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Abstract

In this paper, we propose a novel data-pruning approach called moving-one-sample-
out (MoSo), which aims to identify and remove the least informative samples from
the training set. The core insight behind MoSo is to determine the importance of
each sample by assessing its impact on the optimal empirical risk. This is achieved
by measuring the extent to which the empirical risk changes when a particular
sample is excluded from the training set. Instead of using the computationally
expensive leaving-one-out-retraining procedure, we propose an efficient first-order
approximator that only requires gradient information from different training stages.
The key idea behind our approximation is that samples with gradients that are
consistently aligned with the average gradient of the training set are more infor-
mative and should receive higher scores, which could be intuitively understood
as follows: if the gradient from a specific sample is consistent with the average
gradient vector, it implies that optimizing the network using the sample will yield
a similar effect on all remaining samples. Experimental results demonstrate that
MoSo effectively mitigates severe performance degradation at high pruning ratios
and achieves satisfactory performance across various settings.

1 Introduction

The recent advances in AI have been largely driven by the availability of large-scale datasets [31, 3,
6, 34, 41, 10, 37], which enable the training of powerful models [51, 3, 45, 6, 1, 4, 36]. However,
such datasets also pose significant challenges in terms of computational and storage resources. It
is important to note that these datasets may contain redundant or noisy samples that are either
irrelevant or harmful to the model’s performance. Data pruning techniques aim to address these
issues by removing such samples and retaining a smaller, more compact core set of training samples
[11, 28, 42, 27, 48, 38, 15]. This can not only reduce the costs of model training and data storage but
also maintain the performance of the model compared to the original dataset.

Existing approaches can be broadly categorized into three major groups: pruning by importance crite-
ria [11, 42, 28, 27, 26, 46], coverage or diversity-driven methods [48, 29, 33, 15], and optimization-
based methods [38, 8, 23, 24, 21, 44]. Among these, the first group of studies is the most effective
and popular. These studies assume that hard samples are critical and informative core-set samples,
and thus, they design difficulty-based metrics to assess sample importance. Such metrics include
prediction entropy [11], forgetting [28] or memorization [46] score, gradient norm [27], E2LN
(variance of prediction) [27], self-supervised prototype distance [42], diverse ensembles [26], and
others.
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Limitations and Motivations. The methods we discussed have some major drawbacks: (i). Hard
samples are not necessarily important samples. For example, noisy samples [48] and outliers [39]
often lead to high losses, which makes it difficult for importance criteria [11, 27] to distinguish
them from truly important samples. (ii). Training dynamics are rarely considered. The mainstream
methods [27, 46, 26, 11, 42, 15, 48, 38] do not possess the awareness of training dynamics as they
generally utilize a converged surrogate network for data selection. This may favor samples that are
difficult or influential in the later stages of training, but not necessarily in the earlier stages or the
whole training process [50, 12].

Our Method. In this paper, we propose a new data pruning algorithm, which involves the newly
proposed Moving-one-Sample-out (MoSo) score with an efficient and error-guaranteed estimator. To
address the first limitation, MoSo utilizes the change of the optimal empirical risk when removing a
specific sample from the training set to measure sample importance instead of only focusing on sample
difficulty. By doing so, MoSo can better separate important samples from harmful noise samples, as
the former tends to lower the empirical risk, while the latter may increase it. However, MoSo is too
costly to compute exactly as it needs brute force leaving-one-out-retraining. Therefore, we propose
an efficient first-order approximator with linear complexity and guaranteed approximation error. The
proposed approximation is simple: samples whose gradient agrees with gradient expectations at all
training stages will get higher scores, which could be intuitively understood as follows: if the gradient
from a specific sample is consistent with the average gradient vector, it implies that optimizing the
network using the sample will yield a similar effect on all remaining samples. The second limitation
is addressed since MoSo comprehensively considers information from different training stages.

