Imitation learning (IL) algorithms excel in acquiring high-quality policies from expert data for
sequential decision-making tasks. But, their effectiveness is hampered when faced with limited
expert data. To tackle this challenge, a novel framework called (offline) IL with supplementary
data has been proposed [25, 61], which enhances learning by incorporating an additional yet
imperfect dataset obtained inexpensively from sub-optimal policies. Nonetheless, learning
becomes challenging due to the potential inclusion of out-of-expert-distribution samples.
In this work, we propose a mathematical formalization of this framework, uncovering its
limitations. Our theoretical analysis reveals that a naive approach—applying the behavioral
cloning (BC) algorithm concept to the combined set of expert and supplementary data—may
fall short of vanilla BC, which solely relies on expert data. This deficiency arises due to
the distribution shift between the two data sources. To address this issue, we propose a
new importance-sampling-based technique for selecting data within the expert distribution.
We prove that the proposed method eliminates the gap of the naive approach, highlighting
its efficacy when handling imperfect data. Empirical studies demonstrate that our method
outperforms previous state-of-the-art methods in tasks including robotic locomotion control,
Atari video games, and image classification.1 Overall, our work underscores the potential of
improving IL by leveraging diverse data sources through effective data selection.

1 Introduction
Imitation learning (IL) [3, 34] is an essential technique in artificial intelligence, allowing machines to
enhance their performance by imitating expert behaviors. This technique has showcased remarkable
achievements across various domains such as robotics [27], self-driving cars [35], and language
models [55, 8]. Among the IL approaches, behavioral cloning (BC) [40] stands out as a popular
method. In particular, BC leverages temporally-correlated state-action pairs extracted from expert
demonstrations, employing them as training samples to learn a mapping from states to actions via
maximum likelihood estimation. In this manner, IL expands upon the traditional supervised learning
framework, enabling the acquisition of sequential decision-making capabilities.

The quantity of expert trajectories plays a crucial role in achieving satisfactory performance. Previous
studies have shown that BC works well when the dataset contains a large number of expert-level
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trajectories [48]. However, the well-known compounding errors issue [44] renders any offline
IL algorithm, including BC, ineffective when the number of expert trajectories is small [42, 60].
Furthermore, collecting more trajectories from the expert is costly and impractical in many domains,
such as robotics and healthcare.

To overcome the challenge of scarce expert data, we propose to use an additional yet imperfect
dataset to supplement the expert data; see Figure 1 for illustration. In particular, this additional
dataset can be cheaply obtained by executing sub-optimal policies.2 However, the incorporation
of supplementary dataset introduces a distribution shift issue due to the presence of out-of-expert-
distribution trajectories.3 The distribution shift issue may hamper the model’s performance in utilizing
the supplementary data, as we will argue later.

We realize that a number of empirical successes have been reported in this direction [25, 24, 61, 32].
Most algorithms rely on a discriminator to distinguish between expert-style and sub-optimal samples,
followed by optimization of a weighted BC objective to learn a good policy. For example, DemoDICE
[25] uses a regularized state-action distribution matching objective to train the discriminator, while
DWBC [61] employs a cooperative training framework for the policy and discriminator. Despite the
empirical successes in certain scenarios, there remains a notable absence of systematic theoretical
studies, particularly in terms of imitation gap (i.e., performance difference between the expert and
learner), which may hinder deep understanding and impede future algorithmic advances.

6

Framework 3: Cross-dataset Transfer

limited expert data

 rich supplementary data 
but OOD

model training

data  
selection

data  
augment

Figure 1: Compared with the conventional
IL framework (shown in cyan), the supple-
mentary data helps address the expert data
scarcity issue, and the data selection tech-
nique helps address the distribution shift
issue in model training.

Table 1: The theoretical guarantees of three methods:
(1) BC, which relies solely on expert data; (2) NBCU,
which directly uses the union of expert data and sup-
plementary data without selection; and (3) ISW-BC, a
new method that employs importance sampling for data
selection. Compared with BC, NBCU suffers a non-
vanishing error due to the distribution shift between two
datasets while ISW-BC does not.

Imitation Gap
BC O( |S|H2

NE
)

NBCU Õ((1− η)(V (πE)− V (πβ)) + |S|H2

NE+NS
)

ISW-BC O( |S|H2

NE+NS/µ
)

We aim to bridge the gap between theory and practice in the (offline) IL with supplementary data
framework by developing effective algorithms and providing rigorous theoretical guarantees. To
the best of our knowledge, only [9] provided imitation gap bounds for a model-based adversarial
imitation learning approach in a similar problem. However, our focus lies on the widely used and
simpler BC and its variants, which are model-free in nature. Our contributions are summarized below.

• We develop a formal mathematical framework of the IL with supplementary data framework and
conduct corresponding theoretical analysis. Our findings highlight the impact of the distribution
shift between expert and supplementary data. Our results are summarized in Table 1.4

In particular, our analysis shows that naively applying BC on the union of expert and supplemen-
tary data (referred to as the NBCU method in this paper) has a non-vanishing error term in the
imitation gap bound (see the second row of Table 1). This means that the direct use of additional
data might yield inferior performance compared with solely using the expert data with BC. This
necessitates the development of more advanced algorithms.

2For instance, web texts and images are easily available for language and vision models, respectively; robotics
can benefit from previously collected datasets.

3This issue is separate from the intrinsic distribution shift problem that IL already faces, where the training
and evaluation distributions differ [44]. It is important to note that these are distinct issues.

4We briefly explain notations in Table 1: |S| indicates the state space size, H is the horizon length, NE means
the expert data size, and NS refers to the supplementary data size. In addition, we define η = NE/(NE +NS),
and V (πE) − V (πβ) as the performance gap between expert policy V E and supplementary data collection
policy πβ . For ISW-BC’s bound, µ > 0 represents the state-action distribution density ratio bound between
these two policies (to be detailed in Theorem 3).
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• To address the distribution shift issue, we propose a new approach called ISW-BC, which uses
the importance sampling technique to select data within the expert distribution. In contrast to
prior methods [25, 61], ISW-BC re-weights data in an unbiased way. We develop a new imitation
gap bound for ISW-BC (see the last row of Table 1), revealing that it not only eliminates the gap
exhibited by the naive approach but also offers a superior guarantee over BC.

• Our theoretical analysis has been validated through extensive experiments, including robotic
locomotion control, Atari video games, and image classification. The results affirm the superiority
of ISW-BC over existing methods, thus demonstrating the potential of our method in addressing
the distribution shift issue in IL with supplementary data.

2 Related Work
We review briefly relevant studies in the main text and provide a detailed discussion in Appendix B.

Behavioral Cloning. Behavioral cloning (BC) is a popular algorithm in the offline setting, where the
learner cannot interact with the environment. According to the learning theory in [42], only using an
expert dataset, BC has an imitation gap of O(|S|H2/NE), where |S| is the state space size, H is the
planning horizon, and NE is the number of expert trajectories. Our work investigates the use of a
supplementary dataset to enhance the dependence on the data size.

Adversarial Imitation Learning. In contrast to BC, adversarial imitation learning (AIL) methods,
such as GAIL [21], perform imitation through state-action distribution matching. It has been
demonstrated both empirically and theoretically that AIL methods do not suffer from the compounding
errors issue when the expert data is limited [21, 16, 26, 59, 60, 28, 63]. Under mild conditions, [62]
provided a horizon-free bound of O(min{1,

√
|S|/NE}), which is much better than BC in terms of

dependence on H . However, AIL methods work naturally in the online setting (i.e., the interaction is
allowed), which is not directly applicable in the offline setting that we study in this paper. Although
the proposed method has a discriminator and a policy like AIL, our discriminator and policy are not
designed to compete with each other adversarially, as we will explain in detail later.

Imitation Learning with Supplementary Data. Our theoretical study is motivated by recent
empirical successes in IL with supplementary data [25, 61, 32, 24]. Compared with [25, 61], a
related setting, learning from observation, is studied in [32, 24]. In this setting, expert actions are
absent, and only expert states are observed. The importance sampling technique used in our method
for addressing distribution shift is also studied in (semi-)supervised learning [49, 11, 30, 15]. Our
contribution is to show this technique is also effective in the imitation learning, where data has a
Markovian structure.

3 Preliminaries
Markov Decision Process. In this paper, we consider the episodic Markov decision process (MDP)
framework [41]. An MDP is defined by the tupleM = (S,A,P, r,H, ρ), where S and A are the
state and action space, respectively. H is the maximum length of a trajectory, and ρ is the initial
state distribution. The non-stationary transition function is specified by P = {P1, · · · , PH}, where
Ph(sh+1|sh, ah) determines the probability of transiting to state sh+1 given the current state sh and
action ah in time step h, for h ∈ [H]. Here the symbol [x] means the set of integers from 1 to x.
Similarly, the reward function r = {r1, · · · , rH} specifies the reward received at each time step,
where rh : S ×A → [0, 1] for h ∈ [H]. A policy in an MDP is a function that maps each state to a
probability distribution over actions. We consider time-dependent policies πh : S → ∆(A), where
∆(A) is the probability simplex. The policy at each time step h is denoted as πh, and we use π to
denote the collection of time-dependent policies {πh}Hh=1 when the context is clear.

We measure the quality of a policy π by the policy value (i.e., environment-specific long-term return):
V (π) = E

[∑H
h=1 rh(sh, ah) | s1 ∼ ρ; ah ∼ πh(·|sh), sh+1 ∼ Ph(·|sh, ah),∀h ∈ [H]

]
. To

facilitate later analysis, we need to introduce the state-action distribution dπh(s, a) = P(sh = s, ah =
a|π). We use the convention that dπ is the collection of time-dependent state-action distributions.

Imitation Learning. Imitation learning (IL) aims to learn a policy that mimics an expert policy based
on expert demonstrations. In this paper, we assume that there exists a good expert policy πE that
generates a dataset DE consisting of NE trajectories of length H .
DE =

{
tr = (s1, a1, s2, a2, · · · , sH , aH) ; s1 ∼ ρ, ah ∼ πE

h (·|sh), sh+1 ∼ Ph(·|sh, ah),∀h ∈ [H]
}
.
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The learner aims to imitate the expert using the expert dataset DE. The quality of the imitation is
measured by the imitation gap, defined as E

[
V (πE)− V (π)

]
, where the expectation is taken over

the randomness of data collection. It is worth noting that in the training phase, the IL learner does not
have access to reward information. A good learner should closely mimic the expert, resulting in a
small imitation gap. We assume that the expert policy is deterministic, a common assumption in the
literature [42, 43, 60], and applicable to tasks such as MuJoCo locomotion control.

Behavioral Cloning. Behavioral cloning (BC) is a popular imitation learning algorithm that aims to
learn a policy from an expert dataset DE via supervised learning. Specifically, BC seeks to find a
policy πBC that maximizes the log-likelihood of the expert actions in the dataset:

πBC ∈ argmax
π

H∑
h=1

∑
(s,a)∈S×A

d̂Eh (s, a) log πh(a|s), (1)

where d̂Eh (s, a) is the empirical state-action distribution in the expert dataset. By the maximum likeli-
hood estimation (MLE), BC can make good decisions by duplicating expert actions on states visited
in DE. However, BC may take sub-optimal actions on non-visited states, resulting in compounding
errors and a large imitation gap. This issue is significant when the expert data is limited.

4 Imitation Learning with Supplementary Data
To address the challenge of limited availability of expert data, we consider an IL with a supple-
mentary dataset framework. We assume that a supplementary yet imperfect dataset DS =

{
tr =

(s1, a1, s2, a2, · · · , sH , aH)} is collected by a behavior policy πβ . A naive approach is to perform
MLE on the union of the expert and supplementary dataset DU = DE ∪ DS:

πNBCU ∈ argmax
π

H∑
h=1

∑
(s,a)

d̂Uh (s, a) log πh(a|s), (2)

where d̂Uh (s, a) is the empirical state-action distribution in DU. We refer to this approach as NBCU
(naive BC with the union dataset). NBCU treats these two datasets equally and is brittle to distribution
shift, as we will demonstrate later. For theoretical analysis purpose, we assume expert data represents
a η ∈ [0, 1] fraction of the total union data.
Assumption 1. The expert dataset DE and supplementary dataset DS are collected in the following
way: each time, we roll-out a behavior policy πβ with probability 1− η and the expert policy with
probability η. Such an experiment is independent and identically conducted Ntot times.

Under Assumption 1, we slightly overload our notations: we use NE to denote the expected number
of expert trajectories, which is given by NE = ηNtot, and NS to denote the expected number of
supplementary trajectories, which is given by NS = (1−η)Ntot. Note that the probabilistic sampling
procedure does not change the nature of our theoretical insights. In practice, one may collect a fixed
number of expert and supplementary trajectories, respectively.

To establish a common ground, we begin by specifying the policy representations. Here, we adopt
tabular representations, which assume that the parameterized value functions can take any possible
form. Specifically, we define πh(a|s; θ) = ⟨ϕ(s, a), θ⟩, where ϕ(s, a) ∈ Rd is the feature representa-
tion and θ ∈ Rd is the parameter to optimize. In tabular representations, we use one-hot features for
ϕ(s, a). For a discussion on general function approximation schemes, please refer to Appendix E.

Imitation Gap of BC. In order to evaluate the usefulness of the supplementary dataset, we use
BC with only the expert dataset as a baseline. The analysis of this approach has been done in the
conventional IL set-up in [42], and we re-state their results in our setting.
Theorem 1. Under Assumption 1, if we apply BC only on the expert dataset, we have that
E
[
V (πE)− V (πBC)

]
= O( |S|H2

NE
), where the expectation is taken over the randomness in the

dataset collection (same as other expectations).

Proofs of Theorem 1 and other theoretical results are deferred to the Appendix. The proof of
Theorem 1 builds on [42], with the main difference being that the number of expert trajectories is a
random variable in our set-up. We handle this difficulty by using Lemma 3 in the Appendix. The
quadratic dependence on the planning horizon H indicates the compounding errors issue of BC.
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If the expert data is limited (i.e., NE is small), the performance gap can be large, suggesting poor
performance of BC in this scenario.

Imitation Gap of NBCU. Guarantees of naively using the supplementary data are presented below.
Theorem 2. Under Assumption 1, if we apply BC on the union dataset, we have
E
[
V (πE)− V (πNBCU)

]
= O((1− η)(V (πE)− V (πβ)) + |S|H2 log(Ntot)

Ntot
).

Remark 1. In case when the behavior policy is inferior to the expert policy, we have V (πE) −
V (πβ) > 0. In this case, even if Ntot is large enough to make the second term negligible, there is still
a non-vanishing gap of V (πE)− V (πβ) due to the behavior policy’s potential to collect non-expert
actions. In other words, the recovered policy may select wrong actions even on expert states, leading
to the sub-optimal performance of NBCU.

It is worthy to note that this non-vanishing error term can also be interpreted from the viewpoint of
the distribution shift. Specifically, using the analysis in [62], we can show that

V (πE)− V (πβ) = O(Hεd) = O(H2επ),

where εd = maxh TV(dπ
E

h , dπ
β

h ) is the state-action distribution total variation (TV) distance and
επ = maxh maxs TV(πE

h (·|s), πβ
h(·|s)) is the policy distribution TV distance. Hence, we can also

view Theorem 2 in the context of state-action or policy distribution shifts.

Note also that we do not claim that NBCU is always worse than BC. Instead, Theorem 2 implies
that if the distribution shift between two data datasets is small, NBCU could be better than BC by
leveraging more data, which we will also show in experiments later.

