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Abstract

We study the best arm identification problem in combinatorial semi-bandits in the
fixed confidence setting. We present Perturbed Frank-Wolfe Sampling (P-FWS), an
algorithm that (i) runs in polynomial time, (ii) achieves the instance-specific mini-
mal sample complexity in the high confidence regime, and (iii) enjoys polynomial
sample complexity guarantees in the moderate confidence regime. To the best of our
knowledge, even for the vanilla bandit problems, no algorithm was able to achieve
(ii) and (iii) simultaneously. With P-FWS, we close the computational-statistical
gap in best arm identification in combinatorial semi-bandits. The design of P-FWS
starts from the optimization problem that defines the information-theoretical and
instance-specific sample complexity lower bound. P-FWS solves this problem
in an online manner using, in each round, a single iteration of the Frank-Wolfe
algorithm. Structural properties of the problem are leveraged to make the P-FWS
successive updates computationally efficient. In turn, P-FWS only relies on a
simple linear maximization oracle.

1 Introduction

An efficient method to design statistically optimal algorithms solving active learning tasks (e.g.,
regret minimization or pure exploration in bandits and reinforcement learning) consists in the
following two-step procedure. The first step amounts to deriving, through change-of-measure
arguments, tight information-theoretical fundamental limits satisfied by a wide class of learning
algorithms. These limits are often expressed as the solution of an optimization problem, referred in
this paper to as the lower-bound problem. Interestingly, this solution specifies the instance-specific
optimal exploration process: it characterizes the limiting behavior of the adaptive sampling rule
any statistically optimal algorithm should implement. In the second step, the learning algorithm
is designed so that its exploration process approaches the solution of the lower-bound problem.
This design yields statistically optimal algorithms, but typically requires to repeatedly solve the
lower-bound problem. This method has worked remarkably well for simple learning tasks such as
regret minimization or best-arm identification with fixed confidence in classical stochastic bandits
[Lai87, GC11, GK16], but also in bandits whose arm-to-average reward function satisfies simple
structural properties (e.g., Lipschitz, unimodal) [MCP14, WTP21].

The method also provides a natural way of studying the computational-statistical gap [KLLM22] for
active learning tasks. Indeed, if solving the lower-bound problem in polynomial time is possible, one
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may hope to devise learning algorithms that are both statistically optimal and computationally efficient.
As of now, however, the computational complexity of the lower-bound problem remains largely
unexplored, except for simple learning tasks. For example, in the case of best policy identification
in tabular Markov Decision Processes, the lower-bound problem is non-convex [AMP21] and its
complexity and approximability are unclear.

In this paper, we leverage the aforementioned two-step procedure to assess the computational-
statistical gap for the best arm identification in combinatorial semi-bandits in the fixed confidence
setting. We establish that, essentially, this gap does not exist (a result that was conjectured in
[JMKK21]). Specifically, we present an algorithm that enjoys the following three properties: (i) it
runs in polynomial time, (ii) its sample complexity matches the fundamental limits asymptotically in
the high confidence regime, and (iii) its sample complexity is at most polynomial in the moderate
confidence regime. Next, after formally introducing combinatorial semi-bandits, we describe our
contributions and techniques in detail.

Best arm identification in combinatorial semi-bandits. In combinatorial semi-bandits [CBL12,
CTMSP+15], the learner sequentially selects an action from a combinatorial set X ⊂ {0, 1}K .
When in round t, the action x(t) = (x1(t), . . . , xK(t)) ∈ X is chosen, the environment samples a
K-dimensional vector y(t) whose distribution is assumed to be Gaussian N (µ, I). The learner then
receives the detailed reward vector x(t)⊙ y(t) where ⊙ denotes the element-wise product (in other
words, the learner observes the individual reward yk(t) of the arm k if and only if this arm is selected
in round t, i.e., xk(t) = 1). The parameter µ characterizing the average rewards of the various arms
is initially unknown. The goal of a learner is to identify the best action i⋆(µ) = argmaxx∈X ⟨x,µ⟩
with a given level of confidence 1 − δ, for some δ > 0 while minimizing the expected number of
rounds needed. We assume that the best action is unique and denote by Λ = {µ ∈ RK : |i⋆(µ)| = 1}
the set of parameters satisfying this assumption. The learner strategy is defined by three components:
(i) a sampling rule dictating the sequence of the selected actions; (ii) a stopping time τ defining the
last round where the learner interacts with the environment; (iii) a decision rule specifying the action
ı̂ ∈ X believed to be optimal based on the data gathered until τ .