We evaluate our MoSo on CIFAR-100 [5], Tiny-ImageNet [49], and ImageNet-1K [31] under different
pruning ratios. As shown in Figure 1, our MoSo significantly surpasses the previous state-of-the-art
methods, especially for high pruning ratios. Besides, experimental results demonstrate that the
coreset selected by our MoSo under one network (such as ResNet) can generalize well to other unseen
networks (such as SENet and EfficientNet) (refer to Figure 3(a) and Figure 3(b)). Additionally, we
study the robustness of our MoSo on datasets with synthetic noisy labels (refer to Figure 3(c) and
Figure 3(d)). It can be seen that our MoSo performs best on average, and surpasses the previous
methods based on difficulty-based importance criteria by a large margin.

2 Related Work

Finding important samples is not only the purpose of data pruning, but also the core step in many
machine learning tasks and problems, like active learning [7, 52, 32, 39, 19], noisy learning [9],
and continuous learning [16]. In data-efficient deep learning, there are also some related topics like
data distillation [13, 40, 53] and data condensation [17, 47, 20]. Unlike data pruning, they focus
on synthesizing a small but informative dataset as an alternative to the original large-scale dataset.
Existing data selection/pruning approaches could be broadly divided into several categories, pruning
by importance criteria [11, 42, 28, 27, 26, 46], coverage or diversity driven methods [48, 29, 33, 15],
optimization-based methods [38, 8, 23–25, 21, 44, 43].

Pruning by importance criteria. This group of studies is the most popular. Generally, they assume
that hard samples are critical and informative core-set samples and thus design difficulty-based
metrics to assess sample importance. The EL2N score [27] measures the data difficulty by computing
the average of the ℓ2-norm error vector from a set of networks. GraNd [27] measures the importance
by calculating the expectation of the gradient norm. The Forgetting score [28] counts how many times
a model changes its prediction from correct to incorrect for each example during the training process.
Memorization [46] assigns a score to each example based on how much its presence or absence in the
training set affects the model’s ability to predict it correctly. Diverse ensembles [26] gave a score to
each sample based on how many models in a group misclassified it. However, hard samples are not
necessarily good for model training [42]. For example, noisy samples [48] and outliers [39] often lead
to high losses, which makes it difficult for importance criteria [11, 27] to distinguish them from truly
important samples. As a comparison, our MoSo score measures sample importance instead of only
focusing on sample difficulty by calculating the change of the optimal empirical risk when removing
a specific sample from the training set. By doing so, it can better separate important samples from
harmful noise samples, as the former tends to lower the empirical risk, while the latter may increase
it.
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Coverage or diversity driven methods. Sener et. al. [32] applied greedy k-center to choose the
coreset with good data coverage. BADGE [19] is a diversity-based selection method in active learning
that clusters the gradient embeddings of the current model using k-means++ and selects a subset
from each cluster. CCS [15] balances the data distribution and the example importance in selecting
data points. Moderate [48] chooses data points with scores near the median score. Note that some
diversity-driven methods, such as CCS [15] and Moderate [48], can use any selection criterion, such
as EL2N score [27], as a basis.

Optimization-based methods. In addition, a line of recent works proposed to select data by
optimization, such as gradient matching [8, 23], bi-level optimization [24, 25], submodularity
[21, 44, 43]. One of the most advanced methods, the optimization-based dataset pruning [38], builds
an algorithm over the sample-wise influence function [35] to remove samples with minimal impact
and guarantees generalization. However, like mainstream methods [27, 46, 26, 11, 42, 15, 48, 38], it
does not account for the effect of samples on the training dynamics, as it only uses the information
from the final model. This may favor samples that are difficult or influential in the later stages
of training, but not necessarily in the earlier stages or the whole training process [50, 12]. In
our work, the proposed method is fully training-dynamic-aware since the MoSo’s approximator
comprehensively considers information from different training stages.

3 Method

In the following, we will first present the background knowledge in Section 3.1. Following that,
we will elaborate on the proposed MoSo score for assessing sample importance in Section 3.2.
Furthermore, we will introduce an efficient approximator of MoSo in Section 3.3. Section 3.4 shows
the along with its complexity analysis and error guarantees.

