
Limitations

One significant limitation of the approach presented in this paper, particularly in the context of
Variational Quantum Eigensolvers (VQEs), relates to the scalability of Gaussian Processes (GPs).
When a large number of points is added to the GP training set through additional observations, the
computational scalability becomes a challenge, especially in scenarios involving a large number of
observations. However, we consider a potential solution to address this issue by imposing a fixed
limit on the training sample size. This approach involves removing previously observed points and
replacing them with newer ones. We hypothesize that by leveraging the information from the CoRe,
the newly added points would contain significantly more valuable information, making previous
observations less informative. Consequently, removing those points from the training set would
mitigate the inherent scalability problem associated with GPs. Exploring this idea further is an avenue
for future research. In addition, in the current version of our proposed NFT-with-EMICoRe, we
limited the choice of new observation points to two points along a sequentially chosen axis, which is
clearly sub-optimal. We will extend our approach for more flexible choices, e.g., by including sets of
points along different directions and different numbers of points to the candidate set, in future work.

Another limitation is related to the current constraints of VQEs and Noisy Intermediate-Scale
Quantum (NISQ) devices. The execution of quantum computations on NISQ devices is currently
restricted, in particular by the coherence time of the qubits and the number of operations required
to execute the algorithm. Consequently, the measurements on a quantum computer are susceptible
to errors, which is recognized as one of the most challenging obstacles in the field. Although error
mitigation techniques have been proposed [46], developing hybrid classical-quantum algorithms that
are more resilient to the inherent noise of quantum computers remains an open area of research.

Broader Impact

This work is a remarkably successful example of the synergistic combination of theories and tech-
niques developed in physics and machine learning communities. Namely, the strong physical prior
knowledge of the VQE objective function is well incorporated in the kernel machine, leading to
our novel VQE kernel, while a specialized sequential minimal optimization—the NFT algorithm—
developed in the physics community is adapted to the Bayesian Optimization (BO) framework,
mitigating the suboptimality of NFT and the scalability issue (in terms of the search domain dimen-
sionality) of BO in a complementary manner. Our novel EMICoRe acquisition function plays an
important role: it exploits the correlations between the function values on points, which are not
necessarily in the neighborhood of each other, by leveraging a new concept of confident regions. This
technique can be applied to general optimization problems where the prior knowledge implies such
non-trivial correlations. In addition, the equivalence of the parameter shift rule and the VQE function
form, which we have proved without using any physics-specific knowledge, can facilitate theoretical
developments both in physics and machine learning communities.

Regarding the societal impact, the authors have thoroughly considered the potential negative conse-
quences of the proposed work and have found none.

A Extended Related Work

Since the VQE protocol was first introduced [7], many optimization algorithms have been proposed
for minimizing the VQE objective. For gradient-based optimization, the parameter shift rule allows
for an efficient gradient computation on NISQ devices [9, 10]. Making use of the analytic form of the
gradient in typical parametric ansatz circuits, this approach avoids estimating the gradient using finite
differences, which would be challenging for NISQ hardware due to the limited accuracy that can be
achieved due to noise.

The Nakanishi-Fuji-Todo (NFT) method [11] harnesses the specific function-form of the VQE
objective to establish Sequential Minimal Optimization (SMO) and showed the state-of-the-art
performance. The authors focused on the case where the parametric gates are of the form U(xd) =
exp(�ixdP/2) with angular parameters x 2 RD and operators P fulfilling P

2 = I and derived an
explicit function-form of the VQE objective. The resulting function form implies that, by keeping
all parameters (angles) in the circuit fixed except for a single one, one can identify the complete
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objective function in the corresponding one-dimensional subspace by observing only three points,
and the global minimum in the subspace can be analytically found. NFT uses this property and
performs SMO by choosing a one-dimensional subspace sequentially or randomly until convergence,
providing an efficient and stable algorithm suited for NISQ devices.

BO is a versatile tool for black-box optimization with its applications including engineering system
design [19], drug design [20], material design [21], and reinforcement learning [22]. Recently,
it started to be extensively used for hyperparameter tuning of deep neural networks [23]. Most
work on BO uses the GP regression model, computes an acquisition function, which evaluates the
promissing-ness of the next candidate points, and suggests its maximizer as the set of next observation
points. Many acquisition functions have been proposed. Lower (upper for maximization problems)
confidence bound [24, 25] optimistically gives high acquisition values at the points with low predictive
mean and high uncertainty. Probability of improvement [26] and expected improvement (EI) [27, 34]
evaluate the probability and the expectation value that the next point can improve the previous
optimum. Entropy search [28, 29] searches the point where the entropy at the minimizer is expected
to be minimized. Knowledge gradient [30] allows final uncertainty and estimates the improvement
of the optimum of the predictions before and after the next sample is included in the training data.
The most common acquisition function is EI, and many generalizations have been proposed. Noisy
EI (NEI) [18] considers the observation noise and takes the correlations between observations into
account, parallel EI [31] considers the case where a batch of new samples are to be suggested, and EI
per cost (or per second if only the computation time matters) [23] penalizes the acquisition function
value based on the (estimated) observation cost.

BO has also been applied to VQE minimization [15]. It was shown that combining the periodic
kernel [17] and NEI acquisition function [18] significantly improves the performance of BO with the
plain RBF kernel and EI, thus making BO comparable to the state-of-the-art methods in the regime of
small qubits and high observation noise. Our approach with Expected Maximum Improvement over
Confident Regions (EMICoRe) has similarities to existing methods and can be seen as a generalization
of them. The key novelty is the introduction of Core Regions (CoRe), which defines the indirectly
observed points. Note the difference between the trust region [16] and CoRe: Based on the predictive
uncertainty, the former restricts the regions to be explored, while the latter expands the observed
points.

For completeness, we note that other machine learning techniques from reinforcement learning [47]
and deep generative models [48] have also been applied to improve the classical optimization schemes
of VQEs.

B Details of Gaussian Process (GP) Regression and Bayesian Optimization
(BO)

In the following, we introduce GP, GP regression, and BO with an uncompressed notation.

B.1 Gaussian Process Regression

A GP [32] is an infinite-dimensional generalization of multivariate Gaussian distribution. Let
f(·) : X 7! R be a random function, and denote the density of GP as GP(f(·); ⌫(·), k(·, ·)), where
⌫(·) and k(·, ·) are the mean function and the kernel (covariance) function, respectively. Intuitively,
stating that a random function f(·) follows GP, i.e., p(f(·)) = GP(f(·); ⌫(·), k(·, ·)), means that the
function values f(x) indexed by the continuous input variable x 2 X follow the infinite-dimensional
version (i.e., process) of the Gaussian distribution. The marginalization property [32] of the Gaussian
allows the following definition:

Definition 1. (Gaussian process) GP is the process of a random function such that, if f(·) ⇠
GP(⌫(·), k(·, ·)), then for any set of input points X = (x1, . . . ,xN ) 2 XN it holds that

p(f |⌫,K) = ND(f ;⌫,K), (14)
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where

f = (f(x1), . . . , f(xN ))> 2 RN
, ⌫ = (⌫(x1), . . . , ⌫(xN ))> 2 RN

,

K =

0

B@
k(x1,x1) · · · k(x1,xN )

...
...

k(xN ,x1) · · · k(xN ,xN )

1

CA 2 RN⇥N
.

