Supplementary Material for MoSo

Haoru Tan ${ }^{1,3 *} \quad$ Sitong Wu ${ }^{2,3}$ * \quad Fei Du ${ }^{3,4}$
Yukang Chen ${ }^{2} \quad$ Zhibin Wang ${ }^{3,4} \quad$ Fan Wang ${ }^{3,4} \quad$ Xiaojuan Qi 1
${ }^{1}$ HKU $\quad{ }^{2}$ CUHK $\quad{ }^{3}$ DAMO Academy, Alibaba Group $\quad{ }^{4}$ Hupan Lab, Zhejiang Province

1 Mathematical Proof

Before the proof, we first revisit the definition of MoSo.

Definition 1. The MoSo score for a specific sample z selected from the training set \mathcal{S} is

$$
\begin{equation*}
\mathcal{M}(z)=\mathcal{L}\left(\mathcal{S} / z, \mathbf{w}_{\mathcal{S} / z}^{*}\right)-\mathcal{L}\left(\mathcal{S} / z, \mathbf{w}_{\mathcal{S}}^{*}\right) \tag{1}
\end{equation*}
$$

where \mathcal{S} / z indicates the dataset \mathcal{S} excluding $z, \mathcal{L}(\cdot)$ is the average cross-entropy loss on the considered set of samples, $\mathbf{w}_{\mathcal{S}}^{*}$ is the optimal parameter trained on the full set \mathcal{S}, and $\mathbf{w}_{\mathcal{S} / z}^{*}$ is the optimal parameter on \mathcal{S} / z.

1.1 Proof for Proposition 1.1

Proposition 1.1. The MoSo score could be efficiently approximated with linear complexity, that is,

$$
\begin{equation*}
\hat{\mathcal{M}}(z)=\mathbb{E}_{t \sim \text { uniform }\{1, \ldots, T\}}\left(\eta_{t} \nabla \mathcal{L}\left(\mathcal{S} / z, \mathbf{w}_{t}\right)^{\mathrm{T}} \nabla l\left(z, \mathbf{w}_{t}\right)\right), \tag{2}
\end{equation*}
$$

where \mathcal{S} / z indicates the dataset \mathcal{S} excluding $z, l(\cdot)$ is the cross-entropy loss function and $\mathcal{L}(\cdot)$ means the average cross-entropy loss, ∇ is the gradient operator with respect to the network parameters, and $\left\{\left.\left(\mathbf{w}_{t}, \eta_{t}\right)\right|_{t=1} ^{T}\right\}$ denotes a series of parameters and learning rate during training the surrogate network on \mathcal{S} with the $S G D$ optimizer.

Proof.

Given a specific sample z, we present a unified loss formulation:

$$
\begin{equation*}
\mathcal{L}_{\epsilon}=\frac{1}{N} \sum_{(x, y) \in \mathcal{L}}^{N} l[(x, y), \mathbf{w}]+\epsilon \cdot l[z, \mathbf{w}] \tag{3}
\end{equation*}
$$

where ϵ is a coefficient. Hence, we have $\mathcal{L}(\mathcal{S}, \mathbf{w})=\mathcal{L}_{\epsilon: 0}$ and $\mathcal{L}(\mathcal{S} / z, \mathbf{w})=\mathcal{L}_{\epsilon: \frac{-1}{N}}$. We suppose that, with the SGD optimizer, the training process reaches the optimal solution after T steps,

$$
\begin{equation*}
\mathbf{w}^{*}=\mathbf{w}_{\mathcal{S}}^{T}=\arg \min \mathcal{L}_{\epsilon: 0}, \quad \mathbf{w}_{\mathcal{S} / z}^{*}=\mathbf{w}_{\mathcal{S} / z}^{T}=\arg \min \mathcal{L}_{\epsilon: \frac{-1}{N}} . \tag{4}
\end{equation*}
$$

where $\mathbf{w}^{*}=\mathbf{w}_{\mathcal{S}}^{T}$ and $\mathbf{w}^{t}=\mathbf{w}_{\mathcal{S}}^{t}$ for simplicity.
Hence, the MoSo-score could be re-writed as:

$$
\mathcal{M}(z)=\mathcal{L}_{\epsilon: \frac{-1}{N}}^{T}-\mathcal{L}_{\epsilon: 0}^{T}+\frac{1}{N} \cdot l\left(z, \mathbf{w}_{\mathcal{S}}^{T}\right)
$$