The next proposition establishes the inevitability of the gap V (πE)− V (πβ) in the worst case.
Proposition 1. Under Assumption 1, there exists an MDPM, an expert policy πE and a behavior
policy πβ , such that we have E

[
V (πE)− V (πNBCU)

]
= Ω((1− η)(V (πE)− V (πβ))).

The hard instance in Proposition 1 builds on the following idea: NBCU considers all action labels in
the union dataset equally important. Therefore, we can build an instance where the expert π selects a
good action with an one-step reward of 1, while the behavior policy πβ chooses a bad action with an
one-step reward of 0. The noise introduced by πβ results in incorrect learning goals, causing NBCU
to make a mistake with probability 1− η, which is the fraction of the noise in the union dataset. By a
carefully designed transition probability, we can obtain the expected bound in Proposition 1.

5 Addressing Distribution Shift with Importance Sampling
In this section, we propose a data selection approach to alleviate the distribution shift issue between
expert data and supplementary data. Our approach is inspired by recent works [25, 61], where
a discriminator is trained to re-weight samples, and a weighted BC objective is used for policy
optimization. Specifically, we define the weighted BC objective as follows:

πISW-BC ∈ argmax
π

H∑
h=1

∑
(s,a)∈S×A

{
d̂Uh (s, a)× [wh(s, a) log πh(a|s)]× I [wh(s, a) ≥ δ]

}
, (3)

where d̂Uh (s, a) is the empirical state-action distribution of the union dataset, and wh(s, a) ∈ [0,∞)
is the weight decided by the discriminator. We introduce a hyper-parameter δ ∈ [0,∞) to better
select samples.

We propose using the importance sampling technique [46, Chapter 9] to transfer samples in the union
dataset to the expert policy distribution, which is the key idea behind our method. This technique
helps address the failure mode of NBCU. In an ideal scenario where there are infinite samples (i.e.,
at the population level), d̂Uh would equal dUh . By setting wh(s, a) = dEh (s, a)/d

U
h (s, a), we obtain

d̂Uh (s, a)wh(s, a) = dEh (s, a), and the objective (3) enables the learning of a policy as if samples were
collected by the expert policy. However, in practice, dEh (s, a) and dUh (s, a) are unknown, and we only
have a finite number of samples from each of these distributions. Therefore, we must estimate the
grounded importance sampling ratio dEh (s, a)/d

U
h (s, a) from the expert data and union data.

We emphasize that estimating the probability densities of high-dimensional distributions separately for
expert and union data and then calculating their quotient can be a challenging task. We take a different
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approach. Inspired by [17], we directly train a discriminator to estimate the importance sampling
ratio dEh (s, a)/d

U
h (s, a). To this end, we introduce time-dependent parameterized discriminators

{ch : S ×A → [0, 1]}Hh=1, each of which is optimized according to the objective function

max
ch

∑
(s,a)∈S×A

d̂Eh (s, a) [log (ch(s, a))] +
∑

(s,a)∈S×A

d̂Uh (s, a) [log (1− ch(s, a))] . (4)

Solving the optimization problem in (4) is equivalent to training a binary classifier that assigns positive
labels to expert data and negative labels to union data. We can obtain the optimal discriminator at the
population level, from which we can derive the importance sampling ratio formula:

c⋆h(s, a) =
dEh (s, a)

dEh (s, a) + dUh (s, a)
, wh(s, a) =

c⋆h(s, a)

1− c⋆h(s, a)
. (5)

Based on the previous discussion, we present the implementation of our proposed method, named
ISW-BC (importance-sampling-weighted BC), in Algorithm 1. It is worth noting that ISW-BC
employs an unbiased weighting rule since it directly estimates the importance sampling ratio. In
contrast, previous approaches such as [25, 61] use regularized weighting rules that may fail to recover
the expert policy even with infinite samples. For further details on the differences between our method
and previous ones, please refer to Appendix B.

5.1 Negative Result of ISW-BC with Tabular Representations of Discriminator

We have not yet specified the representations of the discriminator. One natural choice is to use
tabular representations, which correspond to linear function approximation with one-hot features.
Tabular representations have a strong representation power since they can span all possible functions.
However, surprisingly, we show that tabular representations can fail when considering generalization.
Proposition 2. If the discriminator uses the one-hot feature with δ = 0, we have πISW-BC = πBC.

Proposition 2 suggests that even if we have a large number of supplementary samples and use
importance sampling, ISW-BC is not guaranteed to outperform BC based on tabular representations.
To illustrate, suppose we have a sample (s, a) that is an expert-style sample but only appears in
the supplementary dataset, meaning that dEh (s, a) > 0, d̂Eh (s, a) = 0 and d̂Uh (s, a) > 0. Using

tabular representations, we can compute the closed-form solution c⋆h(s, a) = d̂Eh (s, a)/(d̂
E
h (s, a) +

d̂Uh (s, a)) = 0. This implies that the importance sampling ratio wh(s, a) = c⋆h(s, a)/(1−c⋆h(s, a)) =
0, so this good sample does not contribute to the learning objective (3). The failure of tabular
representations is due to their discrete treatment of data, ignoring internal correlations. Consequently,
although they work well in minimizing the empirical loss, they are not good at generalization. This
kind of failure mode is also mentioned in the GAN literature [4].

Algorithm 1 ISW-BC

Input: Expert data DE and supplementary data DS.
1: DU ← DE ∪ DS.
2: c← Train a binary classifier with positive labels

for DE and negative labels for DU.
3: w ← Compute importance sampling ratio by

Eq. (5).
4: πISW-BC ← Apply weighted BC to learn a policy

by Eq. (3) with DU and w.
Output: Policy πISW-BC.

+/-

+/-

-

-
-

- -
-
-

-

-

in-distribution out-of-distribution

Figure 2: Illustration for ISW-BC. Please
refer to the text below Assumption 2 for a
detailed explanation.

5.2 Positive Result of ISW-BC with Function Approximation of Discriminator

In this section, we address the issue raised in the previous section by investigating ISW-BC with a
specific function approximation. To avoid the limitations of tabular representations, we consider that
the discriminator is parameterized by ch(s, a; θh) =

1
1+exp(−⟨ϕh(s,a),θh⟩) , where ϕh : S×A → Rd is

a fixed feature mapping and θh ∈ Rd is the parameter to be trained. Note that we require d < |S||A|
to avoid the tabular representations. Let g(x) = log(1 + exp(x)). Then, the optimization problem of
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the discriminator becomes:

min
θh
Lh(θh) ≜

∑
(s,a)

d̂Eh (s, a)g(−⟨ϕh(s, a), θh⟩) +
∑
(s,a)

d̂Uh (s, a)g(⟨ϕh(s, a), θh⟩) (6)

Let θ⋆ = {θ⋆1 , · · · , θ⋆H} be the optimal solution obtained from Eq. (6). With the feature vector,
samples are no longer treated independently, and the discriminator can perform structured estimation.
To be consistent with the previous results, the policy is still based on tabular representations.

In the context of general linear function approximation, it is no longer possible to obtain a closed-form
solution for c⋆ as in Eq. (5). This raises the question: what can we infer about c⋆? Our intuition
can be described as follows. We can envision the supplementary dataset containing two types of
samples: some that were in-expert distribution, and others that were out-of-expert distribution. We
expect that wh(s, a) is large in the former case and small in the latter case. Note that wh(s, a) is
monotonic with respect to the inner product ⟨ϕh(s, a), θ⟩. Therefore, we conclude that a larger value
of ⟨ϕh(s, a), θ⟩ implies a more significant contribution to the learning objective (3). In the following
part, we demonstrate that the aforementioned intuition can be achieved under mild assumptions.

Assumption 2. Let DS
h denote the set of state-action pairs in DS in h. Define DS,1

h = {(s, a) ∈
DS

h : dπ
E

h (s) > 0, a = πE
h (s)} as the in-expert-distribution dataset in DS

h and DS,2
h = DS

h \ DS,1
h

as the out-of-expert-distribution dataset. There exists a ground truth parameter θ̄h ∈ Rd, for any
(s, a) ∈ DE

h ∪ DS,1
h and (s′, a′) ∈ DS,2

h , it holds that ⟨θ̄h, ϕh(s, a)⟩ > 0 and ⟨θ̄h, ϕh(s
′, a′)⟩ < 0.

Readers may realize that Assumption 2 is closely related to the notion of “margin” in the classification
problem. Define ∆h(θ) ≜ min(s,a)∈DE

h∪DS,1
h
⟨θ, ϕh(s, a)⟩ − max(s′,a′)∈DS,2

h
⟨θ, ϕh(s

′, a′)⟩. From

Assumption 2, we have ∆h(θ̄h) > 0. This means that there exists a classifier that recognizes samples
from both DE

h and DS,1
h as in-expert-distribution samples and samples from DS,2

h as out-of-expert-
distribution samples. Note that such a nice classifier is assumed to exist, which is not identical to what
is learned via Eq. (6). Before further discussion, we note that θ̄h is not unique if it exists. Without
loss of generality, we define θ̄h as that can achieve the maximum margin (among all unit vectors).

Let us delve into the technical challenge that arises from Assumption 2. Although we assume two
modes in the supplementary dataset, the learner is not aware of them beforehand. To gain a better
understanding, refer to Figure 2, where the “star” corresponds to the expert data and the “triangle”
corresponds to the supplementary data. The green and red parts of the triangle represent DS,1 and
DS,2, respectively. While training the discriminator, we assign positive labels (shown in “+”) to
the expert data and negative labels (shown in “-”) to the union data. Consequently, it becomes
challenging to determine the learned decision boundary theoretically. To address this challenge, we
develop the landscape properties, Lipschitz continuity and quadratic growth conditions, in Lemma 1
and Lemma 2, respectively. These terminologies are from the optimization literature; see [23, 13].
Incorporating these properties will enable us to infer the learned decision boundary.
Lemma 1. For any θ ∈ Rd, the margin function is Lh-Lipschitz continuous in the sense that
∆h(θ̄h) − ∆h(θ) ≤ Lh

∥∥θ̄h − θ
∥∥, where Lh = ∥ϕh(s

1, a1) − ϕh(s
2, a2)∥ with (s1, a1) ∈

argmin(s,a)∈DE
h∪DS,1

h
⟨θ, ϕh(s, a)⟩ and (s2, a2) ∈ argmax(s,a)∈DS,2

h
⟨θ, ϕh(s, a)⟩.

Lemma 2. For any h, let Ah ∈ RNtot×d be the matrix that aggregates the feature vectors of samples
in DU

h . Assume that rank(Ah) = d, then Lh (defined in Eq. (6)) has a (one-sided) quadratic growth
condition. That is, there exists τh > 0 such that Lh(θh) ≥ Lh(θ

⋆
h) +

τh
2

∥∥θh − θ⋆h
∥∥2 .

Using Lemma 1 and Lemma 2, we are ready to obtain the imitation gap bound of ISW-BC.

Theorem 3. Under Assumptions 1 and 2, let µ = max(s,h)∈S×[H] d
πE

h (s, πE
h (s))/d

πβ

h (s, πE
h (s)) <

∞, if the feature is designed such that

√
2(Lh(θ̄h)−Lh(θ⋆

h))
τh

< ∆h(θ̄h)
Lh

holds, then we have ∆h(θ
⋆
h) >

0. Furthermore, we have the imitation gap bound E[V (πE)− V (πISW-BC)] = O( |S|H2

NE+NS/µ
).

In order to interpret Theorem 3, it is important to note that ∆h(θ
⋆
h) > 0 means that there exists a

δ > 0 such that wh(s, a; θ
⋆
h) > δ for (s, a) ∈ DE

h ∪DS,1
h and wh(s, a; θ

⋆
h) < δ for (s, a) ∈ DS,2

h . As
a result, all samples from DE

h and DS,1
h are assigned with large weights, which allows ISW-BC to

make use of additional samples and outperform BC.
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We remark that the imitation gap bound of ISW-BC is dependent on the number of expert-style
state-action pairs presented in the union of DE

h and DS,1
h . This number is represented as NE +NS/µ,

where µ is a state-action coverage parameter. It is important to mention that a similar notation is used
in the literature of offline RL, as seen in [33, 10]. Additionally, ISW-BC has the ability to eliminate
the gap of NBCU, meaning there is no non-vanishing error in Theorem 3. Moreover, ISW-BC can
perform well even when DS,2

h has noisy action labels, a scenario where NBCU may fail.

Although Theorem 3 produces desirable outcomes, it does have some limitations. First, the theoret-
ical analysis necessitates knowledge of δ, which is typically challenging to determine beforehand.
However, our empirical findings in Section 6 demonstrate that setting δ = 0 is effective in practice.
Second, Theorem 3 mandates the use of good smooth features to ensure the required inequality holds,
thereby avoiding the undesirable case presented in Proposition 2. Our paper does not offer a solution
for finding such feature representations. Nevertheless, our experiments indicate that neural networks
can usually learn suitable features. We present a simple mathematical example corresponding to
Theorem 3 in Appendix D.5. We leave more general results of ISW-BC to future work.

6 Experiments
To validate the theoretical claims, we perform numerical experiments. We provide a brief overview
of the experiment set-up below, and the details can be found in Appendix H.

6.1 Robotic Locomotion Control

In this section, we present our experiment on locomotion control, where we train a robot to run
like a human in four environments from the Gym MuJoCo suite [14]: Ant, Hopper, Halfcheetah,
and Walker. We adopt online SAC [19] to train an agent for each environment with 1M steps, and
consider the resultant policy as the expert. For each environment, the expert data contains 1 trajectory
collected by the expert policy. We consider two types of supplementary datasets:

• Full Replay (small distribution shift): the supplementary dataset (1 million samples) is directly
sampled from the experience replay buffer of the online SAC agent, which is suggested by [25].
This setting has a small distribution shift as the online agent quickly converges to the expert policy
(see Figure 5 in the Appendix), resulting in abundant expert trajectories in the replay buffer.

• Noisy Expert (large distribution shift): the supplementary dataset consists of 10 clean expert
trajectories and 5 noisy expert trajectories where the action labels are corrupted (i.e., replaced by
random actions). This introduces a large state-action distribution shift, as discussed in Remark 1.
For further discussion on dataset corruption and distribution shift, please refer to Appendix E.2.

Table 2: Environment return of algorithms on 4 robotic locomotion control tasks. Digits correspond
to the mean performance over 5 random seeds and the subscript ± indicates the standard deviation.
“Avg” computes the normalized score over environments. Same as the other tables.

Ant HalfCheetah Hopper Walker Avg
Random −326 −280 −20 2 0%
Expert 5229 11115 3589 5082 100%
BC 1759±287 931±273 2468±164 1738±311 38%

Full Replay

NBCU 4932±148 10566±86 3241±276 4462±105 92%
DemoDICE 5000±124 10781±67 3394±93 4537±125 94%
DWBC 2951±155 1485±377 2567±88 1572±225 44%
ISW-BC 4933±110 10786±56 3434±38 4475±164 94%

Noisy Expert

NBCU 3259±159 5561±539 558±23 518±56 35%
DemoDICE 2523±244 6020±346 1990±90 1685±160 49%
DWBC 3270±238 5688±557 3317±59 1985±175 62%
ISW-BC 3075±268 9284±346 2624±249 2859±407 69%

Besides our proposed methods, we also evaluate two state-of-the-art methods in the locomotion
control domain: DemoDICE [25] and DWBC [61]. We report the experiment results in Table 2.