Consider another set of input points X 0 = (x0
1
, . . . ,x0

M ) 2 XM , and let f 0 =
(f(x0

1
), . . . , f(x0

N ))> 2 RM
,⌫ 0 = (⌫(x0

1
), . . . , ⌫(x0

N ))> 2 RM be the corresponding random
function values and the mean function values, respectively. Then, Definition 1 implies that the joint
distribution of f and f 0 is

p(f ,f 0) = NN+M (ef ; e⌫,fK), (15)

where
ef = (f>

,f 0>)> 2 RN+M
, e⌫ = (⌫>

,⌫ 0>)> 2 RN+M
,

fK =

✓
K K 0

K 0> K 00

◆
2 R(N+M)⇥(N+M)

.

Here, K = k(X,X) 2 RN⇥N
,K 0 = k(X,X 0) 2 RN⇥M , and K 00 = k(X 0

,X 0) 2 RM⇥M ,
where k(X,X 0) denotes the kernel matrix evaluated at each column of X and X 0 such that
(k(X,X 0))n,m = k(xn,xm).

The conditional distribution of f 0 given f can be analytically derived as

p(f 0|f) = NM (f 0;µcond,Scond), (16)

where

µcond = ⌫ 0 +K 0>K�1(f � ⌫) 2 RM
, Scond = K 00 �K 0>K�1K 0 2 RM

.

In GP regression, X and X 0 correspond to the training and the test inputs, respectively. The basic
idea is to use the joint distribution (15) as the prior distribution on the training and the test points, and
transform the likelihood information from f to f 0 by using the conditional (16).

The GP regression model consists of the Gaussian noise likelihood and GP prior:

p(y|x, f(·)) = N1(y; f(x),�
2), p(f(·)) = GP(f(·); ⌫(·), k(·, ·)), (17)

where �2 denotes the observation noise variance. Below, we assume that the prior mean function is
the constant zero function, i.e., ⌫(x) = 0, 8x. Derivations for the general case can be obtained by
re-defining the observation and the random function as y  y � ⌫(x) and f(x)  f(x) � ⌫(x),
respectively.

Given the training inputs and outputs, X = (x1, . . . ,xN ) 2 XN and y = (y1, . . . , yN )T 2 RN ,
the posterior of the function values at the training input points f = (f(x1), . . . , f(xN ))> 2 RN is
given as

p(f |X,y) =
p(y|X,f)p(f)

p(y|X)
= NN (f ;µ,S), (18)

where

µ = �
�2

�
K�1 + �

�2IN

��1

y 2 RN
, S =

�
K�1 + �

�2IN

��1 2 RN⇥N
.

Given the test inputs X 0 = (x0
1
, . . . ,x0

M ) 2 XM , the posterior of the function values at the test
points f 0 = (f(x0

1
), . . . , f(x0

M ))> 2 RM can be obtained, by using Eqs. (16) and (18), as

p(f 0|X,y) =

Z
p(f 0|f)p(f |X,y) = NM (f 0;µ0

,S0), (19)

where

µ0 = K 0> �
K + �

2IN

��1

y 2 RM
, S0 = K 00 �K 0> �

K + �
2IN

��1

K 0 2 RM⇥M
. (20)
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The predictive distribution of the output y0 = (f(x0
1
) + "

0
1
, . . . , f(x0

M ) + "
0
M )> 2 RM is given as

p(y0|X,y) =

Z
p(y0|f 0)p(f 0|X,y)df 0 = NM (y0;µ0

y,S
0
y), (21)

where

µ0
y = µ0 2 RM

, S0
y = S0 + �

2IN 2 RM⇥M
.

The marginal distribution of the training outputs is also analytically derived:

p(y|X) =

Z
p(y|X,f)p(f)df = NN (y;µmarg,Smarg), (22)

where

µmarg = 0 2 RN
, Smarg = �

2IN +K 2 RN⇥N
.

The marginal likelihood (22) is used for hyperparameter optimization.

B.2 Bayesian Optimization

In BO [14], a surrogate function, which in most cases is GP regression, equipped with uncertainty
estimation, is learned from the currently available observations. A new set of points that likely
improves the current best score is observed in each iteration. Assume that at the t-th iteration of BO,
we have already observed N points Xt�1 2 XN . BO suggests a new set of M points X 0 2 XM by
solving the following problem:

max
X0

aXt�1(X 0),

where aX(·) is an acquisition function computed based on the GP trained on the observations y at
X . A popular choice for the acquisition function is Expected Improvement (EI) [27, 34],

a
EI

X (x0) =
⌦
max(0, f � f

0)
↵
p(f 0|X,y)

,

which covers the case where the observation noise is negligible and only a single point x0 is
chosen in each iteration, i.e., �2 ⌧ 1,M = 1. Here, f denotes the current best observation,
i.e.,f = minn2{1,...,N} f(xn), h·ip denotes the expectation value with respect to the distribution p,
and p(f 0|X,y) is the posterior distribution (19) of the function value f

0 at the new point x0. EI can
be analytically computed:

a
EI

X (x0) = (f � µ
0
X)�

✓
f � µ

0
X

s
0
X

◆
+ s

0
X�

✓
f � µ

0
X

s
0
X

◆
, (23)

where µ
0
X 2 R and s

0
X 2 R are the GP posterior mean and variance (20) with their subscripts

indicating the input points on which the GP was trained, and

�(") = N1("; 0, 1
2), �(") =

Z "

�1
N1("; 0, 1

2)d",

are the probability density function (PDF) and the cumulative distribution function (CDF), respec-
tively, of the one-dimensional standard Gaussian.

For the general case where �2
> 0,M � 1, Noisy Expected Improvement (NEI) [18, 31] was

proposed:

a
NEI

X (X 0) =
⌦
max

�
0,min(f)�min(f 0)

�↵
p(f ,f 0|X,y)

. (24)

NEI treats the function values f at the already observed points X still as random variables, and
appropriately takes the correlations between all pairs of old and new points into account. This is
beneficial because it can avoid overestimating the expected improvements at, e.g., points close to the
current best point and a set of two close new points in promising regions. A downside is that NEI
does not have an analytic form, and requires quasi-Monte Carlo sampling for estimation. Moreover,
maximization is not straightforward, and an approximate solution is obtained by sequentially adding
a point to X 0 until M points are collected.
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Figure 5: Illustration of the VQE workflow. In the first step, highly complicated optimization
problems can be translated into the Hamiltonian formulation (see, e.g., [49, 50]). The Hamiltonian H

and an initial state | 0i are plugged into the VQE block (light purple), where the variational quantum
circuit is instantiated with random angular parameters x0. In the VQE block, the top vertex of the
triangle represents the quantum computer, the red arrows and blocks refer to operations running on a
quantum computer, while the green parts refer to classical steps. In the bottom-left green box, the
current parameters x are updated with the new best parameters x̂ found during classical optimization
routines. Then, the quantum circuit G(x) is updated using the new optimum point, x! x̂, and the
energy E(x) for the updated variational wave function | xi is measured. The VQE block is executed
for T iterations and finally outputs the solution to the task as a variational approximation | x̂T i of
the ground state and the corresponding optimal parameters x̂T for the quantum circuit.

Our EMICoRe, proposed in Section 3.2, can be seen as a generalization of NEI. In EMICoRe, the
points in the confident regions (CoRe), where the predictive uncertainty after new points would have
been observed is lower than a threshold , are treated as “indirectly observed”, and the best score is
searched for over CoRe. If we replace CoRe with the previous and the new training points, EMICoRe
reduces to NEI.