[^0]and, we use $\mathcal{M}^{t}(z)$ to denote the empirical risk on \mathcal{S} / z gap at the t-th step,
$$
\mathcal{M}^{t}(z)=\mathcal{L}_{\epsilon: \frac{-1}{N}}^{t}-\mathcal{L}_{\epsilon: 0}^{t}+\frac{1}{N} \cdot l\left(z, \mathbf{w}_{\mathcal{S}}^{t}\right)
$$
where $t \leqslant T$. We use $\mathcal{M}(z)$ to denote $\mathcal{M}^{T}(z)$. Note that the network on the full set \mathcal{S} and that on the subset \mathcal{S} / z is started from the same initialization, that is, $\mathcal{M}^{0}(z)=0$. Let's start with the identical equation below,
\[

$$
\begin{align*}
\mathcal{M}(z) & =\left(\mathcal{M}(z)-\mathcal{M}^{T-1}(z)\right)+\left(\mathcal{M}^{T-1}(z)-\mathcal{M}^{T-2}(z)\right)+\ldots+\left(\mathcal{M}^{1}(z)-\mathcal{M}^{0}(z)\right)+\mathcal{M}^{0}(z) \\
& =\left(\mathcal{M}(z)-\mathcal{M}^{T-1}(z)\right)+\left(\mathcal{M}^{T-1}(z)-\mathcal{M}^{T-2}(z)\right)+\ldots+\left(\mathcal{M}^{1}(z)-\mathcal{M}^{0}(z)\right) \\
& =\Delta \mathcal{M}^{T}+\Delta \mathcal{M}^{T-1}+\ldots+\Delta \mathcal{M}^{1} \tag{5}
\end{align*}
$$
\]

Let's take one single item $\Delta \mathcal{M}^{t}$ as an example,

$$
\begin{align*}
\Delta \mathcal{M}^{t} & =\mathcal{M}^{t}(z)-\mathcal{M}^{t-1}(z) \\
& =\left[\mathcal{L}_{\epsilon: \frac{-1}{N}}^{t}-\mathcal{L}_{\epsilon: 0}^{t}+\frac{1}{N} l\left(z, \mathbf{w}_{\mathcal{S}}^{t}\right)\right]-\left[\mathcal{L}_{\epsilon: \frac{-1}{N}}^{t-1}-\mathcal{L}_{\epsilon: 0}^{t-1}+\frac{1}{N} l\left(z, \mathbf{w}_{\mathcal{S}}^{t-1}\right)\right] \tag{6}\\
& =\left[\mathcal{L}_{\epsilon: \frac{-1}{N}}^{t}-\mathcal{L}_{\epsilon: \frac{-1}{N}}^{t-1}\right]-\left[\mathcal{L}_{\epsilon: 0}^{t}-\mathcal{L}_{\epsilon: 0}^{t-1}\right]+\frac{1}{N}\left[l\left(z, \mathbf{w}_{\mathcal{S}}^{t}\right)-l\left(z, \mathbf{w}_{\mathcal{S}}^{t-1}\right)\right]
\end{align*}
$$

By using the first-order Taylor approximation to approximate \mathcal{L}^{t} with \mathcal{L}^{t-1}, we estimate $\Delta \mathcal{M}^{t}$ with,

$$
\begin{equation*}
\Delta \widehat{\mathcal{M}^{t}}=\left[\nabla \mathcal{L}_{\epsilon: \frac{-1}{N}}^{t-1}\right]^{\mathrm{T}}\left(\mathbf{w}_{\mathcal{S} / z}^{t}-\mathbf{w}_{\mathcal{S} / z}^{t-1}\right)-\left[\nabla \mathcal{L}_{\epsilon: 0}^{t-1}\right]^{\mathrm{T}}\left(\mathbf{w}_{\mathcal{S}}^{t}-\mathbf{w}_{\mathcal{S}}^{t-1}\right)+\frac{1}{N} \nabla l\left(z, \mathbf{w}_{\mathcal{S}}^{t-1}\right)^{\mathrm{T}}\left(\mathbf{w}_{\mathcal{S}}^{t}-\mathbf{w}_{\mathcal{S}}^{t-1}\right) \tag{7}
\end{equation*}
$$