We observe that BC suffers since the amount of expert data is limited. In the full replay task, NBCU
performs well due to the small distribution shift. However, in the noisy expert task, NBCU’s average
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performance is inferior to that of BC5, while ISW-BC outperforms NBCU in average significantly,
demonstrating the robustness of ISW-BC to distribution shift. It is worth noting that among all
evaluated methods, only our proposed method ISW-BC performs well in both settings. Prior methods
such as DemoDICE and DWBC only perform well in one of the two settings.

6.2 Atari Video Games

In this section, we evaluate algorithms on Atari games [5], which involve video frames as inputs and
discrete controls as outputs. Furthermore, environment transitions are stochastic for these games. We
consider 5 games, namely Alien, MsPacman, Phoenix, Qbert, and SpaceInvaders. We obtain
the offline expert data and supplementary data from the replay buffer of an online DQN agent, as
released by [2]. We use the expert data from the buffer with the last index, which only contains 50k
frames, to create a challenging learning setting. To augment this data, we use earlier replay buffer
data to obtain supplementary data with approximately 200k frames. We consider the same baselines
as in Section 6.1. All methods build on the classical convolutional neural networks used in DQN.

Similar to Section 6.1, we consider two types of supplementary data. The full replay setting
involves supplementary data that is close to the expert data, exhibiting a small distribution shift.
The noisy expert setting has noisy action labels, leading to a large distribution shift. Experiment
details can be found in Appendix H.1.2. We report the game scores of the trained policies in Table 3.

Table 3: Environment return of algorithms on 5 Atari video games.
Alien MsPacman Phoenix Qbert SpaceInvaders Avg

Random −228 307 761 164 148 0%
Expert 2443 3601 4869 10955 1783 100%
BC 1051±21 1799±27 1520±56 4769±111 472±10 32%

Full Replay

NBCU 1405±28 2089±48 2431±104 8065±109 600±13 50%
DemoDICE 1401±16 2146±52 2192±72 7820±206 558±29 48%
DWBC 122±4 1251±56 583±33 1078±50 287±6 7%
ISW-BC 1452±37 2162±36 2299±76 7848±237 613±16 50%

Noisy Expert

NBCU 944±22 1378±30 1491±55 4366±458 418±14 27%
DemoDICE 1054±38 1604±59 1448±112 5354±295 395±10 31%
DWBC 643±18 656±16 1165±87 3860±104 296±5 16%
ISW-BC 1122±28 1980±51 1618±51 5247±328 497±6 36%

Our observations are consistent with those of the previous experiments. NBCU performs well when
the distribution shift is small, while only ISW-BC is robust when the distribution shift is large.

6.3 Image Classification

(a) Clipart (b) Infograph (c) Painting (d) Quickdraw (e) Real (f) Sketch

Figure 3: Samples of tiger class from 6 sub-datasets of the DomainNet [36] dataset. Infograph and
quickdraw have quite different patterns (i.e., distribution shift) compared with the others.

In our final experiment, we tackle an image classification task. This task is a special type of imitation
learning where the planning horizon is 1 and there are no environment transitions. The reward is
classification accuracy. Please note that our main purpose here is to use this degraded one-step task
to verify the theoretical results.

We use a famous dataset, DomainNet [36], which comprises 6 sub-datasets (clipart, infograph,
painting, quickdraw, real, and sketch) that have different feature patterns and hence distribution
shifts; see Figure 3 for an illustration. Following [22], our task is to perform 10-class classification
(bird, feather, headphones, ice_cream, teapot, tiger, whale, windmill, wine_glass, and

5We provide an explanation of why NBCU is better than BC on Ant and Walker in this scenario in Appendix.
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zebra) using 80% of the images for training and 20% for test. Each sub-dataset has roughly
2000-5000 images.

We build the classifier on the pretrained ResNet-18 [20], as directly training ResNet-18 on the
DomainNet dataset failed. We then optimize a 2-hidden-layer neural network, where inputs are from
the feature representations extracted by the pretrained and fixed ResNet-18. We create 6 sub-tasks,
where one of the 6 sub-datasets is used as the expert data while the other 5 sub-datasets are used as the
supplementary datasets. We evaluate the classification accuracy on the expert test data. Note that there
is no natural extension of DemoDICE for this task. More details can be found in Appendix H.1.3.

The results of our experiment are presented in Table 4. We observe that due to the presence of
distribution shifts, NBCU performs even worse than BC, even though NBCU use more data than BC.
On the other hand, ISW-BC can improve the performance over BC on 5 out of 6 tasks by re-weighting
the supplementary data. At the same time, ISW-BC is more effective than DWBC.

Table 4: Test classification accuracy (%) of algorithms on 6 types of expert and supplementary data.
Clipart Infograph Painting Quickdraw Real Sketch Avg

BC 89.31±0.01 55.80±0.01 90.14±0.00 85.61±0.01 96.19±0.00 87.58±0.01 84.10
NBCU 89.16±0.02 56.32±0.02 88.29±0.01 84.78±0.03 95.31±0.00 87.57±0.00 83.57
DWBC 90.00±0.09 57.44±0.06 90.89±0.04 85.09±0.09 96.35±0.01 88.86±0.09 84.77
ISW-BC 90.86±0.00 57.52±0.01 91.78±0.01 84.97±0.01 96.56±0.01 89.63±0.06 85.22

7 Discussion and Conclusion

This paper introduces a formal mathematical framework for imitation learning with a supplementary
yet imperfect dataset, which is designed to address the scarcity of expert data. Within this framework,
we present new theoretical insights that illuminate the distribution shift challenge between expert
and supplementary data. To deal with this challenge, we devise a new method named ISW-BC,
employing the importance sampling technique to select data within the expert distribution. Through
both theoretical analysis and empirical evaluations, we show the superiority of the proposed approach.

Our research is closely connected with data-centric artificial intelligence (AI) [39, 54, 64]. Here,
the emphasis lies in the quality, availability, and management of data as foundational elements for
constructing effective AI models and applications. The importance sampling technique developed in
this paper proves valuable for processing imperfect data.

Furthermore, our methods can extend beyond the scope of consideration in this paper. To illustrate,
the core concept of data re-weighting and selection can find utility in the realm of large language
models. In specific downstream tasks with limited expert data, we can judiciously select a set of
pre-training tasks to construct supplementary data and to enhance overall performance of language
models; for additional insights, please refer to recent progress in [58, 18]. Other potential avenues for
future exploration include the extension to multi-task imitation learning, as well as the unsupervised
case where the expert data is not available.6

Overall, our findings demonstrate the potential of improving imitation learning performance by
leveraging diverse data sources through effective data selection. We aspire for this work to serve as
inspiration for future advancements in the field.

Acknowledgment

We thank Congliang Chen for discussing a technical lemma. The work of Yang Yu is supported by
National Key Research and Development Program of China (2020AAA0107200), NSFC (61876077),
and Collaborative Innovation Center of Novel Software Technology and Industrialization. The work
of Zhi-Quan Luo is supported in part by the National Key Research and Development Project under
grant 2022YFA1003900, and in part by the Guangdong Provincial Key Laboratory of Big Data
Computing.

6In this scenario, we can consider using a small fraction of imperfect data to reconstruct a surrogate expert
policy and expert data (e.g., via majority voting). Subsequently, we can regard the remaining imperfect data as
supplementary and apply the proposed framework.

10



References
[1] Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. Flambe: Structural

complexity and representation learning of low rank mdps. Advances in Neural Information
Processing Systems 33, pages 20095–20107, 2020.

[2] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on
offline reinforcement learning. In Proceedings of the 37th International Conference on Machine
Learning, pages 104–114, 2020.

[3] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot
learning from demonstration. Robotics and Autonomous Systems, 57(5):469–483, 2009.

[4] Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. Generalization and equilib-
rium in generative adversarial nets (gans). In Proceedings of the 34th International Conference on
Machine Learning, pages 224–232, 2017.

[5] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence Research,
47:253–279, 2013.

[6] Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond
suboptimal demonstrations via inverse reinforcement learning from observations. In Proceedings
of the 36th International Conference on Machine Learning, pages 783–792, 2019.

[7] Daniel S Brown, Wonjoon Goo, and Scott Niekum. Better-than-demonstrator imitation learning
via automatically-ranked demonstrations. In Conference on robot learning, pages 330–359. PMLR,
2020.

[8] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Advances in Neural Information Processing Systems 33, pages 1877–1901,
2020.

[9] Jonathan Chang, Masatoshi Uehara, Dhruv Sreenivas, Rahul Kidambi, and Wen Sun. Mitigating
covariate shift in imitation learning via offline data with partial coverage. In Advances in Neural
Information Processing Systems 34, pages 965–979, 2021.

[10] Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement
learning. In Proceedings of the 36th International Conference on Machine Learning, pages
1042–1051, 2019.

[11] Corinna Cortes, Yishay Mansour, and Mehryar Mohri. Learning bounds for importance
weighting. In Advances in Neural Information Processing Systems 23, pages 442–450, 2010.

[12] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for
convex optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

[13] Dmitriy Drusvyatskiy and Adrian S Lewis. Error bounds, quadratic growth, and linear conver-
gence of proximal methods. Mathematics of Operations Research, 43(3):919–948, 2018.

[14] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking
deep reinforcement learning for continuous control. In Proceedings of the 33rd International
Conference on Machine Learning, pages 1329–1338, 2016.

[15] Tongtong Fang, Nan Lu, Gang Niu, and Masashi Sugiyama. Rethinking importance weighting
for deep learning under distribution shift. In Advances in Neural Information Processing Systems
33, pages 11996–12007, 2020.

[16] Seyed Kamyar Seyed Ghasemipour, Richard S. Zemel, and Shixiang Gu. A divergence mini-
mization perspective on imitation learning methods. In Proceedings of the 3rd Annual Conference
on Robot Learning, pages 1259–1277, 2019.

11



[17] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural
Information Processing Systems 27, pages 2672–2680, 2014.

[18] Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno,
Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, et al.
Textbooks are all you need. arXiv preprint arXiv:2306.11644, 2023.

[19] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the 35th
International Conference on Machine Learning, pages 1856–1865, 2018.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 770–778, 2016.

[21] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in
Neural Information Processing Systems 29, pages 4565–4573, 2016.

[22] Junyuan Hong, Lingjuan Lyu, Jiayu Zhou, and Michael Spranger. Outsourcing training without
uploading data via efficient collaborative open-source sampling. In Advances in Neural Information
Processing Systems 35, pages 20133–20146, 2022.

[23] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-łojasiewicz condition. In Proceeddings of The European Con-
ference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases,
pages 795–811, 2016.

[24] Geon-Hyeong Kim, Jongmin Lee, Youngsoo Jang, Hongseok Yang, and Kee-Eung Kim. Lob-
sdice: Offline learning from observation via stationary distribution correction estimation. In
Advances in Neural Information Processing Systems 35, pages 8252–8264, 2022.

[25] Geon-Hyeong Kim, Seokin Seo, Jongmin Lee, Wonseok Jeon, HyeongJoo Hwang, Hongseok
Yang, and Kee-Eung Kim. DemoDICE: Offline imitation learning with supplementary imperfect
demonstrations. In Proceedings of the 10th International Conference on Learning Representations,
2022.

[26] Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan
Tompson. Discriminator-actor-critic: Addressing sample inefficiency and reward bias in ad-
versarial imitation learning. In Proceedings of the 7th International Conference on Learning
Representations, 2019.

[27] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. Journal of Machine Learning Research, 17(39):1–40, 2016.

[28] Ziniu Li, Tian Xu, Yang Yu, and Zhi-Quan Luo. Rethinking valuedice: Does it really improve
performance? arXiv preprint arXiv:2202.02468, 2022.

[29] Anqi Li, Byron Boots, and Ching-An Cheng. Mahalo: Unifying offline reinforcement learning
and imitation learning from observations. arXiv preprint arXiv:2303.17156, 2023.

[30] Tongliang Liu and Dacheng Tao. Classification with noisy labels by importance reweighting.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(3):447–461, 2015.

[31] Liu Liu, Ziyang Tang, Lanqing Li, and Dijun Luo. Robust imitation learning from corrupted
demonstrations. arXiv preprint arXiv:2201.12594, 2022.

[32] Yecheng Jason Ma, Andrew Shen, Dinesh Jayaraman, and Osbert Bastani. Smodice: Versatile
offline imitation learning via state occupancy matching. In Prooceedings of the 39th International
Conference on Machine Learning, pages 14639–14663, 2022.

[33] Rémi Munos and Csaba Szepesvári. Finite-time bounds for fitted value iteration. Journal of
Machine Learning Research, 9(5), 2008.

12



[34] Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J. Andrew Bagnell, Pieter Abbeel, and Jan
Peters. An algorithmic perspective on imitation learning. Foundations and Trends in Robotic,
7(1-2):1–179, 2018.

[35] Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan, Evangelos
Theodorou, and Byron Boots. Agile autonomous driving using end-to-end deep imitation learning.
arXiv preprint arXiv:1709.07174, 2017.

[36] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment
matching for multi-source domain adaptation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1406–1415, 2019.

[37] Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

[38] Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for
operational space control. In Machine Learning, Proceedings of the 24th International Conference
on Machine Learning, pages 745–750, 2007.

[39] Neoklis Polyzotis and Matei Zaharia. What can data-centric ai learn from data and ml engineer-
ing? arXiv preprint arXiv:2112.06439, 2021.

[40] Dean Pomerleau. Efficient training of artificial neural networks for autonomous navigation.
Neural Computation, 3(1):88–97, 1991.

[41] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, 2014.

[42] Nived Rajaraman, Lin F. Yang, Jiantao Jiao, and Kannan Ramchandran. Toward the fundamental
limits of imitation learning. In Advances in Neural Information Processing Systems 33, pages
2914–2924, 2020.

[43] Nived Rajaraman, Yanjun Han, Lin Yang, Jingbo Liu, Jiantao Jiao, and Kannan Ramchandran.
On the value of interaction and function approximation in imitation learning. In Advances in
Neural Information Processing Systems 34, pages 1325–1336, 2021.

[44] Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings of
the 13rd International Conference on Artificial Intelligence and Statistics, pages 661–668, 2010.

[45] Fumihiro Sasaki and Ryota Yamashina. Behavioral cloning from noisy demonstrations. In
Proceedings of the 9th International Conference on Learning Representations, 2021.

[46] Alexander Shapiro. Monte carlo sampling methods. Handbooks in operations research and
management science, 10:353–425, 2003.

[47] Harshit Sikchi, Qinqing Zheng, Amy Zhang, and Scott Niekum. Dual rl: Unification and
new methods for reinforcement and imitation learning. In Sixteenth European Workshop on
Reinforcement Learning, 2023.

[48] Jonathan Spencer, Sanjiban Choudhury, Arun Venkatraman, Brian Ziebart, and J Andrew
Bagnell. Feedback in imitation learning: The three regimes of covariate shift. arXiv preprint
arXiv:2102.02872, 2021.

[49] Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul von Bünau, and Motoaki
Kawanabe. Direct importance estimation with model selection and its application to covariate shift
adaptation. In Advances in Neural Information Processing Systems 20, pages 1433–1440, 2007.

[50] Umar Syed, Michael H. Bowling, and Robert E. Schapire. Apprenticeship learning using linear
programming. In William W. Cohen, Andrew McCallum, and Sam T. Roweis, editors, Proceedings
of the 25th International Conference on Machine Learning, pages 1032–1039, 2008.