Another related method to our approach is Knowledge Gradient (KG) [30]:

a
KG

X (X 0) =

⌧
max

✓
0, min

x002X
µX(x00)� min

x002X
µ(X,X0)(x

00)

◆�

p(y0|X,y)

, (25)

which assumes that the minimizer of the GP posterior mean function is used as the best score—even
if the uncertainty at the minimizer is high—and estimates the improvement of the best score before
and after the new points X 0 are added to the training data. The second term in Eq. (25) is estimated
by simulation: it trains the GP on the augmented data (X,X 0) and (y>

,y0>)>, where y0 are drawn
from the GP posterior p(y0|X,y), and finds the minimizer of the updated GP mean. Iterating this
process provides Monte Carlo samples to estimate the second term in Eq. (25).

In our EMICoRe method, if we set the CoRe threshold 2 !1 so that the entire search domain is
in CoRe, and replace the random function f(·) in Eq. (11) with its previous and updated GP means,
respectively, EMICoRe reduces to KG. Thus, KG can be seen as a version of EMICoRe that ignores
the uncertainty of the updated GP.

C Details of Variational Quantum Eigensolvers (VQEs)

The VQE [7, 8] is a hybrid quantum-classical algorithm that uses a classical optimization routine
in conjunction with a quantum processor to approximate the ground state of a given Hamiltonian.
VQEs are designed to run on Noisy Intermediate-Scale Quantum (NISQ) devices, which are the
current generation of quantum computers. These devices have a limited number of qubits and high
error rates, which makes it challenging to execute complex quantum algorithms faithfully on these
quantum devices. VQEs are a promising approach to tackle this challenge since they use a hybrid
classical-quantum algorithm, where the quantum device only needs to perform relatively simple
computations (see Fig. 5 for an illustration of the VQE workflow).

VQEs are considered to be potentially relevant for some challenging problems in different scientific
domains such as quantum chemistry [51, 52, 53], drug discovery [54, 55, 56], condensed matter
physics [57], materials science [58] and quantum field theories [59, 60, 61, 40]. Specifically, finding
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the ground state of a molecule is a very challenging problem growing exponentially in complexity with
the number of atoms for classical computing, while for VQE this would instead scale polynomially.
Despite being naturally designed to solve problems associated with quantum chemistry and physics,
such as calculating molecular energies, optimizing molecular geometries [62], and simulating strongly
correlated systems [63], VQEs have also been applied to other domains including optimization and
combinatorial problems such as the flight gate assignment [49, 50].

Given a Hamiltonian formulation that can be efficiently measured on a quantum device, the variational
approach of VQE can be applied to obtain an upper bound for the ground-state energy as well as
an approximation for the ground-state wave function. Let | 0i be the initial ansatz for the Q-
dimensional (qubit) wave function. Let us assume that we use a parametrized quantum circuit G(x),
where x 2 [0, 2⇡)D represents the angular parameters of quantum gates. The circuit G consists of
D

0(� D) unitary gates:
G(x) = GD0 � · · · �G1, (26)

where D of the D
0 gates depend on one of the angular parameters exclusively, i.e., xd parametrizes

only a single gate Gd0(d)(xd), where d
0(d) specifies the gate parametrized by xd.** We consider the

parametric gates of the form

Gd0(x) = Ud0(x) = exp
n
�ix

2
Pd0

o
, (27)

where Pd0 is an arbitrary sequence of the Pauli operators {�X
q ,�

Y
q ,�

Z
q }

Q
q=1

acting on each qubit at
most once. This form covers not only single-qubit gates such as RX(x) = exp

�
�i✓�X

q

�
, but also

entangling gates such as RXX(x) = exp
�
�ix�X

q1 � �
X
q2

�
and RZZ(x) = exp

�
�ix�Z

q1 � �
Z
q2

�
for

q1 6= q2. In the matrix representation of quantum mechanics, quantum states are expressed as vectors
in the computational basis, i.e.,

h0| = (1 0) , |0i =
✓
1
0

◆
, h1| = (0 1) , |1i =

✓
0
1

◆
. (28)

Moreover, Pauli operators are expressed as matrices,

�
X =

✓
0 1
1 0

◆
, �

Y =

✓
0 �i
i 0

◆
, �

Z =

✓
1 0
0 �1

◆
,

acting only on one of the Q qubits non-trivially. The application of any operator on a quantum
state | i thus becomes a matrix multiplication in the chosen basis. Single-qubit parametric gates
correspond to rotations around the axes in a three-dimensional space representation of a qubit state,
known as the Bloch sphere, and are widely used in ansatz circuits for VQEs.

Given the Hamiltonian H , which is an Hermitian operator, the quantum device measures the energy
of the resulting quantum state | xi = G(x)| 0i contaminated with observation noise ", i.e.,

f(x) = f
⇤(x) + ", where f

⇤(x) = h x|H| xi = h 0|G(x)†HG(x)| 0i. (29)
The observation noise " in our numerical experiments only incorporates the shot noise coming from
the intrinsically probabilistic nature of quantum measurements, and the errors from imperfect qubits,
gates, and measurements on current NISQ devices are not considered.

The task of the classical computer in VQE is to find the optimal angular parameters x such that f⇤(x)
is minimal. Given that the ansatz circuit is expressive enough, G(x)| 0i then corresponds to the
ground state of the Hamiltonian H . Thus, the problem to be solved is a noisy black-box optimization:

min
x2[0,2⇡)D

f
⇤(x).

The long-term goal of research on VQEs is to develop efficient quantum algorithms that can solve
problems beyond the capabilities of classical computers. While VQE is a promising approach for
exploiting the advantages of quantum computing, they are plagued by some limitations. Specifically,
these algorithms require appropriate choices for the quantum circuit [64, 65]. To have compact
circuits with a moderate number of quantum gates is, therefore, essential to favor stable computations
and high measurement accuracy.

**In Appendix E, we discuss how the theorems and our method can be extended to the non-exclusive
parametrization case.
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|0i RY (x0) RZ(x3) • • RY (x6) RZ(x9) • • RY (x12) RZ(x15)

|0i RY (x1) RZ(x4) • RY (x7) RZ(x10) • RY (x13) RZ(x16)

|0i RY (x2) RZ(x5) RY (x8) RZ(x11) RY (x14) RZ(x17)

Figure 6: Illustration of Qiskit’s [42] Efficient SU(2) Circuit with default parameters for
Q = 3 qubits and L = 2 layers (thus x 2 [0, 2⇡)18). Each dashed box indicates a layer of the ansatz
circuit. The quantum computation proceeds from left to right with an initial ansatz of the form |0i⌦Q.
Each horizontal line corresponds to a quantum wire representing one qubit. The symbols on the
wires correspond to gate operations on the respective qubits, starting with two parametrized rotational
gates RY and RZ acting on the qubits in the initial 0-th layer. Then, each of the following layers is
composed of one block of CNOT gates and two rotational gates acting on each qubit.