According to the update rule of the SGD optimizer, that is, $\mathbf{w}^{t}=\mathbf{w}^{t-1}-\eta_{t} \nabla \mathcal{L}^{t-1}, \Delta \mathcal{M}^{t}$ could be converted into

$$
\begin{equation*}
\Delta \widehat{\mathcal{M}^{t}}=-\eta_{t}\left\|\nabla \mathcal{L}_{\epsilon: \frac{-1}{N}}^{t}\right\|^{2}+\eta_{t}\left\|\nabla \mathcal{L}_{\epsilon: 0}^{t-1}\right\|^{2}-\eta_{t} \frac{1}{N} \nabla l\left(z, \mathbf{w}_{\mathcal{S}}^{t-1}\right)^{\mathrm{T}} \nabla \mathcal{L}_{\epsilon: 0}^{t-1} \tag{8}
\end{equation*}
$$

Here, we use the Taylor approximation again to approximate $\nabla \mathcal{L}_{\epsilon: \frac{-1}{N}}^{t-1}$ with $\nabla \mathcal{L}_{\epsilon: 0}^{t-1}$,

$$
\begin{align*}
\nabla \mathcal{L}_{\epsilon: \frac{-1}{N}}^{t-1} & \approx \nabla \mathcal{L}_{\epsilon: 0}^{t-1}+\left.\frac{\partial \mathcal{L}^{t-1}}{\partial \epsilon}\right|_{\epsilon=0}\left(\left(\epsilon: \frac{-1}{N}\right)-(\epsilon: 0)\right) \tag{9}\\
& =\nabla \mathcal{L}_{\epsilon: 0}^{t-1}-\left.\frac{1}{N} \frac{\partial \nabla \mathcal{L}^{t-1}}{\partial \epsilon}\right|_{\epsilon=0}
\end{align*}
$$

where $\left.\frac{\partial \nabla \mathcal{L}^{t-1}}{\partial \epsilon}\right|_{\epsilon=0}=\nabla l\left(z, \mathbf{w}_{\mathcal{S}}^{t-1}\right)$. By substituting Eq. (9) into Eq. (8), we have that,

$$
\begin{align*}
\Delta \widetilde{\mathcal{M}^{t}} & =\frac{\eta_{t}}{N}\left[\nabla \mathcal{L}_{\epsilon: 0}^{t-1}-\frac{1}{N} \nabla l\left(z, \mathbf{w}_{\mathcal{S}}^{t-1}\right)\right]^{\mathrm{T}} \nabla l\left(z, \mathbf{w}_{\mathcal{S}}^{t-1}\right) \tag{10}\\
& =\frac{\eta_{t}}{N} \nabla \mathcal{L}\left(\mathcal{S} / z, \mathbf{w}_{\mathcal{S}}^{t-1}\right)^{\mathrm{T}} \nabla l\left(z, \mathbf{w}_{\mathcal{S}}^{t-1}\right)
\end{align*}
$$

By substituting Eq. (10) into Eq. (5), we have that,

$$
\begin{align*}
\mathcal{M}(z) & =\Delta \mathcal{M}^{T}+\Delta \mathcal{M}^{T-1}+\ldots+\Delta \mathcal{M}^{1} \\
& \approx \Delta \widetilde{\mathcal{M}^{T}}+\Delta \widetilde{\mathcal{M}^{T-1}}+\ldots+\Delta \widetilde{\mathcal{M}^{1}} \\
& =\sum_{t} \frac{\eta_{t}}{N} \nabla \mathcal{L}\left(\mathcal{S} / z, \mathbf{w}_{t}\right)^{\mathrm{T}} \nabla l\left(z, \mathbf{w}_{t}\right) \tag{11}\\
& =\frac{T}{N} \sum_{t} \frac{\eta_{t}}{T} \nabla \mathcal{L}\left(\mathcal{S} / z, \mathbf{w}_{t}\right)^{\mathrm{T}} \nabla l\left(z, \mathbf{w}_{t}\right) \\
& =\frac{T}{N} \cdot \mathbb{E}_{t \sim \text { uniform }\{1, \ldots, T\}}\left(\eta_{t} \nabla \mathcal{L}\left(\mathcal{S} / z, \mathbf{w}_{t}\right)^{\mathrm{T}} \nabla l\left(z, \mathbf{w}_{t}\right)\right) .
\end{align*}
$$