3.1 Background

In this work, we focus on the classification task, where S “ tpxi, yiq|Ni“1u denotes the training set,
drawn i.i.d from an underlying data distribution P , with input vectors x P Rd and one-hot label
vectors y P t0, 1uK . Let lp¨q denote the widely used cross-entropy loss function for classification
tasks. Given a pruning ratio δ and a parameterized deep network fw, the data pruning task aims to
find the most representative training subset Ŝ Ă S while pruning the remaining samples. This can be
formulated as:

Ŝ “ argmin
DĂS

Ez:px,yq„P

”

lpz,w˚
Dq

ı

, (1)

where p|S| ´ |D|q{|S| “ δ, | ¨ | represents the cardinality of a set, and w˚
D indicates the optimal

network parameter trained on D with the stochastic gradient descent (SGD) optimizer. The SGD
optimizer updates the parameters as follows:

wt “ wt´1 ´ ηt∇LpBt,wt´1q, (2)
where t P t1, ..., T u, ηt is the learning rate at the t-th step, and Bt represents the mini-batch, ∇ is the
gradient operator with respect to network parameters, Lp¨q is the average cross-entropy loss on the
given set/batch of samples.

3.2 Definition for Moving-one-Sample-out

Here, we will describe the details of Moving-one-Sample-out (MoSo) score.

Definition 1. The MoSo score for a specific sample z selected from the training set S is

Mpzq “ L
´

S{z,w˚
S{z

¯

´ L
´

S{z,w˚
S

¯

, (3)

where S{z indicates the dataset S excluding z, Lp¨q is the average cross-entropy loss on the consid-
ered set of samples, w˚

S is the optimal parameter trained on the full set S, and w˚
S{z is the optimal

parameter on S{z.

The MoSo score measures the importance of a specific sample z by calculating how the empirical
risk over S{z changes when removing z from the training set. Specifically, with a representative
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(important and with proper annotation) sample z, retaining it can promote training and result in a
lower empirical risk while removing it could be harmful to the training and result in a higher empirical
risk. Hence, Mpzq ą 0. On the contrary, when z is unrepresentative, Mpzq « 0. Moreover, if the
selected data point z is harmful (e.g. noisy samples), the retention of z is a hindrance to the learning
process on S{z, so the risk would be high; removing the harmful z could result in a lower risk value.
Hence, Mpzq ă 0.

3.3 Gradient-based approximator

The exact calculation of MoSo, as shown in Eq.(3), has a quadratic time complexity of OpTn2q,
considering a dataset with n samples and a total of T training iterations required to obtain the
surrogate network. However, this is practically infeasible; for instance, it may take more than 45
years to process the ImageNet-1K dataset using a Tesla-V100 GPU. To address this issue, we propose
an efficient first-order approximator for calculating the MoSo score, which reduces the complexity to
OpTnq. This approximation not only significantly decreases the computational requirements but also
maintains the effectiveness of the MoSo score in practical applications.

Proposition 1.1. The MoSo score could be efficiently approximated with linear complexity, that is,

M̂pzq “ Et„uniformt1,...,T u

´ T

N
ηt∇LpS{z,wtq

T∇lpz,wtq

¯

, (4)

where S{z indicates the dataset S excluding z, lp¨q is the cross-entropy loss function and Lp¨q means
the average cross-entropy loss, ∇ is the gradient operator with respect to the network parameters,
and tpwt, ηtq|Tt“1u denotes a series of parameters and learning rate during training the surrogate
network on S with the SGD optimizer. T is the maximum time-steps and N is the training set size.

The MoSo score approximator in Eq.(4) essentially represents the mathematical expectation of the
inner product between the gradient with respect to network parameters considering only sample z
and the gradient using the training set excluding z (denoted as S{z) over T learning iterations. A
sample z will be assigned a higher MoSo score if the mathematical expectation of the inner product
is larger. This can be intuitively understood as follows: if the gradient ∇lpz,wq from sample z is
consistent with the average gradient vector ∇LpS{z,wq, it implies that optimizing the network using
sample z will yield a similar effect on reducing the empirical risk as using all remaining samples.
This indicates that sample z is an important and representative sample. Concurrently, according to
Eq.(4), it is also assigned a high MoSo score, which aligns with the intuition.