Efficient SU(2) circuit: One circuit ansatz commonly used is the Efficient SU(2) Circuit

from Qiskit [42], which is illustrated in Figure 6. In this circuit, two consecutive rotational gates,

RY (x) = exp
n
�ix

2
�
Y
o

and RZ(x) = exp
n
�ix

2
�
Z
o
, (30)

act on each qubit in the initial (0-th) layer. The rest of the circuit is composed by a stack of L layers,
each of which consists of CNOT gates applied to all pairs of qubits, and a pair of the rotational gates,
RY and RZ , acting on each qubit. The CNOT gates are not parametrized and are therefore not updated
during the optimization process. Therefore, the total number of angular parameters of the circuit is
equal to the number of RY and RZ gates in the circuit. In total, for a setup having Q qubits and L

layers, the number of angular parameters is

D = 2⇥Q+ (L⇥ 2)⇥Q, (31)

where the first term counts the rotational gates in the initial layer, while the second term counts those
in the latter layers. In our experiments, we set the initial ansatz to | 0i = |0i⌦Q, which corresponds
to the tensor product of Q qubits in the |0i-ket state.††

D Proof of Theorem 1

Proof. The VQE kernel (9) can be rewritten as

k
VQE(x,x0) = �

2

0
(1 + �

2)�D
DY

d=1

�
�
2 + cos(xd � x

0
d)
�

= �
2

0
(1 + �

2)�D
DY

d=1

�
�
2 + cosxd cosx

0
d + sinxd sinx

0
d

�

= �
2

0
(1 + �

2)�D
X

⇠2{0,1,2}D

DY

d=1

(�2) (⇠d=0) (cosxd cosx
0
d)

(⇠d=1)
(sinxd sinx

0
d)

(⇠d=2)

= �(x)>�(x0),

where (·) denotes the indicator function (equal to one if the event is true and zero otherwise), and

�(x) = �0(1 + �
2)�D/2 · vec

�
⌦D

d=1
(�, cosxd, sinxd)

>� 2 R3
D

,

which completes the proof.

E Generalization to Non-Exclusive Parametrization Case

In the VQE, it is often beneficial to share the same parameter amongst multiple gates, for example,
in the case where the Hamiltonian has a certain symmetry, such as translation invariance. Doing so,

††An equivalent notation often found in the literature is |0i⌦Q=|0i.
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the variational quantum circuit is guaranteed to generate quantum states that fulfill the symmetry,
and thus the number of parameters to be optimized is efficiently reduced. To consider this case, we
need to assume that some of the entries of the search variable x are shared parameters, each of which
parametrizes multiple gates. The Nakanishi-Fujii-Todo (NFT) algorithm [11] can still be used in this
case, based on the following generalization of Proposition 2:
Proposition 3. [11] Assume that the d-th entry of the input x 2 [0, 2⇡)D parametrizes Vd � 1 gate
parameters. Then, for the VQE objective function f

⇤(·) in Eq. (6),

9b 2 R
QD

d=1
(1+2Vd) such that f

⇤(x) = b> · vec

0

BBBBBBBBB@

⌦D
d=1

0

BBBBBBBBB@

1
cosxd

...
cos(Vdxd)
sinxd

...
sin(Vdxd)

1

CCCCCCCCCA

1

CCCCCCCCCA

. (32)

Similarly, our VQE kernel introduced in Theorem 1 can be generalized as follows:
Theorem 3. The generalized VQE kernel,

k
gVQE(x,x0) = �

2
0

QD
d=1

✓
1+

PVd
v=1

��2v
cos(v(xd�x0

d))
1+

PVd
v=1

��2v

◆
, (33)

is decomposed as kgVQE(x,x0) = �(x)>�(x0), where

�(x) = �0

 
1 +

VdX

v=1

�
�2v

!�D/2

· vec

0

BBBBBBBBB@

⌦D
d=1

0

BBBBBBBBB@

1
�
�1 cosxd

...
�
�Vd cos(Vdxd)
�
�1 sinxd

...
�
�Vd sin(Vdxd)

1

CCCCCCCCCA

1

CCCCCCCCCA

. (34)

Proof. Similarly to the exclusive parameterization case, we have

k
gVQE(x,x0) = �
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= �(x)>�(x0),

which completes the proof.

Since the VQE objective (32) is the Vd-th order sinusoidal function along the xd-axis, NFT can
perform the sequential minimal optimization (SMO) by observing 2Vd points in each step — which
become 2Vd + 1 points, together with the current optimum point — to determine the entire function
form in the one-dimensional subspace parallel to the xd-axis. Our NFT-with-EMICoRe approach can
similarly be generalized to the non-exclusive cases: for the chosen direction d, the approach observes
M = 2Vd new points by maximizing the EMICoRe acquisition function, based on the GP regression
with the generalized VQE kernel (33).
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Algorithm 1: Nakanishi-Fuji-Todo (NFT) method [11] (Baseline)
input :

• TMI : max # of iterations
• TRI : reset interval
• D0 = (x̂0

, ŷ
0) : initialization with x̂0 ⇠ [0, 2⇡)D and ŷ

0 = f
⇤(x̂0) + "

output :
• x̂TMI : last optimal point
• y(x̂TMI) : last estimated objective
• DTMI : ensemble of collected observations

1 begin
2 for t = 1 to TMI do
3 Choose a direction d 2 {1, . . . , D} sequentially or randomly;
4 Find(X 0

) =) X 0 = (x0
1
,x0

2
) = {x̂t�1 � 2⇡/3ed, x̂

t�1 + 2⇡/3ed} along d;
5 Observe y0 =) y0 = (y0

1
, y

0
2
)> at the new points X 0;

6 Append(Dt�1 [ (X 0
,y0)) =) Dt;

7 Fit( ef(✓)) =) ef(✓) = c0 + c1 cos ✓ + c2 sin ✓ to the three points
{(�2⇡/3, y0

1
), (0, ŷt�1), (2⇡/3, y0

2
)} ;

8 FindMin( ef) =) find analytical minimum ✓̂ = argmin✓2[0,2⇡]
ef(✓);

9 Update x̂ =) with x̂t = x̂t�1 + ✓̂ed;
10 Update(ŷ) =) with estimated ŷ

t = ef(✓̂);
11 if t mod TRI = 0 then
12 Observe y(x̂t) ; /* Perform additional observation */

13 Dt = Dt [ (x̂t
, y(x̂t));

14 end
15 end
16 end
17 return DTMI , x̂TMI

, y(x̂TMI)

F Algorithm Details

Here, we provide the detailed procedures of the baseline method (Nakanishi-Fuji-Todo (NFT) [11])
and our proposed method (NFT-with-EMICoRe and the EMICoRe subroutine).

F.1 Nakanishi-Fuji-Todo (NFT)

In each step of NFT (Algorithm 1), an axis d 2 {1, . . . , D} is chosen sequentially or randomly,
and the next observation points along the axis are set (Step 4) and observed (Step 5). Based on
Proposition 2, the two new observations together with the previous optimum are fitted to a sinusoidal
function, and the global optimum along the axis is analytically computed, establishing sequential
minimal optimization (SMO) [12]. NFT iterates this process from a random initial point and outputs
the collected datapoints and the last optimum. Since the optimal point at each step is not directly
observed, errors can accumulate over iterations. As a remedy, NFT observes the optimal point when
the reset interval condition is met (Step 12).