The sample complexity lower-bound problem. Consider the set of δ-PAC algorithms such that for
any µ ∈ Λ, the best action is identified correctly with probability at least 1− δ. We wish to find a δ-
PAC algorithm with minimal expected sample complexity Eµ[τ ]. To this aim, using classical change-
of-measure arguments [GK16], we may derive a lower bound of the expected sample complexity
satisfied by any δ-PAC algorithm. This lower bound is given by1 Eµ[τ ] ≥ T ⋆(µ)kl(δ, 1− δ). The
characteristic time T ⋆(µ) is defined as the value of the following problem

T ⋆(µ)−1 = sup
ω∈Σ

inf
λ∈Alt(µ)

〈
ω,

(µ− λ)2

2

〉
, (1)

where2 Σ = {
∑

x∈X wxx : w ∈ Σ|X |}, kl(a, b) is the KL-divergence between two Bernoulli
distributions with respective means a and b, and Alt(µ) = {λ ∈ Λ : i⋆(λ) ̸= i⋆(µ)} is the set of
confusing parameters. As it turns out (see Lemma 1), T ⋆(µ) is at most quadratic in K, and hence
the sample complexity lower bound is polynomial. (1) is a concave program over Σ [WTP21], and
a point ω⋆ in its solution set corresponds to an optimal allocation of action draws: an algorithm
sampling actions according to ω⋆ and equipped with an appropriate stopping rule would yield a
sample complexity matching the lower bound. In this paper, we provide computationally efficient
algorithms to solve (1) and show how these can be used to devise a δ-PAC best action identification
algorithm with minimal sample complexity and running in polynomial time. We only assume that we
have access to a computationally efficient Oracle, referred to as the LM (Linear Maximization) Oracle,
identifying the best action should µ be known (but for any possible µ). This assumption, made in all
previous work on combinatorial semi-bandits (see e.g. [JMKK21, PBVP20]), is crucial as indeed, if
there is no computationally efficient algorithm solving the offline problem argmaxx∈X ⟨x,µ⟩ with
known µ, there is no hope to solve its online version with unknown µ in a computationally efficient
manner. The assumption holds for a large array of combinatorial sets of actions [S+03], including
m-sets, matchings, (source–destination)-paths, spanning trees, matroids (refer to [CCG21b] for a
thorough discussion).

1We present proof in Appendix K for completeness – see also [JMKK21].
2ΣN denotes the (N − 1) dimensional simplex.

2



The Most-Confusing-Parameter (MCP) algorithm. The difficulty of solving (1) lies in the inner
optimization problem, i.e., in evaluating the objective function:

Fµ(ω) = inf
λ∈Alt(µ)

〈
ω,

(µ− λ)2

2

〉
= min

x ̸=i⋆(µ)
fx(ω,µ) (2)

where fx(ω,µ) = infλ∈Cx⟨ω,
(µ−λ)2

2 ⟩ and Cx = {λ ∈ RK : ⟨λ, i⋆(µ)− x⟩ < 0}. Evaluating
Fµ(ω) is required to solve (1), but also in the design of an efficient stopping rule. Our first con-
tribution is MCP (Most-Confusing-Parameter), a polynomial time algorithm able to approximate
Fµ(ω) for any given µ and ω. The algorithm’s name refers to the fact that by computing Fµ(ω), we
implicitly identify the most confusing parameter λ⋆ ∈ arg infλ∈Alt(µ)⟨ω, (µ−λ)2

2 ⟩. The design of
MCP leverages a Lagrangian relaxation of the optimization problem defining fx(ω,µ) and exploits
the fact that the Lagrange dual function linearly depends on x. In turn, this linearity allows us to
make use of the LM Oracle. From these observations, we show that computing Fµ(ω) boils down to
solving a two-player game, for which one of the players can simply update her strategy using the LM
Oracle. We prove the following informally stated theorem quantifying the performance of the MCP
algorithm (see Theorem 3 for a more precise statement).
Theorem 1. For any (ω,µ), the MCP algorithm with precision ϵ and certainty parameter θ returns
F̂ and x̂ satisfying Pµ[Fµ(ω) ≤ F̂ ≤ (1 + ϵ)Fµ(ω)] ≥ 1− θ and F̂ = fx̂(ω,µ). The number of
calls to the LM Oracle is, almost surely, at most polynomial in K, ϵ−1, and ln θ−1.

The Perturbed Frank-Wolfe Sampling (P-FWS) algorithm. The MCP algorithm allows us to solve
the lower-bound problem (1) for any given µ. The latter is initially unknown, but could be estimated.
A Track-and-Stop algorithm [GK16] solving (1) with this plug-in estimator in each round would
yield asymptotically minimal sample complexity. It would however be computationally expensive. To
circumvent this difficulty, as in [WTP21], our algorithm, P-FWS, performs a single iteration of the
Frank-Wolfe algorithm for the program (1) instantiated with an estimator of µ. To apply the Frank-
Wolfe algorithm, P-FWS uses stochastic smoothing techniques to approximate the non-differentiable
objective function Fµ by a smooth function. To estimate the gradient of the latter, P-FWS leverages
both the LM Oracle and the MCP algorithm (more specifically its second output x̂). Finally, P-FWS
stopping rule takes the form of a classical Generalized Likelihood Ratio Test (GLRT) where the
estimated objective function is compared to a time-dependent threshold. Hence the stopping rule also
requires the MCP algorithm. We analyze the sample and computational complexities of P-FWS. Our
main results are summarized in the following theorem (refer to Theorem 4 for details).
Theorem 2. For any δ ∈ (0, 1), P-FWS is δ-PAC, and for any (ϵ, ϵ̃) ∈ (0, 1) small enough, its
sample complexity satisfies:

Eµ[τ ] ≤
(1 + ϵ̃)2

T ⋆(µ)−1 − ϵ
×H

(
1

δ
· c(1 + ϵ̃)2

T ⋆(µ)−1 − ϵ

)
+Ψ(ϵ, ϵ̃),

where H(x) = ln(x) + lnln(x), c > 0 is a universal constant, and Ψ(ϵ, ϵ̃) is polynomial in ϵ−1, ϵ̃−1,
K, ∥µ∥∞, and△−1

min, where△min = minx̸=i⋆(µ)⟨i⋆(µ)− x,µ⟩. Under P-FWS, the number of LM
Oracle calls per round is at most polynomial in ln δ−1 and K. The total expected number of these
calls is also polynomial.