[51] Voot Tangkaratt, Bo Han, Mohammad Emtiyaz Khan, and Masashi Sugiyama. Variational
imitation learning with diverse-quality demonstrations. In Proceedings of the 37th International
Conference on Machine Learning, pages 9407–9417, 2020.

13



[52] Yunke Wang, Chang Xu, Bo Du, and Honglak Lee. Learning to weight imperfect demonstrations.
In Proceedings of the 38th International Conference on Machine Learning, pages 10961–10970,
2021.

[53] Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J Weinberger.
Inequalities for the l1 deviation of the empirical distribution. Hewlett-Packard Labs, Techical
Report, 2003.

[54] Steven Euijong Whang, Yuji Roh, Hwanjun Song, and Jae-Gil Lee. Data collection and quality
challenges in deep learning: A data-centric ai perspective. The VLDB Journal, pages 1–23, 2023.

[55] Grover J Whitehurst and Ross Vasta. Is language acquired through imitation? Journal of
Psycholinguistic Research, 4:37–59, 1975.

[56] Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao, Voot Tangkaratt, and Masashi Sugiyama.
Imitation learning from imperfect demonstration. In Proceedings of the 36th International
Conference on Machine Learning, pages 6818–6827, 2019.

[57] Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning: Bridging
sample-efficient offline and online reinforcement learning. Advances in Neural Information
Processing Systems 34, pages 27395–27407, 2021.

[58] Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy Liang. Data selection for language
models via importance resampling. arXiv preprint arXiv:2302.03169, 2023.

[59] Tian Xu, Ziniu Li, and Yang Yu. Error bounds of imitating policies and environments. In
Advances in Neural Information Processing Systems 33, pages 15737–15749, 2020.

[60] Tian Xu, Ziniu Li, and Yang Yu. Error bounds of imitating policies and environments for
reinforcement learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

[61] Haoran Xu, Xianyuan Zhan, Honglei Yin, and Huiling Qin. Discriminator-weighted offline
imitation learning from suboptimal demonstrations. In Prooceedings of the 39th International
Conference on Machine Learning, pages 24725–24742, 2022.

[62] Tian Xu, Ziniu Li, Yang Yu, and Zhi-Quan Luo. Understanding adversarial imitation learning
in small sample regime: A stage-coupled analysis. arXiv preprint arXiv:2208.01899, 2022.

[63] Tian Xu, Ziniu Li, Yang Yu, and Zhi-Quan Luo. Provably efficient adversarial imitation learning
with unknown transitions. In Proceedings of the 39th Conference on Uncertainty in Artificial
Intelligence, pages 2367–2378, 2023.

[64] Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, Zhimeng Jiang, Shaochen Zhong,
and Xia Hu. Data-centric artificial intelligence: A survey. arXiv preprint arXiv:2303.10158, 2023.

14



A Broader Impacts

This study delves into the theoretical aspects of offline imitation learning with supplementary data,
and we verify our findings through experiments on established benchmarks. While this paper does
not present any immediate, direct social impacts, the potential practical applications of our research
could bring about positive change. By expanding the reach of imitation learning algorithms, our work
may facilitate the development of more efficient and effective solutions in fields such as robotics,
autonomous vehicles, and healthcare. However, we must also acknowledge that the misuse of such
technology could have negative consequences, such as the manipulation of information to influence
people’s behavior. Therefore, it is crucial to remain vigilant in ensuring that the benefits of imitation
learning are harnessed in a responsible and ethical manner.

B Additional Related Work

B.1 Imitation Learning from Imperfection

The problem considered in this paper is related to IL with a single imperfect dataset [56, 6, 51,
52, 45, 31]. In particular, the supplementary dataset in our set-up can also be viewed as imperfect
demonstrations. However, our problem setting differs from IL with imperfect demonstrations in two
key aspects. First, in IL with imperfect demonstrations, they either pose strong assumptions [51, 45,
31] or require auxiliary information (e.g., confidence scores on imperfect trajectories) on the imperfect
dataset [56, 6]. In contrast, we assume access to a small number of expert trajectories to identify
in-expert-distribution data. Second, most works [56, 6, 51, 52] in IL with imperfect demonstrations
require online environment interactions while we focus on the offline setting. Additionally, in a
related study, [7] employed imperfect data to infer a reward function. Under the assumption of the
expert being strictly sub-optimal, [7] demonstrated that it is possible to learn a policy that surpasses
the performance of the demonstrator by utilizing the recovered reward function.

Our research also bears relevance to the recent works by [29, 47], which aimed to unify offline
Reinforcement Learning (RL) and IL. Different from our approach, these studies adopt a principle
akin to adversarial imitation learning [50]. For a more detailed discussion, we refer readers to
[29, 47]. We also observe a connection between the objective of importance sampling weighted
behavior cloning (ISW-BC) and the reward-weighted regression (RWR) framework introduced in
[38, 37]. Specifically, the training objective of ISW-BC can be likened to reward-weighted regression
(RWR) with γ = 0 and a reward function denoted as r(s, a) = log dE(s,a)

dU(s,a) . Nevertheless, there exist
two distinctions between the two approaches. First, RWR primarily focuses on the online setting,
while our work centers around the offline setting. Second, RWR finds its application in the context of
RL, where rewards are readily available. Conversely, in our imitation learning setup, the reward (or
the importance sampling ratio) needs to be inferred.

B.2 Difference with DemoDICE and DWBC

Our work builds upon previous research in IL with supplementary data, specifically the algorithms
DemoDICE [25] and DWBC [61]. A significant distinction arises between ISW-BC and these two
methods in terms of the weighting rule design. While DemoDICE and DWBC employ regularized
weighting rules, our method directly estimates the importance sampling ratio. This fundamental
difference can be critical as regularized weighting rules may struggle to recover the expert policy
exactly even with infinite samples. We provide further elaboration on this point below.

First, DemoDICE also uses the weighted BC objective in Eq. (3). But, DemoDICE uses the weighting
rule of w̃(s, a) ∝ d⋆(s, a)/dU(s, a) (refer to the formula between Equations (19)-(20) in [25]), where
d⋆(s, a) is computed by the expert’s state-action distribution matching objective regularized by a
divergence to the union data distribution (refer to [25, Equations (5)-(7)]):7

d⋆ = argmin
d

DKL(d∥dE) + αDKL(d∥dU)

s.t. d(s, a) ≥ 0 ∀s, a.
7For a moment, we use the notations in [25] and present their results under the stationary and infinite-horizon

MDPs. Same as the discussion of DWBC [61].
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∑
a

d(s, a) = (1− γ)ρ(s) + γ
∑
s′,a′

P (s|s′, a′)d(s′, a′) ∀s.

where γ ∈ [0, 1) is the discount factor, α > 0 is a hyper-parameter. Due to the regularization term in
the objective, it holds that d⋆(s, a) ̸= dπ

E

(s, a), resulting in a biased weighting rule w̃(s, a).

Second, DWBC considers a different policy learning objective (refer to [61, Equation (17)]):

min
π

α
∑

(s,a)∈DE

[− log π(a|s)]−
∑

(s,a)∈DE

[
− log π(a|s) · λ

c(1− c)

]

+
∑

(s,a)∈DS

[
− log π(a|s) · 1

1− c

]
,

(7)

where α > 0, λ > 0 are hyper-parameters, and c is the output of the discriminator that is jointly
trained with π (refer to [61, Equation (8)]):

min
c

λ
∑

(s,a)∈DE

[− log c(s, a, log π(a|s))] +
∑

(s,a)∈DS

[− log(1− c(s, a, log π(a|s)))]

− λ
∑

(s,a)∈DE

[− log(1− c(s, a, log π(a|s)))] .

Since its input additionally incorporates log π, the discriminator is not guaranteed to estimate the
state-action distribution. Thus, the weighting in Eq. (7) loses a connection with the importance
sampling ratio.

C Proof of Results in Section 4

Recall the objective of BC in Eq. (1):

πBC ∈ argmax
π

H∑
h=1

∑
(s,a)∈S×A

d̂Eh (s, a) log πh(a|s),

where d̂Eh (s, a) = nE
h (s, a)/Ntot is the empirical state-action distribution in the expert dataset, and

nE
h (s, a) is the number of expert trajectories such that their state-action pairs are equal to (s, a) in

time step h. With the tabular representations, we can obtain a closed-formed solution to the above
optimization problem.

πBC
h (a|s) =

{
nE
h(s,a)

nE
h(s)

if nE
h (s) > 0

1
|A| otherwise

(8)

where nE
h (s) ≜

∑
a′ nE

h (s, a
′). Analogously, we also have a closed-form solution for NBCU in the

tabular setting:

πNBCU
h (a|s) =

{
nU
h (s,a)

nU
h (s)

if nU
h (s) > 0

1
|A| otherwise

(9)

We will discuss the generalization performance of NBCU later.

In the proof, we frequently use the notation ≲ and ≳. In particular, a(n) ≲ b(n) means that there
exist C, n0 > 0 such that a(n) ≤ Cb(n) for all n ≥ n0. In our context, n usually refers to the
number of trajectories. For any two distributions P and Q over a finite set X , we define the total
variation distance as

TV(P,Q) =
1

2

∑
x∈X
|P (x)−Q(x)| = ∥P −Q∥1 .
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C.1 Proof of Theorem 1

When |DE| ≥ 1, by [42, Theorem 4.2], we have the following imitation gap bound for BC:

V (πE)− EDE

[
V (πBC)

]
≤ 4|S|H2

9|DE| .

When |DE| = 0, we simply have that

V (πE)− EDE

[
V (πBC)

]
≤ H.

Therefore, we have the following unified bound.

V (πE)− EDE

[
V (πBC)

]
≤ |S|H2

max{|DE|, 1} ≤
2|S|H2

|DE|+ 1
.

The last inequality follows that max{x, 1} ≥ (x + 1)/2 for any x ≥ 0. Finally, notice that |DE|
follows a binomial distribution by Assumption 1, i.e., |DE| ∼ Bin(Ntot, η). By Lemma 3, we have
that E[1/(|D|E + 1)] ≤ Ntotη, so

V (πE)− E
[
V (πBC)

]
≤ E

[
2|S|H2

|DE|+ 1

]
≤ 2|S|H2

Ntotη
=

2|S|H2

NE
,

which completes the proof.

C.2 Proof of Theorem 2

For analysis, we first define the mixture state-action distribution as follows.

dmix
h (s, a) ≜ ηdπ

E

h (s, a) + (1− η)dπ
β

h (s, a),

dmix
h (s) ≜

∑
a∈A

dmix
h (s, a), ∀(s, a) ∈ S ×A, ∀h ∈ [H].

By Assumption 1, in the population level, the marginal state-action distribution of union dataset DU

in time step h is exactly dmix
h . That is, dUh (s, a) = dmix

h (s, a), ∀(s, a, h) ∈ S ×A× [H]. Then we
define the mixture policy πmix induced by dmix as follows.

πmix
h (a|s) =

{
dmix
h (s,a)

dmix
h (s)

if dmix
h (s) > 0,

1
|A| otherwise.

∀(s, a) ∈ S ×A ,∀h ∈ [H]. (10)

From the theory of Markov Decision Processes, we know that (see, e.g., [41])

∀h ∈ [H],∀(s, a) ∈ S ×A, dπ
mix

h (s, a) = dmix
h (s, a).

Therefore, we can obtain that the marginal state-action distribution of union dataset DU in time step
h is exactly dπ

mix

h . Then we have the following decomposition.

E
[
V (πE)− V (πNBCU)

]
= E

[
V (πE)− V (πmix) + V (πmix)− V (πNBCU)

]
= E

[
V (πE)− V (πmix)

]
+ E

[
V (πmix)− V (πNBCU)

]
= V (πE)− V (πmix) + E

[
V (πmix)− V (πNBCU)

]
.

For V (πE)− V (πmix), we have that

V (πE)− V (πmix) =

H∑
h=1

∑
(s,a)∈S×A

(
dπ

E

h (s, a)− dπ
mix

h (s, a)
)
rh(s, a)

=

H∑
h=1

∑
(s,a)∈S×A

(
dπ

E

h (s, a)− dmix
h (s, a)

)
rh(s, a)

= (1− η)

H∑
h=1

∑
(s,a)∈S×A

(
dπ

E

h (s, a)− dπ
β

h (s, a)
)
rh(s, a)

= (1− η)
(
V (πE)− V (πβ)

)
. (11)
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The last equation follows the dual formulation of policy value (see, e.g., [41]), i.e., V (π) =∑H
h=1

∑
(s,a) d

π
h(s, a)rh(s, a) for any policy π. Besides, notice that E

[
V (πmix)− V (πNBCU)

]
is exactly the imitation gap of BC when regarding πmix and DU as the expert policy and expert
dataset, respectively. Note that πmix may be a stochastic policy. By [42, Theorem 4.4], we have the
following imtiation gap bound

E
[
V (πmix)− V (πNBCU)

]
≲
|S|H2 log(Ntot)

Ntot
. (12)

Combining Eq. (11) and Eq. (12) yields that

E
[
V (πE)− V (πNBCU)

]
≲ (1− η)

(
V (πE)− V (πβ)

)
+
|S|H2 log(Ntot)

Ntot
.

C.3 Proof of Proposition 1

The hard instance in Proposition 1 builds on the Standard Imitation MDP proposed in [60]; see
Figure 4 for illustration. For this MDP, each state is an absorbing state, i.e., Ph(s|s, a) = 1 for any
s and a. This property is mainly used to facilitate probability calculation and does not change the
nature of our analysis. Furthermore, by only taking the action a1 (shown in green), the agent can
obtain a reward of +1. Otherwise, the agent obtains a reward of 0 for the other action a ̸= a1. The
initial state distribution is a uniform distribution, i.e., ρ(s) = 1/|S| for any s ∈ S.

2 Bandit

1 · · · |S|�1 |S|

01 01 01

2

QRQ�H[SHUW�DFWLRQ%OXH�DUURZ�

*UHHQ�DUURZ�����H[SHUW�DFWLRQ

Figure 4: The Standard Imitation MDP in [60] corresponding to prove Proposition 1.

We consider that the expert policy πE always takes the action a1 (shown in green) while the behavioral
policy πβ always takes another action a2 (shown in blue). Formally, πE

h (a
1|s) = 1 and πβ

h(a
2|s) = 1

for any s ∈ S and h ∈ [H]. It is direct to calculate that V (πE) = H and V (πβ) = 0. The
supplementary dataset DS and the expert dataset DE are collected according to Assumption 1. The
mixture state-action distribution (introduced in Appendix C.2) can be calculated as for any s ∈ S and
h ∈ [H]:

dmix
h (s, a1) = ηdπ

E

h (s, a1) + (1− η)dπ
β

h (s, a1) = ηdπ
E

h (s, a1) = ηρ(s),

dmix
h (s, a2) = ηdπ

E

h (s, a2) + (1− η)dπ
β

h (s, a2) = (1− η)dπ
β

h (s, a2) = (1− η)ρ(s).

Note that in the population level, the marginal distribution of the union dataset DU in time step h is
exactly dmix

h . The mixture policy induced by dmix (introduced in Appendix C.2) can be formulated as

πmix
h (a1|s) = η, πmix

h (a2|s) = 1− η,∀s ∈ S, h ∈ [H].

Just like before, we have dπ
mix

h (s, a) = dmix
h (s, a). The policy value of πmix can be calculated as

V (πmix) =

H∑
h=1

∑
(s,a)∈S×A

dmix
h (s, a)rh(s, a) =

H∑
h=1

∑
s∈S

dmix
h (s, a1) = ηH.