F.2 NFT-with-EMICoRe

Our proposed method, NFT-with-EMICoRe (Algorithm 2), replaces the deterministic choice of the
next observation points X 0 in NFT with a promising choice by BO. After initial (optional) iterations
of NFT until sufficient training data are collected, we start the EMICoRe subroutine (Algorithm 3) to
suggest new observation points X 0 by BO (Step 8). Then, the objective values y0 at X 0 are observed
(Step 10), and the training data Dt�1 = {Xt�1

,yt�1} are updated with the new observed data
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Algorithm 2: NFT-with-EMICoRe
input :

• TMI : # of iterations
• TNFT : # of initial NFT steps
• TAve(> TNFT) : averaging steps for  update.
• D0 = (x̂0

, ŷ
0) : initialization with x̂0 ⇠ [0, 2⇡)D and ŷ

0 = f
⇤(x̂0) + "

output :
• x̂TMI : last optimal point
• µ(x̂TMI) : last estimated objective
• DTMI : ensemble of collected observations

1 if TNFT > 0 then
2 DTNFT , _, _ = NFT(TMI = TNFT, TRI = 0, D) ; /* see Algorithm 1 */

3 Update observations DTNFT = D [D0 ; /* Collect points from NFT step */

4 end
5 begin
6 for t = TNFT + 1 to TMI do
7 Choose a direction d 2 {1, . . . , D} sequentially or randomly;
8 FindX 0 =) points maximizing the EMICoRe(x̂t�1

,Dt�1
, d

t
,

t) ;
9 /* for EMICoRe sub-routine see Algorithm 3 */

10 Observe y0 =) y0 = (y0
1
, y

0
2
)> at the new points X 0;

11 Append(Dt�1 [ (X 0
,y0)) =) Dt ;

12 Train GP(Dt) on updated dataset;
13 Compute posterior means µ = (µ(x̂t�1 � 2⇡/3ed), µ(x̂

t�1), µ(x̂t�1 + 2⇡/3ed))>;
14 Fit( ef(✓)) =) ef(✓) = c0 + c1 cos ✓ + c2 sin ✓ to the three points

{(�2⇡/3, µ1), (0, µ2), (2⇡/3, µ3)} ;

15 FindMin( ef) =) find analytical min ✓̂ = argmin✓2[0,2⇡]
ef(✓) ;

16 Update x̂ =) with x̂t = x̂t�1 + ✓̂ed;
17 Evaluate optimal objective µ̂

t = µ(x̂t);
18 if t � TAve then
19 Compute the CoRe threshold for the next iteration: t+1 = µ̂t�TAve�µ̂t

TAve

;
20 end
21 end
22 end
23 return DTMI , x̂TMI

, µ(x̂TMI)

{X 0
,y0} (Step 11). The GP is updated with the updated training data Dt = {Xt

,yt}, and its mean
predictions at three points are fitted by a sinusoidal function (Step 14) for finding the new optimal
point x̂t (Step 15). Before going to the next iteration, the CoRe threshold  is updated according to
the energy decrease in the last iterations (Step 19). In the early stage of the optimization, where the
energy µ̂

t decreases steeply, a large  encourages crude optimization, while in the converging phase
where the energy decreases slowly, a small  enforces accurate optimization steps.

F.3 EMICoRe Subroutine

The EMICoRe subroutine (Algorithm 3) receives the current optimal point x̂, the current training data
{X,y}, the direction d to be explored, and the CoRe threshold , and returns the suggested observa-
tion points. Fixing the number of new observations per step to M = 2, we prepare pairs of candidate
points (sampled on a grid) along the axis d as a candidate set C = {X̆

j
2 RD⇥2}JSG(JSG�1)

j=1
(Step 2).
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Algorithm 3: EMICoRe subroutine
input :

• x̂ : current optimal point
• D = {X,y} : current training data
• d : direction to be explored
•  : CoRe threshold

params :
• M = 2 : # of suggested points
• JSG : # of search grid points
• JOG : # of evaluation grid points
• NMC : # of Monte Carlo samples

output :
• X

0 : suggested observation points

1 begin
2 Prepare a candidate set C = {X̆

j
2 RD⇥2}JSG(JSG�1)

j=1
;

3 /* with JSG(JSG � 1) being the # of candidate pairs */

4 for j = 1 to JSG(JSG � 1); /* j denotes one pair of points */

5 do
6 Update GP adding the current candidate point =) GP(fX) where fX = (X, X̆

j
)

Compute the posterior variance s eX(x,x) 8x in the evaluation grid, along axis d ;
7 /* test GP uncertainty on evaluation points. */

8 Find discrete approximation of the CoRe as Z eX = {x 2XGrid; s eX(x,x)  2};
9 Use x̂ and Xtest = Z eX to compute mean and the covariance of GP posterior:

p(f̂ ,f test|X,y);
10 Estimate acquisition function by quasi Monte Carlo sampling
11 a

EMICoRe

X (j) = 1

M hmax{0, f̂ �min(f test)}ip(f̂ ,f test|X,y) ;
12 end
13 Find pair of observation points that maximizes EMICoRe
14 ĵ = argmaxj a

EMICoRe

X (j) ;
15 end

16 return Suggested points to observe at next step X 0 = X̆
ĵ

For each candidate pair, the predictive variances of the updated GP are computed on x 2 X test,
points on a test grid, along the direction d (Step 6). This way, a discrete approximation of the CoRe
is obtained by collecting the grid points where the variance is smaller than the threshold 2 (Step 8).
After computing the mean and the covariance of the current GP at the current optimum x̂ and on the
(discrete) CoRe points (Step 9) — which is a eD-dimensional Gaussian for eD = |x̂[Z eX | = 1+ |Z eX |
— the EMICoRe acquisition function is estimated by quasi-Monte Carlo sampling (Step 11). After
evaluating the acquisition functions for all candidate pairs of points, the best pair is returned as the
suggested observation points (Step 16).

F.4 Parameter Setting

We automatically tune the sensitive parameters: the kernel smoothness parameter � is optimized
by maximizing the marginal likelihood in each iteration in the early phase of optimization, and at
intervals in the later phase (see Appendix H for the concrete schedule in each experiment). The
CoRe threshold  is updated at every step and set to the average energy decrease of the last iterations
as in Step 19 of Algorithm 2, which performs comparably to the best heuristic in our investigation
below, see Table 1. The noise variance �2 is set by observing f

⇤(x) several times at several random

25



Table 1: Performance of EMICoRe depending on the choice of hyperparameters C0 and C1 for
the CoRe threshold update rule (35). The best results are highlighted in bold, while # (") indicates
whether lower (higher) values are better.

Description C0 C1 Energy # Fidelity "

Default (Eq.(12)) 0.0 1.0 �5.82± 0.14 0.85± 0.16
Extreme (small) 0.1 0.1 �5.82± 0.11 0.85± 0.16

High (large) 10.0 10.0 �5.72± 0.15 0.82± 0.16
Extreme (large) 10.0 100.0 �5.70± 0.16 0.80± 0.18

Best 0.1 10.0 �5.84± 0.09 0.87± 0.11

points and estimating �2 = �̂
⇤2(Nshots) before starting the optimization. For the GP prior, the

zero mean function ⌫(x) = 0, 8x is used, and the prior variance �2
0

is roughly set so that the
standard deviation �0 is in the same order as the absolute value of the ground-state energy. The
parameters TMI, JSG, JOG, and NMC should be set to sufficiently large values as long as the (classical)
computation is tractable, and the performance is not sensitive to TNFT and TAve. The parameter values
used in our experiments are given in Appendix H.