To the best of our knowledge, P-FWS is the first polynomial time best action identification algorithm
with minimal sample complexity in the high confidence regime (when δ tends to 0). Its sample
complexity is also polynomial in K in the moderate confidence regime.

2 Preliminaries

We start by introducing some notation. We use bold lowercase letters (e.g., x) for vectors, and bold
uppercase letter (e.g., A) for matrices. ⊙ (resp. ⊕) denotes the element-wise product (resp. sum over
Z2). For x ∈ RK , i ∈ N, xi = (xik)k∈[K] is the i-th element-wise power of x. D = maxx∈X ∥x∥1
denotes the maximum number of arms part of an action. For any µ ∈ Λ, we define the sub-optimality
gap of x ∈ X as△x(µ) = ⟨i⋆(µ)−x,µ⟩, and the minimal gap as△min(µ) = minx ̸=i⋆(µ)△x(µ).
Pµ (resp. Eµ) denotes the probability measure (resp. expectation) when the arm rewards are
parametrized by µ. Whenever it is clear from the context, we will drop µ for simplicity, e.g.
i⋆ = i⋆(µ),△x = △x(µ), and△min = minx̸=i⋆ △x. Refer to Appendix A for an exhaustive table
of notation.
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2.1 The lower-bound problem

Classical change-of-measure arguments lead to the asymptotic sample complexity lower bound
Eµ[τ ] ≥ T ⋆(µ)kl(δ, 1 − δ) where the characteristic time is defined in (1). To have a chance to
develop a computationally efficient best action identification algorithm, we need that the sample
complexity lower bound grows at most polynomially in K. This is indeed the case as stated in the
following lemma, whose proof is provided in Appendix K.
Lemma 1. For any µ ∈ Λ, T ⋆(µ) ≤ 4KD△min(µ)

−2.

We will use first-order methods to solve the lower-bound problem, and to this aim, we will need to
evaluate the gradient w.r.t. ω of fx(ω,µ). We can apply the envelop theorem [WTP21] to show that
for (ω,µ) ∈ Σ+ × Λ,

∇ωfx(ω,µ) =
(µ− λ⋆

ω,µ(x))
2

2
,

where Σ+ = Σ ∩ RK
>0, λ⋆

ω,µ(x) = argminλ∈cl(Cx)⟨ω,
(µ−λ)2

2 ⟩ and cl (Cx) is the closure of Cx
(refer to Lemma 19 in Appendix G.2).

2.2 The Linear Maximization Oracle

As mentioned earlier, we assume that we have access to a computationally efficient Oracle, referred
to as the LM (Linear Maximization) Oracle, identifying the best action if µ is known. More precisely,
as in existing works in combinatorial semi-bandits [KWA+14, PPV19, PBVP20], we make the
following assumption.
Assumption 1. (i) There exists a polynomial-time algorithm identifying i⋆(v) for any v ∈ RK; (ii)
X is inclusion-wise maximal, i.e., there is no x,x′ ∈ X s.t. x < x′; (iii) for each k ∈ [K], there
exists x ∈ X such that xk = 1; (iv) |X | ≥ 2.

Assumption 1 holds for combinatorial sets including m-sets, spanning forests, bipartite matching, s-t
paths. For completeness, we verify the assumption for these action sets in Appendix J. In the design
of our MCP algorithm, we will actually need to solve for some v ∈ RK the linear maximization
problem max⟨x,v⟩ over X \ {i⋆(µ)}; in other words, we will probably need to identify the second
best action. Fortunately, this can be done in a computationally efficient manner under Assumption 1.
The following lemma formalizes this observation. Its proof, presented in Appendix J, is inspired by
Lawler’s m-best algorithm [Law72].
Lemma 2. Let v ∈ RK and x ∈ X . Under Assumption 1, there exists an algorithm that solves
maxx′∈X :x′ ̸=x ⟨v,x′⟩ by only making at most D queries to the LM Oracle.

3 Solving the lower bound problem: the MCP algorithm

Solving the lower bound problem first requires to evaluate its objective function Fµ(ω). A naive
approach, enumerating fx(ω,µ) for all x ∈ X \ {i⋆}, would be computationally infeasible. In this
section, we present and analyze MCP, an algorithm that approximates Fµ(ω) by calling the LM Oracle
a number of times growing at most polynomially in K.