Recall from Eq. (9) that πNBCU can be formulated as

∀h ∈ [H], πNBCU
h (a|s) =

{
nU
h (s,a)∑

a′ nU
h (s,a′) if

∑
a′ nU

h (s, a
′) > 0

1
|A| otherwise

(13)

We can view that the BC’s policy learned on the union dataset mimics the mixture policy πmix. In the
following part, we analyze the lower bound on the imitation gap of πNBCU.

E
[
V (πE)− V (πNBCU)

]
= V (πE)− V (πmix) + E

[
V (πmix)− V (πNBCU)

]
= H − ηH + E

[
V (πmix)− V (πNBCU)

]
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= (1− η)(V (πE)− V (πβ)) + E
[
V (πmix)− V (πNBCU)

]
.

Then we consider the term E
[
V (πmix)− V (πNBCU)

]
.

V (πmix)− V (πNBCU)

=

H∑
h=1

∑
(s,a)∈S×A

(
dπ

mix

h (s, a)− dπ
NBCU

h (s, a)
)
rh(s, a)

=

H∑
h=1

∑
(s,a)∈S×A

ρ(s)
(
πmix
h (a|s)− πNBCU

h (a|s)
)
rh(s, a)

=

H∑
h=1

∑
(s,a)∈S×A

ρ(s)
(
πmix
h (a|s)− πNBCU

h (a|s)
)
rh(s, a)I{nU

h (s) > 0}

+

H∑
h=1

∑
(s,a)∈S×A

ρ(s)
(
πmix
h (a|s)− πNBCU

h (a|s)
)
rh(s, a)I{nU

h (s) = 0}.

We take expectation over the randomness in DU on both sides and obtain that

E
[
V (πmix)− V (πNBCU)

]
(14)

= E

 H∑
h=1

∑
(s,a)∈S×A

ρ(s)
(
πmix
h (a|s)− πNBCU

h (a|s)
)
rh(s, a)I{nU

h (s) > 0}


+ E

 H∑
h=1

∑
(s,a)∈S×A

ρ(s)
(
πmix
h (a|s)− πNBCU

h (a|s)
)
rh(s, a)I{nU

h (s) = 0}

 . (15)

For the first term in RHS, we have that

E

 H∑
h=1

∑
(s,a)∈S×A

ρ(s)
(
πmix
h (a|s)− πNBCU

h (a|s)
)
rh(s, a)I{nU

h (s) > 0}


=

H∑
h=1

∑
(s,a)∈S×A

ρ(s)rh(s, a)E
[(
πmix
h (a|s)− πNBCU

h (a|s)
)
I{nU

h (s) > 0}
]

=

H∑
h=1

∑
(s,a)∈S×A

ρ(s)rh(s, a)P
(
nU
h (s) > 0

)
E
[
πmix
h (a|s)− πNBCU

h (a|s) | nU
h (s) > 0

]
= 0.

The last equation follows the fact that πNBCU
h (a|s) is an unbiased estimation of πmix

h (a|s), so
E[πmix

h (a|s)− πNBCU
h (a|s) | nU

h (s) > 0]. For the second term in Eq. (15), we have that

E

 H∑
h=1

∑
(s,a)∈S×A

ρ(s)
(
πmix
h (a|s)− πNBCU

h (a|s)
)
rh(s, a)I{nU

h (s) = 0}


=

H∑
h=1

∑
(s,a)∈S×A

ρ(s)rh(s, a)E
[(
πmix
h (a|s)− πNBCU

h (a|s)
)
I{nU

h (s) = 0}
]

=

H∑
h=1

∑
(s,a)∈S×A

ρ(s)rh(s, a)P
(
nU
h (s) = 0

)
E
[
πmix
h (a|s)− πNBCU

h (a|s) | nU
h (s) = 0

]
=

H∑
h=1

∑
(s,a)∈S×A

ρ(s)rh(s, a)P
(
nU
h (s) = 0

)(
πmix
h (a|s)− 1

|A|

)
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(a)
=

H∑
h=1

∑
s∈S

ρ(s)P
(
nU
h (s) = 0

)(
η − 1

|A|

)
(b)
= H

(
η − 1

|A|

)∑
s∈S

ρ(s)P
(
nU
1 (s) = 0

)
.

In the equation (a), we use the fact that rh(s, a1) = 1 but rh(s, a) = 0 for any a ̸= a1. In the
equation (b), since each state is an absorbing state, we have that P(nU

h (s) = 0) = P(nU
1 (s) = 0) for

any h ∈ [H]. We consider two cases to address RHS of equation (b). In the first case of η ≥ 1/|A|,
we directly have that

E

 H∑
h=1

∑
(s,a)∈S×A

ρ(s)
(
πmix
h (a|s)− πNBCU

h (a|s)
)
rh(s, a)I{nU

h (s) = 0}

 ≥ 0.

By Eq. (15), we have that

E
[
V (πmix)− V (πNBCU)

]
≥ 0,

which implies that

E
[
V (πE)− V (πNBCU)

]
≥ (1− η)(V (πE)− V (πβ)).

In the second case of η < 1/|A|, we have that

H

(
η − 1

|A|

)∑
s∈S

ρ(s)P
(
nU
1 (s) = 0

) (a)

≥ −
(

1

|A| − η

)
H exp

(
−Ntot

|S|

)
≥ −(1− η)H exp

(
−Ntot

|S|

)
(b)

≥ − (1− η)H

2
.

In the inequality (a), we use that∑
s∈S

ρ(s)P
(
nU
1 (s) = 0

)
=

∑
s∈S

ρ(s)(1− ρ(s))Ntot =

(
1− 1

|S|

)Ntot

≤ exp

(
−Ntot

|S|

)
.

The inequality (b) holds since we consider the range where Ntot ≥ |S| log(2). By Eq. (15), we have
that

E
[
V (πmix)− V (πNBCU)

]
≥ − (1− η)H

2
.

This implies that

E
[
V (πE)− V (πNBCU)

]
≥ (1− η)(V (πE)− V (πβ))− (1− η)H

2

=
(1− η)

2
(V (πE)− V (πβ)).

In both cases, we prove that E
[
V (πE)− V (πNBCU)

]
≳ (1−η)(V (πE)−V (πβ)) and thus complete

the proof.

D Proof of Results in Section 5

D.1 Proof of Proposition 2

In the tabular case, with the first-order optimality condition, we have c⋆h(s, a) = d̂Eh (s, a)/(d̂
E
h (s, a)+

d̂Uh (s, a)). By Eq. (5), we have

d̂Uh (s, a)wh(s, a) = d̂Uh (s, a)×
d̂Eh (s, a)

d̂Uh (s, a)
= d̂Eh (s, a).

Hence, the learning objective (3) reduces to (1).
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D.2 Proof of Lemma 1

Recall that
∆h(θ) = min

(s,a)∈DE
h∪DS,1

h

⟨θ, ϕh(s, a)⟩ − max
(s′,a′)∈DS,2

h

⟨θ, ϕh(s
′, a′)⟩.

Then we have that
∆h(θ̄h)−∆h(θ) = min

(s,a)∈DE
h∪DS,1

h

⟨θ̄h, ϕh(s, a)⟩ − max
(s′,a′)∈DS,2

h

⟨θ̄h, ϕh(s
′, a′)⟩

− min
(s,a)∈DE

h∪DS,1
h

⟨θ, ϕh(s, a)⟩+ max
(s′,a′)∈DS,2

h

⟨θ, ϕh(s
′, a′)⟩

(a)

≤ ⟨θ̄h, ϕh(s
1, a1)⟩ − ⟨θ̄h, ϕh(s

2, a2)⟩ − ⟨θ, ϕh(s
1, a1)⟩+ ⟨θ, ϕh(s

2, a2)⟩
= ⟨θ̄h − θ, ϕh(s

1, a1)− ϕh(s
2, a2)⟩

(b)

≤
∥∥θ̄h − θ

∥∥ ∥∥ϕh(s
1, a1)− ϕh(s

2, a2)
∥∥ .

In inequality (a), we utilize the facts that (s1, a1) ∈ argmin(s,a)∈DE
h∪DS,1

h
⟨θh, ϕh(s, a)⟩ and

(s2, a2) ∈ argmax(s,a)∈DS,2
h
⟨θh, ϕh(s, a)⟩. Inequality (b) follows the Cauchy–Schwarz inequality.

Let Lh =
∥∥ϕh(s

1, a1)− ϕh(s
2, a2)

∥∥ and we finish the proof.

D.3 Proof of Lemma 2

First, by Taylor’s Theorem, there exists θ′h ∈ {θ ∈ Rd : θt = θ⋆h + t(θh− θ⋆h), ∀t ∈ [0, 1]} such that

Lh(θh) = Lh(θ
⋆
h) + ⟨∇Lh(θ

⋆
h), θh − θ⋆h⟩+

1

2

(
θh − θ⋆h

)⊤∇2Lh(θ
′
h)

(
θh − θ⋆h

)
= Lh(θ

⋆
h) +

1

2

(
θh − θ⋆h

)⊤∇2Lh(θ
′
h)

(
θh − θ⋆h

)
. (16)

The last equality follows the optimality condition that ∇Lh(θ
⋆
h) = 0. Then, our strategy is to prove

that the smallest eigenvalue of the Hessian matrix∇2Lh(θ
′
h) is positive, i.e., λmin(∇2Lh(θ

′
h)) > 0.

We first calculate the Hessian matrix ∇2Lh(θ
′
h). Given DE and DU, we define the function G :

R(|DE|+|DU|) → R as

G(v) ≜
1

|DE|

|DE|∑
i=1

g(vi) +
1

|DU|

|DU|∑
j=1

g(vj),

where vi is the i-th element in the vector v ∈ R(|DE|+|DU|) and g(x) = log (1 + exp(x)) is a
real-valued function. Besides, we use Bh ∈ R(|DE|+|DU|)×d to denote the matrix whose i-th row
Bh,i = −yiϕh(s

i, ai)⊤, and yi = 1 if (si, ai) ∈ DE
h , yi = −1 if (si, ai) /∈ DE

h . Then the objective
function can be reformulated as
Lh(θh)

=
∑
(s,a)

d̂Eh (s, a) [log (1 + exp (−⟨ϕh(s, a), θh⟩))] +
∑
(s,a)

d̂Uh (s, a) [log (1 + exp (⟨ϕh(s, a), θh⟩))]

=
1

|DE|
∑

(s,a)∈DE

log (1 + exp (−⟨ϕh(s, a), θh⟩)) +
1

|DU|
∑

(s,a)∈DU

log (1 + exp (⟨ϕh(s, a), θh⟩))

= G(Bhθh).

Then we have that ∇2Lh(θh) = B⊤
h ∇2G(Bhθh)Bh, where

∇2G(Bhθh)

= diag

(
g′′((Bhθh)1)

|DE| , . . . ,
g′′((Bhθh)|DE|)

|DE| ,
g′′((Bhθh)|DE|+1)

|DE|+ |DU| , . . . ,
g′′((Bhθh)|DE|+|DU|)

|DE|+ |DU|

)
.
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Here g′′(x) = σ(x)(1 − σ(x)), where σ(x) = 1/(1 + exp(−x)) is the sigmoid function. The
eigenvalues of ∇2G(Bhθh) are{

g′′((Bhθh)1)

|DE| , . . . ,
g′′((Bhθh)|DE|)

|DE| ,
g′′((Bhθh)|DE|+1)

|DE|+ |DU| , . . . ,
g′′((Bhθh)|DE|+|DU|)

|DE|+ |DU|

}
.

Notice that θ′h ∈ {θ ∈ Rd : θt = θ⋆h + t(θh − θ⋆h), ∀t ∈ [0, 1]}. For a matrix A, we use λmin(A) to
denote the minimal eigenvalue of A. Here we claim that the minimum of the minimal eigenvalues of
∇2G(Bhθ

t) over t ∈ [0, 1] is achieved at t = 0 or t = 1. That is,

min{λmin(∇2G(Bhθ
t)) : ∀t ∈ [0, 1]} = min{λmin(∇2G(Bhθ

0)), λmin(∇2G(Bhθ
1))}.

We prove this claim as follows. For any t ∈ [0, 1], we use {λ1(t), . . . , λ|DE|+|DU|(t)} to denote
the eigenvalues of ∇2G(Bhθ

t). For each i ∈ [|DE| + |DU|], we consider λi(t) : [0, 1] → R as a
function of t. Specifically,

λi(t) =


g′′((Bhθ

⋆
h)i+t(Bh(θh−θ⋆

h))i)
|DE| , if i ∈ [|DE|]

g′′((Bhθ
⋆
h)i+t(Bh(θh−θ⋆

h))i)
|DE|+|DU| , otherwise.

We observe that g′′′(x) = σ(x)(1− σ(x))(1− 2σ(x)) which satisfies that ∀x ≤ 0, g′′′(x) ≥ 0, and
∀x ≥ 0, g′′′(x) ≤ 0. Therefore, we have that the minimum of λi(t) over t ∈ [0, 1] must be achieved
at t = 0 or t = 1. That is,

min
t∈[0,1]

λi(t) = min{λi(0), λi(1)}. (17)

For any t ∈ [0, 1], we define it ∈ [|DE|+|DU|] as the index of the minimal eigenvalue of∇2G(Bhθ
t),

i.e., λit(t) = λmin(∇2G(Bhθ
t)). Then we have that

min{λmin(∇2G(Bhθ
t)) : ∀t ∈ [0, 1]} = min{λit(t) : ∀t ∈ [0, 1]}

(a)
= min{min{λit(0), λit(1)} : ∀t ∈ [0, 1]}
= min{λi0(0), λi1(1)}
(b)
= min{λmin(∇2G(Bhθ

0)), λmin(∇2G(Bhθ
1))}

Equality (a) follows (17) and equality (b) follows that λi0(0) and λi1(1) are the minimal eigenvalues
of∇2G(Bhθ

0) and∇2G(Bhθ
1), respectively.

In summary, we derive that
min{λmin(∇2G(Bhθ

t)) : ∀t ∈ [0, 1]} = min{λmin(∇2G(Bhθ
0)), λmin(∇2G(Bhθ

1))}, (18)
which proves the previous claim.

Further, we consider λmin

(
∇2Lh(θh)

)
.

λmin

(
∇2Lh(θh)

)
= inf

x∈Rd:∥x∥=1
x⊤∇2Lh(θh)x

= inf
x∈Rd:∥x∥=1

(Bhx)
⊤∇2G(Bhθh) (Bhx)

= inf
z∈Im(Bh)

z⊤∇2G(Bhθh)z

=

(
inf

z∈Im(Bh)
∥z∥

)2

λmin(∇2G(Bhθh))

≥
(

inf
z∈Im(Bh)

∥z∥
)2

min{λmin(∇2G(Bhθ
0)), λmin(∇2G(Bhθ

1))}.

Here Im(Bh) = {z ∈ Rd : z = Bhx, ∥x∥ = 1}. The last inequality follows Eq. (18).

Recall we assume that rank(Ah) = d, so we have that rank(Bh) = d. Thus, Im(Bh) is a set of
vectors with positive norms, i.e., infz∈Im(Bh) ∥z∥ > 0. Besides, since g′′(x) = σ(x)(1− σ(x)) > 0,
we also have that

min{λmin(∇2G(Bhθ
0)), λmin(∇2G(Bhθ

1))} > 0.
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In summary, we obtain that

λmin

(
∇2Lh(θh)

)
≥

(
inf

z∈Im(Bh)
∥z∥

)2

min{λmin(∇2G(Bhθ
0)), λmin(∇2G(Bhθ

1))} > 0.