3.4 Theoretical analysis of tightness and complexity

First, we provide a rigorous mathematical justification to show that there is a theoretical guarantee for
the error between the approximator we provide and the exact score by the brute-force leave-one-out
retraining.

Proposition 1.2. By supposing the loss function is ℓ-Lipschitz continuous and the gradient norm
of the network parameter is upper-bounded by g, and setting the learning rate as a constant η, the
approximation error of Eq. (4) is bounded by:

|Mpzq ´ M̂pzq| ď O
´

pℓη ` 1qgT ` ηg2T
¯

, (5)

where T is the maximum iterations.

The proposition shows that approximation error is positively correlated with many factors such
as training duration T , gradient norm g, and learning rate η. In order to control the impact of
approximate errors, in practice, we will not train the surrogate network to complete convergence,
instead, we will only update a small number of epochs.

Complexity analysis. We show that Eq.(4) efficiently approximates the MoSo score with linear
complexity. Specifically, calculating the overall gradient information requires a time complexity of
Opnq. Additionally, computing the expectation of the gradient over different training iterations in
Eq.(4) takes T steps, resulting in a total complexity of OpTnq. In practice, we can randomly sample a
few time steps rather than considering all T steps to calculate the mathematical expectation, reducing
the overall complexity to be less than OpTnq. Moreover, the optimized gradient calculation operator,
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Algorithm 1: Data Pruning with MoSo.

Require: Dataset S “ tpxi, yiq|Ni“1u, pruning ratio δ;
Require: Random initialized the parameter w0 of a network;
Require: cross-entropy loss lp¨q, SGD optimizer;
Require: Learning-rate scheduler tη1, ..., ηT u, maximum iteration T ;

1: Initialize the sample-wise score set V “ ϕ as a null set;
2: if multiple computing devices are available then
3: Partitioning S into S : tS1, ..., SIu; //With parallel acceleration.
4: else
5: S “ tSu //Without acceleration.
6: end if
7: for Si P S do
8: tpwt, ηtq|Tt“1u “ SGD

´

LpSi,w0q, T, tη1, ..., ηT u

¯

; //Train the surrogate network.
9: for z P Si do

10: Mpzq Ð Et„uniformt1,...,T u

´

ηt∇LpS{z,wtq
T∇lpz,wtq

¯

; //MoSo scoring.
11: Merge into the score set V Ð V ` tMpzqu

12: end for
13: end for
14: return pS Ð PruningpS|V, δq //Data pruning.

implemented by advanced deep learning frameworks such as PyTorch [2], further accelerates the
computation, making it more feasible for practical applications.

3.5 Data Pruning with MoSo

This section presents the pipeline for utilizing the approximated MoSo score in data pruning and
coreset selection. The pseudocode is provided in Algorithm 1. In the MoSo scoring step (see line
10 of Algorithm 1), we employ Eq.(4) from Proposition 1 to calculate the MoSo score. In practice,
there is no need to sum all the time steps t1, ..., T u when calculating the mathematical expectation.
Instead, an efficient approach is randomly sampling several time steps for calculating the average or
expectation, reducing the overall computational cost. In the data pruning step, samples with low
scores are pruned, and the proportion of pruned data corresponds to the predefined ratio δ.

Parallel acceleration by dataset partitioning. To enhance the practical applicability of MoSo on
large-scale datasets, we propose a parallel acceleration scheme that can be employed when multiple
GPU devices are available. Specifically, before training the surrogate network, we initially divide
the original full dataset into a series of non-overlapping subsets. This approach enables efficient
processing by leveraging the parallel computing capabilities of multiple GPUs, where the number
of subsets should be no more than the available computing devices. We select a subset from S
without replacement for each device and then perform training and scoring within the chosen subset,
following Algorithm 1. Finally, MoSo scores from different devices are combined together. As long
as the number of samples in a subset is large enough to approximately represent the overall statistics
of the dataset, this partitioning scheme will not compromise performance while significantly reducing
computation time by a factor of I . This approach is particularly useful for large-scale datasets.