3.1 Lagrangian relaxation

The first step towards the design of MCP consists in considering the Lagrangian relaxation of the
optimization problem defining fx(ω,µ) = infλ∈Cx⟨ω,

(µ−λ)2

2 ⟩ (see e.g., [BV04, Vis21]). For any
(ω,µ) ∈ Σ+×Λ and x ̸= i⋆, the Lagrangian Lω,µ and Lagrange dual function gω,µ of this problem
are defined as, ∀α ≥ 0,

Lω,µ(λ,x, α) =

〈
ω,

(µ− λ)2

2

〉
+ α ⟨i⋆ − x,λ⟩ and gω,µ(x, α) = inf

λ∈RK
Lω,µ(λ,x, α),

respectively. The following proposition, proved in Appendix C.1, provides useful properties of gω,µ:
Proposition 1. Let (ω,µ) ∈ Σ+ × Λ and x ∈ X \ {i⋆(µ)}.
(a) The Lagrange dual function is linear in x. More precisely, gω,µ(x, α) = cω,µ(α)+ ⟨ℓω,µ(α),x⟩
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where cω,µ(α) = α
〈
µ− α

2ω
−1, i⋆(µ)

〉
and ℓω,µ(α) = −α

(
µ+ α

2ω
−1 ⊙ (1K − 2i⋆(µ))

)
.

(b) gω,µ(x, ·) is strictly concave (for any fixed x).
(c) fx(ω,µ) = maxα≥0 gω,µ(x, α) is attained by α⋆

x = △x(µ)
⟨x⊕i⋆(µ),ω−1⟩ .

(d) ∥ℓω,µ(α
⋆
x)∥1 ≤ Lω,µ = 4D2K ∥µ∥2∞

∥∥ω−1
∥∥
∞.

From Proposition 1 (c), strong duality holds for the program defining fx(ω,µ), and we conclude:

Fµ(ω) = min
x ̸=i⋆

max
α≥0

gω,µ(x, α). (3)

Fµ(ω) can hence be seen as the value in a two-player game. The aforementioned properties of the
Lagrange dual function will help to compute this value.

3.2 Solving the two-player game with no regret

There is a rich and growing literature on solving zero-sum games using no-regret algorithms, see for
example [RS13, ALLW18, DFG21, ZODS21]. Our game has the particularity that the x-player has
a discrete combinatorial action set whereas the α-player has a convex action set. Importantly, for
this game, we wish not only to estimate its value Fµ(ω) but also an equilibrium action xe such that
Fµ(ω) = maxα≥0 gω,µ(xe, α). Indeed, an estimate of xe will be needed when implementing the
Frank-Wolfe algorithm and more specifically when estimating the gradient of Fµ(ω). To return such
an estimate, one could think of leveraging results from the recent literature on last-iterate convergence,
see e.g. [DP19, GPDO20, LNP+21, WLZL21, APFS22, AAS+23]. However, most of these results
concern saddle-point problems only, and are not applicable in our setting. Here, we adopt a much
simpler solution, and take advantage of the properties of the Lagrange dual function gω,µ(x, α) to
design an iterative procedure directly leading to estimates of (Fµ(ω),xe). In this procedure, the two
players successively update their actions until a stopping criterion is met, say up to the N -th iterations.
The procedure generates a sequence {(x(n), α(n))}1≤n≤N , and from this sequence, estimates (F̂ , x̂)
of (Fµ(ω),xe). The details of the resulting MCP algorithm are presented in Algorithm 1.

x-player. We use a variant of the Follow-the-Perturbed-Leader (FTPL) algorithm [Han57, KV05].
The x-player updates her action as follows:

x(n) ∈ argmin
x ̸=i⋆

(
n−1∑
m=1

gω,µ(x, α
(m)) +

〈
Zn

ηn
,x

〉)
= argmin

x ̸=i⋆

(〈
n−1∑
m=1

ℓω,µ(α
(m)) +

Zn

ηn
,x

〉)
,

where Zn is a random vector, exponentially distributed and with unit mean ({Zn}n≥1 are i.i.d.).
Compared to the standard FTPL algorithm, we vary learning rate ηn over time to get anytime
guarantees (as we do not know a priori when the iterative procedure will stop). This kind of time-
varying learning rate was also used in [Neu15] with a similar motivation. Note that thanks to the
linearity of gω,µ and Lemma 2, the x-player update can be computed using at most D calls to the LM
Oracle.

α-player and MCP outputs. From Proposition 1, fx(ω,µ) = maxα≥0 gω,µ(x, α). This suggests
that the α-player can just implement a best-response strategy: after the x-player action x(n) is selected,
the α-player chooses α(n) = α⋆

x(n) =
△

x(n) (µ)

⟨x(n)⊕i⋆(µ),ω−1⟩ . This choice ensures that fx(n)(ω,µ) =

gω,µ(x
(n), α(n)), and suggests natural outputs for MCP: should it stops after N iterations, it can

return F̂ = minn∈[N ] gω,µ(x
(n), α(n)) and x̂ ∈ argminn∈[N ] gω,µ(x

(n), α(n)).

Stopping criterion. The design of the MCP stopping criterion relies on the convergence analysis and
regret from the x-player perspective of the above iterative procedure, which we present in the next
subsection. This convergence will be controlled by ℓω,µ(α

⋆
x) and its upper bound Lω,µ derived in

Proposition 1. Introducing cθ = Lω,µ(4
√
K(lnK + 1)+

√
ln(θ−1)/2), the MCP stopping criterion

is:
√
n > cθ(1 + ϵ)/(ϵF̂ ). Since

√
n strictly increases with n and since F̂ ≥ Fµ(ω), this criterion

ensures that the algorithm terminates in a finite number of iterates. Moreover, as shown in the
next subsection, it also ensures that F̂ returned by MCP is an (1 + ϵ)-approximation of Fµ(ω) with
probability at least 1− θ.
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Algorithm 1: (ϵ, θ)-MCP(ω,µ)

initialization: n = 1, F̂ =∞, cθ = Lω,µ

(
4
√
K(lnK + 1) +

√
ln(θ−1)/2

)
;

while (n = 1) or (n > 1 and
√
n ≤ cθ(1 + ϵ)/(ϵF̂ )) do

Sample Zn ∼ exp(1)K and set ηn =
√
K(lnK + 1)/(4nL2

ω,µ);

x(n) ← argminx ̸=i⋆(µ)