Then, with Eq. (16), there exists

τh =

(
inf

z∈Im(Bh)
∥z∥

)2

min{λmin(∇2G(Bhθ
0)), λmin(∇2G(Bhθ

1))} > 0

such that

Lh(θh) ≥ Lh(θ
⋆
h) +

τh
2

∥∥θh − θ⋆h
∥∥2 ,

which completes the proof.

D.4 Proof of Theorem 3

First, invoking Lemma 1 with θ = θ⋆h yields that

∆h(θ
⋆
h) ≥ ∆h(θ̄h)− Lh

∥∥θ̄h − θ⋆h
∥∥ .

Here Lh = ∥ϕh(s, a)− ϕh(s
′, a′)∥ with (s, a) ∈ argmin(s,a)∈DE

h∪DS,1
h
⟨θ⋆h, ϕh(s, a)⟩ and

(s′, a′) ∈ argmax(s,a)∈DS,2
h
⟨θ⋆h, ϕh(s, a)⟩. Then, by Lemma 2, there exists τh > 0 such that

Lh(θh) ≥ Lh(θ
⋆
h) +

τh
2

∥∥θh − θ⋆h
∥∥2 .

This directly implies an upper bound of the distance between θh and θ⋆h.

∥∥θh − θ⋆h
∥∥ ≤

√
2
(
Lh(θ̄h)− Lh(θ⋆h)

)
τh

.

If the feature is designed such that

√
2(Lh(θ̄h)−Lh(θ⋆

h))
τh

< ∆h(θ̄h)
Lh

holds, we further have that∥∥θh − θ⋆h
∥∥ < ∆h(θ̄h)/Lh. Then we get that

∆h(θ
⋆
h) ≥ ∆h(θ̄h)− Lh

∥∥θ̄h − θ⋆h
∥∥ > 0,

which completes the proof of the first statement.

Then we proceed to prove the imitation gap bound. We first identify the property of πISW-BC. Recall
the objective of WBCU.

πISW-BC ∈ argmax
π

H∑
h=1

∑
(s,a)∈S×A

{
d̂Uh (s, a)× [wh(s, a) log πh(a|s)]× I [wh(s, a) ≥ δ]

}
.

For any state s with
∑

a∈A d̂Uh (s, a)wh(s, a)I [wh(s, a) ≥ δ] > 0, with the first-order optimality
condition, we have

πISW-BC
h (a|s) = d̂Uh (s, a)wh(s, a)I [wh(s, a) ≥ δ]∑

a∈A d̂Uh (s, a)wh(s, a)I [wh(s, a) ≥ δ]
.

For an expert state s with dπ
E

h (s) > 0, if (s, πE
h (s)) ∈ DE

h ∪ DS,1
h , we have that

⟨θ⋆h, ϕh(s, π
E
h (s))⟩ > ⟨θ⋆h, ϕh(s, a)⟩, ∀(s, a) ∈ DS,2

h .

This is due to the first statement that ∆h(θ
⋆
h) > 0 in this theorem. Recall that

ch(s, a; θ
⋆
h) =

1

1 + exp(−⟨ϕh(s, a), θ⋆h⟩)
and wh(s, a) =

ch(s, a; θ
⋆
h)

1− ch(s, a; θ⋆h)
.

We can further obtain that wh(s, π
E
h (s)) > wh(s, a) for any (s, a) ∈ DS,2

h . This implies that
we can find a δ such that I

[
wh(s, π

E
h (s)) ≥ δ

]
= 1 for any (s, πE

h (s)) ∈ DE
h ∪ DS,1

h and
I [wh(s, a) ≥ δ] = 0 for any (s, a) ∈ DS,2

h . Based on the above analytical form of πISW-BC,
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we have that πISW-BC(πE
h (s)|s) = 1 for any (s, πE

h (s)) ∈ DE
h ∪ DS,1

h . In summary, for any state s

with (s, πE
h (s)) ∈ DE

h ∪ DS,1
h , we have that πISW-BC

h (πE
h (s)|s) = 1.

With the above property of πISW-BC, we proceed to analyze the policy value gap. According to [42,
Lemma 4.3], we have

V (πE)− V (πISW-BC) ≤ H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πE
h (·|s), πISW-BC

h (·|s)
)]

.

Since πE is assumed to be deterministic, we have

V (πE)− V (πISW-BC) ≤ H

H∑
h=1

E
s∼dπE

h (·)

[
Ea∼πISW-BC

h (·|s)
[
I
{
a ̸= πE

h (s)
}]]

(a)

≤ H

H∑
h=1

E
s∼dπE

h (·)

[
I
{
(s, πE

h (s)) /∈ DE
h ∪ DS,1

h

}]
(b)
= H

H∑
h=1

E
s∼dπE

h (·)

[
I
{
(s, πE

h (s)) /∈ DU
h

} ]
.

Inequality (a) follows the property of πISW-BC derived above. In particular, for any state s with
(s, πE

h (s)) ∈ DE
h ∪ DS,1

h , we have that πISW-BC
h (πE

h (s)|s) = 1. Equation (b) holds due to the
Assumption 2. In particular, for an expert state s that dπ

E

h (s) > 0, the events of (s, πE
h (s)) /∈

DE
h ∪ DS,1

h and (s, πE
h (s)) /∈ DU

h are equivalent.

Moreover, we take the expectation over DU on both sides and obtain that

E
[
V (πE)− V (πISW-BC)

]
≤ H

H∑
h=1

E
s∼dπE

h (·)

[
P
(
(s, πE

h (s)) /∈ DU
h

) ]

= H

H∑
h=1

∑
s∈S

dπ
E

h (s)P
(
(s, πE

h (s)) /∈ DU
h

)
.

According to Assumption 1, we have that

dUh (s, π
E
h (s)) = ηdπ

E

h (s, πE
h (s)) + (1− η)dπ

β

h (s, πE
h (s))

(a)

≥ ηdπ
E

h (s, πE
h (s)) +

(1− η)

µ
dπ

E

h (s, πE
h (s))

=

(
η +

(1− η)

µ

)
dπ

E

h (s, πE
h (s)).

Inequality (a) follows the definition of µ in Theorem 3: for any (s, h) ∈ S × [H], we have
dπ

E

h (s, πE
h (s))/d

πβ

h (s, πE
h (s)) ≤ µ. Then we obtain that

E
[
V (πE)− V (πISW-BC)

]
≤ H

H∑
h=1

∑
s∈S

dπ
E

h (s)(1− dUh (s, π
E
h (s)))

Ntot

≤
(

1

η + (1− η)/µ

)
H

H∑
h=1

∑
s∈S

dUh (s, π
E
h (s))P

(
(s, πE

h (s)) /∈ DU
h

)
.

For each (s, h) ∈ S × [H], we observe that

dUh (s, π
E
h (s))P

(
(s, πE

h (s)) /∈ DU
h

)
= dUh (s, π

E
h (s))

(
1− dUh (s, π

E
h (s))

)Ntot ≤ 4

9Ntot
.

Here the last inequality follows Lemma 5. Consequently, we can derive that
H∑

h=1

∑
s∈S

dUh (s, π
E
h (s))P

(
(s, πE

h (s)) /∈ DU
h

)
≤ 4H|S|

9Ntot
,
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which further implies that

E
[
V (πE)− V (πISW-BC)

]
≤

(
1

η + (1− η)/µ

)
4H2|S|
9Ntot

=
4H2|S|

9 (NE +NS/µ)
.

We complete the proof.

D.5 An Example Corresponding to Theorem 3

In this section, we provide an example that illustrates the required feature design in Theorem 3 can
hold.

Example 1. To illustrate Theorem 3, we consider an example in the feature space R2. In particular,
for time step h ∈ [H], we have the expert dataset and supplementary dataset as follows.

DE
h =

{(
s(1), a(1)

)
,
(
s(4), a(4)

)}
, DS

h =
{(

s(2), a(2)
)
,
(
s(3), a(3)

)}
,

DS,1
h =

{(
s(2), a(2)

)}
, DS,2

h =
{(

s(3), a(3)
)}

.

The corresponding features are

ϕh

(
s(1), a(1)

)
= (0, 1)⊤, ϕh

(
s(2), a(2)

)
=

(
−1

2
, 0

)⊤

,

ϕh

(
s(3), a(3)

)
=

(
0,−1

2

)⊤

, ϕh

(
s(4), a(4)

)
= (−1, 0)⊤.

Notice that the set of expert-style samples is DE
h ∪DS,1

h = {(s(1), a(1)), (s(2), a(2)), (s(4), a(4))} and
the set of non-expert-style samples is DS,2

h = {(s(3), a(3))}. It is direct to calculate that the ground-
truth parameter that achieves the maximum margin among unit vectors is θh = (−

√
2/2,
√
2/2)⊤

and the maximum margin is ∆h(θh) =
√
2/2. According to Eq. (6), for θh = (θh,1, θh,2)

⊤, the
optimization objective is

Lh(θh)

=
∑
(s,a)

d̂Eh (s, a) [log (1 + exp (−⟨ϕh(s, a), θh⟩))] +
∑
(s,a)

d̂Uh (s, a) [log (1 + exp (⟨ϕh(s, a), θh⟩))]

=
1

2
(log (1 + exp (−θh,2)) + log (1 + exp (θh,1)))

+
1

4

(
log (1 + exp (θh,2)) + log

(
1 + exp

(
−1

2
θh,1

)))
+

1

4

(
log

(
1 + exp

(
−1

2
θh,2

))
+ log (1 + exp (−θh,1))

)
.

We apply CVXPY [12] to calculate the optimal solution θ⋆h ≈ (−0.310, 0.993)⊤ and the objective
values Lh(θ

⋆
h) ≈ 1.287, Lh(θh) ≈ 1.309. Furthermore, we calculate the Lipschitz coefficient Lh

appears in Lemma 1.

(s(2), a(2)) = argmin
(s,a)∈DE

h∪DS,1
h

⟨θ⋆h, ϕh(s, a)⟩, (s(3), a(3)) ∈ argmax
(s,a)∈DS,2

h

⟨θ⋆h, ϕh(s, a)⟩,

Lh =
∥∥∥ϕh(s

(2), a(2))− ϕh(s
(3), a(3))

∥∥∥ =

√
2

2
.

Then we calculate the parameter of strong convexity τh appears in Lemma 2. Based on the proof of
Lemma 2, our strategy is to calculate the minimal eigenvalue of the Hessian matrix.

First, for θh = (θh,1, θh,2)
⊤, the gradient of Lh(θh) is

∇Lh(θh)

= −
∑

(s,a)∈S×A

d̂Eh (s, a)σ(−⟨ϕh(s, a), θh⟩) +
∑

(s,a)∈S×A

d̂Uh (s, a)σ (⟨ϕh(s, a), θh⟩)
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=

(
1

2
σ(θh,1)−

1

4
σ(−θh,1)−

1

8
σ(−1

2
θh,1),

1

4
σ (θh,2)−

1

2
σ (−θh,2)−

1

8
σ(−1

2
θh,2)

)⊤

.

Here σ(x) = 1/(1 + exp(−x)) for x ∈ R is the sigmoid function. Then the Hessian matrix at θh is

∇2Lh(θh) =

(
3
4f(θh,1) +

1
16f

(
1
2θh,1

)
0

0 3
4f(θh,2) +

1
16f

(
1
2θh,2

)) ,

where f(x) = σ(x)(1−σ(x)) and f(x) = f(−x). For any t ∈ [0, 1], the eigenvalues of the Hessian
matrix at θth = θh + t(θ⋆h − θh) are

3

4
f(θth,1) +

1

16
f

(
1

2
θth,1

)
,
3

4
f(θth,2) +

1

16
f

(
1

2
θth,2

)
.

Now, we calculate the minimal eigenvalues of∇2Lh(θ
t
h). We consider the function

g(x) =
3

4
f(x) +

1

16
f

(
1

2
x

)
, ∀x ∈ [a, b].

The gradient is

g′(x) =
3

4
σ(x)(1− σ(x))(1− 2σ(x)) +

1

32
σ

(
1

2
x

)(
1− σ

(
1

2
x

))(
1− 2σ

(
1

2
x

))
.

We observe that ∀x ≤ 0, g′(x) ≥ 0, and ∀x ≥ 0, g′(x) ≤ 0. Thus, we have that the minimum of
g(x) must be achieved at x = a or x = b. Besides, we have that g(x) = g(−x). With the above
arguments, we know that the minimal eigenvalue is g(0.993) ≈ 0.163 and τh ≈ 0.163. Then we can
calculate that √

2
(
Lh(θ̄h)− Lh(θ⋆h)

)
τh

≈ 0.520,
∆h(θ̄h)

Lh
= 1.

The inequality in Theorem 3 holds.

E Discussion

In the main text, we focus on the tabular representations for policies. Furthermore, we consider a
trajectory sampling procedure for behavior policy in collecting the supplementary dataset. We present
two possible extensions in this section.

E.1 Function Approximation of Policies

In the main text, the theoretical analysis for BC-based algorithms considers the tabular setting in
policy learning where a table function represents the policy. Here we provide an analysis of BC
with general function approximation in policy learning. Notice that the algorithms considered in this
paper (i.e., BC, NBCU and ISW-BC) can be unified under the framework of maximum likelihood
estimation (MLE)8. Therefore, the theoretical results in the main text can also be extended to the
setting of general function approximation by a similar analysis.

Assume that the learner is access to a finite function class Π = {π = (π1, π2, . . . , πh)}, where
πh : S → ∆(A) could be any function (e.g., neural networks). For simplicity of analysis, we assume
that Π is a finite class. Notice that the algorithms considered in this paper are BC and its variants,
which all take the principle of maximum likelihood estimation (MLE). The theoretical analysis of
these algorithms is based on the following inequality:

V (πE)− V (π) ≤ H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πE
h (·|s), πh(·|s)

)]
.

Therefore, the key is to upper bound the TV distance. Take BC as an example (i.e., π = πBC).
By using the concentration inequality in [1, Theorem 21], we obtain that for any δ ∈ (0, 1), when

8Among these algorithms, the main difference is the weight function in the MLE objective; see Equations
(1), (2) and (7).
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|DE| ≥ 1, with probability at least 1− δ over the randomness within DE,

E
s∼dπE

h (·)
[
TV2

(
πE
h (·|s), πBC

h (·|s)
)]
≤ 2

log(|Π|/δ)
|DE| . (19)

With additional efforts (by using union bound and Jensen’s inequality), we have the following result.
Theorem 4 (BC with Function Approximation). Under Assumption 1. In the general function
approximation setting, additionally assume that πE ∈ Π. If we apply BC on the expert data, we have

E
[
V (πE)− V (πBC)

]
= O

H2

√
log(|Π|HNE)

NE

 ,

where the expectation is taken over the randomness in the dataset collection.

The detailed proof is deferred to Appendix F. Compared with Theorem 1, we notice that the change
in theoretical bound is that O(|S|/NE) is replaced by O(

√
log(|Π|HNE)/NE). Such a change is

expected for other algorithms (e.g., NBCU and WBCU), so our theoretical implications still hold.
We leave the detailed analysis for future works.