In practice, $\frac{T}{N}$ is just a constant that contributes little, where N is the number of all training data and T is the number of update steps in training. Moreover, sometimes numerical instability may occur due to factors such as N or T being too large, so we completely ignore this insignificant constant in our applications. Thus, we have the final approximator,

$$
\hat{\mathcal{M}}(z)=\mathbb{E}_{t \sim \text { uniform }\{1, \ldots, T\}}\left(\eta_{t} \nabla \mathcal{L}\left(\mathcal{S} / z, \mathbf{w}_{t}\right)^{\mathrm{T}} \nabla l\left(z, \mathbf{w}_{t}\right)\right)
$$

So, Proposition 1.1 has been proven.

1.2 Proof for Proposition 1.2

Proposition 1.2. By supposing the loss function is ℓ-Lipschitz continuous and the gradient norm of the network parameter is upper-bounded by g, and setting the learning rate as a constant η, the approximation error of Eq. (2) is bounded by:

$$
\begin{equation*}
|\mathcal{M}(z)-\hat{\mathcal{M}}(z)| \leqslant \mathcal{O}\left((\ell \eta+1) g T+\eta g^{2} T\right) \tag{12}
\end{equation*}
$$

where T is the maximum iteration.

1.2.1 Proof for Proposition 1.2.

Note that the final approximator is the time domain mathematical expectation for $\Delta \widetilde{\mathcal{M}}^{t}$, which is used to replace the untraceable $\Delta \mathcal{M}^{t}$, so we analyze the overall error by starting from $\left|\Delta \mathcal{M}^{t}-\Delta \widetilde{\mathcal{M}}^{t}\right|$,

$$
\left|\Delta \mathcal{M}^{t}-\Delta \widetilde{\mathcal{M}^{t}}\right| \leqslant\left|\Delta \mathcal{M}^{t}-\Delta \widehat{\mathcal{M}^{t}}\right|+\left|\Delta \widehat{\mathcal{M}^{t}}-\Delta \widetilde{\mathcal{M}^{t}}\right|
$$

where the first $\left|\Delta \mathcal{M}^{t}-\Delta \widehat{\mathcal{M}^{t}}\right|$ occurs when approximating \mathcal{L}^{t} with \mathcal{L}^{t-1} in Eq.(7), the other one occurs when approximating $\nabla \mathcal{L}_{\epsilon: \frac{-1}{N}}^{t-1}$ with $\nabla \mathcal{L}_{\epsilon: 0}^{t-1}$ in Eq.(9).
As for the first approximation error,

$$
\begin{align*}
\mathcal{O}\left(\left|\Delta \mathcal{M}^{t}-\Delta \widehat{\mathcal{M}^{t}}\right|\right) & \propto \mathcal{O}\left(\left|\mathcal{L}^{t}-\widehat{\mathcal{L}^{t}}\right|\right) \\
& =\mathcal{O}\left(\left|\mathcal{L}^{t}-\mathcal{L}^{t-1}-\nabla \mathcal{L}^{t-1}\left(\mathbf{w}^{t}-\mathbf{w}^{t-1}\right)\right|\right) \tag{13}\\
& \leqslant \mathcal{O}\left(\left|\mathcal{L}^{t}-\mathcal{L}^{t-1}\right|+\left|\nabla \mathcal{L}^{t-1}\left(\mathbf{w}^{t}-\mathbf{w}^{t-1}\right)\right|\right)
\end{align*}
$$

since the loss function is ℓ-Lipschitz continuous by the mild assumption, we have that,

$$
\begin{equation*}
\mathcal{O}\left(\left|\mathcal{L}^{t}-\mathcal{L}^{t-1}\right|+\left|\nabla \mathcal{L}^{t-1}\left(\mathbf{w}^{t}-\mathbf{w}^{t-1}\right)\right|\right) \leqslant \mathcal{O}\left(\ell\left|\mathbf{w}^{t}-\mathbf{w}^{t-1}\right|+\left|\nabla \mathcal{L}^{t-1}\left(\mathbf{w}^{t}-\mathbf{w}^{t-1}\right)\right|\right) \tag{14}
\end{equation*}
$$