(∑n−1
m=1 gω,µ(x, α

(m)) + ⟨Zn,x⟩ /ηn
)

(ties broken arbitrarily);

α(n) ← argmaxα≥0 gω,µ(x
(n), α) (uniqueness ensured by Proposition 1 (c));

if gω,µ(x
(n), α(n)) < F̂ then (F̂ , x̂)← (gω,µ(x

(n), α(n)),x(n)) ;
n← n+ 1;

end
return (F̂ , x̂);

3.3 Performance analysis of the MCP algorithm

We start the analysis by quantifying the regret from the x-player perspective of MCP before its stops.
The following lemma is proved in Appendix C.3.
Lemma 3. Let N ∈ N. Under (ϵ, θ)-MCP(ω,µ),

P

[
1

N

N∑
n=1

gω,µ(x
(n), α(n))− 1

N
min
x̸=i⋆

N∑
n=1

gω,µ(x, α
(n)) ≤ cθ√

N

]
≥ 1− θ.

Observe that on the one hand,

1

N

N∑
n=1

gω,µ(x
(n), α(n)) ≥ min

n∈[N ]
gω,µ(x

(n), α(n)) = F̂ (4)

always holds. On the other hand, if xe ∈ argminx ̸=i⋆ maxα≥0 gω,µ(x, α), then we have:

1

N
min
x ̸=i⋆

N∑
n=1

gω,µ(x, α
(n)) ≤ 1

N

N∑
n=1

gω,µ(xe, α
(n)) ≤ max

α≥0
gω,µ(xe, α) = Fµ(ω). (5)

We conclude that for N such that
√
N ≥ cθ(1+ϵ)

ϵF̂
, Lemma 3 together with the inequalities (4)

and (5) imply that F̂ − Fµ(ω) ≤ cθ√
N
≤ ϵF̂

1+ϵ holds with probability at least 1 − θ. Hence

P
[
F̂ ≤ (1 + ϵ)Fµ(ω)

]
≥ 1 − θ. From this observation, we essentially deduce the following

theorem, whose complete proof is given in Appendix C.2.
Theorem 3. Let ϵ, θ ∈ (0, 1). Under Assumption 1, for any (ω,µ) ∈ Σ+ × Λ, the (ϵ, θ)-MCP(ω,µ)

algorithm outputs (F̂ , x̂) satisfying P
[
Fµ(ω) ≤ F̂ ≤ (1 + ϵ)Fµ(ω)

]
≥ 1 − θ and F̂ =

maxα≥0 gω,µ(x̂, α). Moreover, the number of LM Oracle calls the algorithm does is almost surely at

most
⌈

c2θ(1+ϵ)2

ϵ2Fµ(ω)2

⌉
= O

(
∥µ∥4

∞∥ω−1∥2∞K3D5 lnK ln θ−1

ϵ2Fµ(ω)2

)
.

4 The Perturbed Frank-Wolfe Sampling (P-FWS) algorithm

To identify an optimal sampling strategy, rather than solving the lower-bound problem in each round
as a Track-and-Stop algorithm would [GK16], we devise P-FWS, an algorithm that performs a single
iteration of the Frank-Wolfe algorithm for the lower-bound problem instantiated with an estimator
of µ. This requires us to first smooth the objective function Fµ(ω) = minx ̸=i⋆ fx(ω,µ) (the latter
is not differentiable at points ω where the min is achieved for several sub-optimal actions x). To
this aim, we cannot leverage the same technique as in [WTP21], where r-subdifferential subspaces
are built from gradients of fx(ω,µ). These subspaces could indeed be generated by a number of
vectors (here gradients) exponentially growing with K. Instead, to cope with the combinatorial

6



decision sets, P-FWS applies more standard stochastic smoothing techniques as described in the
next subsection. All the ingredients of P-FWS are gathered in §4.2. By design, the algorithm just
leverages the MCP algorithm as a subroutine, and hence only requires the LM Oracle. In §4.3, we
analyze the performance of P-FWS.

4.1 Smoothing the objective function Fµ

Here, we present and analyze a standard stochastic technique to smooth a function Φ. In P-FWS,
this technique will be applied to the objective function Φ = Fµ. Let Φ : RK

>0 7→ R be a concave
and ℓ-Lipschitz function. Assume that the set of points where Φ is not differentiable is of Lebesgue-
measure zero. To smooth Φ, we can take its average value in a neighborhood of the point considered,
see e.g. [FKM05]. Formally, we define the stochastic smoothed approximate of Φ as:

Φ̄η(ω) = EZ∼Uniform(B2)[Φ(ω + ηZ)] , (6)

where B2 = {v ∈ RK : ∥v∥2 ≤ 1} and η ∈ (0,mink∈[K] ωk). The following proposition lists
several properties of this smoothed function, and gathers together some of the results from [DBW12],
see Appendix H for more details.