E.2 Supplementary Data with Corruption

In the main text, we consider the trajectory sampling procedure in Assumption 1. However, in some
cases, the supplementary data can be poisoned and corrupted by an adversary. For example, although
the human expert demonstrates an optimal trajectory, the recorder or the recording system possibly
corrupts the data by accident or on purpose. Data corruption is one of the main security threats to
imitation learning methods [31]. Therefore, it is valuable to investigate the robustness of the presented
algorithms in this poison setting. Supplementary data with corruption is partially investigated in our
experiments under the noisy expert setting, which we argue have a large state-action distribution shift.
Assumption 3 (Poison Setting). The supplementary dataset DS and expert dataset DE are collected
in the following way: each time, with probability η, we rollout the expert policy to collect a trajectory.
With probability 1− η, we still rollout the expert policy to collect a trajectory but with probability
1− η′, the actions along the sampled trajectory are replaced with actions uniformly sampled from
the action space. Such an experiment is independent and identically conducted by Ntot times.
Theorem 5 (NBCU in the Poison Setting). Under Assumption 3. In the tabular case, for any
η ∈ (0, 1], we have

E
[
V (πE)− V (πNBCU)

]
= O

(1− η)(1− η′)H2

(
1− 1

|A|

)
+H2

√
|S||A|
Ntot

 ,

where the expectation is taken over the randomness in the dataset collection.
Theorem 6 (ISW-BC in the Poison Setting). Under Assumptions 2 and 3, if the feature is designed

such that

√
2(Lh(θ̄h)−Lh(θ⋆

h))
τh

< ∆h(θ̄h)
Lh

holds, we have the imitation gap bound

E[V (πE)− V (πISW-BC)] = O
(

H2|S|
NE +NSη′

)
.

Proofs of Theorem 5 and Theorem 6 can be found in Appendix F. Compared with the imitation gap
of NBCU, there is no non-vanishing gap due to the corrupted actions in the imitation gap of ISW-BC.
This means that ISW-BC is still robust in this setting.

F Proof of Results in Section E

F.1 Proof of Theorem 4

According to [42, Lemma 4.3], we have

V (πE)− V (πBC) ≤ H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πE
h (·|s), πBC

h (·|s)
)]

.
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With [1, Theorem 21], when |DE| ≥ 1, for any δ ∈ (0, 1), with probability at least 1 − δ over the
randomness within DE, we have that

E
s∼dπE

h (·)
[
TV2

(
πE
h (·|s), πBC

h (·|s)
)]
≤ 2

log(|Π|/δ)
|DE| .

With union bound, with probability at least 1− δ, for all h ∈ [H], it holds that

E
s∼dπE

h (·)
[
TV2

(
πE
h (·|s), πBC

h (·|s)
)]
≤ 2

log(|Π|H/δ)

|DE| ,

which implies that

V (πE)− V (πBC) ≤ H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πE
h (·|s), πBC

h (·|s)
)]

(a)

≤ H

H∑
h=1

√
E
s∼dπE

h (·)
[
TV2

(
πE
h (·|s), πBC

h (·|s)
)]

≤
√
2H2

√
log(|Π|H/δ)

|DE| .

Inequality (a) follows Jensen’s inequality. Taking expectation over the randomness within DE yields
that

EDE

[
V (πE)− V (πBC)

]
≤ δH + (1− δ)

√
2H2

√
log(|Π|H/δ)

|DE|

(a)
=

H

2|DE| +
(
1− 1

2|DE|

)√
2H2

√
log(2|Π|H|DE|)

|DE|

≤
(√

2 + 1
)
H2

√
log(2|Π|H|DE|)

|DE|

≤ 4H2

√
log(4|Π|H|DE|)

|DE| .

Equation (a) holds due to the choice that δ = 1/(2|DE|). For |DE| = 0, we directly have that

EDE

[
V (πE)− V (πBC)

]
≤ H.

Therefore, for any |DE| ≥ 0, we have that

EDE

[
V (πE)− V (πBC)

]
≤ 4H2

√
log(4|Π|Hmax{|DE|, 1})

max{|DE|, 1} .

We consider a real-valued function f(x) = log(cx)/x for x ≥ 1, where c = 4|Π|H > 4. Its gradient
function is f ′(x) = (1− log(cx))/x2 ≤ 0 when x ≥ 1. Then we know that f(x) is decreasing as
x increases. Furthermore, we have that max{|DE|, 1} ≥ (|DE| + 1)/2 when |DE| ≥ 0. Then we
obtain

EDE

[
V (πE)− V (πBC)

]
≤ 4H2

√
log(4|Π|Hmax{|DE|, 1})

max{|DE|, 1}

≤ 4H2

√
2 log(4|Π|H(|DE|+ 1))

|DE|+ 1
.

Taking expectation over the random variable |DE| ∼ Bin(Ntot, η) yields that

E
[
V (πE)− V (πBC)

]
≤ 4H2E

[√
2 log(4|Π|H(|DE|+ 1))

|DE|+ 1

]
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(a)

≤ 4H2

√
E
[
2 log(4|Π|H(|DE|+ 1))

|DE|+ 1

]
.

Inequality (a) follows Jensen’s inequality. We consider the function g(x) = −x log(x/c) for
x ∈ (0, 1], where c = 4|Π|H .

g′(x) = −(log(x/c) + 1) ≥ 0, g′′(x) = − 1

x
≤ 0, ∀x ∈ (0, 1].

Thus, g(x) is a concave function. By Jensen’s inequality, we have that E[g(x)] ≤ g(E[x]). Then we
can derive that

E
[
V (πE)− V (πBC)

]
≤ 4H2

√
E
[
2 log(4|Π|H(|DE|+ 1))

|DE|+ 1

]

= 4
√
2H2

√
E
[
g

(
1

|DE|+ 1

)]

≤ 4
√
2H2

√
g

(
E
[

1

|DE|+ 1

])
(a)

≤ 4
√
2H2

√
g

(
1

NE

)

≤ 4
√
2H2

√
log(4|Π|HNE)

NE
.

In inequality (a), we use the facts that g′(x) ≥ 0 and E
[
1/(|DE|+ 1)

]
≤ 1/NE from Lemma 3. We

complete the proof.

F.2 Proof of Theorem 5

We first analyze the data distribution in DU. According to Assumption 3, we summarize the sampling
procedure of trajectories in DU as follows. Each time, we rollout the expert policy to collect a
trajectory. Furthermore, with the probability of (1− η)(1− η′), the actions along the sampled expert
trajectory are replaced with actions uniformly sampled from the action space. Then we put this
poisoned expert trajectory intoDU. Otherwise, with the probability of 1−(1−η)(1−η′), we directly
put the original expert trajectory into DU. Therefore, we can formulate the marginal distribution of
the state-action pairs in time step h in DU. For each (s, a, h) ∈ S ×A× [H],

dUh (s, a) = (1− (1− η)(1− η′)) dπ
E

h (s, a) + (1− η)(1− η′)dπ
E

h (s)
1

|A| ,

dUh (s) =
∑
a∈A

dUh (s, a) = dπ
E

h (s).

Then we proceed to analyze the imitation gap. Similar to the proof of Theorem 2, according to [42,
Lemma 4.3], we have

V (πE)− V (πNBCU) ≤ H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πE
h (·|s), πNBCU

h (·|s)
)]

.

Again, we introduce the definition of the policy πmix.

∀(s, a) ∈ S ×A ,∀h ∈ [H], πmix
h (a|s) =

{
dU
h (s,a)

dU
h (s)

if dUh (s) = dπ
E

h (s) > 0,
1

|A| otherwise.

In particular, if dUh (s) > 0, we have that

πmix
h (a|s) = dUh (s, a)

dUh (s)
= (1− (1− η)(1− η′))πE

h (a|s) + (1− η)(1− η′)
1

|A| .
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Then we decompose the imitation gap into two parts.

V (πE)− V (πNBCU)

≤ H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πE
h (·|s), πNBCU

h (·|s)
)]

≤ H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πE
h (·|s), πmix

h (·|s)
)]

+H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πmix
h (·|s), πNBCU

h (·|s)
)]

.

We first analyze the first term in RHS. For certain (s, h) such dUh (s) = dπ
E

h (s) > 0, we have that

TV
(
πE
h (·|s), πmix

h (·|s)
)
=

∑
a̸=πE

h (s)

πmix
h (a|s)

=
∑

a̸=πE
h (s)

(1− (1− η)(1− η′))πE
h (a|s) + (1− η)(1− η′)

1

|A|

= (1− η)(1− η′)

(
1− 1

|A|

)
.

Therefore, we can derive that

H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πE
h (·|s), πmix

h (·|s)
)]
≤ (1− η)(1− η′)H2

(
1− 1

|A|

)
.

Now we analyze the second term of

H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πmix
h (·|s), πNBCU

h (·|s)
)]

.

Recall the formula of πNBCU.

πNBCU
h (a|s) =

{
nU
h (s,a)

nU
h (s)

if nU
h (s) > 0

1
|A| otherwise

Notice that πNBCU is the maximum likelihood estimation of πmix. According to the concentration
inequality of total variation [53], for each (s, h) ∈ S× [H], for any fixed δ ∈ (0, 1), when nU

h (s) > 0,
with probability at least 1− δ, we have

TV
(
πmix
h (·|s), πNBCU

h (·|s)
)
≤

√
|A| log(3/δ)

nU
h (s)

.

When nU
h (s) = 0, we have that

TV
(
πmix
h (·|s), πNBCU

h (·|s)
)
≤ 1 ≤

√
|A| log(3/δ).

By combining the above two inequalities, for each (s, h) ∈ S × [H], with probability at least 1− δ,
we have

TV
(
πmix
h (·|s), πNBCU

h (·|s)
)
≤

√
|A| log(3/δ)

max{nU
h (s), 1}

.

Applying union bound yields that with probability at least 1− δ/2, for all (s, h) ∈ S × [H],

TV
(
πmix
h (·|s), πNBCU

h (·|s)
)
≤

√
|A| log(6|S|H/δ)

max{nU
h (s), 1}

.

Then we have that

H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πmix
h (·|s), πNBCU

h (·|s)
)]
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≤ H

H∑
h=1

E
s∼dπE

h (·)

[√
|A| log(6|S|H/δ)

max{nU
h (s), 1}

]

= H
√
|A| log(6|S|H/δ)

H∑
h=1

E
s∼dπE

h (·)

[√
1

max{nU
h (s), 1}

]

= H
√
|A| log(6|S|H/δ)

H∑
h=1

∑
s∈S

√
dπ

E

h (s)

√
dπ

E

h (s)

max{nU
h (s), 1}

≤ H
√
|A| log(6|S|H/δ)

H∑
h=1

√√√√∑
s∈S

dπ
E

h (s)

max{nU
h (s), 1}

.

Here the last inequality follows Cauchy-Swartz inequality. Notice that nU
h (s) is the number of

times that the state s appears in DU in time step h and thus follows the Binomial distribution of
Bin(Ntot, d

πE

h (s)). By applying Lemma 4, for each (s, h), with probability at least 1− δ, we have

dπ
E

h (s)

max{nU
h (s), 1}

≤ 8 log(1/δ)

Ntot
.

By union bound, with probability at least 1− δ/2, for all (s, h) ∈ S × [H],

dπ
E

h (s)

max{nU
h (s), 1}

≤ 8 log(2|S|H/δ)

Ntot
.

Then, with probability at least 1− δ, we have

H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πmix
h (·|s), πNBCU

h (·|s)
)]
≤ H2

√
8|S||A| log2(6|S|H/δ)

Ntot
.

Finally, we upper bound the imitation gap. With probability at least 1− δ, we have

V (πE)− V (πNBCU) ≤ (1− η)(1− η′)

(
1− 1

|A|

)
+H2

√
8|S||A| log2(6|S|H/δ)

Ntot
.

We set δ = H/Ntot and obtain that

E
[
V (πE)− V (πNBCU)

]
≤ δH + (1− δ)

(1− η)(1− η′)

(
1− 1

|A|

)
+H2

√
8|S||A| log2(6|S|H/δ)

Ntot


≤ H2

Ntot
+ (1− η)(1− η′)

(
1− 1

|A|

)
+H2

√
8|S||A| log2(6|A|Ntot)

Ntot

≤ (1− η)(1− η′)

(
1− 1

|A|

)
+ 4H2

√
2|S||A| log2(6|A|Ntot)

Ntot
.

On the other hand, we directly have E[V (πE)− V (πNBCU)] ≤ H . We complete the proof.

F.3 Proof of Theorem 6

In the poison setting, we can conduct the same analysis as in the proof of Theorem 3 and demonstrate
that πISW-BC(πE

h (s)|s) = 1, ∀(s, πE
h (s)) ∈ DE

h ∪ DS,1
h , where DE

h is the set of state-action pairs in
DE in time step h and DS,1

h = {(s, a) ∈ DS
h : dπ

E

h (s) > 0, a = πE
h (s)}. According to [42, Lemma

4.3], we have

V (πE)− V (πISW-BC) ≤ H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πE
h (·|s), πISW-BC

h (·|s)
)]

.
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Since the expert policy is assumed to be deterministic, we can obtain

V (πE)− V (πISW-BC) ≤ H

H∑
h=1

E
s∼dπE

h (·)

[
Ea∼πISW-BC

h (·|s)
[
I
{
a ̸= πE

h (s)
}]]

≤ H

H∑
h=1

E
s∼dπE

h (·)

[
I
{
(s, πE

h (s)) /∈ DE
h ∪ DS,1

h

}]
.

Let DS,clean denote the non-corrupted dataset in DS. Then we can obtain that

V (πE)− V (πISW-BC)
(a)

≤ H

H∑
h=1

E
s∼dπE

h (·)

[
I
{
(s, πE

h (s)) /∈ DE
h ∪ DS,clean

h

}]

= H

H∑
h=1

∑
s∈S

dπ
E

h (s)I
{
(s, πE

h (s)) /∈ DE
h ∪ DS,clean

h

}
,

where DS,clean
h denotes the set of state-action pairs in DS,clean in time step h. Inequality (a) follows

that DS,clean
h ⊆ DS,1

h since DS,clean is collected by the expert policy. Taking expectation over the
randomness in DE and DS,clean on both sides yields that

EDE,DS,clean

[
V (πE)− V (πISW-BC)

]
≤ H

H∑
h=1

∑
s∈S

dπ
E

h (s)P
(
(s, πE

h (s)) /∈ DE
h ∪ DS,clean

h

)
.

Notice that both DE and DS,clean are collected by the expert policy. Then if |DE|+ |DS,clean| ≥ 1,
we can calculate that for each (s, h) ∈ S × [H],

dπ
E

h (s)P
(
(s, πE

h (s)) /∈ DE
h ∪ DS,clean

h

)
= dπ

E

h (s)
(
1− dπ

E

h (s)
)|DE|+|DS,clean|

≤ 4

9(|DE|+ |DS,clean|) ,

where the last inequality follows Lemma 5. If |DE|+ |DS,clean| = 0, we directly have that

dπ
E

h (s)P
(
(s, πE

h (s)) /∈ DE
h ∪ DS,clean

h

)
≤ 1 =

1

max{|DE|+ |DS,clean|, 1} .

We unify the above two inequalities and get that

dπ
E

h (s)P
(
(s, πE

h (s)) /∈ DE
h ∪ DS,clean

h

)
≤ 1

max{|DE|+ |DS,clean|, 1} .

Now we proceed to upper bound the imitation gap.

EDE,DS,clean

[
V (πE)− V (πISW-BC)

]
≤ H

H∑
h=1

∑
s∈S

dπ
E

h (s)P
(
(s, πE

h (s)) /∈ DE
h ∪ DS,clean

h

)
≤ |S|H2

max{|DE|+ |DS,clean|, 1} .