according to the update rule in SGD, we have $\mathbf{w}^{t}=\mathbf{w}^{t-1}-\eta \nabla \mathcal{L}^{t-1}$, so,

$$
\begin{equation*}
\mathcal{O}\left(\left|\Delta \mathcal{M}^{t}-\Delta \widehat{\mathcal{M}^{t}}\right|\right) \leqslant \mathcal{O}\left(\ell \eta\left|\nabla \mathcal{L}^{t-1}\right|+\eta\left\|\nabla \mathcal{L}^{t-1}\right\|^{2}\right) \tag{15}
\end{equation*}
$$

Since the gradient norm is upper-bounded by a constant g, thus,

$$
\begin{equation*}
\mathcal{O}\left(\left|\Delta \mathcal{M}^{t}-\Delta \widehat{\mathcal{M}^{t}}\right|\right) \leqslant \mathcal{O}\left(\ell \eta g+\eta g^{2}\right) \tag{16}
\end{equation*}
$$

As for the second approximation error term $\mathcal{O}\left(\left|\Delta \widehat{\mathcal{M}}^{t}-\Delta \widetilde{\mathcal{M}^{t}}\right|\right)$, since it estimates $\nabla \mathcal{L}_{\epsilon: \frac{-1}{N}}^{t-1}$ with $\nabla \mathcal{L}_{\epsilon: 0}^{t-1}$ in Eq.(9), we have that,

$$
\begin{align*}
\mathcal{O}\left(\left|\Delta \widehat{\mathcal{M}}^{t}-\Delta \widetilde{\mathcal{M}^{t}}\right|\right) & \propto\left|\nabla \mathcal{L}_{\epsilon: \frac{-1}{N}}^{t-1}-\nabla \widehat{\mathcal{L}_{\epsilon: \frac{-1}{N}}^{t-1}}\right| \\
& =\left|\nabla \mathcal{L}_{\epsilon: \frac{-1}{N}}^{t-1}-\left(\nabla \mathcal{L}_{\epsilon: 0}^{t-1}-\left.\frac{1}{N} \frac{\partial \nabla \mathcal{L}^{t-1}}{\partial \epsilon}\right|_{\epsilon=0}\right)\right| \tag{17}\\
& \left.\leqslant\left|\nabla \mathcal{L}_{\epsilon: \frac{1}{N}}^{t-1}\right|+\left|\nabla \mathcal{L}_{\epsilon: 0}^{t-1}\right|+\left|\frac{1}{N} \frac{\partial \nabla \mathcal{L}^{t-1}}{\partial \epsilon}\right|_{\epsilon=0} \right\rvert\,
\end{align*}
$$

where $\left.\frac{\partial \nabla \mathcal{L}^{t-1}}{\partial \epsilon}\right|_{\epsilon=0}=\nabla l\left(z, \mathbf{w}_{\mathcal{S}}^{t-1}\right)$. Since the gradient norm is bounded by constant g and N is generally a quite big value (e.g., $N=1 M$ for ImageNet), so,

$$
\begin{equation*}
\left.\left|\nabla \mathcal{L}_{\epsilon: \frac{-1}{N}}^{t-1}\right|+\left|\nabla \mathcal{L}_{\epsilon: 0}^{t-1}\right|+\left|\frac{1}{N} \frac{\partial \nabla \mathcal{L}^{t-1}}{\partial \epsilon}\right|_{\epsilon=0} \right\rvert\, \approx \mathcal{O}(g) \tag{18}
\end{equation*}
$$

By jointly considering Eq.(16) and Eq.(18) and then taking the summation from $t=1$ to T, we have that,

$$
\mathcal{O}(|\mathcal{M}(z)-\hat{\mathcal{M}}(z)|) \leqslant \mathcal{O}\left(\ell \eta g T+\eta g^{2} T+g T\right)=\mathcal{O}\left((\ell \eta+1) g T+\eta g^{2} T\right)
$$

Proposition 1.2 has been proven.

[^0]: *Equal contribution.