Proposition 2. For any ω ∈ Σ+ and η ∈ (0,mink∈[K] ωk), Φ̄η satisfies: (i) Φ(ω)− ηℓ ≤ Φ̄η(ω) ≤
Φ(ω); (ii) ∇Φ̄µ,η(ω) = EZ∼Uniform(B2)[∇Φµ(ω + ηZ)]; (iii) Φ̄η is ℓK

η -smooth; (iv) if η > η′ > 0,
then Φ̄η′(ω) ≥ Φ̄η(ω).

Note that with (i), we may control the approximation error between Φ̄η and Φ by η. (ii) and
(iii) ensure the differentiability and smoothness of Φ̄η respectively. (iii) is equivalent to Φ̄η(ω

′) ≤
Φ̄η(ω)+

〈
∇Φ̄η(ω),ω′ − ω

〉
+ ℓK

2η ∥ω − ω′∥22 , ∀ω,ω′ ∈ Σ+. Finally, (iv) stems from the concavity
of Φ, and implies that the value Φη(ω) monotonously increases while η decreases, and it is upper
bounded by Φ(ω) thanks to (i). The above results hold for Φ = Fµ. Indeed, first it is clear that the
definition (2) of Fµ can be extended to RK ; then, it can be shown that Fµ is Lipschitz-continuous
and almost-everywhere differentiable – refer to Appendices I and H for formal proofs.

4.2 The algorithm

Before presenting P-FWS, we need to introduce the following notation. For t ≥ 1, k ∈ [K], we define
Nk(t) =

∑t
s=1 1{xk(s) = 1}, ω̂k(t) = Nk(t)/t, and µ̂k(t) =

∑t
s=1 yk(s)1{xk(s) = 1} /Nk(t)

when Nk(t) > 0.

Sampling rule. The design of the sampling rule is driven by the following objectives: (i) the empirical
allocation should converge to the solution of the lower-bound problem (1), and (ii) the number of
calls to the LM Oracle should be controlled. To meet the first objective, we need in the Frank-Wolfe
updates to plug an accurate estimator of µ in. The accuracy of our estimator will be guaranteed
by alternating between forced exploration and FW update sampling phases. Now for the second
objective, we also use forced exploration phases when in a Frank-Wolfe update, the required number
of calls to the LM Oracle predicted by the upper bound presented in Theorem 3 is too large. In view
of Lemma 1 and Theorem 3, this happens in round t if ∥µ̂(t − 1)∥∞ or △min(µ̂(t − 1))−1 is too
large. Next, we describe the forced exploration and Frank-Wolfe update phases in detail.

Forced exploration. Initially, P-FWS applies the LM Oracle to compute the forced exploration set
X0 = {i⋆(ek) : k ∈ [K]}, where ek is the K-dimensional vector whose k-th component is equal
to one and zero elsewhere. P-FWS then selects each action in X0 once. Note that Assumption 1
(iii) ensures that the k-th component of i⋆(ek) is equal to one. In turn, this ensures that X0 is a [K]-
covering set, and that playing actions from X0 is enough to estimate µ. P-FWS starts an exploration
phase at rounds t such that

√
t/ |X0| is an integer or such that the maximum of△min(µ̂(t− 1))−1

and ∥µ̂(t− 1)∥∞ is larger than
√
t− 1. Whenever this happens, P-FWS pulls each x ∈ X0 once.

Frank-Wolfe updates. When in round t, the algorithm is not in a forced exploration phase, it im-
plements an iteration of the Frank-Wolfe algorithm applied to maximize the smoothed function
F̄µ̂(t−1),ηt

(ω̂(t − 1)) = EZ∼Uniform(B2)

[
Fµ̂(t−1)(ω̂(t− 1) + ηtZ)

]
. The sequence of parameters

{ηt}t≥1 is chosen to ensure that ηt chosen in (0,mink ω̂k(t)), and hence ω̂(t − 1) + ηtZ ∈
RK

>0. Also note that in a round t where the algorithm is not in a forced exploration phase,
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Algorithm 2: P-FWS ({(ϵt, ηt, nt, ρt, θt)}t)
initialization:

for k = 1, . . . ,K do
X0 ← argmaxx∈X ⟨ek,x⟩ (tie broken arbitrarily)

end
Sample x ∈ X0 in a round-robin manner for 4|X0| rounds; update µ̂(4|X0|) and ω̂(4|X0|);

for t = 4|X0|+ 1, · · · do
if
√
t/|X0| ∈ N or max{△min(µ̂(t− 1))−1, ∥µ̂(t− 1)∥∞} >

√
t− 1 then

Sample each x ∈ X0 once, update µ̂(t) and ω̂(t), and t← t+ |X0| − 1;
else

Compute∇F̃µ̂(t−1),ηt,nt
(ω̂(t− 1)) by (ρt, θt)-MCP algorithm;

x(t)← i⋆
(
∇F̃µ̂(t−1),ηt,nt

(ω̂(t− 1))
)

;
Sample x(t) and update µ̂(t) and ω̂(t);

end
if max{△min(µ̂(t))

−1, ∥µ̂(t)∥∞} ≤
√
t then

F̂t ←
(
ϵt, δ/t

2
)

-MCP(ω̂(t), µ̂(t));

if tF̂t > (1 + ϵt)β
(
t,
(
1− 1

4|X0|

)
δ
)

then break;

end
return ı̂ = i⋆(µ̂(t));

by definition △min(µ̂(t − 1)) > 0. This implies that µ̂(t − 1) ∈ Λ and that Fµ̂(t−1) and
F̄µ̂(t−1),ηt

(ω̂(t − 1)) are well-defined. Now an ideal FW update would consist in playing an
action i⋆(∇F̄µ̂(t−1),ηt

(ω̂(t − 1))) = argmaxx∈X
〈
∇F̄µ̂(t−1),ηt

(ω̂(t− 1)),x
〉
, see e.g. [Jag13].