4 Experiments

Datasets and baselines. We evaluate our method on three well-known public benchmarks: the
CIFAR-100 [5], which contains 50,000 training examples of 100 categories; the Tiny-ImageNet [49],
which has 100,000 images of 200 classes; and the ImageNet-1K [31], which covers 1000 classes
with more than 1M training images. We compare our method with a range of baselines, including:
(1). Random selection; (2). Herding [29]; (3). Forgetting [28]; (4). GraNd [27]; (5). EL2N [27];
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(c) ImageNet-1K

Figure 1: Performance comparison of our proposed MoSo and other baseline methods on three image
classification datasets: CIFAR-100 [5], Tiny-ImageNet [49], and ImageNet-1K [31]. The results
show that our approach outperforms most of the baselines, especially for the high pruning rate (e.g.,
70%, 80%).

(6). Optimization-based Dataset Pruning (OPT) [38]; (7). Self-supervised pruning (SSP) [42]; (8).
Moderate [48].

Implementation details. We implement our method in Pytorch [2]. All the experiments are run on
a server with 8 Tesla-V100 GPUs. Unless otherwise specified, we use the same network structure
ResNet-50 [22] for both the coreset and the surrogate network on the full data. We keep all hyper-
parameters and experimental settings of training before and after dataset pruning consistent. We train
the surrogate network on all datasets for 50 epochs. To estimate the mathematical expectation in
Eq.(4) from Proposition 1, we randomly sample 10 time steps. Thus, MoSo can compute gradients
from multiple epochs without increasing the overall time cost significantly, compared to methods that
need to train a network fully (e.g. 200 epochs for CIFAR-100) before calculating the scores.

4.1 Main Results

In the following subsections, we present the detailed performance comparison of our method and
baselines on three experiments: data pruning, generalization to unseen structures, and robustness to
label noise.

Class index

A
cc
ur
ac
y

Figure 2: We show the class-wise accuracy before (bars
named Fullset) and after (bars named MoSo) applying our
MoSo approach. The experiment is conducted on CIFAR-
100. We chose ResNet-18 as the network architecture and
set the pruning ratio to be 0.8.

Data pruning. As Figure 1(a) and
1(b) show, our method significantly
surpasses the SOTA method [48] on
CIFAR-100 and Tiny-ImageNet at
high pruning ratios. Note that some
selected baselines perform worse than
the random selection, especially when
with high pruning ratios, e.g. the re-
sults of the classic EL2N on CIFAR-
100, while our method doesn’t suffer
from this problem. Furthermore, in
Figure 1(c), our method achieves sat-
isfactory performances on ImageNet-
1K across different pruning rates,
showing its effectiveness on large-
scale and complex datasets. These re-
sults also indicate that our method can
capture the sample importance more
accurately and robustly than the exist-
ing methods.

To study whether our algorithm improves/hurts certain classes, we visualize the class-wise accuracy
before and after applying our MoSo data pruning approach in Figure 2. We observe a significant
correlation between the two, with a Spearman correlation coefficient of 0.913 and a P value of
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Figure 3: In (a) and (b), we study the generalization performance of MoSo and other baselines on
CIFAR-100 from ResNet-50 to SENet (R to S) and ResNet-50 to EfficientNet-B0 (R to E). In (c) and
(d), we show the robustness against label noise of MoSo and other baselines on CIFAR-100, where
the labels are randomly replaced with any possible label with a 20% probability.

0.0295. This indicates that the performance before and after pruning with MoSo is consistent across
categories, and no significant improvement or harm to any particular category is observed.

Generalization test. To test whether the pruning results are overfitting to the specific network
architecture, we evaluate MoSo’s generalization ability to unseen architectures. Following the
protocol in [48], we use ResNet-50 as the surrogate network for scoring, and training different
network architectures, SENet [18] and EfficientNet-B0 [30], on the selected data. Figure 3(a) and
Figure 3(b) show the experimental results on different network architectures. MoSo exhibits a
satisfying generalization ability to unseen models and consistently outperforms or matches the
state-of-the-art methods such as SSP [42], and OPT [38].