Note that |DE| + |DS,clean| ∼ Bin(Ntot, η + (1 − η)η′). Taking expectation with respect to
|DE|+ |DS,clean| yields that

E
[
V (πE)− V (πISW-BC)

]
≤ E

[ |S|H2

max{|DE|+ |DS,clean|, 1}

]
≤ E

[
2|S|H2

|DE|+ |DS,clean|+ 1

]
(a)

≤ 2|S|H2

Ntot(η + (1− η)η′)

=
2|S|H2

NE + η′NS
.
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Inequality (a) follows Lemma 3. We finish the proof.

G Technical Lemmas

Lemma 3. For any N ∈ N+ and p ∈ (0, 1), if the random variable X follows the binomial
distribution, i.e., X ∼ Bin(N, p), then we have that

E
[

1

X + 1

]
≤ 1

Np
.

Proof.

E
[

1

X + 1

]
=

N∑
x=0

(
1

x+ 1

)
N !

x!(N − x)!
px(1− p)N−x

=
1

(N + 1)p

N+1∑
x=1

(
(N + 1)!

x!(N + 1− x)!

)
px(1− p)N+1−x

=
1

(N + 1)p

(
1− (1− p)N+1

)
≤ 1

Np
.

Lemma 4 (Binomial concentration (Lemma A.1 in [57])). For any N ∈ N+ and p ∈ (0, 1), suppose
X ∼ Bin(N, p). Then with probability at least 1− δ, we have

p

max{X, 1} ≤
8 log(1/δ)

N
.

Lemma 5. For any N ∈ N+ and x ∈ [0, 1], consider the function f(x) := x(1− x)N , then we have

∀x ∈ [0, 1], f(x) ≤ 4

9N
.

Proof. We calculate that f ′(x) = (1− x)N−1(1− (N + 1)x). It is direct to have that f(x) achieves
its maximum at x⋆ = 1/(N + 1). Furthermore, we have

f

(
1

N + 1

)
=

1

N

(
1− 1

N + 1

)N+1 (a)

≤ 1

eN
≤ 4

9N
.

Inequality (a) follows that (1 + x/N)N ≤ exp(x), ∀N ≥ 1, |x| ≤ N . We complete the proof.

H Experiments Details and Additional Results

H.1 Experiment Details

In this section, we present the experiment details to facilitate the replication of our results. The
experiments are conducted on a machine comprising 48 CPU cores and 4 V100 GPU cores. We
repeat each experiment 5 times using different random seeds (2021, 2022, 2023, 2024, and 2025).

H.1.1 Robotic Locomotion Control

In this study, we evaluate the performance of various imitation learning algorithms on four locomotion
control tasks from the MuJoCo suite: Ant-v2, HalfCheetah-v2, Hopper-v2, and Walker2d-v2.
These tasks are widely used in the literature and are considered challenging benchmarks.

To train the expert policy, we use the online Soft Actor-Critic (SAC) algorithm [19] with 1 million
training steps. We implement the algorithm using the rlkit codebase, which is available at https:
//github.com/rail-berkeley/rlkit. The training curves of the online SAC agent are shown
in Figure 5. We treat the resulting policy as the expert policy and use it to generate expert trajectories.
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Figure 5: Training curves of online SAC on 4 locomotion control environments.

In our experimental setup, we utilize an expert dataset comprising of 1 expert trajectory collected by
the trained SAC agent. Additionally, all algorithms are provided with a supplementary dataset. There
are two setting of the supplementary data.

• Full Replay. The supplementary dataset is obtained from the replay buffer of the online
SAC agent, which has over one million samples, equivalent to 1000+ trajectories. The rapid
convergence of online SAC, as illustrated in Figure 5, implies that the replay buffer is enriched
with a substantial number of expert-level trajectories. As a result, we expect that utilizing the
supplementary data without any modification may lead to desirable results.

• Noisy Expert. The supplementary dataset comprises of 10 clean expert trajectories and 5 noisy
expert trajectories. In this case, we replace the action labels in the noisy trajectories with random
actions drawn from [−1, 1]. This replacement creates noisy action labels for the expert states,
leading to a significant distribution shift at the state-action level, as noted in Remark 1. The high
degree of distribution shift makes it challenging for using the supplementary data.

We use a 2-hidden-layer multi-layer perceptron (MLP) with hidden size 256 and ReLU activation
for all algorithms, as the state information in locomotion control tasks is informative by design.
The codebase of DemoDICE is based on the original authors’ work, which can be accessed at
https://github.com/KAIST-AILab/imitation-dice. For DWBC, we also use the authors’
codebase, which is available at https://github.com/ryanxhr/DWBC. We experimented with
different hyper-parameters for both algorithms but found that the default parameters provided by
the authors work well. We normalize state observations in the dataset before training all algorithms,
following [25]. This is crucial for achieving satisfactory performance.

In training the discriminator of ISW-BC, we use the gradient penalty (GP) regularization, as recom-
mended by [25]. We add the following loss to the original loss (4) to enforce 1-Lipschitz continuity:

min
θ

∑
(s,a)∈B

(∥g(s, a; θ)∥ − 1)
2
,

where g is the gradient of the discriminator c(s, a; θ), and B is a mini-batch. This promotes the
learning of smooth features and can improve generalization performance.

In our implementation of ISW-BC, we employ 2-hidden-layer MLPs with 256 hidden units and
ReLU activation for both the discriminator and policy networks. We use a batch size of 256 and
Adam optimizer with a learning rate of 0.0003 for training both networks. The training objective is
to maximize the log-likelihood. We set δ to 0 and use a gradient penalty coefficient of 8 by default,
unless otherwise stated. The training process is carried out for 1 million iterations. We evaluate
the performance every 10k iterations with 10 episodes. The normalized score in the last column of
Table 2 is computed in the following way:

Normalized score =
Expert performance− Agent performance

Expert performance− Random policy performance
. (20)

H.1.2 Atari Video Games

We evaluate algorithms on a set of 5 Atari video games from the standard benchmark: Alien,
MsPacman, Phoenix, Qbert, and SpaceInvaders. We preprocess the game environments using a
standard set of procedures, including sticky actions with a probability of 0.25, grayscaling, downsam-
pling to an image size of [84, 84], and stacking frames of 4. These procedures follow the instruc-
tions provided by the dopamine codebase, which is available at https://github.com/google/
dopamine/blob/master/dopamine/discrete_domains/atari_lib.py. The final image in-
puts are of shape (84, 84, 4).
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We use the replay buffer data from an online DQN agent, which is publicly available at https:
//console.cloud.google.com/storage/browser/atari-replay-datasets, thanks to the
work of [2]. The dataset consists of 200 million frames, divided into 50 indexed buckets (ranging
from 0 to 49). However, using the entire dataset is computationally infeasible9 and unnecessary for
our task. Therefore, we select specific buffer buckets for imitation learning.

We choose the expert data from bucket index 49, using only the first 400K frames for training. This
makes the task challenging (we find that BC performs well with 1M frames of expert data). For the
full replay setting, we select supplementary data from buffer indices 45 to 48, using the first 400K
frames from each bucket. This yields a supplementary dataset that is 4 times larger than the expert
data. In the noisy task setting, we follow the same procedure for selecting supplementary data, but
replace the action labels with random labels on buffer index 45.

All agents employ the same convolutional neural network (CNN) architecture as the DQN agent,
consisting of three convolutional blocks. The first block applies a filter size of 8, a stride of 4, and has
a channel size of 32. The second block uses a filter size of 4, a stride of 4, and a channel size of 64,
while the third block applies a filter size of 3, a stride of 4, and has a channel size of 64. All blocks
use the ReLU activation function. The feature representations are flattened to a vector, on which a
1-hidden-layer MLP with a hidden size of 512 and ReLU activation function is applied. Finally, the
outputs are passed through a softmax function to obtain a probability distribution.

Atari games are not considered in [25, 61] and public implementations of DemoDICE and DWBC
for Atari games are not available. To use these methods in the Atari environment, we extend their
original implementation by replacing the MLP used in locomotion control with the CNN described
earlier. Implementing ISW-BC is a little more complicated. We use the same CNN policy network as
in the other methods, but find that directly training the discriminator from scratch is less effective.
This is because the discriminator tends to focus on irrelevant background information instead of the
decision-centric part. To overcome this issue, we build the discriminator upon the feature extractor of
the policy network, leveraging its ability to extract useful information. The discriminator is an MLP
with ReLU activation and a hidden size of 1024: the image feature representation has a dimension 512
and the action feature representation also has a dimension 512 (we randomly project one-hot discrete
actions to a 512-dimension space). We find that the depth of the MLP is crucial for performance,
using a depth of 1 for the full replay setting and 3 for the noisy expert setting. We clip the importance
sampling ratio for numerical stability, using a minimum value of 0 and a maximum value of 5 for
the full replay setting, and a minimum value of 0.2 and a maximum value of 5 for the noisy expert
setting. We provide ablation studies of these hyperparameters in Appendix H.2.2.

All methods were optimized using the Adam optimizer with a learning rate of 0.00025 and a batch
size of 256. The training objective is to maximize the log-likelihood. The training process consisted
of 200K gradient steps. Every 2K gradient steps, the algorithms were evaluated by running 10
episodes and computing the raw game scores. The normalized score in the last column of Table 3 is
computed by Eq. (20).

H.1.3 Image Classification

We utilize the publicly available DomainNet dataset [36] for our experiments, which can be accessed at
http://csr.bu.edu/ftp/visda/2019/multi-source. This dataset comprises six sub-datasets:
clipart, infograph, painting, quickdraw, real, and sketch, with 2103, 2626, 2472, 4000,
4864, and 2213 images, respectively. Our task involves recognizing objects from 10 different classes:
bird, feather, headphones, ice_cream, teapot, tiger, whale, windmill, wine_glass, and
zebra. We divided the images into training and test sets, with 80% for training and 20% for testing.

We employ a 2-hidden-layer neural network with a hidden size of 512 and ReLU activation
as the classifier. To extract features from images, we utilize the pretrained ResNet-18 model
(trained on ImageNet), which has a feature dimension of 512. The ResNet-18 model can be ac-
cessed at https://pytorch.org/vision/main/models/generated/torchvision.models.
resnet18.html. We opted for this approach as training such a large convolutional neural net-
work directly on the DomainNet dataset proved to be ineffective. The training objective is to
minimize the cross-entropy loss. To optimize the network parameters, we use the stochastic gradient
descent (SGD) optimizer with a learning rate of 0.01 and momentum of 0.9. Additionally, we apply

9Loading 200M frames requires over 500GB memory.
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weight decay with a coefficient of 0.0005. The models are trained for 100 epochs with a batch size of
100, following the standard practice.

The discriminators used in ISW-BC and DWBC are implemented as 2-hidden-layer neural networks
with ReLU activation. It’s important to note that these discriminators take both the image and label
as inputs. The image input is processed by the pre-trained and fixed ResNet-18, while the label input
is projected to the same dimension (512) by a random projection matrix. The hidden size for the
discriminator is set to 1024 for ISW-BC and 1025 for DWBC, as the discriminator in DWBC also
takes the log-likelihood as an input. For ISW-BC, the discriminator is trained independently for 100
epochs with the same optimization configuration as the classifier. Afterward, the discriminator is
fixed, and its output is used to compute the importance sampling ratio, which is then used to train the
classifier.

H.2 Additional Results

H.2.1 Training Curves

The training curves on the robotic locomotion control tasks are displayed in Figure 6, Figure 7 and
Figure 8. The training curves on Atari video games are displayed in Figure 9 and Figure 10. The
training curves on the image classification task are displayed in Figure 11.
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Figure 6: Training curves of algorithms on the locomotion control task in the full replay setting. Solid
lines correspond to the mean performance and shaded regions correspond to the 95% confidence
interval. Same as other figures.

H.2.2 Ablation Study

In this section, we present ablation studies conducted on Atari games, aiming to provide insights into
the underlying working scheme of our method. We specifically emphasize Atari games due to their
high-dimensional image inputs, making these tasks particularly challenging. In contrast, the other
two tasks, locomotion control and image classification, involve informative vector inputs, setting
them apart from the unique characteristics of Atari games.

Ablation Study on Feature Representations of Discriminator Network. Our study reveals that
employing a separate CNN for the discriminator yields inferior results compared to utilizing the
feature extractor of the policy network. Please refer to Figure 12. Our conjecture is that training the
discriminator independently may cause it to fit noise information (e.g., background). In contrast,
the policy CNN network is capable of learning decision-centric information, enabling an effective
approach to building the discriminator network through the feature extractor of the policy network.
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Figure 7: Training curves of algorithms on the locomotion control task in the noisy expert setting.

0

1500

3000

4500

6000

E
va

lu
at

io
n 

R
et

ur
n

Ant-v2

0

2500

5000

7500

10000

HalfCheetah-v2
BC NBCU DWBC DemoDICE ISW-BC

0.00 0.25 0.50 0.75 1.00
Iteration 1e6

0

800

1600

2400

3200

4000
Hopper-v2

0.00 0.25 0.50 0.75 1.00
Iteration 1e6

1000

0

1000

2000

3000

4000

5000
Walker2d-v2

Figure 8: Training curves of algorithms on the locomotion control task in the expert&random setting.
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Figure 9: Training curves of algorithms on the Atari games in the full replay setting.
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Figure 10: Training curves of algorithms on the Atari games in the noisy expert setting.
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Figure 11: Training curves of algorithms on the image classification task using the DomainNet
dataset.
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Figure 12: Training curves of ISW-BC on the Atari games in the full replay setting. We test the
performance with different feature extractors of the discriminator.

Ablation Study on Depth of Discriminator Network. We have discovered that the number of
discriminator layers plays a crucial role in the performance of Atari games. The training curves,
depicted in both Figure 13 and Figure 14, illustrate the performance variation based on the number of
layers in the discriminator network. Notably, a 1-hidden-layer neural network yields the best results
for the full replay setting, while a 3-hidden-layer neural network performs optimally in the noisy
expert setting. It is important to note that this phenomenon is specific to Atari games. We do not have
a good explanation yet. We believe this deserves further investigation in the future work.
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Figure 13: Training curves of ISW-BC on the Atari games in the full replay setting. We test the
performance with different number of layers for the discriminator network.

H.2.3 Results on the Mix of Expert and Random Data

In the main text, we consider two types of supplementary datasets: full replay and noisy expert.
Here we consider another type of supplementary datasets which consists of expert trajectories and
trajectories generated by a random policy [25, 47]. We evaluate all methods on this new type of
supplementary datasets on the robotic locomotion control tasks. In particular, the supplementary
dataset contains 10 expert trajectories and 10 random trajectories. We report the experimental
results on Table 5. The results show that ISW-BC outperforms NBCU significantly, demonstrating
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Figure 14: Training curves of ISW-BC on the Atari games with the noisy expert setting. We test the
performance with different number of layers for the discriminator network.

the robustness of ISW-BC to distribution shift. Furthermore, ISW-BC also performs better than
DemoDICE and DWBC.

Table 5: Environment return of algorithms on the mixture of expert and random dataset on 4
locomotion control tasks

Ant HalfCheetah Hopper Walker Avg
Random −326 −280 −20 2 0%
Expert 5229 11115 3589 5082 100%
BC 1759±287 931±273 2468±164 1738±311 38%
NBCU 4316±215 −14±0 3401±68 1189±100 51%
DemoDICE 4097±237 7401±356 3556±27 4451±141 83%
DWBC 3447±226 5307±319 3286±32 1451±118 59%
ISW-BC 4467±134 8697±365 3584±6 4528±226 88%
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