Unfortunately, we do not have access to ∇F̄µ̂(t−1),ηt
(ω̂(t − 1)). But the latter can be approxi-

mated, as suggested in Proposition 2 (ii), by ∇F̃µ̂(t−1),ηt,nt
(ω̂(t− 1)) = 1

nt

∑nt

m=1∇fx̂m
(ω̂(t−

1) + ηtZm, µ̂(t − 1)), where Z1, · · · ,Znt

i.i.d.∼ Uniform(B2), x̂m is the action return by
(ρt, θt)-MCP(ω̂(t − 1) + ηtZm, µ̂(t − 1)). P-FWS uses this approximation and the LM Oracle
to select the action: x(t) ∈ i⋆

(
∇F̃µ̂(t−1),ηt,nt

(ω̂(t− 1))
)
. The choices of the parameters ηt, nt,

ρt and θt do matter. ηt impacts the sample complexity and should converge to 0 as t→∞ so that
F̄µ,ηt(ω)→ Fµ(ω) at any point ω ∈ Σ+ (this is a consequence of Proposition 2 (i)(iv)). ηt should
not decay too fast however as it would alter the smoothness of F̄µ,ηt

. We will show that ηt should
actually decay as 1/

√
t. (nt, ρt, θt) impact the trade-off between the sample complexity and the

computational complexity of the algorithm. We let nt → ∞ and (ρt, θt) → 0 as t → ∞ so that〈
∇F̃µ,ηt,nt

(ω)−∇F̄µ,ηt
(ω),x

〉
→ 0 for any (ω,x) ∈ Σ+ ×X .

Stopping and decision rule. As often in best arm identification algorithms, the P-FWS stopping rule
takes the form of a GLRT:

τ = inf

{
t > 4|X0| :

tF̂t

1 + ϵt
> β

(
t,

(
1− 1

4|X0|

)
δ

)
,max

{
△min(µ̂(t))

−1, ∥µ̂(t)∥∞
}
≤
√
t

}
,

(7)
where ϵt ∈ R>0, F̂t is returned by the (ϵt, δ/t2)-MCP(ω̂(t), µ̂(t)) algorithm. The function β satisfies

∀t ≥ 1,
(
tFµ̂(t)(ω(t)) ≥ β(t, δ)

)
=⇒ (Pµ[i

⋆(µ̂(t)) ̸= i⋆(µ)] ≤ δ) , (8)

∃c1, c2 > 0 : ∀t ≥ c1, β(t, δ) ≤ ln

(
c2t

δ

)
. (9)

Examples of function β satisfying the above conditions can be found in [GK16, JP20, KK21]. The
condition (8) will ensure the δ-correctness of P-FWS, whereas (9) will control its sample complexity.
Finally, the action returned by P-FWS is simply defined as ı̂ = i⋆(µ̂(τ)). The complete pseudo-code
of P-FWS is presented in Algorithm 2.3

3Our Julia implementation could be found at https://github.com/rctzeng/NeurIPS2023-PerturbedFWS.
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4.3 Non-asymptotic performance analysis of P-FWS

The following theorem provides an upper bound of the sample complexity of P-FWS valid for any
confidence level δ, as well as the computational complexity of the algorithm.
Theorem 4. Let µ ∈ Λ and δ ∈ (0, 1). If P-FWS is parametrized using

(ϵt, ηt, nt, ρt, θt) =

(
t−

1
9 ,

1

4
√
t|X0|

,
⌈
t
1
4

⌉
,

1

16tD2|X0|
,

1

t
1
4 e

√
t

)
, (10)

then (i) the algorithm finishes in finite time almost surely and Pµ [̂ı ̸= i⋆(µ)] ≤ δ; (ii) its sam-
ple complexity satisfies Pµ

[
lim supδ→0

τ
ln δ−1 ≤ T ⋆(µ)

]
= 1 and for any ϵ, ϵ̃ ∈ (0, 1) with

ϵ < min{1, 2D
2△2

min

K ,
D2∥µ∥2

∞
3 },

Eµ[τ ] ≤
(1 + ϵ̃)2

T ⋆(µ)−1 − 6ϵ
×H

(
1

δ
· 4c2

3
· (1 + ϵ̃)2

T ⋆(µ)−1 − 6ϵ

)
+Ψ(ϵ, ϵ̃),

where H(x) = lnx+ lnlnx+1 and Ψ(ϵ, ϵ̃) (refer to (34) for a detailed expression) is polynomial in
ϵ−1, ϵ̃−1, K, ∥µ∥∞, and△min(µ)

−1; (iii) the expected number of LM Oracle calls is upper bounded
by a polynomial in ln δ−1, K, ∥µ∥∞, and△min(µ)

−1.