Robustness test. Label noise is a common challenge in real-world applications. Therefore, how to
improve the model robustness to label noise is an important and popular problem. In this section, we
study the robustness of MoSo to label noise by conducting comparative experiments on CIFAR-100
and Tiny-ImageNet with synthetic label noise. Specifically, we inject label noise [14] into the two
datasets by randomly replacing the labels for a percentage of the training data with all possible labels.
The noise rate is set to 20% for all the experiments. We use ResNet-50 as the network architecture
and keep all experimental settings consistent with the previous data pruning experiments. The results
are shown in Figure 3(c) and Figure 3(d). We observe that some difficulty-based importance criteria
don’t work very well, such as Forgetting, GraNd on both settings, while Herding [29], Moderate [48]
and our MoSo, perform well and significantly outperform other baselines in all settings. Our MoSo
achieves comparable performance with the best baseline, Herding [29], only lagging behind Herding
by less than 1% Top-1 acc.

4.2 Computational Efficiency

0 50 100 150 200 250 300

Time-cost (m)

GraNd

OPT

Moderate

MoSo

M
et

ho
d

> 1 day

Time-cost (surrogate training)
Time-cost (scoring)

Figure 4: Time-core comparison between our MoSo and
other baselines. Please note that when implementing the
GraNd method, we don’t take the summation of the gradient
norm from all epochs, instead, we use the same time-step
sampling scheme as MoSo.

We evaluated MoSo and the other
baseline methods on a server with
8 Tesla V100 GPUs. We used the
CIFAR-100 dataset and the ResNet50
backbone for our experiments. It
should be noted here that we also
take into account the training time
of the surrogate network. This is
because not all datasets will have a
community-provided network to cal-
culate scores, and private datasets will
require practitioners to train a surro-
gate network. MoSo achieves the best
trade-off between computational re-
quirements and performance, making
it the best-performing model with rea-
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sonable computational demands. Notably, it outperforms the state-of-the-art method, Moderate, while
being more efficient. Because of the use of large-scale linear programming in the scoring phase, OPT
is significantly more time-consuming than the other methods.
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Figure 5: Ablation study on the effect of (a) incorporating the training-dynamic-awareness (TDA)
into the MoSo score, and (b) using different time step sampling rates on the accuracy of the selected
coreset (with a pruning ratio of 0.4). The experiments are conducted on CIFAR-100 with ResNet-50
as the network architecture.

4.3 Further Study

In this subsection, we perform additional ablation experiments to investigate the effect of the aware-
ness of training dynamics, the effect of time step sampling, the effect of the parallel speed-up scheme
(dataset partitioning), and the effect of the number of epochs in the surrogate training stage.

Effect of the awareness of training dynamics. Here we investigate the effect of incorporating
the awareness of training dynamics into our MoSo score. To do this, we compare our method with
a variant that removes this awareness by only considering the gradient from the very last epoch of
the surrogate network. This variant is equivalent to using the gradient norm as a measure of sample
importance. The results are shown in Figure 5(a). We can clearly see that our method outperforms
the variant on both CIFAR-100 across different pruning rates. This indicates that the awareness of
training dynamics is crucial for capturing the impact of a sample on the model performance and that
the gradient norm alone from a converged network is not sufficient for measuring sample importance.

Effect of time step sampling. We then investigate the effect of time step sampling on the
accuracy and efficiency of our method. Time step sampling is a technique that we use to reduce the
computational cost of calculating Eq.(4) by randomly selecting a subset of epochs to estimate the
MoSo score. However, this technique also introduces variance into the estimation and may even
affect the quality of the selected coreset with a too-small sampling rate. To study this trade-off,
we conduct experiments with different sampling rates and measure the performance of the final
coreset on CIFAR-100. The results are shown in Figure 5(b). As expected, we observe that the
mean performance decreases as the sampling rate decreases, and the variance also increases as the
sampling rate decreases. This suggests that time-step sampling is a useful technique for improving the
efficiency of our method, but it should be used with caution to avoid sacrificing too much accuracy.