Investigation of CoRe Threshold Update Rules: In our experiments in Section 4, the CoRe
threshold is updated by Eq. (12). Here, we investigate whether a more fine-tuned update rule can
improve the performance. Specifically, we test the following protocol:


t+1 = max

✓
C0 · �, C1 ·

µ̂
t�TAve � µ̂

t

TAve

◆
, (35)

where C0, C1 � 0 are the hyperparameters controlling the lower bound and the scaling of the average
energy reduction, respectively. We note that � is the standard deviation of the observation noise, and
setting the hyperparameters to C0 = 0, C1 = 1.0 reduces to the default update rule (12). Table 1
shows the achieved energy and fidelity for different values of the hyperparameters C0 and C1, after
600 observed points, in the setting of the Ising Hamiltonian at criticality and a (L = 3)-layered
(Q = 5)-qubits quantum circuit with Nshots = 1024 readout shots. We observe that choosing
C0 = 0.1 and C1 = 10 leads to the best performance; however, we also note that the setting used for
the paper (12) achieves a similar performance.

G Proof of Theorem 2

Proof. We divide the proof into two steps.

G.1 Eq. (7)) Eq. (8)

The parameter shift rule (7) for a = 1/2 gives

2
@

@xd
f
⇤(x) = f

⇤
⇣
x+

⇡

2
ed
⌘
� f

⇤
⇣
x� ⇡

2
ed
⌘
, 8x 2 [0, 2⇡)D, d = 1, . . . , D, (36)

which implies the differentiability of f⇤(x) in the whole domain [0, 2⇡)D. For any d = 1, . . . , D and
x̂ 2 [0, 2⇡)D, consider the one-dimensional subspace of the domain such that Ad,x̂ = {x̂+↵ed;↵ 2
[0, 2⇡)}, and the following restriction of f⇤(·) on the subspace:

ef⇤
d,x̂(xd) ⌘ f

⇤��
Ad,x̂

(x) = f
⇤(x̂+ (xd � x̂d)ed).

For this restricted function, the parameter shift rule (36) applies as

2
@

@xd

ef⇤
d,x̂(xd) = ef⇤

d,x̂

⇣
xd +

⇡

2

⌘
� ef⇤

d,x̂

⇣
xd �

⇡

2

⌘
, 8xd 2 [0, 2⇡), d = 1, . . . , D. (37)

The periodicity of f⇤(·) requires that ef⇤
d,x̂(xd) can be written as a Fourier series,

efd,x̂(xd) = cd,0,0(x̂\d) +
1X

⌧=1

�
cd,1,⌧ (x̂\d) cos (⌧xd) + cd,2,⌧ (x̂\d) sin (⌧xd)

 
, (38)
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where {cd,·,·(x̂\d)} denote the Fourier coefficients, which depend on x̂ except for x̂d. Below, we
omit the dependence of the Fourier coefficients on x̂\d to avoid cluttering.

Substituting Eq. (38) into the left- and the right-hand sides of Eq. (37), respectively, gives

2
@

@xd

ef⇤
d,x̂(xd) = 2

1X

⌧=1

⌧ (�cd,1,⌧ sin (⌧xd) + cd,2,⌧ cos (⌧xd)) , (39)

ef⇤
d,x̂

⇣
xd +

⇡

2

⌘
� ef⇤

d,x̂

⇣
xd �

⇡

2

⌘
=

1X

⌧=1

✓
cd,1,⌧

n
cos

⇣
⌧

⇣
xd +

⇡

2

⌘⌘
� cos

⇣
⌧

⇣
xd �

⇡

2

⌘⌘o

+ cd,2,⌧

n
sin

⇣
⌧

⇣
xd +

⇡

2

⌘⌘
� sin

⇣
⌧

⇣
xd �

⇡

2

⌘⌘o◆

= 2
1X

⌧=1

⇣
�cd,1,⌧ sin (⌧xd) sin

⇣
⌧⇡

2

⌘
+ cd,2,⌧ cos (⌧xd) sin

⇣
⌧⇡

2

⌘⌘

= 2
1X

⌧=1

sin
⇣
⌧⇡

2

⌘
(�cd,1,⌧ sin (⌧xd) + cd,2,⌧ cos (⌧xd)) . (40)

Since Eq. (37) requires that Eqs. (39) and (40) are equal to each other for any xd 2 [0, 2⇡) and
d = 1, . . . , D, it must hold that

⌧ = sin
⇣
⌧⇡

2

⌘
8⌧ such that cd,1,⌧ 6= 0 or cd,2,⌧ 6= 0. (41)

Since Eq. (41) can hold only for ⌧ = 1, we deduce that

cd,1,⌧ = cd,2,⌧ = 0, 8⌧ 6= 1, d = 1, . . . , D.

Therefore, the restricted function must be the first-order sinusoidal function:

efd,x̂(xd) = cd,0,0(x̂\d) + cd,1,1(x̂\d) cos (xd) + cd,2,1(x̂\d) sin (xd) . (42)

As the most general function form that satisfies Eq. (42) for all d = 1, . . . , D, we have

f
⇤(x) =

X

⇠2{0,1,2}D

eb⇠
DY

d=1

1 (⇠d=0) · (cosxd)
(⇠d=1) · (sinxd)

(⇠d=2)

= b> · vec
�
⌦D

d=1
(1, cosxd, sinxd)

>�
.

Here, ⇠ 2 {0, 1, 2}D takes the value of either 0, 1, or 2, specifying the dependence on xd—constant,
cosine, or sine—for each entry, and eb = (eb⇠)⇠2{0,1,2}D is the 3D-dimensional coefficient vector
indexed by ⇠. With the appropriate bijective mapping ◆ : {0, 1, 2}D 7! 1, . . . , 3D consistent with the
definition of the vectorization operator vec(·), we defined b 2 R3

D

such that b◆(⇠) = eb⇠. (·) is the
indicator function, which is equal to one if the event is true and zero otherwise.

G.2 Eq. (8)) Eq. (7)

For any f
⇤(·) in the form of Eq. (8), the left- and right-hand sides of the parameter shift rule (36) can

be, respectively, written as

2
@

@xd
f
⇤(x) = 2

�
�cd,1,1(x\d) sin (xd) + cd,2,1(x\d) cos (xd)

�
, (43)
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2
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�
, (44)

which coincide with each other. This completes the proof.
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Table 2: Choice of coupling parameters for the Ising and Heisenberg Hamiltonians for reproducing
the experiments in Section 4 and Appendix I.

Ising Heisenberg
--j-couplings (JX , JY , JZ) (-1.0, 0.0, 0.0) (1.0, 1.0, 1.0)

--h-couplings (hX , hY , hZ) (0.0, 0.0, -1.0) (1.0, 1.0, 1.0)

Table 3: Additional non-default parameters for reproducing the experiments in Section 4.1.

Command Values
--hyperopt optim=grid,steps=80,interval=75*1+100*25,loss=mll

--kernel-params sigma_0=1.0,gamma=1.0

H Experimental Details

Every numerical experiment, unless stated otherwise, consists of 50 independent seeded trials. Every
seed (trial) starts with one datapoint, D0 = (x̂0

, ŷ
0), with x0 being an initial point uniformly drawn

from [0, 2⇡)D, and y
0 being the associated energy at x0 evaluated on the quantum computer. Those

50 initial pairs are cached and, when an optimization trial starts with a given seed, the corresponding
cached initial pair is loaded. This allows a fair comparison of different optimization methods: all
methods start from the same set of initialization points.