The above theorem establishes the statistical asymptotic optimality of P-FWS since it implies that
lim supδ→0 Eµ[τ ] / ln(1/δ) ≤ (1 + ϵ̃)2/(T ⋆(µ)−1 − 6ϵ). This upper bound matches the sample
complexity lower bound (1) when ϵ→ 0 and ϵ̃→ 0.

Proof sketch. The complete proof of Theorem 4 is presented in Appendix D.

(i) Correctness. To establish the δ-correctness of the algorithm, we introduce the event G under which
F̂t, computed by (ϵt, δ/t

2)-MCP(ω̂(t), µ̂(t)), is an (1 + ϵt)-approximation of Fµ̂(t)(ω̂(t)) in each
round t ≥ 4|X0|+ 1. From Theorem 3, we deduce that Pµ[Gc] ≤

∑∞
t=4|X0|+1 δ/t

2 ≤ δ/4|X0|. In
view of (8), this implies that Pµ [̂ı ̸= i⋆(µ)] ≤ δ.

(ii) Non-asymptotic sample complexity upper bound.
Step 1. (Concentration and certainty equivalence) We first define two good events, E(1)t and E(2)t . E(2)t

corresponds to the event where µ̂(t) is close to µ, and its occurrence probability can be controlled
using the forced exploration rounds and concentration inequalities. Under E(1)t , the selected action
x(t) is close to the ideal FW update. Again using concentration results and the performance
guarantees of MCP given in Theorem 3, we can control the occurrence probability of E(2)t . Overall,
we show that

∑∞
t=1 Pµ[(E(1)t ∩ E(2)t )c] < ∞. To this aim, we derive several important continuity

results presented in Appendix G. These results essentially allow us to study the convergence of the
smoothed FW updates as if the certainty equivalence principle held, i.e., as if µ̂(t) = µ.
Step 2. (Convergence of the smoothed FW updates) We study the convergence assuming that (E(1)t ∩
E(2)t ) holds. We first show that F̄µ,ηt

is ℓ-Lipschitz and smooth for ℓ = 2D2 ∥µ∥2∞, see Appendices
H and I. Then, in Appendix E, we establish that the dynamics of ϕt = maxω∈Σ Fµ(ω)− Fµ(ω̂(t))

satisfy tϕt ≤ (t − 1)ϕt−1 + ℓ
(
ηt−1 +

K2

2tηt

)
. Observe that, as mentioned earlier, 1/

√
t is indeed

the optimal scaling choice for ηt. We deduce that after a certain finite number T1 of rounds, ϕt is
sufficiently small and max{△min(µ̂(t))

−1, ∥µ̂(t)∥∞} ≤
√
t.

Step 3. Finally, we observe that Eµ[τ ] ≤ T1 +
∑∞

t=T1
Pµ

[
tF̂t ≤ (1 + ϵt)β

(
t, (1− 1

4|X0| )δ
)]

+∑∞
t=T1+1 Pµ

[
(E(1)t ∩ E(2)t )c

]
, and show that the second term in the r.h.s. in this inequality is

equivalent to T ⋆(µ) ln(1/δ) as δ → 0 using the property of the function β defining the stopping
threshold and similar arguments as those used in [GK16, WTP21].

(iii) Expected number of LM Oracle calls. The MCP algorithm is called to compute F̂t and to
perform the FW update only in rounds t such that max{△min(µ̂(t))

−1, ∥µ̂(t)∥∞} ≤
√
t. Thus,

from Theorem 3 and Lemma 1, the number of LM Oracle calls per-round is a polynomial in t and
K. As the Eµ[τ ] is polynomial (in ln δ−1, K, ∥µ∥∞ and△−1

min), the expected number of LM Oracle
calls is also polynomial in the same variables.
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5 Related Work

We provide an exhaustive survey of the related literature in Appendix B. To summarize, to the best of
our knowledge, CombGame [JMKK21] is the state-of-the-art algorithm for BAI in combinatorial
semi-bandits in the high confidence regimes. A complete comparison to P-FWS is presented in
Appendix B. CombGame was initially introduced in [DKM19] for classical bandit problems. There,
the lower-bound problem is casted as a two-player game and the authors propose to use no-regret
algorithms for each player to solve it. [JMKK21] adapts the algorithm for combinatorial semi-
bandits, and provides a non-asymptotic sample complexity upper bound matching (1) asymptotically.
However, the resulting algorithm requires to call an oracle solving the Most-Confusing-Parameter
problem as our MCP algorithm. The authors of [JMKK21] conjectured the existence of such a
computationally efficient oracle, and we establish this result here.

6 Conclusion

In this paper, we have presented P-FWS, the first computationally efficient and statistically optimal
algorithm for the best arm identification problem in combinatorial semi-bandits. For this problem, we
have studied the computational-statistical trade-off through the analysis of the optimization problem
leading to instance-specific sample complexity lower bounds. This approach can be extended to
study the computational-statistical gap in other learning tasks. Of particular interest are problems
with an underlying structure (e.g. linear bandits [DMSV20, JP20], or RL in linear / low rank MDPs
[AKKS20]). Most results on these problems are concerned with statistical efficiency, and ignore
computational issues.
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