Table 1: The effect of dataset partitioning on the
final data pruning performance, where the pruning
ratio is 0.2. The bold one represents the settings
used in this work.

Subsets number I 1 2 5 10

MoSo (ours) 74.35 75.11 75.76 75.81

Effect of the parallel speed-up scheme. The
most time-consuming aspect of data pruning is
training the surrogate network. Our framework
utilizes a parallel speed-up scheme, explained
in line 3 of Algorithm 1 in the main text. Es-
sentially, we partition the original full set into
several non-overlapping subsets with equivalent
size S Ñ tS1, ..., SIu, where I represents the
number of computing devices. On each device,

8



we can train a surrogate network on Si. Then, for each sample z P Si, we perform MoSo scoring
within the current set by using Mpz|Siq to approximate Mpz|Sq. Implementing this approach
reduces the overall time overhead by I fold. Table 1 demonstrates that partitioning S into more
subsets can improve data pruning’s performance. This means that if the training set is vast, a single
sample’s impact may be buried, making it challenging to measure. In a relatively small training set,
however, the effect of a single sample can be more sensitively reflected and easily captured.

Table 2: The effect of surrogate network train-
ing epochs on the final data pruning perfor-
mance, where the pruning ratio is 0.2.

Training epochs 50 100 150 200

MoSo 75.76 76.41 76.19 76.58

Effect of the number of epochs in the surrogate
training stage. To investigate the impact of sur-
rogate network training epochs on the ultimate data
pruning performance, we augmented the number
of training epochs and presented the experimen-
tal outcomes on CIFAR-100, as shown in Table 2.
However, it is evident that augmenting the training
duration does not lead to a uniform improvement
in performance. For instance, lengthening the train-
ing duration from 50 epochs to 200 epochs only resulted in a meager 0.82 Top-1 accuracy gain,
while the time consumed quadrupled. Note that this is consistent with our conclusion in Proposition
1.2 that the approximation error between the approximated MoSo and the exact MoSo value by
leave-one-out-retraining increases with time (T), leading to no improvement in DP performance with
longer training time.

5 Conclusion

This paper introduces a novel metric for measuring sample importance, called the Moving-one-
Sample-out (MoSo) score. It quantifies sample importance by measuring the change of the optimal
empirical risk when a specific sample is removed from the training set. By doing so, MoSo can
better distinguish important samples that contribute to the model performance from harmful noise
samples that degrade it, as the former tends to lower the empirical risk, while the latter may increase
it. Moreover, we propose an efficient estimator for MoSo with linear complexity and approximation
error guarantees. The estimator incorporates the awareness of training dynamics by considering
the gradient difference across different epochs. We conduct extensive experiments on various data
pruning tasks and demonstrate the effectiveness and generalization of our method.

Limitations and future work. First, the MoSo score is actually the agreement between the gradient
of a single sample and the mathematical expectation of the gradient. The higher the agreement, the
sample will be given a higher score. In fact, this is based on the important assumption that the amount
of information in the data set is much greater than the amount of noise. However, if the amount of
noise is dominant, the usefulness of MoSo is not guaranteed. Therefore, we believe that in the future,
it is very necessary to propose a variant of MoSo to adapt to high noise conditions with theoretical
guarantees. Secondly, in terms of application, this paper only evaluates the performance of MoSo on
classification tasks. Many practical tasks, e.g. large-scale multimodal learning, are worth considering
in future work.

Social Impact. MoSo has potential influences in important applications such as data collection
and data-efficient AI. Moreover, it is beneficial for reducing the computational workload during
training and the cost of storing datasets, which is of great significance for environmentally friendly
and energy-friendly economies. But it may be deployed for inhumane web-data monitoring. The
potential negative effects can be avoided by implementing strict and secure data privacy regulations.
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