The Qiskit [42] open-source library is used to classically simulate the quantum computer, whereas
the rest of the implementation uses pure Python. All numerical experiments have been performed
on Intel Xeon Silver 4316 @ 2.30GHz CPUs, and the code with instructions on how to run and
reproduce the results is publicly available on GitHub [43].

VQE kernel analysis (Section 4.1): We compare the performance of our proposed VQE-kernel for
VQE with the Ising Hamiltonian, i.e., the Heisenberg Hamiltonian (13) with the coupling parameters
set to

JX = �1, JY = 0, JZ = 0, hX = 0, hY = 0, hZ = �1 (45)

and open boundary conditions (see Table 2). For the variational quantum circuit G(x), we use
a (Q = 3)-qubit, (L = 3)-layered Efficient SU(2) circuit. In this case, the search domain is
x 2 [0, 2⇡)24, according to Eq. (31). The number of readout shots is set to Nshots = 1024. The
baseline kernels are the Gaussian-RBF kernel,

k
RBF(x,x0) = �

2

0
exp

✓
�kx� x0k2

2�2

◆
, (46)

and the Periodic kernel [66],

k
period(x,x0) = �

2

0
exp

 
�

DX

d=1

1

2�2
sin2

✓
xd � x

0
d

2

◆!
, (47)

which are compared with our VQE kernel (9) in terms of the standard BO performance in Figure 2.
Each kernel has two hyperparameters, the prior variance �2

0
and the smoothness parameter �. For all

three kernels, the prior variance is fixed to �2
0
= 1, and the smoothness parameter � is automatically

tuned by marginal likelihood maximization (grid search) in each iteration in the early stage (t =
0, . . . , 75), and after every 100 iterations in the later stage (t = 76, . . .).

For the standard BO, we used the EI acquisition function, which is maximized by L-BFGS [44]. In
the code, the SciPy [67] implementation of L-BFGS was used and all experiments were run using the
same default parameter set in the code. Detailed commands for reproducing the results can be found
in Table 3.
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Table 4: Standard choice of EMICoRe hyperparameters for experiments in Section 4.2 and Appendix I
(unless specified otherwise).

General params
--n-qbits {3,5,7} # of qubits
--n-layers {3,3,5} # of circuit layers
--circuit esu2 Circuit name
--pbc False Open Boundary Conditions
--n-readout (TN) {100,300,500} # iterations for BO
--n-iter (TMI) {100,300,500} # iterations for BO
--kernel vqe Name of the kernel

--hyperopt Hyperparams optimization
optim grid Grid-search optimization of �
max_gamma 20 Max value for �
interval 100*1+20*9+10*100 Scheduling for grid-search
steps 120 # steps in grid
loss mll Loss type

--acq-params EMICoRe params
func func=ei Base acq. func. type
optim optim=emicore Optimizer type
pairsize (JSG) 20 # of candidate points
gridsize (JOG) 100 # of evaluation points
corethresh () 1.0 CoRe threshold 
corethresh_width (TAve) 10 # averaging steps to update 
samplesize (NMC) 100 # of MC samples
smo-steps (TNFT) 0 # of initial NFT steps
smo-axis True Sequential direction choice

EMICoRe analysis (Section 4.2): In this experiment, we compare the optimization performance
of our NFT-with-EMICoRe with the NFT baselines (sequential and random) on VQE with both the
Ising Hamiltonian, for which the coupling parameters are given in Eq. (45), and the Heisenberg
Hamiltonian, for which the coupling parameters are set to

JX = 1, JY = 1, JZ = 1 hX = 1, hY = 1, hZ = 1 . (48)

For the variational quantum circuit G(x), we use a (Q = 5)-qubit, (L = 4)-layered
Efficient SU(2) circuit with open boundary conditions, giving (D = 40)-dimensional search
domain. The number of readout shots is set to Nshots = 1024 in the experiment shown in Figure 3.
In the same format as Figure 3, Figures 9–17 in Appendix I.3 compare EMICoRe with the baselines
for different setups of Q, L, and Nshots.

For NFT-with-EMICoRe (Algorithm 2 and Algorithm 3), where the VQE kernel is used, the prior
standard deviation is set to a value roughly proportional to the number of qubits Q; specifically for
Q = 5 we set �0 = 6. The smoothness parameter � is automatically tuned by marginal likelihood
maximization in each iteration in the early stage (t = 0, . . . , 100), after every 9 iterations in the
middle phase (t = 101, . . . , 280), and after every 100 iterations in the last phase (t = 281, . . .).
The other parameters are set to TMI = 300, JSG = 20, JOG = 100, NMC = 100, TNFT = 0 and
TAve = 10. All relevant hyperparameters are collected in Table 4 along with the corresponding flags
in our code.

The command options that specify the VQE setting, the kernel optimization schedule, and the other
parameter settings for EMICoRe, are summarized in Table 2 and Table 4.

I Additional Experiments

Here, we report on additional experimental results.
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Figure 7: Energy (left) and fidelity (right) for EMICoRe (ours) and the baselines, NFT-sequential and
NFT-random, up to 6000 observations. Results are for the Ising Hamiltonian with a (L = 3)-layered
(Q = 5)-qubits quantum circuit and Nshots = 1024.

Table 5: Energy and fidelity achieved after 6000 observations in the experiment in Figure 7. The best
results are highlighted in bold, while # (") indicates lower (higher) values are better.

Algorithm Energy # Fidelity "

EMICoRe (ours) �5.97± 0.05 0.98± 0.04
NFT-random �5.92± 0.08 0.92± 0.09

NFT-sequential �5.93± 0.09 0.92± 0.16

I.1 Convergence to Ground State

The experiments from Section 4.2, compared the performance between our EMICoRe and the NFT
baselines up to 600 observed points, where the optimization has not yet converged. Here, we perform
a longer optimization with up to 6000 observations to confirm the ability of EMICoRe to converge
to the ground state. In Figure 7 the energy and fidelity plots show the optimization progress for the
Ising model with a (L = 3)-layered (Q = 5)-qubits quantum circuit and Nshots = 1024 readout
shots. The portrait plot on the right shows the distribution over 50 independent trials of the final
solutions after 6000 observations. The mean and the standard deviation of the achieved energy and
fidelity are summarized in Table 5. We observe that EMICoRe achieves an average fidelity above
95% after 1000 observations, and reaches 98% fidelity at 4000 observations. In contrast, the NFT
baselines require all 6000 observations in order to achieve a fidelity of 92%, exhibiting a much slower
convergence. This result confirms that EMICoRe robustly converges to the ground state, independent
of the individual trial’s initialization.

Note that the GP regression exhibits cubic computational complexity with respect to the number
of samples, thus significantly slowing down the optimization process with thousands of observed
points. As a remedy, we limit the number of utilized samples by discarding old observations, i.e.,
we choose inducing points for the GP based on the chronological order of observations. We found
in preliminary experiments that choosing the last 100 observations as inducing points is sufficient
to achieve good results. In the experiments above (see Figure 7), we keep the number of inducing
points above 100 and below 120, where we discard the 20 oldest points when exceeding a number
of 120 observations. This strategy is implemented in our public code [43] through the option
--inducer last_slack:retain=100:slack=20, where last_slack indicates the criterion to
choose the inducing points, and where retain and slack can be used to specify the minimum
number of points retained and the number of samples that can be observed beyond the minimum,
before discarding. Hence, the model discards slack=20 observations when the number of observed
points equals to the sum of the two, i.e., slack + retained.
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(a) Ising off-criticality

(b) Ising at criticality

Figure 8: Energy (left) and fidelity (right) for EMICoRe (ours) compared to three different baselines:
NFT-sequential, NFT-random, and EI with VQE kernel. Results for the Ising Hamiltonian off-
criticality and at criticality are shown in the top and bottom rows respectively.

I.2 Ising Hamiltonian Off-Criticality

In Section 4, we focused on the Ising and Heisenberg Hamiltonians with the parameters, J =
(JX , JY , JZ) and h = (hX , hY , hZ) in Equation (13), set to criticality in the thermodynamic limit.
Such choices are expected to be most challenging for the VQE optimization because the corresponding
ground states tend to be highly entangled due to the quantum phase transition. As an ablation study,
we here conduct experiments for an off-critical setting. Specifically, we evaluate the optimization
performance for the Ising Hamiltonian off-criticality {J = (0, 0, �1); h = (1.5, 0, 0)}. Figure 8
(top) shows the energy (left) and the fidelity (right) achieved by EMICoRe (ours), NFT-sequential,
NFT-random, and EI with VQE kernel after 600 iterations for a (L = 3)-layered (Q = 5)-qubits
quantum circuit with Nshots = 1024 readout shots. For comparison, we also show in Figure 8
(bottom) the performance for the Ising Hamiltonian at criticality {J = (�1, 0, 0); h = (0, 0, �1)}.
We observe that the off-criticality setting is significantly easier, while the plain BO with EI (without
EMICoRe) falls somewhat short, although closely behind NFT-random at 600 observed points.

I.3 Different Setups for Qubits and Layers

Here, we compare the performance of the baselines (NFT-sequential and NFT-random) to our
NFT-with-EMICoRe under different settings of Q, L, and Nshots. All figures in this appendix
(Figures 9–17) are shown in the same format as Figure 3: for each figure, the energy (left column)
and the fidelity (right column) are shown for the Ising (top row) and the Heisenberg (bottom row)
Hamiltonians. In each panel, the left plot shows the optimization progress with the median (solid)
and the 25- and 75-th percentiles (shadow) over the 50 seeded trials, as described in Appendix H,
as a function of the observation costs, i.e., the number of observed points. The portrait square on
the right shows the distribution of the final solution after 200, 600, and 1000 observations have been
performed, respectively, for Q = 3, 5, and 7 qubit cases. As mentioned earlier, the prior standard
deviation �0 is set roughly proportional to Q. Specifically we use �0 = 4, 6, 9 for Q = 3, 5, 7,
respectively.

3-qubit setup: Figures 9–11 show results for Q = 3, L = 3, and Nshots = 256, 512, 1024. Given
the relatively low-dimensional problem with only D = 24, the convergence rate is comparable for
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both baselines and our approach. However, the red sharp peak in the density plot of the final solutions
(right portrait square) in each panel implies that the robustness against initialization is improved by
our NFT-with-EMICoRe approach, thus highlighting its enhanced stability and noise-resiliency.

5-qubit setup: Figures 12–14 show results for Q = 5, L = 3, and Nshots = 256, 512, 1024.
The case for Nshots = 1024 is identical to Figure 3 in the main text. For all noise levels (Nshots =
256, 512, 1024), our EMICoRe (red) consistently achieves lower energy and higher fidelity compared
to the baselines, thus demonstrating the superiority of our NFT-with-EMICoRe over NFT [11].
Remarkably, we observe that in high-noise-level cases, such as for the Heisenberg Hamiltonian for
Nshots = 256, 512 (bottom rows of Figure 12 and Figure 13), the achieved energy by the state-of-the-
art baselines (purple and green) fail to even surpass the energy level of the first excited state for the
600 observed data points, whereas EMICoRe successfully accomplishes this task.

7-qubit setup: Figures 15–17 present results for Q = 7, L = 5, and Nshots = 256, 512, 1024.
Again, NFT-with-EMICoRe consistently outperforms the baselines in all experimental setups. Given
the increased complexity associated with Q = 7 and D = 84, the optimization process becomes
more challenging, necessitating a greater number of observed points to approach the ground-state
energy. Nonetheless, even with just 1000 observed points, NFT-with-EMICoRe already exhibits
significant superiority over NFT [11], particularly in high-noise scenarios such as Nshots = 256. We
also observed that the optimization process faces difficulties with the Heisenberg Hamiltonian case.
We attribute this behavior to the greater complexity of the latter task and defer further analysis of this
regime to future studies.

Figure 9: Comparison (in the same format as Figure 3) between our NFT-with-EMICoRe (red)
and the NFT baselines (green and purple) in VQE for the Ising (top row) and Heisenberg (bottom
row) Hamiltonians with the (L = 3)-layered (Q = 3)-qubit quantum circuit (thus, D = 24) and
Nshots = 256.
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Figure 10: Same comparison as in Fig. 9, with the (L = 3)-layered (Q = 3)-qubit quantum circuit
(thus, D = 24) and Nshots = 512. The NFT-with-EMICoRe (red) and NFT baselines (green and
purple) are shown for both Ising (top row) and Heisenberg (bottom row) Hamiltonians.

Figure 11: Same comparison as in Fig. 9, with the (L = 3)-layered (Q = 3)-qubit quantum circuit
(thus, D = 24) and Nshots = 1024. The NFT-with-EMICoRe (red) and NFT baselines (green and
purple) are shown for both Ising (top row) and Heisenberg (bottom row) Hamiltonians.
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Figure 12: Same comparison as in Fig. 9, with the (L = 3)-layered (Q = 5)-qubit quantum circuit
(thus, D = 40) and Nshots = 256. The NFT-with-EMICoRe (red) and NFT baselines (green and
purple) are shown for both Ising (top row) and Heisenberg (bottom row) Hamiltonians.

Figure 13: Same comparison as in Fig. 9, with the (L = 3)-layered (Q = 5)-qubit quantum circuit
(thus, D = 40) and Nshots = 512. The NFT-with-EMICoRe (red) and NFT baselines (green and
purple) are shown for both Ising (top row) and Heisenberg (bottom row) Hamiltonians.
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Figure 14: Same comparison as in Fig. 9, with the (L = 3)-layered (Q = 5)-qubit quantum circuit
(thus, D = 40) and Nshots = 1024. The NFT-with-EMICoRe (red) and NFT baselines (green and
purple) are shown for both Ising (top row) and Heisenberg (bottom row) Hamiltonians.

Figure 15: Same comparison as in Fig. 9, with the (L = 5)-layered (Q = 7)-qubit quantum circuit
(thus, D = 84) and Nshots = 256. The NFT-with-EMICoRe (red) and NFT baselines (green and
purple) are shown for both Ising (top row) and Heisenberg (bottom row) Hamiltonians.
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Figure 16: Same comparison as in Fig. 9, with the (L = 5)-layered (Q = 7)-qubit quantum circuit
(thus, D = 84) and Nshots = 512. The NFT-with-EMICoRe (red) and NFT baselines (green and
purple) are shown for both Ising (top row) and Heisenberg (bottom row) Hamiltonians.

Figure 17: Same comparison as in Fig. 9, with the (L = 5)-layered (Q = 7)-qubit quantum circuit
(thus, D = 84) and Nshots = 1024. The NFT-with-EMICoRe (red) and NFT baselines (green and
purple) are shown for both Ising (top row) and Heisenberg (bottom row) Hamiltonians.
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